1
|
Lin TY, Mishra VK, Dubey R, Chaturvedi TP, Narayan SA, Fang HW, Tsai LW, Dubey NK. Transcriptomic analysis reveals distinct molecular signatures and regulatory networks of osteoarthritic chondrocytes versus mesenchymal stem cells during chondrogenesis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2025. [PMID: 40242907 DOI: 10.5507/bp.2025.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Recent regenerative studies imply conflicting results on knee osteoarthritic (OA) chondrocytes and mesenchymal stem cells (MSC)-mediated cartilage constructs in terms of compressive properties and tensile strength. This could be attributed to different gene expression patterns between MSC and OA chondrocytes during chondrogenic differentiation. Therefore, we analyzed differentially expressed genes (DEGs) between OA and MSC-derived chondrocytes using bioinformatics tools. METHODS We downloaded and analyzed the GSE19664 dataset from the Gene Expression Omnibus to identify DEGs. DAVID was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, while a protein-protein interaction network of DEGs was constructed through the Search Tool for the Retrieval of Interacting Genes (STRING) and identified hub genes by CytoHubba. RESULTS A total of 43 DEGs identified (15 downregulated and 28 upregulated) were found to be deregulated between OA and MSC-derived chondrocytes. KEGG analysis revealed the enrichment of complement and coagulation cascades and other pathways among the studied chondrocytes. The pathway enrichment identified top KEGG, gene ontology biological process, molecular function, and cellular component. The hub networks identified the top 5 hub genes involved in chondrogenesis, including CLU, PLAT, CP, TIMP3, and SERPINA1. CONCLUSIONS Our results identified significant genes involved in chondrogenesis. These findings provide new avenues for exploring the genetic mechanism underlying cartilage synthesis and novel targets for preclinical intervention and clinical treatment.
Collapse
Affiliation(s)
- Tsung-Yu Lin
- Department of Orthopedic Surgery, Mackay Memorial Hospital, Taipei City 104, Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, New Taipei City 252, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan
| | | | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Thakur Prasad Chaturvedi
- Division of Orthodontics and Dentofacial Orthopaedics, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shankar A Narayan
- Center of Excellence, Akhand Jyoti Eye Hospital, Mastichak, Patna, Bihar 841219, India
| | - Hsu-Wei Fang
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 11031, Taiwan
| | - Navneet Kumar Dubey
- Victory Biotechnology Co., Ltd., Taipei 114757, Taiwan
- Executive Programme in Healthcare Management, Indian Institute of Management Lucknow 226013, India
| |
Collapse
|
2
|
Xie C, Dong Y, Yao Z, Li Z. Biomechanical study of a modified application of Ilizarov external mini-fixator for metacarpal neck fractures: a comparative analysis. J Orthop Surg Res 2025; 20:376. [PMID: 40229877 PMCID: PMC11998443 DOI: 10.1186/s13018-025-05795-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Metacarpal neck fractures are common and there are numerous surgical methods available, but each has certain disadvantages and limitations. We modified the conventional Ilizarov external mini-fixator and this study is designed to compare the biomechanical stability of a modified Ilizarov external mini-fixator with conventional fixation methods for metacarpal neck fractures and to provide a basis for its clinical application. METHODS Forty fresh porcine metacarpal specimens were used to create metacarpal neck fracture models. The specimens were randomly assigned to four fixation groups (n = 10) as follows: (1) modified Ilizarov external mini-fixator (IEF), (2) retrograde crossed Kirschner wires (KW), (3) antegrade intramedullary Kirschner wires (IK), and (4) locking plate fixation (LP). In the IEF group, the modified design involved crossing two Kirschner wires (K-wires) through the fracture line, with their tails bent twice and connected to the external fixator frame. Biomechanical testing was performed using a modified three-point bending test. Maximum fracture force and bending stiffness were calculated from the force-displacement curves. Kruskal-Wallis test was used to compare statistical differences in maximum fracture force and stiffness among the groups, followed by post hoc pairwise comparisons adjusted with Bonferroni corrections. RESULTS The median maximum fracture force values (± interquartile range, IQR) for each group were as follows: IEF 160.3 ± 55.6 N, LP 173.5 ± 42.6 N, KW 91.1 ± 23.1 N, and IK 79.8 ± 37.8 N. The corresponding stiffness values were as follows: IEF 29.5 ± 10.4 N/mm, LP 32.9 ± 10.4 N/mm, KW 17.2 ± 11.3 N/mm, and IK 18.2 ± 13.7 N/mm. The IEF group demonstrated significantly higher maximum fracture force and stiffness than the KW and IK groups; however, no statistically significant differences were observed in the IEF group compared with the LP group. CONCLUSION The modified Ilizarov external mini-fixator provided significantly greater biomechanical stability for metacarpal neck fractures than retrograde crossed K-wires and antegrade intramedullary K-wires, achieving comparable performance to the locking plate system. This modified design combines the simplicity and minimally invasive advantages of K-wire fixation with enhanced stability, potentially facilitating early joint mobilization and minimizing the risk of complication.
Collapse
Affiliation(s)
- Chen Xie
- Department of hand surgery, The 960th Hospital of PLA, No.25 Shifan Road, Tianqiao District, Jinan, Shandong, China
| | - Yanchen Dong
- Department of outpatient, The 960th Hospital of PLA, No.25 Shifan Road, Tianqiao District, Jinan, Shandong, China
| | - Zhaozhe Yao
- Department of trauma center, The 960th Hospital of PLA, No.25 Shifan Road, Tianqiao District, Jinan, Shandong, China
| | - Zongyu Li
- Department of hand surgery, The 960th Hospital of PLA, No.25 Shifan Road, Tianqiao District, Jinan, Shandong, China.
| |
Collapse
|
3
|
Tran LS, Chia J, Le Guezennec X, Tham KM, Nguyen AT, Sandrin V, Chen WC, Leng TT, Sechachalam S, Leong KP, Bard FA. ER O-glycosylation in synovial fibroblasts drives cartilage degradation. Nat Commun 2025; 16:2535. [PMID: 40087276 PMCID: PMC11909126 DOI: 10.1038/s41467-025-57401-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/19/2025] [Indexed: 03/17/2025] Open
Abstract
How arthritic synovial fibroblasts (SFs) activate cartilage ECM degradation remains unclear. GALNT enzymes initiate O-glycosylation in the Golgi; when relocated to the ER, their activity stimulates ECM degradation. Here, we show that in human rheumatoid and osteoarthritic synovial SFs, GALNTs are relocated to the ER. In an RA mouse model, GALNTs relocation occurs shortly before arthritis symptoms and abates as the animal recovers. An ER GALNTs inhibitor prevents cartilage ECM degradation in vitro and expression of this chimeric protein in SFs results in the protection of cartilage. One of the ER targets of GALNTs is the resident protein Calnexin, which is exported to the cell surface of arthritic SFs. Calnexin participates in matrix degradation by reducing ECM disulfide bonds. Anti-Calnexin antibodies block ECM degradation and protect animals from RA. In sum, ER O-glycosylation is a key switch in arthritic SFs and glycosylated surface Calnexin could be a therapeutic target.
Collapse
Affiliation(s)
- Le Son Tran
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Joanne Chia
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Albatroz Therapeutics Pte Ltd, Singapore, Singapore
| | - Xavier Le Guezennec
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Albatroz Therapeutics Pte Ltd, Singapore, Singapore
| | - Keit Min Tham
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Albatroz Therapeutics Pte Ltd, Singapore, Singapore
| | - Anh Tuan Nguyen
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Albatroz Therapeutics Pte Ltd, Singapore, Singapore
| | - Virginie Sandrin
- Roche Pharma Research & Early Development, Innovation Center Basel, Basel, Switzerland
| | | | - Tan Tong Leng
- Department of Orthopaedic Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Sreedharan Sechachalam
- Department of Hand and Reconstructive Microsurgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Khai Pang Leong
- Department of Rheumatology, Allergy & Immunology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Frederic A Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore.
- Albatroz Therapeutics Pte Ltd, Singapore, Singapore.
- Cancer Research Center of Marseille (CRCM), Marseille, France.
| |
Collapse
|
4
|
Heron MA, Forstot JZ, Nyárádi Z, Bethard JD. Exploring the antiquity of rheumatoid arthritis: A case study from medieval Transylvania. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2025; 48:13-22. [PMID: 39615238 DOI: 10.1016/j.ijpp.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/22/2024] [Accepted: 11/03/2024] [Indexed: 02/22/2025]
Abstract
OBJECTIVE To evaluate erosive pathological lesions on a skeleton from medieval Transylvania. MATERIALS A skeleton from a Székely archaeological site in Transylvania was examined and radiocarbon dated to Cal 1300 CE - 1415 CE. METHODS The skeletal remains were examined macroscopically and with radiographic imaging. A differential diagnosis was conducted following established protocols. RESULTS The individual was estimated to be a probable adult female. Periarticular erosive lesions involving multiple synovial joints, particularly on the small joints of the hands and feet, were observed. CONCLUSIONS A differential diagnosis identifies lesions characteristic of rheumatoid arthritis dating prior to the mid-15th century. SIGNIFICANCE The significance of this diagnosis is great since researchers debate the antiquity and spread of rheumatoid arthritis. Some researchers hypothesize that RA originated in the Americas and spread to Europe after the mid-15th century. However, this study asserts that RA existed in Europe prior to European colonization of the Americas. LIMITATIONS Only 30-40 % of the skeletal material was excavated, potentially impacting the differential diagnosis. SUGGESTIONS FOR FURTHER RESEARCH This case encourages researchers to explore the presence of RA in other medieval groups within and beyond Transylvania as a means to reconstruct the antiquity and geographical distribution of the condition.
Collapse
Affiliation(s)
- Megan A Heron
- Department of Anthropology, Florida Atlantic University, FL, USA.
| | - Joseph Z Forstot
- Charles E. Schmidt College of Medicine, Florida Atlantic University, FL, USA
| | - Zsolt Nyárádi
- Department of Archaeology, Haáz Rezsö Múzeum, Odorheiu Secueisc, RO
| | | |
Collapse
|
5
|
Knights AJ, Farrell EC, Ellis OM, Song MJ, Appleton CT, Maerz T. Synovial macrophage diversity and activation of M-CSF signaling in post-traumatic osteoarthritis. eLife 2025; 12:RP93283. [PMID: 39969512 PMCID: PMC11839164 DOI: 10.7554/elife.93283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Synovium is home to immune and stromal cell types that orchestrate inflammation following a joint injury; in particular, macrophages are central protagonists in this process. We sought to define the cellular and temporal dynamics of the synovial immune niche in a mouse model of post-traumatic osteoarthritis (PTOA), and to identify stromal-immune crosstalk mechanisms that coordinate macrophage function and phenotype. We induced PTOA in mice using a non-invasive tibial compression model of anterior cruciate ligament rupture (ACLR). Single-cell RNA-sequencing and flow cytometry were used to assess immune cell populations in healthy (Sham) and injured (7 and 28 days post-ACLR) synovium. Characterization of synovial macrophage polarization states was performed, alongside computational modeling of macrophage differentiation, as well as implicated transcriptional regulators and stromal-immune communication axes. Immune cell types are broadly represented in healthy synovium, but experience drastic expansion and speciation in PTOA, most notably in the macrophage portion. We identified several polarization states of macrophages in synovium following joint injury, underpinned by distinct transcriptomic signatures, and regulated in part by stromal-derived macrophage colony-stimulating factor signaling. The transcription factors Pu.1, Cebpα, Cebpβ, and Jun were predicted to control differentiation of systemically derived monocytes into pro-inflammatory synovial macrophages. In summary, we defined different synovial macrophage subpopulations present in healthy and injured mouse synovium. Nuanced characterization of the distinct functions, origins, and disease kinetics of macrophage subtypes in PTOA will be critical for targeting these highly versatile cells for therapeutic purposes.
Collapse
Affiliation(s)
- Alexander J Knights
- Department of Orthopaedic Surgery, University of MichiganAnn ArborUnited States
| | - Easton C Farrell
- Department of Orthopaedic Surgery, University of MichiganAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Olivia M Ellis
- Department of Orthopaedic Surgery, University of MichiganAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Michelle J Song
- Department of Orthopaedic Surgery, University of MichiganAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - C Thomas Appleton
- Department of Physiology and Pharmacology, Western UniversityLondonCanada
- Bone and Joint Institute, Western UniversityLondonCanada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western UniversityLondonCanada
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of MichiganAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Department of Internal Medicine – Division of Rheumatology, University of MichiganAnn ArborUnited States
| |
Collapse
|
6
|
Damerau A, Nguyen DHD, Lubahn C, Renggli K, Pfeiffenberger M, Krönke G, Herrmann M, Leeuw T, Buttgereit F, Gaber T. Microphysiological System-Generated Physiological Shear Forces Reduce TNF-α-Mediated Cartilage Damage in a 3D Model of Arthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412010. [PMID: 39716911 PMCID: PMC11831510 DOI: 10.1002/advs.202412010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/05/2024] [Indexed: 12/25/2024]
Abstract
Osteoarthritis (OA) is a leading cause of disability, often resulting from overuse or injury, but inactivity can also contribute to cartilage degeneration. Conventional in vivo models struggle to isolate and study the specific effects of mechanical stress on cartilage health. To address this limitation, a microphysiological system (MPS) is established to examine how varying levels of shear stress impact cartilage homeostasis. The system allows for the cultivation of 3D chondrogenic microconstructs (CMCs) derived from human mesenchymal stromal cells, simulating both physiological and pathophysiological shear stress. Inflammation is induced via TNF-α or activated peripheral blood mononuclear cells to model cartilage damage, enabling the evaluation of therapeutic interventions. The study demonstrates the development of an arthritis-like phenotype and successful restoration of cartilage conditions through a JAK inhibitor under physiological shear stress. Physiological shear stress is identified as a critical factor in maintaining cartilage integrity. This MPS offers a standardized method to study shear stress, replicate cytokine-induced cartilage damage, and simulate key features of arthritis, providing a valuable alternative to animal models.
Collapse
Affiliation(s)
- Alexandra Damerau
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
- German Rheumatism Research Centre (DRFZ) Berlina Leibniz Institute10117BerlinGermany
| | - Duc Ha Do Nguyen
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
| | - Christina Lubahn
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
| | - Kasper Renggli
- School of Life SciencesUniversity of Applied Sciences and Arts Northwestern SwitzerlandMuttenz4132Switzerland
| | - Moritz Pfeiffenberger
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
- German Rheumatism Research Centre (DRFZ) Berlina Leibniz Institute10117BerlinGermany
| | - Gerhard Krönke
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
- German Rheumatism Research Centre (DRFZ) Berlina Leibniz Institute10117BerlinGermany
| | - Matthias Herrmann
- Immunology & Inflammation Research TASanofi‐Aventis Deutschland GmbH65926FrankfurtGermany
| | - Thomas Leeuw
- Immunology & Inflammation Research TASanofi‐Aventis Deutschland GmbH65926FrankfurtGermany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
- German Rheumatism Research Centre (DRFZ) Berlina Leibniz Institute10117BerlinGermany
| | - Timo Gaber
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
- German Rheumatism Research Centre (DRFZ) Berlina Leibniz Institute10117BerlinGermany
| |
Collapse
|
7
|
Zeinert I, Schmidt L, Baar T, Gatto G, De Giuseppe A, Korb-Pap A, Pap T, Mahabir E, Zaucke F, Brachvogel B, Krüger M, Krieg T, Eckes B. Matrix-mediated activation of murine fibroblast-like synoviocytes. Exp Cell Res 2025; 445:114408. [PMID: 39765309 DOI: 10.1016/j.yexcr.2025.114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/14/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Fibroblast-like synoviocytes (FLS) are key cells promoting cartilage damage and bone loss in rheumatoid arthritis (RA). They are activated to assume an invasive and migratory phenotype. While mechanisms of FLS activation are unknown, evidence suggests that pre-damaged extracellular matrix (ECM) of the cartilage can trigger FLS activation. Integrin α11β1 might be involved in the activation, as it is increased in RA patients and hTNFtg mice, an RA mouse model. We treated murine chondrocytes with TNFα to produce a damaged, RA-like matrix. Comparison to healthy chondrocyte matrix revealed decreased ECM proteins, e.g. collagens and proteoglycans, increased matrix-degrading proteins and elevated levels of inflammatory cytokines. FLS responded to the damaged chondrocyte matrix with a matrix-remodeling and pro-inflammatory phenotype characterized by a gene signature involved in matrix degradation and increased production of CLL11 and CCL19. Damaged chondrocyte matrix stimulated increased Itga11 expression in FLS, correlating with the increased α11β1 amounts in RA patients. FLS deficient in integrin α11β1 released lower amounts of inflammation-associated cytokines. Our results demonstrate differences in healthy and RA-like chondrocyte ECM and distinctly different responses of wt FLS to damaged versus healthy ECM.
Collapse
Affiliation(s)
- Isabel Zeinert
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany.
| | - Luisa Schmidt
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Till Baar
- Institute for Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Giulio Gatto
- Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Anna De Giuseppe
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Adelheid Korb-Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Frank Zaucke
- Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Bent Brachvogel
- Center for Biochemistry, University of Cologne, Faculty of Medicine, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Krieg
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany.
| |
Collapse
|
8
|
Chen Y, Lin J, Shi D, Miao Y, Xue F, Liu K, Wang X, Zhang C. Identification of WDR74 and TNFRSF12A as biomarkers for early osteoarthritis using machine learning and immunohistochemistry. Front Immunol 2025; 16:1517646. [PMID: 39935469 PMCID: PMC11810735 DOI: 10.3389/fimmu.2025.1517646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025] Open
Abstract
Background Osteoarthritis (OA) is a chronic joint condition that causes pain, limited mobility, and reduced quality of life, posing a threat to healthy aging. Early detection is crucial for improving prognosis. Recent research has focused on the role of ubiquitination-related genes (URGs) in early OA prediction. This study aims to integrate URG expression data with machine learning (ML) to identify biomarkers that improve diagnosis and prognosis in the early stages of OA. Methods OA single-cell RNA sequencing datasets were collected from the GEO database. Single-cell analysis was performed to investigate the composition and relationships of chondrocytes in OA. The potential intercellular communication mechanisms were explored using the CellChat R package. URGs were retrieved from GeneCards, and ubiquitination scores were calculated using the AUCell package. Gene module analysis based on co-expression network analysis was conducted to identify core genes. Additionally, ML analysis was performed to identify core URGs and construct a diagnostic model. We employed XGBoost, a gradient-boosting ML algorithm, to identify core URGs and construct a diagnostic model. The model's performance was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve. In addition, we explored the relationship between core URGs and immune processes. The ChEA3 database was utilized to predict the transcription factors regulated by core ubiquitination-related genes. The expression of select URGs was validated using qRT-PCR and immunohistochemistry (IHC). Results We identified WDR74 and TNFRSF12A as pivotal ubiquitination-related genes associated with OA, exhibiting considerable differential expression. The diagnostic model constructed with URGs exhibited remarkable accuracy, with area under the curve (AUC) values consistently exceeding 0.9. The expression levels of WDR74 and TNFRSF12A were significantly higher in the IL-1β-induced group in an in vitro qPCR experiment. The IHC validation on human knee joint specimens confirmed the upregulation of WDR74 and TNFRSF12A in OA tissues, corroborating their potential as diagnostic biomarkers. Conclusions WDR74 and TNFRSF12A as principal biomarkers highlighted their attractiveness as therapeutic targets. The identification of core biomarkers might facilitate early intervention options, potentially modifying the illness trajectory and enhancing patient outcomes.
Collapse
Affiliation(s)
- Yiwei Chen
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiali Lin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Detong Shi
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yu Miao
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Xue
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kexin Liu
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaotao Wang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Bui VD, Jeon J, Duong VH, Shin S, Lee J, Ghahari F, Kim CH, Jo YJ, Jung WK, Um W, Park JH. Chondroitin sulfate-based microneedles for transdermal delivery of stem cell-derived extracellular vesicles to treat rheumatoid arthritis. J Control Release 2024; 375:105-115. [PMID: 39218160 DOI: 10.1016/j.jconrel.2024.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
For the non-invasive treatment of rheumatoid arthritis (RA), a chondroitin sulfate C (CSC)-based dissolving microneedles (cMN) was prepared to deliver human adipose stem cell-derived extracellular vesicles (hASC-EV) into inflamed joints. Owing to their anti-inflammatory function, the hASC-EV-bearing cMN (EV@cMN) significantly suppressed activated fibroblast-like synoviocytes (aFLS) and M1 macrophages (M1), which are responsible for the progression of RA. In addition, EV@cMN facilitated the chondrogenic differentiation of bone marrow-derived stem cells. In mice with collagen-induced arthritis, EV@cMN efficiently delivered both hASC-EV and CSC to inflamed joints. Interestingly, pro-inflammatory cytokines in the inflamed joints were remarkably downregulated by the synergistic effect of CSC and hASC-EV. Consequently, as judged from the overall clinical score and joint swelling, EV@cMN showed an outstanding therapeutic effect, even comparable to the wild-type mice, without significant adverse effects. Overall, EV@cMN might have therapeutic potential for RA by efficiently delivering CSC and hASC-EV into the inflamed joints in a non-invasive manner.
Collapse
Affiliation(s)
- Van Dat Bui
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jueun Jeon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Van Hieu Duong
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sol Shin
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jungmi Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Farrokhroo Ghahari
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Yu Jin Jo
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Wooram Um
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
10
|
Wan JJY, Yow LPS, Cheong NK, Koh DTS, Soong J, Lee KH, Bin Abd Razak HR. Femoral and tibial phenotypes of varus alignment in a Southeast Asian arthritic population: a descriptive study. Singapore Med J 2024:00077293-990000000-00150. [PMID: 39287500 DOI: 10.4103/singaporemedj.smj-2023-174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/19/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Knowledge of femoral and tibial morphology is important for patient-specific surgery in both joint reconstruction and preservation procedures. Studies evaluating morphological variance in femoral and tibial alignments in Asian populations are scarce. This is the first descriptive study evaluating the femoral and tibial phenotypes of varus alignment in a Southeast Asian population. METHODS Long-leg coronal standing radiographs of 2021 limbs were obtained, and the hip-knee-ankle angle, mechanical lateral distal femoral angle, medial proximal tibial angle and joint line convergence angle were measured. Joint line obliquity was calculated, and the knees were classified according to the Coronal Plane Alignment of Knee (CPAK) classification. Descriptive analyses on alignment parameters and demographic data (age, gender, ethnicity and body mass index [BMI]) were performed and entered into a linear regression model. RESULTS The highest frequency of limb alignment in the population was found to be CPAK type I (52.71%, n = 1003). Tibial varus was the largest contributor of varus malignment. Of the varus knees (n = 1247), varus deformity was found solely in the tibia (68.60%), solely in the femur (2.07%) and was contributed by both the femur and the tibia (4.97%). In the linear regression model, BMI was found to be a strong determinant for femoral varus (P = 0.004) and joint line incongruence (P < 0.001). CONCLUSION The findings of this study will be important to surgeons during planning for joint preservation procedures (such as corrective osteotomies) and joint arthroplasties to restore alignment.
Collapse
Affiliation(s)
| | - Lina Pei Shi Yow
- Department of Orthopaedic Surgery, Sengkang General Hospital, Singapore
| | - Nian Kai Cheong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Junwei Soong
- Department of Orthopaedic Surgery, Singapore General Hospital, Singapore
| | - Kong Hwee Lee
- Department of Orthopaedic Surgery, Singapore General Hospital, Singapore
| | | |
Collapse
|
11
|
Lin YY, Wu CY, Tsai YS, Chen CC, Chang TC, Chen LC, Chen HT, Hsu CJ, Tang CH. The joint protective function of live- and dead- Lactobacillus plantarum GKD7 on anterior cruciate ligament transection induces osteoarthritis. Aging (Albany NY) 2024; 16:12559-12573. [PMID: 39237298 PMCID: PMC11466490 DOI: 10.18632/aging.206101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/03/2024] [Indexed: 09/07/2024]
Abstract
Osteoarthritis (OA) is a chronic inflammatory disease accompanied by joint pain, bone degradation, and synovial inflammation. Tumor necrosis factor (TNF)-α and interleukin (IL)-1β play key roles in chronic inflammation, and matrix metalloproteinase (MMP)3 is the first enzyme released by chondrocytes and synovial cells that promotes MMPs' degrading cartilage matrix (including collage II and aggrecan) function. Using an anterior cruciate ligament transection (ACLT) rat model, Lactobacillus plantarum GKD7 has shown anti-inflammatory and analgesic properties. The present investigation examined the chondroprotective effects of several dosages and formulas of GKD7 on rats in an ACLT-induced OA model. The findings indicate that oral treatment with both live-GKD7 (GKD7-L) and dead-GKD7 (GKD7-D), along with celecoxib (positive control), all reduce post-ACLT pain and inflammation in OA joints. Subsequently, the immunohistochemical staining results demonstrate that following GKD7-L and GKD7-D treatment, there was a reversal of the degradation of collagen II and aggrecan, as well as a decrease in the expression of IL-1β and TNF-α on the synovial tissue and MMP3 on the cartilage. Accordingly, our findings imply that the treatment of both GKD7-L and GKD7-D has chondroprotective and analgesic effects on the OA rat model, and that celecoxib and GKD7-L at dosages (100 mg/kg) have comparable therapeutic benefits. As a result, we propose that both GKD7-L and GKD7-D are helpful supplements for OA management.
Collapse
Affiliation(s)
- Yen-You Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Ying, Wu
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - You-Shan Tsai
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Tzu-Ching Chang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Li-Chai Chen
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - Hsien-Te Chen
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chin-Jung Hsu
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| |
Collapse
|
12
|
Xie S, Wang L, Lu C, Chen H, Ding Y, Jian X, Zhang Z, Zhu L. Degrasyn alleviates osteoarthritis by blocking macrophagic pyroptosis via suppressing NLRP3/GSDMD signaling pathway and protecting chondrocytes. Cell Signal 2024; 120:111220. [PMID: 38740234 DOI: 10.1016/j.cellsig.2024.111220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Synovitis and cartilage destruction are crucial characteristics of osteoarthritis (OA). Inflammatory cytokines, such as IL-1β, are secreted by synovial macrophages, leading to cartilage destruction. Pyroptosis is a lytic form of programmed cell death, which could be triggered by the NLRP3 inflammasome of macrophages. Pyroptosis promotes the secretion of IL-1β and is supposed as a potential biomarker for OA. However, the function of Pyroptosis and NLRP3 inflammasome and its regulatory mechanism for activation is unclear in OA. In this study, we found that Degrasyn could alleviate the GSDMD-mediated pyroptosis of macrophages and the release of IL-1β, caspase-1, and LDH. Furthermore, it selectively impedes the form of ASC oligomer and speckle to effectively suppress the NLRP3 inflammasome during its assembly phase. Notably, Degrasyn exhibited potential chondroprotective effects in a co-culture system. Additionally, these results also indicate that Degrasyn mitigates synovitis and cartilage damage in a murine model of destabilization of the medial meniscus (DMM)-induced OA. In summary, Degrasyn emerges as a promising pharmaceutical agent for synovitis, paving the way for innovative therapeutic approaches to OA. Our findings underscore the potential of Degrasyn as a viable candidate for OA therapeutics, demonstrating its ability to regulate pyroptosis and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Shujun Xie
- Department of Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Cancer Center, Hangzhou 310006, China
| | - Linqiao Wang
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang Province 31000, China
| | - Congcong Lu
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang Province 31000, China; The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hao Chen
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang Province 31000, China
| | - Yi Ding
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang Province 31000, China
| | - Xu Jian
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, PR China
| | - Zhen Zhang
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang Province 31000, China.
| | - Liulong Zhu
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang Province 31000, China.
| |
Collapse
|
13
|
Miao MZ, Lee JS, Yamada KM, Loeser RF. Integrin signalling in joint development, homeostasis and osteoarthritis. Nat Rev Rheumatol 2024; 20:492-509. [PMID: 39014254 PMCID: PMC11886400 DOI: 10.1038/s41584-024-01130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 07/18/2024]
Abstract
Integrins are key regulators of cell-matrix interactions during joint development and joint tissue homeostasis, as well as in the development of osteoarthritis (OA). The signalling cascades initiated by the interactions of integrins with a complex network of extracellular matrix (ECM) components and intracellular adaptor proteins orchestrate cellular responses necessary for maintaining joint tissue integrity. Dysregulated integrin signalling, triggered by matrix degradation products such as matrikines, disrupts this delicate balance, tipping the scales towards an environment conducive to OA pathogenesis. The interplay between integrin signalling and growth factor pathways further underscores the multifaceted nature of OA. Moreover, emerging insights into the role of endocytic trafficking in regulating integrin signalling add a new layer of complexity to the understanding of OA development. To harness the therapeutic potential of targeting integrins for mitigation of OA, comprehensive understanding of their molecular mechanisms across joint tissues is imperative. Ultimately, deciphering the complexities of integrin signalling will advance the ability to treat OA and alleviate its global burden.
Collapse
Affiliation(s)
- Michael Z Miao
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Division of Rheumatology, Allergy, and Immunology and the Thurston Arthritis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janice S Lee
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Office of the Clinical Director, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Richard F Loeser
- Division of Rheumatology, Allergy, and Immunology and the Thurston Arthritis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Ding H, Chen H, Dou L, Li Y. CircRELL1 promotes osteoarthritis progression by regulating miR-200c-3p. Heliyon 2024; 10:e34251. [PMID: 39130448 PMCID: PMC11315196 DOI: 10.1016/j.heliyon.2024.e34251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Background There is a growing body of evidence indicating a potential association between circular RNA and the pathogenesis of human osteoarthritis (OA). Nevertheless, the precise extent of their involvement in OA remains largely unexplored. Hence, the objective of this investigation is to elucidate the function of Circular (Circ) RELL1 in the context of OA. Methods 24 OA tissue samples and 11 normal tissue samples were collected. The inflammatory OA-like conditions were established by Destabilized Medial Meniscus (DMM) operation in mice and LPS-induced C28/I2 cells. OA severity and articular cartilage degradation were assessed by Safranin-O staining, hematoxylin-eosin (H&E) staining, and International Society for Osteoarthritis Research (OARSI) criteria. CircRELL1, miR-200c-3p, and TCF4 were measured by RT-qPCR and Immunoblot. The cell viability and apoptosis rate were measured by MTT and flow cytometry, respectively. The levels of cytokines interleukin (IL)-1β, IL-6, and TNF-α were determined by ELISA. Apoptosis-associated proteins (cleaved caspase-3, Bax, and Bcl-2) and extracellular matrix (ECM) degradation-associated proteins (MMP13, collagen II, and Aggrecan) were detected by Immunoblot. The interaction between miR-200c-3p and circRELL1 or TCF4 was verified by dual luciferase reporter assay and RIP assay. Results CircRELL1 expression was upregulated in OA patients, and the results were consistent in DMM mice and LPS-treated C28/I2 cells. Silencing circRELL1 improved cartilage injury caused by DMM and contributed to a lower OARSI score. Silencing CircRELL1 increased the activity of OA chondrocytes in vivo and in vitro and inhibited cellular inflammatory responses and ECM degradation. In terms of mechanism, circRELL1 functioned by targeting miR-200c-3p, leading to the suppression of inflammatory factor production, cell apoptosis, and ECM degradation, thus inhibiting the progression of OA. Conclusion CircRELL1 may promote the progression of OA by regulating the miR-200c-3p.
Collapse
Affiliation(s)
- HongZhi Ding
- Department of Orthopedic, Shanghai Songjiang District Central Hospital, Shanghai, 201699, China
| | - HaiJu Chen
- Department of Orthopedic, Zhongshan Hospital Affiliated to Fudan University, Shanghai, 200032, China
| | - LianRong Dou
- Department of Orthopedic, Shanghai Songjiang District Central Hospital, Shanghai, 201699, China
| | - Yang Li
- Department of Orthopedic, Shanghai Songjiang District Central Hospital, Shanghai, 201699, China
| |
Collapse
|
15
|
Ravera F, Efeoglu E, Byrne HJ. A comparative analysis of stem cell differentiation on 2D and 3D substrates using Raman microspectroscopy. Analyst 2024; 149:4041-4053. [PMID: 38973486 DOI: 10.1039/d4an00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Chondrogenesis is a complex cellular process that involves the transformation of mesenchymal stem cells (MSCs) into chondrocytes, the specialised cells that form cartilage. In recent years, three-dimensional (3D) culture systems have emerged as a promising approach to studying cell behaviour and development in a more physiologically relevant environment compared to traditional two-dimensional (2D) cell culture. The use of these systems provided insights into the molecular mechanisms that regulate chondrogenesis and has the potential to revolutionise the development of new therapies for cartilage repair and regeneration. This study demonstrates the successful application of Raman microspectroscopy (RMS) as a label-free, non-destructive, and sensitive method to monitor the chondrogenic differentiation of bone marrow-derived rat mesenchymal stem cells (rMSCs) in a collagen type I hydrogel, and explores the potential benefits of 3D hydrogels compared to conventional 2D cell culture environments. rMSCs were cultured on 3D substrates for 3 weeks and their differentiation was monitored by measuring the spectral signatures of their subcellular compartments. Additionally, the evolution of high-density micromass cultures was investigated to provide a comprehensive understanding of the process and complex interactions between cells and their surrounding extracellular matrix. For comparison, rMSCs were induced into chondrogenesis in identical medium conditions for 21 days in monolayer culture. Raman spectra showed that rMSCs cultured in a collagen type I hydrogel are able to undergo a distinct chondrogenic differentiation pathway at a significantly higher rate than the 2D culture cells. 3D cultures expressed stronger and more homogeneous chondrogenesis-associated peaks such as collagens, glycosaminoglycans (GAGs), and aggrecan while manifesting changes in proteins and lipidic content. These results suggest that 3D type I collagen hydrogel substrates are promising for in vitro chondrogenesis studies, and that RMS is a valuable tool for monitoring chondrogenesis in 3D environments.
Collapse
Affiliation(s)
- F Ravera
- FOCAS Research Institute, Technological University Dublin, City Campus, Dublin 8, Ireland.
| | - E Efeoglu
- NICB (National Institute for Cellular Biotechnology) at Dublin City University, Dublin 9, Ireland
| | - H J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Dublin 8, Ireland.
| |
Collapse
|
16
|
Wahnou H, Ndayambaje M, Ouadghiri Z, Benayad S, Elattar H, Chgari O, Naya A, Zaid Y, Oudghiri M. Artemisia herba-alba: antioxidant capacity and efficacy in preventing chronic arthritis in vivo. Inflammopharmacology 2024; 32:1855-1870. [PMID: 38607503 DOI: 10.1007/s10787-024-01463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
Arthritis is a debilitating condition impacting the quality of life for millions worldwide, characterized by pain and inflammation. Understanding the mechanisms of arthritis and developing effective treatments are crucial. This study investigated the hydroethanolic extract of Artemisia herba-alba for its protective potential against arthritis hallmarks, oxidative stress, and lipid peroxidation in vitro. It also assessed its in vivo anti-arthritic activity. The phytochemical analysis identified various compounds within the extract, with high concentrations of polyphenols and flavonoids. These compounds are associated with numerous health benefits, making A. herba-alba a potential source of valuable phytochemicals. A. herba-alba demonstrated a notable effect in body weight loss, paw edema, and arthritic severity. Histopathological examination revealed structural improvements in bone and muscle tissues, emphasizing its therapeutic potential in managing chronic arthritis. Furthermore, while these findings are promising, further studies are necessary to delve deeper into the mechanisms underlying the observed hematological changes and to gain a more comprehensive understanding of the in vivo results. This research sets the stage for continued exploration, ultimately aiming to unlock the full potential of A. herba-alba in addressing chronic arthritis and enhancing the lives of those affected by this condition.
Collapse
Affiliation(s)
- Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Maarif, B.P2693, Casablanca, Morocco
| | - Martin Ndayambaje
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Maarif, B.P2693, Casablanca, Morocco
| | - Zaynab Ouadghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Maarif, B.P2693, Casablanca, Morocco
| | - Salma Benayad
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Maarif, B.P2693, Casablanca, Morocco
| | | | - Oumaima Chgari
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Maarif, B.P2693, Casablanca, Morocco
| | - Abdallah Naya
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Maarif, B.P2693, Casablanca, Morocco
| | - Younes Zaid
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Maarif, B.P2693, Casablanca, Morocco
- Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Maarif, B.P2693, Casablanca, Morocco.
| |
Collapse
|
17
|
Tan SSH, Law GW, Kim SS, Sethi E, Lim AKS, Hui JHP. Trochleoplasty Provides Good Outcomes for Recurrent Patellofemoral Dislocations with No Clear Superiority across Different Techniques. J Clin Med 2024; 13:3009. [PMID: 38792556 PMCID: PMC11122057 DOI: 10.3390/jcm13103009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Background: Literature is sparse on outcome comparisons between different trochleoplasty techniques in the treatment of patella instability. To date, it is unclear whether there is a technique that offers superior outcomes. This systematic review and meta-analysis aims to compare and evaluate the outcomes of trochleoplasty techniques in the treatment of patellofemoral instability in trochlea dysplasia to establish whether there is an ideal choice of trochleoplasty technique for superior outcomes. Methods: 21 studies involving 880 knees were included. The mean age of the patients was 21.7 years (range 8-49 years). Mean follow-up timeframe of 43.5 months (range 8.8-100 months). Clinical outcomes assessed included rates of recurrence of patellofemoral dislocation, patient satisfaction, Kujala score, International Knee Documentation Committee (IKDC) score, Tegner score, and Lysholm score. Egger's test showed no publication bias across all outcomes assessed. Results: Favourable results were seen across all outcomes assessed and patient satisfaction. Improvements were seen with Kujala, IKDC, and Lysholm scores. Tegner scores showed good return to function. Post-operative dislocation and complication rates were low across the different techniques. Meta-regression for Kujala and IKDC scores showed good outcomes regardless of trochleoplasty technique used (Kujala, p = 0.549, relative risk 492.06; IKDC, p = 0.193, RR 0.001). The exact risk that trochleoplasty poses to the cartilage remains uncertain, as no study had a conservatively managed arm for comparison. Conclusions: Trochleoplasty yielded good outcomes irrespective of technique used with no clear superiority demonstrated in any technique in terms of outcome scores, satisfaction, post-operative dislocation rates or complications.
Collapse
Affiliation(s)
| | - Gin Way Law
- Department of Orthopaedic Surgery, National University Health System, Singapore 119228, Singapore; (S.S.H.T.); (S.S.K.); (E.S.); (A.K.S.L.); (J.H.P.H.)
| | | | | | | | | |
Collapse
|
18
|
Nguyen M, Battistoni CM, Babiak PM, Liu JC, Panitch A. Chondroitin Sulfate/Hyaluronic Acid-Blended Hydrogels Suppress Chondrocyte Inflammation under Pro-Inflammatory Conditions. ACS Biomater Sci Eng 2024; 10:3242-3254. [PMID: 38632852 PMCID: PMC11094685 DOI: 10.1021/acsbiomaterials.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Osteoarthritis is characterized by enzymatic breakdown of the articular cartilage via the disruption of chondrocyte homeostasis, ultimately resulting in the destruction of the articular surface. Decades of research have highlighted the importance of inflammation in osteoarthritis progression, with inflammatory cytokines shifting resident chondrocytes into a pro-catabolic state. Inflammation can result in poor outcomes for cells implanted for cartilage regeneration. Therefore, a method to promote the growth of new cartilage and protect the implanted cells from the pro-inflammatory cytokines found in the joint space is required. In this study, we fabricate two gel types: polymer network hydrogels composed of chondroitin sulfate and hyaluronic acid, glycosaminoglycans (GAGs) known for their anti-inflammatory and prochondrogenic activity, and interpenetrating networks of GAGs and collagen I. Compared to a collagen-only hydrogel, which does not provide an anti-inflammatory stimulus, chondrocytes in GAG hydrogels result in reduced production of pro-inflammatory cytokines and enzymes as well as preservation of collagen II and aggrecan expression. Overall, GAG-based hydrogels have the potential to promote cartilage regeneration under pro-inflammatory conditions. Further, the data have implications for the use of GAGs to generally support tissue engineering in pro-inflammatory environments.
Collapse
Affiliation(s)
- Michael Nguyen
- Department
of Biomedical Engineering, University of
California, Davis, California 95616, United States
| | - Carly M. Battistoni
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Paulina M. Babiak
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julie C. Liu
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Alyssa Panitch
- Department
of Biomedical Engineering, University of
California, Davis, California 95616, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
19
|
Lee SJ, Jeon O, Lee YB, Alt DS, Ding A, Tang R, Alsberg E. In situ cell condensation-based cartilage tissue engineering via immediately implantable high-density stem cell core and rapidly degradable shell microgels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.20.590385. [PMID: 38712035 PMCID: PMC11071421 DOI: 10.1101/2024.04.20.590385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Formation of chondromimetic human mesenchymal stem cells (hMSCs) condensations typically required in vitro culture in defined environments. In addition, extended in vitro culture in differentiation media over several weeks is usually necessary prior to implantation, which is costly, time consuming and delays clinical treatment. Here, this study reports on immediately implantable core/shell microgels with a high-density hMSC-laden core and rapidly degradable hydrogel shell. The hMSCs in the core formed cell condensates within 12 hours and the oxidized and methacrylated alginate (OMA) hydrogel shells were completely degraded within 3 days, enabling spontaneous and precipitous fusion of adjacent condensed aggregates. By delivering transforming growth factor-β1 (TGF-β1) within the core, the fused condensates were chondrogenically differentiated and formed cartilage microtissues. Importantly, these hMSC-laden core/shell microgels, fabricated without any in vitro culture, were subcutaneously implanted into mice and shown to form cartilage tissue via cellular condensations in the core after 3 weeks. This innovative approach to form cell condensations in situ without in vitro culture that can fuse together with each other and with host tissue and be matured into new tissue with incorporated bioactive signals, allows for immediate implantation and may be a platform strategy for cartilage regeneration and other tissue engineering applications.
Collapse
Affiliation(s)
- Sang Jin Lee
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL, 60612 USA
| | - Oju Jeon
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL, 60612 USA
| | - Yu Bin Lee
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL, 60612 USA
| | - Daniel S. Alt
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106 USA
| | - Aixiang Ding
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL, 60612 USA
| | - Rui Tang
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL, 60612 USA
| | - Eben Alsberg
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, IL 60612, USA
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL, 60612 USA
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106 USA
- Departments of Mechanical & Industrial Engineering, Orthopaedic Surgery, and Pharmacology and Regenerative Medicine, University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL, 60612 USA
| |
Collapse
|
20
|
Lee YC, Chang YT, Cheng YH, Pranata R, Hsu HH, Chen YL, Chen RJ. Pterostilbene Protects against Osteoarthritis through NLRP3 Inflammasome Inactivation and Improves Gut Microbiota as Evidenced by In Vivo and In Vitro Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 38624135 PMCID: PMC11046483 DOI: 10.1021/acs.jafc.3c09749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Osteoarthritis (OA) is a persistent inflammatory disease, and long-term clinical treatment often leads to side effects. In this study, we evaluated pterostilbene (PT), a natural anti-inflammatory substance, for its protective effects and safety during prolonged use on OA. Results showed that PT alleviated the loss of chondrocytes and widened the narrow joint space in an octacalcium phosphate (OCP)-induced OA mouse model (n = 3). In vitro experiments demonstrate that PT reduced NLRP3 inflammation activation (relative protein expression: C: 1 ± 0.09, lipopolysaccharide (LPS): 1.14 ± 0.07, PT: 0.91 ± 0.07, LPS + PT: 0.68 ± 0.04) and the release of inflammatory cytokines through NF-κB signaling inactivation (relative protein expression: C: 1 ± 0.03, LPS: 3.49 ± 0.02, PT: 0.66 ± 0.08, LPS + PT: 2.78 ± 0.05), ultimately preventing cartilage catabolism. Interestingly, PT also altered gut microbiota by reducing inflammation-associated flora and increasing the abundance of healthy bacteria in OA groups. Collectively, these results suggest that the PT can be considered as a protective strategy for OA.
Collapse
Affiliation(s)
- Yen-Chien Lee
- Department
of Oncology, Tainan Hospital, Tainan 70043, Taiwan
- Department
of Internal Medicine, National Cheng Kung
University Hospital, College of Medicine, Tainan 70043, Taiwan
- Department
of Nursing, National Tainan Junior College
of Nursing, Tainan 70043, Taiwan
| | - Yu-Ting Chang
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yung-Hsuan Cheng
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Rosita Pranata
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Heng-Hsuan Hsu
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yen-Lin Chen
- Bioresource
Collection and Research Center (BCRC), Food
Industry Research and Development Institute, Hsinchu 300, Taiwan
| | - Rong-Jane Chen
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
21
|
Zhao L, Lai Y, Jiao H, Huang J. Nerve growth factor receptor limits inflammation to promote remodeling and repair of osteoarthritic joints. Nat Commun 2024; 15:3225. [PMID: 38622181 PMCID: PMC11018862 DOI: 10.1038/s41467-024-47633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
Osteoarthritis (OA) is a painful, incurable disease affecting over 500 million people. Recent clinical trials of the nerve growth factor (NGF) inhibitors in OA patients have suggested adverse effects of NGF inhibition on joint structure. Here we report that nerve growth factor receptor (NGFR) is upregulated in skeletal cells during OA and plays an essential role in the remodeling and repair of osteoarthritic joints. Specifically, NGFR is expressed in osteochondral cells but not in skeletal progenitor cells and induced by TNFα to attenuate NF-κB activation, maintaining proper BMP-SMAD1 signaling and suppressing RANKL expression in mice. NGFR deficiency hyper-activates NF-κB in murine osteoarthritic joints, which impairs bone formation and enhances bone resorption as exemplified by a reduction in subchondral bone and osteophytes. In human OA cartilage, NGFR is also negatively associated with NF-κB activation. Together, this study suggests a role of NGFR in limiting inflammation for repair of diseased skeletal tissues.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Hongli Jiao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
22
|
Ansari M, Darvishi A, Sabzevari A. A review of advanced hydrogels for cartilage tissue engineering. Front Bioeng Biotechnol 2024; 12:1340893. [PMID: 38390359 PMCID: PMC10881834 DOI: 10.3389/fbioe.2024.1340893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
With the increase in weight and age of the population, the consumption of tobacco, inappropriate foods, and the reduction of sports activities in recent years, bone and joint diseases such as osteoarthritis (OA) have become more common in the world. From the past until now, various treatment strategies (e.g., microfracture treatment, Autologous Chondrocyte Implantation (ACI), and Mosaicplasty) have been investigated and studied for the prevention and treatment of this disease. However, these methods face problems such as being invasive, not fully repairing the tissue, and damaging the surrounding tissues. Tissue engineering, including cartilage tissue engineering, is one of the minimally invasive, innovative, and effective methods for the treatment and regeneration of damaged cartilage, which has attracted the attention of scientists in the fields of medicine and biomaterials engineering in the past several years. Hydrogels of different types with diverse properties have become desirable candidates for engineering and treating cartilage tissue. They can cover most of the shortcomings of other treatment methods and cause the least secondary damage to the patient. Besides using hydrogels as an ideal strategy, new drug delivery and treatment methods, such as targeted drug delivery and treatment through mechanical signaling, have been studied as interesting strategies. In this study, we review and discuss various types of hydrogels, biomaterials used for hydrogel manufacturing, cartilage-targeting drug delivery, and mechanosignaling as modern strategies for cartilage treatment.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Ahmad Darvishi
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Alireza Sabzevari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| |
Collapse
|
23
|
Zeng L, Yu G, Yang K, He Q, Hao W, Xiang W, Long Z, Chen H, Tang X, Sun L. Exploring the mechanism of Celastrol in the treatment of rheumatoid arthritis based on systems pharmacology and multi-omics. Sci Rep 2024; 14:1604. [PMID: 38238321 PMCID: PMC10796403 DOI: 10.1038/s41598-023-48248-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/23/2023] [Indexed: 01/22/2024] Open
Abstract
To explore the molecular network mechanism of Celastrol in the treatment of rheumatoid arthritis (RA) based on a novel strategy (integrated systems pharmacology, proteomics, transcriptomics and single-cell transcriptomics). Firstly, the potential targets of Celastrol and RA genes were predicted through the database, and the Celastrol-RA targets were obtained by taking the intersection. Then, transcriptomic data and proteomic data of Celastrol treatment of RA were collected. Subsequently, Celastrol-RA targets, differentially expressed genes, and differentially expressed proteins were imported into Metascape for enrichment analysis, and related networks were constructed. Finally, the core targets of Celastrol-RA targets, differentially expressed genes, and differentially expressed proteins were mapped to synoviocytes of RA mice to find potential cell populations for Celastrol therapy. A total of 195 Celastrol-RA targets, 2068 differential genes, 294 differential proteins were obtained. The results of enrichment analysis showed that these targets, genes and proteins were mainly related to extracellular matrix organization, TGF-β signaling pathway, etc. The results of single cell sequencing showed that the main clusters of these targets, genes, and proteins could be mapped to RA synovial cells. For example, Mmp9 was mainly distributed in Hematopoietic cells, especially in Ptprn+fibroblast. The results of molecular docking also suggested that Celastrol could stably combine with molecules predicted by network pharmacology. In conclusion, this study used systems pharmacology, transcriptomics, proteomics, single-cell transcriptomics to reveal that Celastrol may regulate the PI3K/AKT signaling pathway by regulating key targets such as TNF and IL6, and then play an immune regulatory role.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Ganpeng Yu
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, China
| | - Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Hua Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Anhui, China.
| |
Collapse
|
24
|
Hu J, Liu X, Xu Q, Zhu M, Wang S, Quan K, Dai M, Mo F, Zhan H. Mechanism of lysine oxidase-like 1 promoting synovial inflammation mediating rheumatoid arthritis development. Aging (Albany NY) 2024; 16:928-947. [PMID: 38217541 PMCID: PMC10817408 DOI: 10.18632/aging.205429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/01/2023] [Indexed: 01/15/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease that causes great distress to patients and society. Early diagnosis is the key to the successful treatment of RA. The basement membrane, one of the oldest tissue structures, is localized under the epithelium. Its complex composition and rich biological functions have made it a focus of research in recent years, while basement membrane-associated genetic variants are involved in most human disease processes. The aim of this study is to find new diagnostic biomarkers for RA and explore their role and possible mechanism in rheumatoid arthritis. The GSE12021, GSE55235 and GSE55457 datasets were downloaded from the GEO database. Their fraction associated with basement membrane genes was analyzed and differentially expressed genes between the disease and normal groups were explored. We identified two basement membrane-associated genes, lysine oxidase-like 1 (LOXL1) and discoid peptide receptor 2 (DDR2). Focusing on the more interesting LOXL1, we found that LOXL1 expression was significantly elevated in the synovium of patients with rheumatoid arthritis, and LOXL1 mRNA and protein levels were elevated in tumor necrosis factor α-stimulated human synovial sarcoma cells (SW982). And LOXL1 knockdown inhibited tumor necrosis factor α-induced inhibition in SW982 cells expression of inducible nitric oxide synthase (INOS), cyclooxygenase-2 (COX2), and interleukin-6 (IL-6). Interestingly, knockdown of LOXL1 inhibited the phosphorylation of PI3K and AKT. In summary, LOXL1 may become a novel diagnostic gene for RA, and knockdown of LoxL1 may inhibit synovial inflammation by affecting PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jiawei Hu
- Department of Orthopedics, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Xuqiang Liu
- Department of Orthopedics, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Qiang Xu
- Department of Orthopedics, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Meisong Zhu
- Department of Orthopedics, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Song Wang
- Department of Orthopedics, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Kun Quan
- Department of Orthopedics, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Min Dai
- Department of Orthopedics, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Fengbo Mo
- Department of Orthopedics, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Haibo Zhan
- Department of Orthopedics, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, China
| |
Collapse
|
25
|
Li H, Tong Z, Fang Y, Liu F, He F, Teng C. Biomimetic Injectable Hydrogel Based on Methacrylate-Modified Silk Fibroin Embedded with Kartogenin for Superficial Cartilage Regeneration. ACS Biomater Sci Eng 2024; 10:507-514. [PMID: 38118054 DOI: 10.1021/acsbiomaterials.3c01160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The weak regeneration ability of chondrocytes is one of the main reasons that limit the therapeutic effect of clinical cartilage injury. Injectable hydrogels are potential scaffolds for cartilage tissue engineering with advantages such as minimally invasive surgery, porous structure, and drug sustained-release ability. At present, many biomaterials have been developed for the repair of deep cartilage defects. However, cartilage injury often begins on the surface, which requires us to propose a treatment strategy suitable for superficial cartilage injury repair. In this study, we fabricated a biomimetic injectable hydrogel based on methacrylate-modified silk fibroin (SilMA) embedded with kartogenin (KGN). The SilMA/KGN hydrogels have good biohistocompatibility and the ability to promote cartilage differentiation. In addition, SEM results show that it has a porous structure conducive to cell adhesion and proliferation. Most importantly, it has demonstrated remarkable superficial cartilage repair ability in vivo, showing potential in cartilage tissue engineering.
Collapse
Affiliation(s)
- Huimin Li
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 32200, China
| | - Zhicheng Tong
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 32200, China
| | - Yifei Fang
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 32200, China
| | - Fengling Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Feng He
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 32200, China
| | - Chong Teng
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 32200, China
| |
Collapse
|
26
|
Kim D, Heo Y, Kim M, Suminda GGD, Manzoor U, Min Y, Kim M, Yang J, Park Y, Zhao Y, Ghosh M, Son YO. Inhibitory effects of Acanthopanax sessiliflorus Harms extract on the etiology of rheumatoid arthritis in a collagen-induced arthritis mouse model. Arthritis Res Ther 2024; 26:11. [PMID: 38167214 PMCID: PMC10763440 DOI: 10.1186/s13075-023-03241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The biological function of Acanthopanax sessiliflorus Harm (ASH) has been investigated on various diseases; however, the effects of ASH on arthritis have not been investigated so far. This study investigates the effects of ASH on rheumatoid arthritis (RA). METHODS Supercritical carbon dioxide (CO2) was used for ASH extract preparation, and its primary components, pimaric and kaurenoic acids, were identified using gas chromatography-mass spectrometer (GC-MS). Collagenase-induced arthritis (CIA) was used as the RA model, and primary cultures of articular chondrocytes were used to examine the inhibitory effects of ASH extract on arthritis in three synovial joints: ankle, sole, and knee. RESULTS Pimaric and kaurenoic acids attenuated pro-inflammatory cytokine-mediated increase in the catabolic factors and retrieved pro-inflammatory cytokine-mediated decrease in related anabolic factors in vitro; however, they did not affect pro-inflammatory cytokine (IL-1β, TNF-α, and IL-6)-mediated cytotoxicity. ASH effectively inhibited cartilage degradation in the knee, ankle, and toe in the CIA model and decreased pannus development in the knee. Immunohistochemistry demonstrated that ASH mostly inhibited the IL-6-mediated matrix metalloproteinase. Gene Ontology and pathway studies bridge major gaps in the literature and provide insights into the pathophysiology and in-depth mechanisms of RA-like joint degeneration. CONCLUSIONS To the best of our knowledge, this is the first study to conduct extensive research on the efficacy of ASH extract in inhibiting the pathogenesis of RA. However, additional animal models and clinical studies are required to validate this hypothesis.
Collapse
Affiliation(s)
- Dahye Kim
- Division of Animal Genetics and Bioinformatics, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Yunji Heo
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju City, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Mangeun Kim
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju City, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Godagama Gamaarachchige Dinesh Suminda
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju City, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Umar Manzoor
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju City, Jeju Special Self-Governing Province, 63243, Republic of Korea
- Laboratory of Immune and Inflammatory Disease, College of Pharmacy, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yunhui Min
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju City, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Minhye Kim
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju City, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Jiwon Yang
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju City, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Youngjun Park
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju City, Jeju Special Self-Governing Province, 63243, Republic of Korea
- Laboratory of Immune and Inflammatory Disease, College of Pharmacy, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yaping Zhao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju City, Jeju Special Self-Governing Province, 63243, Republic of Korea.
- Department of Biotechnology, School of Bio, Chemical and Processing Engineering (SBCE), Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, 626126, India.
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju City, Jeju Special Self-Governing Province, 63243, Republic of Korea.
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju City, Jeju Special Self-Governing Province, 63243, Republic of Korea.
- Practical Translational Research Center, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
27
|
Zhao L, Lai Y, Jiao H, Huang J. Nerve Growth Factor Receptor Limits Inflammation to Promote Remodeling and Repair of Osteoarthritic Joints. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572937. [PMID: 38187570 PMCID: PMC10769345 DOI: 10.1101/2023.12.21.572937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Osteoarthritis (OA) is a painful, incurable disease affecting over 500 million people. The need for relieving OA pain is paramount but inadequately addressed, partly due to limited understandings of how pain signaling regulates non-neural tissues. Here we report that nerve growth factor receptor (NGFR) is upregulated in skeletal cells during OA and plays an essential role in the remodeling and repair of osteoarthritic joints. Specifically, NGFR is expressed in osteochondral cells but not in skeletal progenitor cells and induced by TNFα to attenuate NF-κB activation, maintaining proper BMP-SMAD1 signaling and suppressing RANKL expression. NGFR deficiency hyper-activates NF-κB in murine osteoarthritic joints, which impairs bone formation and enhances bone resorption as exemplified by a reduction in subchondral bone and osteophytes. In human OA cartilage, NGFR is also negatively associated with NF-κB activation. Together, this study uncovers a role of NGFR in limiting inflammation for repair of diseased skeletal tissues.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- These authors contributed equally: Lan Zhao, Jian Huang
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Hongli Jiao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- These authors contributed equally: Lan Zhao, Jian Huang
| |
Collapse
|
28
|
Bourne LE, Hesketh A, Sharma A, Bucca G, Bush PG, Staines KA. The effects of physiological and injurious hydrostatic pressure on murine ex vivo articular and growth plate cartilage explants: an RNAseq study. Front Endocrinol (Lausanne) 2023; 14:1278596. [PMID: 38144567 PMCID: PMC10740163 DOI: 10.3389/fendo.2023.1278596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Chondrocytes are continuously exposed to loads placed upon them. Physiological loads are pivotal to the maintenance of articular cartilage health, while abnormal loads contribute to pathological joint degradation. Similarly, the growth plate cartilage is subject to various loads during growth and development. Due to the high-water content of cartilage, hydrostatic pressure is considered one of the main biomechanical influencers on chondrocytes and has been shown to play an important role in the mechano-regulation of cartilage. Methods Herein, we conducted RNAseq analysis of ex vivo hip cap (articular), and metatarsal (growth plate) cartilage cultures subjected to physiological (5 MPa) and injurious (50 MPa) hydrostatic pressure, using the Illumina platform (n = 4 replicates). Results Several hundreds of genes were shown to be differentially modulated by hydrostatic pressure, with the majority of these changes evidenced in hip cap cartilage cultures (375 significantly upregulated and 322 downregulated in 5 MPa versus control; 1022 upregulated and 724 downregulated in 50 MPa versus control). Conversely, fewer genes were differentially affected by hydrostatic pressure in the metatarsal cultures (5 significantly upregulated and 23 downregulated in 5 MPa versus control; 7 significantly upregulated and 19 downregulated in 50 MPa versus control). Using Gene Ontology annotations for Biological Processes, in the hip cap data we identified a number of pathways that were modulated by both physiological and injurious hydrostatic pressure. Pathways upregulated in response to 50 MPa versus control, included those involved in the generation of precursor metabolites and cellular respiration. Biological processes that were downregulated in this tissue included ossification, connective tissue development, and chondrocyte differentiation. Discussion Collectively our data highlights the divergent chondrocyte phenotypes in articular and growth plate cartilage. Further, we show that the magnitude of hydrostatic pressure application has distinct effects on gene expression and biological processes in hip cap cartilage explants. Finally, we identified differential expression of a number of genes that have previously been identified as osteoarthritis risk genes, including Ctsk, and Chadl. Together these data may provide potential genetic targets for future investigations in osteoarthritis research and novel therapeutics.
Collapse
Affiliation(s)
- Lucie E. Bourne
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Andrew Hesketh
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Aikta Sharma
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Giselda Bucca
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Peter G. Bush
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Katherine A. Staines
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| |
Collapse
|
29
|
Shi T, Zhao J, Long K, Gao M, Chen F, Chen X, Zhang Y, Huang B, Shao D, Yang C, Wang L, Zhang M, Leong KW, Chen L, He K. Cationic mesoporous silica nanoparticles alleviate osteoarthritis by targeting multiple inflammatory mediators. Biomaterials 2023; 303:122366. [PMID: 37948854 DOI: 10.1016/j.biomaterials.2023.122366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Osteoarthritis (OA) is a common and complex inflammatory disorder that is frequently compounded by cartilage degradation, synovial inflammation, and osteophyte formation. Damaged chondrocytes release multiple danger mediators that exacerbate synovial inflammation and accelerate the progression to OA. Conventional treatments targeting only a single mediator of OA have failed to achieve a strong therapeutic effect. Addressing the crucial role of multiple danger mediators in OA progression, we prepared polyethylenimine (PEI)-functionalized diselenide-bridged mesoporous silica nanoparticles (MSN-PEI) with cell-free DNA (cfDNA)-binding and anti-oxidative properties. In models of surgery-induced and collagenase-induced arthritis, we showed that these cationic nanoparticles attenuated cartilage degradation and provided strong chondroprotection against joint damage. Mechanistically, multiple target blockades alleviated oxidative stress and dampened cfDNA-induced inflammation by suppressing the M1 polarization of macrophages. This study suggests a beneficial direction for targeting multiple danger mediators in the treatment of intractable arthritis.
Collapse
Affiliation(s)
- Tongfei Shi
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Jingtong Zhao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Kongrong Long
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Mohan Gao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xuenian Chen
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yue Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Baoding Huang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510665, China
| | - Dan Shao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China; School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Chao Yang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510665, China
| | - Liang Wang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510665, China
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; School of Nursing, Jilin University, Changchun, 130021, China.
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
30
|
Li H, Jiang X, Xiao Y, Zhang Y, Zhang W, Doherty M, Nestor J, Li C, Ye J, Sha T, Lyu H, Wei J, Zeng C, Lei G. Combining single-cell RNA sequencing and population-based studies reveals hand osteoarthritis-associated chondrocyte subpopulations and pathways. Bone Res 2023; 11:58. [PMID: 37914703 PMCID: PMC10620170 DOI: 10.1038/s41413-023-00292-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/17/2023] [Accepted: 09/07/2023] [Indexed: 11/03/2023] Open
Abstract
Hand osteoarthritis is a common heterogeneous joint disorder with unclear molecular mechanisms and no disease-modifying drugs. In this study, we performed single-cell RNA sequencing analysis to compare the cellular composition and subpopulation-specific gene expression between cartilage with macroscopically confirmed osteoarthritis (n = 5) and cartilage without osteoarthritis (n = 5) from the interphalangeal joints of five donors. Of 105 142 cells, we identified 13 subpopulations, including a novel subpopulation with inflammation-modulating potential annotated as inflammatory chondrocytes. Fibrocartilage chondrocytes exhibited extensive alteration of gene expression patterns in osteoarthritic cartilage compared with nonosteoarthritic cartilage. Both inflammatory chondrocytes and fibrocartilage chondrocytes showed a trend toward increased numbers in osteoarthritic cartilage. In these two subpopulations from osteoarthritic cartilage, the ferroptosis pathway was enriched, and expression of iron overload-related genes, e.g., FTH1, was elevated. To verify these findings, we conducted a Mendelian randomization study using UK Biobank and a population-based cross-sectional study using data collected from Xiangya Osteoarthritis Study. Genetic predisposition toward higher expression of FTH1 mRNA significantly increased the risk of hand osteoarthritis (odds ratio = 1.07, 95% confidence interval: 1.02-1.11) among participants (n = 332 668) in UK Biobank. High levels of serum ferritin (encoded by FTH1), a biomarker of body iron overload, were significantly associated with a high prevalence of hand osteoarthritis among participants (n = 1 241) of Xiangya Osteoarthritis Study (P-for-trend = 0.037). In conclusion, our findings indicate that inflammatory and fibrocartilage chondrocytes are key subpopulations and that ferroptosis may be a key pathway in hand osteoarthritis, providing new insights into the pathophysiology and potential therapeutic targets of hand osteoarthritis.
Collapse
Affiliation(s)
- Hui Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaofeng Jiang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Yongbing Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Yuqing Zhang
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
- The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Weiya Zhang
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, NG5 1PB, UK
- Pain Centre Versus Arthritis UK, Nottingham, NG5 1PB, UK
| | - Michael Doherty
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, NG5 1PB, UK
- Pain Centre Versus Arthritis UK, Nottingham, NG5 1PB, UK
| | - Jacquelyn Nestor
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Changjun Li
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jing Ye
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Sha
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Houchen Lyu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Wei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.
- Health Management Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, 410008, Hunan, China.
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
31
|
Miao MZ, Su QP, Cui Y, Bahnson EM, Li G, Wang M, Yang Y, Collins JA, Wu D, Gu Q, Chubinskaya S, Diekman BO, Yamada KM, Loeser RF. Redox-active endosomes mediate α5β1 integrin signaling and promote chondrocyte matrix metalloproteinase production in osteoarthritis. Sci Signal 2023; 16:eadf8299. [PMID: 37906629 PMCID: PMC10666734 DOI: 10.1126/scisignal.adf8299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
Mechanical cues sensed by integrins induce cells to produce proteases to remodel the extracellular matrix. Excessive protease production occurs in many degenerative diseases, including osteoarthritis, in which articular cartilage degradation is associated with the genesis of matrix protein fragments that can activate integrins. We investigated the mechanisms by which integrin signals may promote protease production in response to matrix changes in osteoarthritis. Using a fragment of the matrix protein fibronectin (FN) to activate the α5β1 integrin in primary human chondrocytes, we found that endocytosis of the integrin and FN fragment complex drove the production of the matrix metalloproteinase MMP-13. Activation of α5β1 by the FN fragment, but not by intact FN, was accompanied by reactive oxygen species (ROS) production initially at the cell surface, then in early endosomes. These ROS-producing endosomes (called redoxosomes) contained the integrin-FN fragment complex, the ROS-producing enzyme NADPH oxidase 2 (NOX2), and SRC, a redox-regulated kinase that promotes MMP-13 production. In contrast, intact FN was endocytosed and trafficked to recycling endosomes without inducing ROS production. Articular cartilage from patients with osteoarthritis showed increased amounts of SRC and the NOX2 complex component p67phox. Furthermore, we observed enhanced localization of SRC and p67phox at early endosomes, suggesting that redoxosomes could transmit and sustain integrin signaling in response to matrix damage. This signaling mechanism not only amplifies the production of matrix-degrading proteases but also establishes a self-perpetuating cycle that contributes to the ongoing degradation of cartilage matrix in osteoarthritis.
Collapse
Affiliation(s)
- Michael Z. Miao
- Division of Rheumatology, Allergy, and Immunology and the Thurston Arthritis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Oral & Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Oral and Craniofacial Biomedicine, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qian Peter Su
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yang Cui
- Division of Rheumatology, Allergy, and Immunology and the Thurston Arthritis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Edward M. Bahnson
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gang Li
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
- eScience Institute, University of Washington, Seattle, WA, 98195, USA
| | - Menglin Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yuchen Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - John A. Collins
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Di Wu
- Division of Oral & Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, NC, 27599, USA
| | - Qisheng Gu
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
- Department of Immunology, Université Paris Cité, Paris, 75006, France
| | - Susan Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Brian O. Diekman
- Division of Rheumatology, Allergy, and Immunology and the Thurston Arthritis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Kenneth M. Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard F. Loeser
- Division of Rheumatology, Allergy, and Immunology and the Thurston Arthritis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
32
|
Knights AJ, Farrell EC, Ellis OM, Song MJ, Appleton CT, Maerz T. Synovial macrophage diversity and activation of M-CSF signaling in post-traumatic osteoarthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.559514. [PMID: 37873464 PMCID: PMC10592932 DOI: 10.1101/2023.10.03.559514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Objective Synovium is home to immune and stromal cell types that orchestrate inflammation following a joint injury; in particular, macrophages are central protagonists in this process. We sought to define the cellular and temporal dynamics of the synovial immune niche in a mouse model of post-traumatic osteoarthritis (PTOA), and to identify stromal-immune crosstalk mechanisms that coordinate macrophage function and phenotype. Design We induced PTOA in mice using a non-invasive tibial compression model of anterior cruciate ligament rupture (ACLR). Single cell RNA-seq and flow cytometry were used to assess immune cell populations in healthy (Sham) and injured (7d and 28d post-ACLR) synovium. Characterization of synovial macrophage polarization states was performed, alongside computational modeling of macrophage differentiation, as well as implicated transcriptional regulators and stromal-immune communication axes. Results Immune cell types are broadly represented in healthy synovium, but experience drastic expansion and speciation in PTOA, most notably in the macrophage portion. We identified several polarization states of macrophages in synovium following joint injury, underpinned by distinct transcriptomic signatures, and regulated in part by stromal-derived macrophage colony-stimulating factor signaling. The transcription factors Pu.1, Cebpα, Cebpβ, and Jun were predicted to control differentiation of systemically derived monocytes into pro-inflammatory synovial macrophages. Conclusions We defined different synovial macrophage subpopulations present in healthy and injured mouse synovium. Nuanced characterization of the distinct functions, origins, and disease kinetics of macrophage subtypes in PTOA will be critical for targeting these highly versatile cells for therapeutic purposes.
Collapse
Affiliation(s)
| | - Easton C. Farrell
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Olivia M. Ellis
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Michelle J. Song
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - C. Thomas Appleton
- Department of Physiology and Pharmacology, Western University, London ON, Canada
- Bone and Joint Institute, Western University, London, ON, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine – Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
33
|
Xia X, Sui Y, Zhou J, Li S, Ma X, Jiang J, Yan Y. Augmenting mesenchymal stem cell therapy for osteoarthritis via inflammatory priming: a comparative study on mesenchymal stem cells derived from various perinatal tissue sources. Front Cell Dev Biol 2023; 11:1279574. [PMID: 37860815 PMCID: PMC10582349 DOI: 10.3389/fcell.2023.1279574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Background: Osteoarthritis (OA), a degenerative disease prevalent among the elderly, poses significant challenges due to its high incidence and disability rates. Regrettably, there exists a lack of effective regenerative therapies for the irreversible degradation of cartilage in OA. Mesenchymal stem cells (MSCs), known for their robust differentiation and immune regulatory capabilities, have emerged as promising candidates for OA treatment. MSCs sourced from perinatal tissues offer the dual advantage of convenience in extraction and ethical non-controversy. However, the heterogeneous nature of MSCs derived from different perinatal tissue sources gives rise to varying therapeutic indications. Moreover, the immune response of MSCs may be modulated under the influence of inflammatory factors. Methods: In this study, we isolated mesenchymal stem cells from distinct parts of human perinatal tissue: umbilical cord-derived MSCs (UC-MSCs), fetal placenta-derived MSCs (FP-MSCs), and umbilical cord placental junction-derived MSCs (CPJ-MSCs). These cells were cultured in vitro and subjected to a 24-hour treatment with the inflammatory mediator Interleukin-1β (IL-1β). Subsequently, the MSCs were evaluated for changes in proliferation, migration, and regulatory capabilities. To assess the comparative anti-injury potential of MSCs from different sources, primary articular chondrocytes (ACs) were exposed to H2O2-induced injury and co-cultured with IL-1β-primed MSCs. Changes in the proliferation, migration, and regulatory abilities of ACs resembling those observed in OA were examined. Results: Following IL-1β treatment, all three types of MSCs displayed decreased rates of proliferation and migration. Notably, their chondrogenic differentiation capacities exhibited an enhancement. Additionally, diverse MSCs exhibited a degree of efficacy in restoring damaged ACs in vitro. Among these, CPJ-MSCs demonstrated superior potential in promoting cartilage cell proliferation, while FP-MSCs displayed notable anti-inflammatory effects. Conclusion: Our findings underscore the substantial capacity of primed FP-MSCs and CPJ-MSCs to alleviate the injury in OA-like ACs. Consequently, this study advocates for the prospective use of preconditioning strategies involving FP-MSCs and CPJ-MSCs in forthcoming OA therapies.
Collapse
Affiliation(s)
- Xinzi Xia
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yue Sui
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiawen Zhou
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shanshan Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiang Ma
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiang Jiang
- Department of Obstetrics, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yaping Yan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
34
|
Minopoulou I, Kleyer A, Yalcin-Mutlu M, Fagni F, Kemenes S, Schmidkonz C, Atzinger A, Pachowsky M, Engel K, Folle L, Roemer F, Waldner M, D'Agostino MA, Schett G, Simon D. Imaging in inflammatory arthritis: progress towards precision medicine. Nat Rev Rheumatol 2023; 19:650-665. [PMID: 37684361 DOI: 10.1038/s41584-023-01016-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/10/2023]
Abstract
Imaging techniques such as ultrasonography and MRI have gained ground in the diagnosis and management of inflammatory arthritis, as these imaging modalities allow a sensitive assessment of musculoskeletal inflammation and damage. However, these techniques cannot discriminate between disease subsets and are currently unable to deliver an accurate prediction of disease progression and therapeutic response in individual patients. This major shortcoming of today's technology hinders a targeted and personalized patient management approach. Technological advances in the areas of high-resolution imaging (for example, high-resolution peripheral quantitative computed tomography and ultra-high field MRI), functional and molecular-based imaging (such as chemical exchange saturation transfer MRI, positron emission tomography, fluorescence optical imaging, optoacoustic imaging and contrast-enhanced ultrasonography) and artificial intelligence-based data analysis could help to tackle these challenges. These new imaging approaches offer detailed anatomical delineation and an in vivo and non-invasive evaluation of the immunometabolic status of inflammatory reactions, thereby facilitating an in-depth characterization of inflammation. By means of these developments, the aim of earlier diagnosis, enhanced monitoring and, ultimately, a personalized treatment strategy looms closer.
Collapse
Affiliation(s)
- Ioanna Minopoulou
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Arnd Kleyer
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Melek Yalcin-Mutlu
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Filippo Fagni
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Kemenes
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Schmidkonz
- Department of Nuclear Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Institute for Medical Engineering, University of Applied Sciences Amberg-Weiden, Weiden, Germany
| | - Armin Atzinger
- Department of Nuclear Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Milena Pachowsky
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Lukas Folle
- Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frank Roemer
- Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Maximilian Waldner
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maria-Antonietta D'Agostino
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Université Paris-Saclay, UVSQ, Inserm U1173, Infection et Inflammation, Laboratory of Excellence Inflamex, Montigny-Le-Bretonneux, France
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - David Simon
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
35
|
Min Y, Heo Y, Feng F, Kim D, Kim M, Yang J, Kim HJ, Jee Y, Ghosh M, Kang I, Son YO. High-Sucrose Diet Accelerates Arthritis Progression in a Collagen-Induced Rheumatoid Arthritis Model. Mol Nutr Food Res 2023; 67:e2300244. [PMID: 37688304 DOI: 10.1002/mnfr.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/15/2023] [Indexed: 09/10/2023]
Abstract
SCOPE High dietary sugar and sweeteners are suspected to cause the development of rheumatoid arthritis (RA) symptoms through the induction of proinflammatory cytokine release. However, the mechanisms by which increased dietary sugar affects RA etiology are not yet fully understood. The study uses a mouse model of collagen-induced RA (CIA) to investigate the relationship between excessive sugar consumption and RA risk. METHODS AND RESULTS RA-associated pathological features are assessed in the nonimmunized (NI) control group, the CIA-positive control group, and the CIA + high-sucrose diet (CIA+HS, 63% calories from sucrose) group. Compared with the CIA group, the CIA+HS group shows a greater increase in paw thickness and clinical scores, as well as, a higher degree of pannus formation and inflammation in the knee, ankle, and sole tissues. Moreover, the infiltration of immune cells is increased in the CIA+HS group. Although the expression of hepatic lipogenic genes, is not altered, that of toll-like receptor (TLR4) and IL-1β is considerably elevated in the CIA+HS group. CONCLUSIONS These findings suggest that excessive sucrose consumption causes hepatic fibrosis and inflammation, contributing to the pathophysiology of RA.
Collapse
Affiliation(s)
- Yunhui Min
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Yunji Heo
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Fang Feng
- Department of Food Science and Nutrition, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Dahye Kim
- Division of Animal Genetics and Bioinformatics, The National Institute of Animal Science, RDA, Wanju, 55465, Republic of Korea
| | - Mangeun Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Jiwon Yang
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Hyo Jin Kim
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Youngheun Jee
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
- Department of Biotechnology, School of Bio, Chemical and Processing Engineering (SBCE), Kalasalingam Academy of Research and Educational, Krishnankoil, 626126, India
| | - Inhae Kang
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
- Department of Food Science and Nutrition, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Young-Ok Son
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| |
Collapse
|
36
|
Zhang R, Qu J. The Mechanisms and Efficacy of Photobiomodulation Therapy for Arthritis: A Comprehensive Review. Int J Mol Sci 2023; 24:14293. [PMID: 37762594 PMCID: PMC10531845 DOI: 10.3390/ijms241814293] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) have a significant impact on the quality of life of patients around the world, causing significant pain and disability. Furthermore, the drugs used to treat these conditions frequently have side effects that add to the patient's burden. Photobiomodulation (PBM) has emerged as a promising treatment approach in recent years. PBM effectively reduces inflammation by utilizing near-infrared light emitted by lasers or LEDs. In contrast to photothermal effects, PBM causes a photobiological response in cells, which regulates their functional response to light and reduces inflammation. PBM's anti-inflammatory properties and beneficial effects in arthritis treatment have been reported in numerous studies, including animal experiments and clinical trials. PBM's effectiveness in arthritis treatment has been extensively researched in arthritis-specific cells. Despite the positive results of PBM treatment, questions about specific parameters such as wavelength, dose, power density, irradiation time, and treatment site remain. The goal of this comprehensive review is to systematically summarize the mechanisms of PBM in arthritis treatment, the development of animal arthritis models, and the anti-inflammatory and joint function recovery effects seen in these models. The review also goes over the evaluation methods used in clinical trials. Overall, this review provides valuable insights for researchers investigating PBM treatment for arthritis, providing important references for parameters, model techniques, and evaluation methods in future studies.
Collapse
Affiliation(s)
| | - Junle Qu
- Center for Biomedical Optics and Photonics and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
37
|
Zhang J, Nishida Y, Koike H, Zhuo L, Ito K, Ikuta K, Sakai T, Imagama S. Development of Therapeutic Agent for Osteoarthritis via Inhibition of KIAA1199 Activity: Effect of Ipriflavone In Vivo. Int J Mol Sci 2023; 24:12422. [PMID: 37569797 PMCID: PMC10419624 DOI: 10.3390/ijms241512422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
This study aimed to clarify the effects of ipriflavone, which effectively reduces KIAA1199 activity, on osteoarthritis (OA) development and progression in an in vivo OA mouse model. The OA model mice were divided into the ipriflavone (200 mg/kg/day) group and the control group. OA onset and progression were evaluated with the Mankin score, and KIAA1199 expression and hyaluronan (HA) accumulation were analyzed by immunostaining. The molecular weight of HA in the cartilage tissue and serum HA concentration were analyzed by chromatography and competitive HA enzyme-linked immunoassay. The effects of ipriflavone on the bovine cartilage explant culture under the influence of IL-1β were also investigated. In the ipriflavone group, Safranin-O stainability was well-preserved, resulting in significant reduction of the Mankin score (p = 0.027). KIAA1199 staining positivity decreased and HA stainability was preserved in the ipriflavone group. The serum HA concentration decreased, and the molecular weight of HA in the cartilage tissue increased in the ipriflavone group. The results of the cartilage explant culture indicated that ipriflavone could reduce GAG losses and increase the molecular weight of HA. Thus, ipriflavone may have an inhibitory effect on OA development/progression. Ipriflavone could be a therapeutic drug for OA by targeting KIAA1199 activity.
Collapse
Affiliation(s)
- Jiarui Zhang
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (J.Z.); (H.K.); (K.I.); (K.I.); (T.S.); (S.I.)
| | - Yoshihiro Nishida
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (J.Z.); (H.K.); (K.I.); (K.I.); (T.S.); (S.I.)
- Department of Rehabilitation Medicine, Nagoya University Hospital, Nagoya 466-8560, Japan
| | - Hiroshi Koike
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (J.Z.); (H.K.); (K.I.); (K.I.); (T.S.); (S.I.)
| | - Lisheng Zhuo
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (J.Z.); (H.K.); (K.I.); (K.I.); (T.S.); (S.I.)
| | - Kan Ito
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (J.Z.); (H.K.); (K.I.); (K.I.); (T.S.); (S.I.)
| | - Kunihiro Ikuta
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (J.Z.); (H.K.); (K.I.); (K.I.); (T.S.); (S.I.)
| | - Tomohisa Sakai
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (J.Z.); (H.K.); (K.I.); (K.I.); (T.S.); (S.I.)
- Rare Cancer Center, Nagoya University Hospital, Nagoya 466-8560, Japan
| | - Shiro Imagama
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (J.Z.); (H.K.); (K.I.); (K.I.); (T.S.); (S.I.)
| |
Collapse
|
38
|
Lee SY, Kim SC, Gim JA, Park SJ, Seo SH, Kim SJ, Kim HS, Yoo JI. Accelerometer-derived physical activity analysis of elderly osteoarthritis patients. Musculoskelet Sci Pract 2023; 66:102808. [PMID: 37352763 DOI: 10.1016/j.msksp.2023.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Because disability in Osteoarthritis (OA) may change physical activity (PA), which might affect the disease progression, it is important to measure a patient's daily PA to study the relationship between a patient's PA and disease progression. OBJECTIVE The objective of the present study was to investigate the relationship between PA and patients with OA and people without OA using data from the Korea National Health and Nutrition Examination Survey (KNHANES). METHODS Demographic study was conducted to obtain data of comorbidities of participants. PA was compared between the group with OA (OA group) and the group without OA (non-OA group). In addition, PAs of OA patients with comorbidities and those without comorbidities were compared. The cut-off of moderate to vigorous physical activity (MVPA) was obtained through a receiver operating characteristic (ROC) curve. RESULTS In the demographic study, there were significantly more educated participants in the OA group (p < .001). Actigraph data showed a significant decrease in MVPA (p < .001) but a significant increase in light activity (p = .002) in the OA group. In addition, the OA group showed significantly lower light PA but significantly higher MVPA in ≥10 min bout length. OA patients with comorbidities showed higher MVPA than OA patients without comorbidities (p = .044). The cut-off point of MVPA was 7.071 min/day when ROC curve was conducted. CONCLUSIONS The present study suggests that patients with OA and low activity need a certain level of physical activity and a cut-off point for MVPA is presented which accounts for comorbidities in OA patients.
Collapse
Affiliation(s)
- Sang-Yeob Lee
- Department of Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, South Korea
| | - Seung Chan Kim
- Department of Biostatistics Cooperation Center, Gyeongsang National University Hospital, Jinju, South Korea
| | - Jeong-An Gim
- Department of Medical Science Research Center, College of Medicine, Korea University, Seoul, South Korea
| | - Seong Jin Park
- Department of Hospital-based Business Innovation Center, Gyeongsang National University Hospital, Jinju, South Korea
| | - Sung Hyo Seo
- Department of Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, South Korea
| | - Shin June Kim
- Department of Orthopaedic Surgery, Inha University Hospital, Incheon, South Korea
| | - Hyeon Su Kim
- Department of Orthopaedic Surgery, Inha University Hospital, Incheon, South Korea
| | - Jun-Il Yoo
- Department of Orthopaedic Surgery, Inha University Hospital, Incheon, South Korea.
| |
Collapse
|
39
|
Anitua E, Prado R, Guadilla J, Alkhraisat MH, Laiz P, Padilla S, García-Balletbó M, Cugat R. The Dual-Responsive Interaction of Particulated Hyaline Cartilage and Plasma Rich in Growth Factors (PRGF) in the Repair of Cartilage Defects: An In Vitro Study. Int J Mol Sci 2023; 24:11581. [PMID: 37511339 PMCID: PMC10380225 DOI: 10.3390/ijms241411581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The treatment of chondral and osteochondral defects is challenging. These types of lesions are painful and progress to osteoarthritis over time. Tissue engineering offers tools to address this unmet medical need. The use of an autologous cartilage construct consisting of hyaline cartilage chips embedded in plasma rich in growth factors (PRGF) has been proposed as a therapeutic alternative. The purpose of this study was to dig into the potential mechanisms behind the in vitro remodelling process that might explain the clinical success of this technique and facilitate its optimisation. Chondrocyte viability and cellular behaviour over eight weeks of in vitro culture, type II collagen synthesis, the dual delivery of growth factors by hyaline cartilage and PRGF matrix, and the ultrastructure of the construct and its remodelling were characterised. The main finding of this research is that the cartilage fragments embedded in the three-dimensional PRGF scaffold contain viable chondrocytes that are able to migrate into the fibrin network, proliferate and synthesise extracellular matrix after the second week of in vitro culture. The characterization of this three-dimensional matrix is key to unravelling the molecular kinetics responsible for its efficacy.
Collapse
Affiliation(s)
- Eduardo Anitua
- Eduardo Anitua Foundation for Biomedical Research, 01007 Vitoria, Spain
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute IMASD, 01007 Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Roberto Prado
- Eduardo Anitua Foundation for Biomedical Research, 01007 Vitoria, Spain
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute IMASD, 01007 Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Jorge Guadilla
- Osakidetza Basque Health Service, Araba University Hospital, 01009 Vitoria, Spain
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008 Vitoria, Spain
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 01006 Vitoria, Spain
| | - Mohammad H Alkhraisat
- Eduardo Anitua Foundation for Biomedical Research, 01007 Vitoria, Spain
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute IMASD, 01007 Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Patricia Laiz
- Fundación García Cugat para Investigación Biomédica, 08023 Barcelona, Spain
- Instituto Cugat, Hospital Quirónsalud, 08023 Barcelona, Spain
| | - Sabino Padilla
- Eduardo Anitua Foundation for Biomedical Research, 01007 Vitoria, Spain
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute IMASD, 01007 Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Montserrat García-Balletbó
- Fundación García Cugat para Investigación Biomédica, 08023 Barcelona, Spain
- Instituto Cugat, Hospital Quirónsalud, 08023 Barcelona, Spain
| | - Ramón Cugat
- Fundación García Cugat para Investigación Biomédica, 08023 Barcelona, Spain
- Instituto Cugat, Hospital Quirónsalud, 08023 Barcelona, Spain
- Mutualidad de Futbolistas Españoles, Delegación Catalana, 08010 Barcelona, Spain
| |
Collapse
|
40
|
Zhang Z, Xie S, Qian J, Gao F, Jin W, Wang L, Yan L, Chen H, Yao W, Li M, Wang X, Zhu L. Targeting macrophagic PIM-1 alleviates osteoarthritis by inhibiting NLRP3 inflammasome activation via suppressing mitochondrial ROS/Cl - efflux signaling pathway. J Transl Med 2023; 21:452. [PMID: 37422640 PMCID: PMC10329339 DOI: 10.1186/s12967-023-04313-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA), in which macrophage-driven synovitis is considered closely related to cartilage destruction and could occur at any stage, is an inflammatory arthritis. However, there are no effective targets to cure the progression of OA. The NOD-, LRR-,and pyrin domain-containing protein 3 (NLRP3) inflammasome in synovial macrophages participates in the pathological inflammatory process and treatment strategies targeting it are considered to be an effective approach for OA. PIM-1 kinase, as a downstream effector of many cytokine signaling pathways, plays a pro-inflammatory role in inflammatory disease. METHODS In this study, we evaluated the expression of the PIM-1 and the infiltration of synovial macrophages in the human OA synovium. The effects and mechanism of PIM-1 were investigated in mice and human macrophages stimulated by lipopolysaccharide (LPS) and different agonists such as nigericin, ATP, Monosodium urate (MSU), and Aluminum salt (Alum). The protective effects on chondrocytes were assessed by a modified co-culture system induced by macrophage condition medium (CM). The therapeutic effect in vivo was confirmed by the medial meniscus (DMM)-induced OA in mice. RESULTS The expression of PIM-1 was increased in the human OA synovium which was accompanied by the infiltration of synovial macrophages. In vitro experiments, suppression of PIM-1 by SMI-4a, a specific inhibitor, rapidly inhibited the NLRP3 inflammasome activation in mice and human macrophages and gasdermin-D (GSDME)-mediated pyroptosis. Furthermore, PIM-1 inhibition specifically blocked the apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization in the assembly stage. Mechanistically, PIM-1 inhibition alleviated the mitochondrial reactive oxygen species (ROS)/chloride intracellular channel proteins (CLICs)-dependent Cl- efflux signaling pathway, which eventually resulted in the blockade of the ASC oligomerization and NLRP3 inflammasome activation. Furthermore, PIM-1 suppression showed chondroprotective effects in the modified co-culture system. Finally, SMI-4a significantly suppressed the expression of PIM-1 in the synovium and reduced the synovitis scores and the Osteoarthritis Research Society International (OARSI) score in the DMM-induced OA model. CONCLUSIONS Therefore, PIM-1 represented a new class of promising targets as a treatment of OA to target these mechanisms in macrophages and widened the road to therapeutic strategies for OA.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Shujun Xie
- Department of Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Cancer Center, Zhejiang University, 310006, Hangzhou, China
| | - Jin Qian
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Fengqiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjian Jin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Lingqiao Wang
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Lili Yan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Chen
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Wangxiang Yao
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Maoqiang Li
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Xuepeng Wang
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Liulong Zhu
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China.
| |
Collapse
|
41
|
Lin SC, Panthi S, Hsuuw YH, Chen SH, Huang MJ, Sieber M, Hsuuw YD. Regenerative Effect of Mesenchymal Stem Cell on Cartilage Damage in a Porcine Model. Biomedicines 2023; 11:1810. [PMID: 37509451 PMCID: PMC10376751 DOI: 10.3390/biomedicines11071810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis (OA) is a major public and animal health challenge with significant economic consequences. Cartilage degradation plays a critical role in the initiation and progression of degenerative joint diseases, such as OA. Mesenchymal stem cells (MSCs) have become increasingly popular in the field of cartilage regeneration due to their promising results. The objective of this preclinical study was to evaluate the regenerative effects of mesenchymal stem cells (MSCs) in the repair of knee cartilage defects using a porcine model. Seven healthy LYD breed white pigs, aged 9-10 weeks and weighing approximately 20 ± 3 kg, were used in the experimental protocol. Full-thickness defects measuring 8 mm in diameter and 5 mm in depth were induced in the lateral femoral condyle of the posterior limbs in both knee joints using a sterile puncture technique while the knee was maximally flexed. Following a 1-week induction phase, the pig treatment groups received a 0.3 million/kg MSC transplant into the damaged knee region, while the placebo group received a control solution as a treatment. Magnetic resonance imaging (MRI), computerized tomography (CT), visual macroscopic examination, histological analysis, and cytokine concentration analysis were used to assess cartilage regeneration. The findings revealed that human adipose-derived mesenchymal stem cells (hADSCs) were more effective in repairing cartilage than pig umbilical cord-derived mesenchymal stem cells (pUCMSCs). These results suggest that MSC-based treatments hold promise as a treatment option for cartilage repair, which aid in the treatment of OA. However, further studies with larger sample sizes and longer follow-up periods are required to fully demonstrate the safety and efficacy of these therapies in both animals and humans.
Collapse
Affiliation(s)
- Sheng-Chuan Lin
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, No. 1, Xuefu Rd, Neipu Township, Pingtung 91201, Taiwan
- Deng Chuan Animal Hospital, Kaohsiung 81361, Taiwan
| | - Sankar Panthi
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, No. 1, Xuefu Rd, Neipu Township, Pingtung 91201, Taiwan
| | - Yu-Her Hsuuw
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, No. 1, Xuefu Rd, Neipu Township, Pingtung 91201, Taiwan
- Deng Chuan Animal Hospital, Kaohsiung 81361, Taiwan
| | | | | | | | - Yan-Der Hsuuw
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, No. 1, Xuefu Rd, Neipu Township, Pingtung 91201, Taiwan
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
42
|
Ouyang Z, Dong L, Yao F, Wang K, Chen Y, Li S, Zhou R, Zhao Y, Hu W. Cartilage-Related Collagens in Osteoarthritis and Rheumatoid Arthritis: From Pathogenesis to Therapeutics. Int J Mol Sci 2023; 24:9841. [PMID: 37372989 DOI: 10.3390/ijms24129841] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Collagens serve essential mechanical functions throughout the body, particularly in the connective tissues. In articular cartilage, collagens provide most of the biomechanical properties of the extracellular matrix essential for its function. Collagen plays a very important role in maintaining the mechanical properties of articular cartilage and the stability of the ECM. Noteworthily, many pathogenic factors in the course of osteoarthritis and rheumatoid arthritis, such as mechanical injury, inflammation, and senescence, are involved in the irreversible degradation of collagen, leading to the progressive destruction of cartilage. The degradation of collagen can generate new biochemical markers with the ability to monitor disease progression and facilitate drug development. In addition, collagen can also be used as a biomaterial with excellent properties such as low immunogenicity, biodegradability, biocompatibility, and hydrophilicity. This review not only provides a systematic description of collagen and analyzes the structural characteristics of articular cartilage and the mechanisms of cartilage damage in disease states but also provides a detailed characterization of the biomarkers of collagen production and the role of collagen in cartilage repair, providing ideas and techniques for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Ziwei Ouyang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| | - Lei Dong
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| | - Feng Yao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Ke Wang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Shufang Li
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| |
Collapse
|
43
|
Song F, Mao X, Dai J, Shan B, Zhou Z, Kang Y. Integrin αVβ3 Signaling in the Progression of Osteoarthritis Induced by Excessive Mechanical Stress. Inflammation 2023; 46:739-751. [PMID: 36480128 PMCID: PMC10024670 DOI: 10.1007/s10753-022-01770-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/12/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) is believed to be linked with cartilage degeneration, subchondral bone sclerosis, and synovial inflammation that lead to joint failure, and yet treatment that can effectively reverse the pathological process of the disease still not exists. Recent evidence suggests excessive mechanical stress (eMS) as an essential role in the pathogenesis of OA. Increased levels of integrin αVβ3 have been detected in osteoarthritic cartilage and were previously implicated in OA pathogenesis. However, the role of integrin αVβ3 in the process of eMS-induced OA remains unclear. Here, histologic and proteomic analyses of osteoarthritic cartilage in a rat destabilization of the medial meniscus model demonstrated elevated expression of integrin αVβ3 as well as more serious cartilage degeneration in the medial weight-bearing area. Furthermore, results of in vitro study demonstrated that eMS led to a significant increase of integrin αVβ3 expression and phosphorylation of downstream signaling molecules such as FAK and ERK, as well as upregulated expressions of inflammatory and degradative mediators. In addition, we found that inhibition of integrin αVβ3 could alleviate chondrocyte inflammation triggered by eMS both in vivo and in vitro. Our findings suggest a central role for upregulation of integrin αVβ3 signaling in OA pathogenesis and demonstrate that activation of integrin αVβ3 signaling in cartilage contributes to inflammation and joint destruction in eMS-induced OA. Taken together, our data presented here provide a possibility for targeting integrin αVβ3 signaling pathway as a disease-modifying therapy.
Collapse
Affiliation(s)
- Fanglong Song
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Xiaoyu Mao
- Department of Orthopedics, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| | - Jun Dai
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Bingchen Shan
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Zhentao Zhou
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Yifan Kang
- Department of Orthopedics, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China.
| |
Collapse
|
44
|
Matsuda K, Shiba N, Hiraoka K. New Insights into the Role of Synovial Fibroblasts Leading to Joint Destruction in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:ijms24065173. [PMID: 36982247 PMCID: PMC10049180 DOI: 10.3390/ijms24065173] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Rheumatoid arthritis (RA), one of the most common autoimmune diseases, is characterized by multiple-joint synovitis with subsequent destruction of bone and cartilage. The excessive autoimmune responses cause an imbalance in bone metabolism, promoting bone resorption and inhibiting bone formation. Preliminary studies have revealed that receptor activator of NF-κB ligand (RANKL)-mediated osteoclast induction is an important component of bone destruction in RA. Synovial fibroblasts are the crucial producers of RANKL in the RA synovium; novel analytical techniques, primarily, single-cell RNA sequencing, have confirmed that synovial fibroblasts include heterogeneous subsets of both pro-inflammatory and tissue-destructive cell types. The heterogeneity of immune cells in the RA synovium and the interaction of synovial fibroblasts with immune cells have recently received considerable attention. The current review focused on the latest findings regarding the crosstalk between synovial fibroblasts and immune cells, and the pivotal role played by synovial fibroblasts in joint destruction in RA.
Collapse
Affiliation(s)
- Kotaro Matsuda
- Department of Orthopedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Fukuoka, Japan
| | - Naoto Shiba
- Department of Orthopedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Fukuoka, Japan
| | - Koji Hiraoka
- Department of Orthopedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Fukuoka, Japan
| |
Collapse
|
45
|
SOXC Transcription Factors as Diagnostic Biomarkers and Therapeutic Targets for Arthritis. Int J Mol Sci 2023; 24:ijms24044215. [PMID: 36835620 PMCID: PMC9967432 DOI: 10.3390/ijms24044215] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are two common disorders that disrupt the quality of life of millions of people. These two chronic diseases cause damage to the joint cartilage and surrounding tissues of more than 220 million people worldwide. Sex-determining region Y-related (SRY) high-mobility group (HMG) box C, SOXC, is a superfamily of transcription factors that have been recently shown to be involved in various physiological and pathological processes. These include embryonic development, cell differentiation, fate determination, and autoimmune diseases, as well as carcinogenesis and tumor progression. The SOXC superfamily includes SOX4, SOX11, and SOX12, all have a similar DNA-binding domain, i.e., HMG. Herein, we summarize the current knowledge about the role of SOXC transcription factors during arthritis progression and their potential utilization as diagnostic biomarkers and therapeutic targets. The involved mechanistic processes and signaling molecules are discussed. SOX12 appears to have no role in arthritis, however SOX11 is dysregulated and promotes arthritic progression according to some studies but supports joint maintenance and protects cartilage and bone cells according to others. On the other hand, SOX4 upregulation during OA and RA was documented in almost all studies including preclinical and clinical models. Molecular details have indicated that SOX4 can autoregulate its own expression besides regulating the expression of SOX11, a characteristic associated with the transcription factors that protects their abundance and activity. From analyzing the currently available data, SOX4 seems to be a potential diagnostic biomarker and therapeutic target of arthritis.
Collapse
|
46
|
Fan A, Wu G, Wang J, Lu L, Wang J, Wei H, Sun Y, Xu Y, Mo C, Zhang X, Pang Z, Pan Z, Wang Y, Lu L, Fu G, Ma M, Zhu Q, Cao D, Qin J, Yin F, Yue R. Inhibition of fibroblast activation protein ameliorates cartilage matrix degradation and osteoarthritis progression. Bone Res 2023; 11:3. [PMID: 36588124 PMCID: PMC9806108 DOI: 10.1038/s41413-022-00243-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 10/14/2022] [Accepted: 11/11/2022] [Indexed: 01/03/2023] Open
Abstract
Fibroblast activation protein (Fap) is a serine protease that degrades denatured type I collagen, α2-antiplasmin and FGF21. Fap is highly expressed in bone marrow stromal cells and functions as an osteogenic suppressor and can be inhibited by the bone growth factor Osteolectin (Oln). Fap is also expressed in synovial fibroblasts and positively correlated with the severity of rheumatoid arthritis (RA). However, whether Fap plays a critical role in osteoarthritis (OA) remains poorly understood. Here, we found that Fap is significantly elevated in osteoarthritic synovium, while the genetic deletion or pharmacological inhibition of Fap significantly ameliorated posttraumatic OA in mice. Mechanistically, we found that Fap degrades denatured type II collagen (Col II) and Mmp13-cleaved native Col II. Intra-articular injection of rFap significantly accelerated Col II degradation and OA progression. In contrast, Oln is expressed in the superficial layer of articular cartilage and is significantly downregulated in OA. Genetic deletion of Oln significantly exacerbated OA progression, which was partially rescued by Fap deletion or inhibition. Intra-articular injection of rOln significantly ameliorated OA progression. Taken together, these findings identify Fap as a critical pathogenic factor in OA that could be targeted by both synthetic and endogenous inhibitors to ameliorate articular cartilage degradation.
Collapse
Affiliation(s)
- Aoyuan Fan
- grid.24516.340000000123704535Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092 China
| | - Genbin Wu
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240 China
| | - Jianfang Wang
- grid.24516.340000000123704535Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Laiya Lu
- grid.24516.340000000123704535Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092 China
| | - Jingyi Wang
- grid.24516.340000000123704535Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092 China
| | - Hanjing Wei
- grid.24516.340000000123704535Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Yuxi Sun
- grid.24516.340000000123704535Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Yanhua Xu
- grid.24516.340000000123704535Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China ,grid.24516.340000000123704535Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Chunyang Mo
- grid.24516.340000000123704535Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Xiaoying Zhang
- grid.24516.340000000123704535Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Zhiying Pang
- grid.24516.340000000123704535Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092 China
| | - Zhangyi Pan
- grid.24516.340000000123704535Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092 China
| | - Yiming Wang
- grid.24516.340000000123704535Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092 China
| | - Liangyu Lu
- grid.24516.340000000123704535Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092 China
| | - Guojian Fu
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240 China
| | - Mengqiu Ma
- grid.24516.340000000123704535Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Qiaoling Zhu
- grid.24516.340000000123704535Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Dandan Cao
- grid.24516.340000000123704535Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Jiachen Qin
- grid.24516.340000000123704535Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Feng Yin
- grid.24516.340000000123704535Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China ,grid.452344.0Shanghai Clinical Research Center for Aging and Medicine, Shanghai, 200040 China
| | - Rui Yue
- grid.24516.340000000123704535Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China
| |
Collapse
|
47
|
Maciej-Hulme ML, Melrose J, Farrugia BL. Arthritis and Duchenne muscular dystrophy: the role of chondroitin sulfate and its associated proteoglycans in disease pathology and as a diagnostic marker. Am J Physiol Cell Physiol 2023; 324:C142-C152. [PMID: 36409173 PMCID: PMC9829464 DOI: 10.1152/ajpcell.00103.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
Chondroitin sulfate (CS) is a ubiquitous glycosaminoglycan covalently attached to the core proteins of cell surface, extracellular, and intracellular proteoglycans. The multistep and highly regulated biosynthesis of chondroitin sulfate and its degradation products give rise to a diverse species of molecules with functional regulatory properties in biological systems. This review will elucidate and expand on the most recent advances in understanding the role of chondroitin sulfate and its associate proteoglycans, in arthritis and Duchenne muscular dystrophy (DMD), two different and discrete pathologies. Highlighting not only the biodiverse nature of this family of molecules but also the utilization of CS proteoglycans, CS, and its catabolic fragments as biomarkers and potential therapeutic targets for disease pathologies.
Collapse
Affiliation(s)
- Marissa L Maciej-Hulme
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and The Faculty of Medicine and Health, The University of Sydney, St. Leonard's, New South Wales, Australia
| | - Brooke L Farrugia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
48
|
Gremese E, Tolusso B, Bruno D, Perniola S, Ferraccioli G, Alivernini S. The forgotten key players in rheumatoid arthritis: IL-8 and IL-17 - Unmet needs and therapeutic perspectives. Front Med (Lausanne) 2023; 10:956127. [PMID: 37035302 PMCID: PMC10073515 DOI: 10.3389/fmed.2023.956127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/21/2023] [Indexed: 04/11/2023] Open
Abstract
Despite the relevant advances in our understanding of the pathogenetic mechanisms regulating inflammation in rheumatoid arthritis (RA) and the development of effective therapeutics, to date, there is still a proportion of patients with RA who do not respond to treatment and end up progressing toward the development of joint damage, extra-articular complications, and disability. This is mainly due to the inter-individual heterogeneity of the molecular and cellular taxonomy of the synovial membrane, which represents the target tissue of RA inflammation. Tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) are crucial key players in RA pathogenesis fueling the inflammatory cascade, as supported by experimental evidence derived from in vivo animal models and the effectiveness of biologic-Disease Modifying Anti-Rheumatic Drugs (b-DMARDs) in patients with RA. However, additional inflammatory soluble mediators such as IL-8 and IL-17 exert their pathogenetic actions promoting the detrimental activation of immune and stromal cells in RA synovial membrane, tendons, and extra-articular sites, as well as blood vessels and lungs, causing extra-articular complications, which might be excluded by the action of anti-TNFα and anti-IL6R targeted therapies. In this narrative review, we will discuss the role of IL-8 and IL-17 in promoting inflammation in multiple biological compartments (i.e., synovial membrane, blood vessels, and lung, respectively) in animal models of arthritis and patients with RA and how their selective targeting could improve the management of treatment resistance in patients.
Collapse
Affiliation(s)
- Elisa Gremese
- Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Immunology Core Facility, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
- *Correspondence: Elisa Gremese, Gianfranco Ferraccioli
| | - Barbara Tolusso
- Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Immunology Core Facility, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Dario Bruno
- Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Department of Medicine, University of Verona, Verona, Italy
| | - Simone Perniola
- Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Gianfranco Ferraccioli
- School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
- *Correspondence: Elisa Gremese, Gianfranco Ferraccioli
| | - Stefano Alivernini
- Immunology Core Facility, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| |
Collapse
|
49
|
Liu D, Xiao WF, Li YS. The Diagnostic and Prognostic Value of Synovial Fluid Analysis in Joint Diseases. Methods Mol Biol 2023; 2695:295-308. [PMID: 37450127 DOI: 10.1007/978-1-0716-3346-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Liquid biopsy is an emergent test method for the diagnosis and prognosis in the clinic. Joint fluid, also known as synovial fluid, contains a variety of bioactive constituents that can be selectively detected and further evaluated in a convenient fashion. Therefore, synovial fluid analysis functions as a specific form of liquid biopsy and plays a vital role in numerous joint diseases. In spite of the component analysis of aspirated synovial fluid beingconsidered as the gold standard for diagnosis of joint infections, biopsy of joint fluid benefits the initial diagnosis and long-term prognosis of degenerative, inflammatory, autoimmune, traumatic, congenital, and even neoplastic joint diseases. The convenience and accuracy for disease evaluation are significantly elevated as a result of the combination of synovial fluid analysis and other novel clinical technologies. In this review, we shed light on the latent role of synovial fluid in the diagnosis and prognosis of articular diseases and proposed future prospects for relevant research in this field.
Collapse
Affiliation(s)
- Di Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen-Feng Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
50
|
Zádori ZS, Király K, Al-Khrasani M, Gyires K. Interactions between NSAIDs, opioids and the gut microbiota - Future perspectives in the management of inflammation and pain. Pharmacol Ther 2023; 241:108327. [PMID: 36473615 DOI: 10.1016/j.pharmthera.2022.108327] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The composition of intestinal microbiota is influenced by a number of factors, including medications, which may have a substantial impact on host physiology. Nonsteroidal anti-inflammatory drugs (NSAIDs) and opioid analgesics are among those widely used medications that have been shown to alter microbiota composition in both animals and humans. Although much effort has been devoted to identify microbiota signatures associated with these medications, much less is known about the underlying mechanisms. Mucosal inflammation, changes in intestinal motility, luminal pH and bile acid metabolism, or direct drug-induced inhibitory effect on bacterial growth are all potential contributors to NSAID- and opioid-induced dysbiosis, however, only a few studies have addressed directly these issues. In addition, there is a notable overlap between the microbiota signatures of these drugs and certain diseases in which they are used, such as spondyloarthritis (SpA), rheumatoid arthritis (RA) and neuropathic pain associated with type 2 diabetes (T2D). The aims of the present review are threefold. First, we aim to provide a comprehensive up-to-date summary on the bacterial alterations caused by NSAIDs and opioids. Second, we critically review the available data on the possible underlying mechanisms of dysbiosis. Third, we review the current knowledge on gut dysbiosis associated with SpA, RA and neuropathic pain in T2D, and highlight the similarities between them and those caused by NSAIDs and opioids. We posit that drug-induced dysbiosis may contribute to the persistence of these diseases, and may potentially limit the therapeutic effect of these medications by long-term use. In this context, we will review the available literature data on the effect of probiotic supplementation and fecal microbiota transplantation on the therapeutic efficacy of NSAIDs and opioids in these diseases.
Collapse
Affiliation(s)
- Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|