1
|
UEMURA T, SAWADA N, SAKABA T, KAMETAKA S, YAMAMOTO M, WAGURI S. Intracellular localization of GGA accessory protein p56 in cell lines and central nervous system neurons . Biomed Res 2018; 39:179-187. [DOI: 10.2220/biomedres.39.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Takefumi UEMURA
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine
| | - Naoki SAWADA
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine
| | - Takao SAKABA
- Department of Plastic and Reconstructive Surgery, Fukushima Medical University School of Medicine
| | - Satoshi KAMETAKA
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine
| | - Masaya YAMAMOTO
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine
| | - Satoshi WAGURI
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine
| |
Collapse
|
2
|
Mattera R, Guardia CM, Sidhu SS, Bonifacino JS. Bivalent Motif-Ear Interactions Mediate the Association of the Accessory Protein Tepsin with the AP-4 Adaptor Complex. J Biol Chem 2015; 290:30736-49. [PMID: 26542808 DOI: 10.1074/jbc.m115.683409] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Indexed: 01/11/2023] Open
Abstract
The heterotetrameric (ϵ-β4-μ4-σ4) complex adaptor protein 4 (AP-4) is a component of a non-clathrin coat involved in protein sorting at the trans-Golgi network (TGN). Considerable interest in this complex has arisen from the recent discovery that mutations in each of its four subunits are the cause of a congenital intellectual disability and movement disorder in humans. Despite its physiological importance, the structure and function of this coat remain poorly understood. To investigate the assembly of the AP-4 coat, we dissected the determinants of interaction of AP-4 with its only known accessory protein, the ENTH/VHS-domain-containing protein tepsin. Using a variety of protein interaction assays, we found that tepsin comprises two phylogenetically conserved peptide motifs, [GS]LFXG[ML]X[LV] and S[AV]F[SA]FLN, within its C-terminal unstructured region, which interact with the C-terminal ear (or appendage) domains of the β4 and ϵ subunits of AP-4, respectively. Structure-based mutational analyses mapped the binding site for the [GS]LFXG[ML]X[LV] motif to a conserved, hydrophobic surface on the β4-ear platform fold. Both peptide-ear interactions are required for efficient association of tepsin with AP-4, and for recruitment of tepsin to the TGN. The bivalency of the interactions increases the avidity of tepsin for AP-4 and may enable cross-linking of multiple AP-4 heterotetramers, thus contributing to the assembly of the AP-4 coat. In addition to revealing critical aspects of this coat, our findings extend the paradigm of peptide-ear interactions, previously established for clathrin-AP-1/AP-2 coats, to a non-clathrin coat.
Collapse
Affiliation(s)
- Rafael Mattera
- From the Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Carlos M Guardia
- From the Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Sachdev S Sidhu
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Juan S Bonifacino
- From the Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892 and
| |
Collapse
|
3
|
Paczkowski JE, Richardson BC, Strassner AM, Fromme JC. The exomer cargo adaptor structure reveals a novel GTPase-binding domain. EMBO J 2012; 31:4191-203. [PMID: 23000721 DOI: 10.1038/emboj.2012.268] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 08/30/2012] [Indexed: 11/09/2022] Open
Abstract
Cargo adaptors control intracellular trafficking of transmembrane proteins by sorting them into membrane transport carriers. The COPI, COPII, and clathrin cargo adaptors are structurally well characterized, but other cargo adaptors remain poorly understood. Exomer is a specialized cargo adaptor that sorts specific proteins into trans-Golgi network (TGN)-derived vesicles in response to cellular signals. Exomer is recruited to the TGN by the Arf1 GTPase, a universally conserved trafficking regulator. Here, we report the crystal structure of a tetrameric exomer complex composed of two copies each of the Chs5 and Chs6 subunits. The structure reveals the FN3 and BRCT domains of Chs5, which together we refer to as the FBE domain (FN3-BRCT of exomer), project from the exomer core complex. The overall architecture of the FBE domain is reminiscent of the appendage domains of other cargo adaptors, although it exhibits a distinct topology. In contrast to appendage domains, which bind accessory factors, we show that the primary role of the FBE domain is to bind Arf1 for recruitment of exomer to membranes.
Collapse
Affiliation(s)
- Jon E Paczkowski
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | | | | | | |
Collapse
|
4
|
Kümmel D, Reinisch KM. Structure of Golgi transport proteins. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a007609. [PMID: 21813399 DOI: 10.1101/cshperspect.a007609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The function of the Golgi has long been recognized to critically depend on vesicular transport from, to, and within its cisternae, involving constant membrane fission and fusion. These processes are mediated by Arf GTPases and coat proteins, and Rabs, tethers and SNARE proteins, respectively. In this article, we describe structural studies of Golgi coats and tethers and their interactions with SNAREs and GTPases as well as insights regarding membrane traffic processes that these have provided.
Collapse
Affiliation(s)
- Daniel Kümmel
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
5
|
Fang P, Li X, Wang J, Niu L, Teng M. Structural Basis for the Specificity of the GAE Domain of yGGA2 for Its Accessory Proteins Ent3 and Ent5,. Biochemistry 2010; 49:7949-55. [DOI: 10.1021/bi1010255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pengfei Fang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230026, China, and Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230026, China, and Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jing Wang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230026, China, and Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230026, China, and Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230026, China, and Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
6
|
Sorting of lysosomal proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:605-14. [PMID: 19046998 DOI: 10.1016/j.bbamcr.2008.10.016] [Citation(s) in RCA: 622] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/07/2008] [Accepted: 10/30/2008] [Indexed: 11/24/2022]
Abstract
Lysosomes are composed of soluble and transmembrane proteins that are targeted to lysosomes in a signal-dependent manner. The majority of soluble acid hydrolases are modified with mannose 6-phosphate (M6P) residues, allowing their recognition by M6P receptors in the Golgi complex and ensuing transport to the endosomal/lysosomal system. Other soluble enzymes and non-enzymatic proteins are transported to lysosomes in an M6P-independent manner mediated by alternative receptors such as the lysosomal integral membrane protein LIMP-2 or sortilin. Sorting of cargo receptors and lysosomal transmembrane proteins requires sorting signals present in their cytosolic domains. These signals include dileucine-based motifs, DXXLL or [DE]XXXL[LI], and tyrosine-based motifs, YXXØ, which interact with components of clathrin coats such as GGAs or adaptor protein complexes. In addition, phosphorylation and lipid modifications regulate signal recognition and trafficking of lysosomal membrane proteins. The complex interaction of both luminal and cytosolic signals with recognition proteins guarantees the specific and directed transport of proteins to lysosomes.
Collapse
|
7
|
Lui-Roberts WWY, Ferraro F, Nightingale TD, Cutler DF. Aftiphilin and gamma-synergin are required for secretagogue sensitivity of Weibel-Palade bodies in endothelial cells. Mol Biol Cell 2008; 19:5072-81. [PMID: 18815278 DOI: 10.1091/mbc.e08-03-0301] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Formation of secretory organelles requires the coupling of cargo selection to targeting into the correct exocytic pathway. Although the assembly of regulated secretory granules is driven in part by selective aggregation and retention of content, we recently reported that adaptor protein-1 (AP-1) recruitment of clathrin is essential to the initial formation of Weibel-Palade bodies (WPBs) at the trans-Golgi network. A selective co-aggregation process might include recruitment of components required for targeting to the regulated secretory pathway. However, we find that acquisition of the regulated secretory phenotype by WPBs in endothelial cells is coupled to but can be separated from formation of the distinctive granule core by ablation of the AP-1 effectors aftiphilin and gamma-synergin. Their depletion by small interfering RNA leads to WPBs that fail to respond to secretagogue and release their content in an unregulated manner. We find that these non-responsive WPBs have density, markers of maturation, and highly multimerized von Willebrand factor similar to those of wild-type granules. Thus, by also recruiting aftiphilin/gamma-synergin in addition to clathrin, AP-1 coordinates formation of WPBs with their acquisition of a regulated secretory phenotype.
Collapse
Affiliation(s)
- Winnie W Y Lui-Roberts
- MRC Laboratory of Molecular Cell Biology, Cell Biology Unit and Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
8
|
Sharma AK, Zhou GP, Kupferman J, Surks HK, Christensen EN, Chou JJ, Mendelsohn ME, Rigby AC. Probing the interaction between the coiled coil leucine zipper of cGMP-dependent protein kinase Ialpha and the C terminus of the myosin binding subunit of the myosin light chain phosphatase. J Biol Chem 2008; 283:32860-9. [PMID: 18782776 DOI: 10.1074/jbc.m804916200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide and nitrovasodilators induce vascular smooth muscle cell relaxation in part by cGMP-dependent protein kinase I (PKG-Ialpha)-mediated activation of myosin phosphatase (MLCP). Mechanistically it has been proposed that protein-protein interactions between the N-terminal leucine zipper (LZ) domain of PKG-Ialpha ((PKG-Ialpha(1-59)) and the LZ and/or coiled coil (CC) domain of the myosin binding subunit (MBS) of MLCP are localized in the C terminus of MBS. Although recent studies have supported these interactions, the critical amino acids responsible for these interactions have not been identified. Here we present structural and biophysical data identifying that the LZ domain of PKG-Ialpha(1-59) interacts with a well defined 42-residue CC motif (MBS(CT42)) within the C terminus of MBS. Using glutathione S-transferase pulldown experiments, chemical cross-linking, size exclusion chromatography, circular dichroism, and isothermal titration calorimetry we identified a weak dimer-dimer interaction between PKG-Ialpha(1-59) and this C-terminal CC domain of MBS. The K(d) of this non-covalent complex is 178.0+/-1.5 microm. Furthermore our (1)H-(15)N heteronuclear single quantum correlation NMR data illustrate that this interaction is mediated by several PKG-Ialpha residues that are on the a, d, e, and g hydrophobic and electrostatic interface of the C-terminal heptad layers 2, 4, and 5 of PKG-Ialpha. Taken together these data support a role for the LZ domain of PKG-Ialpha and the CC domain of MBS in this requisite contractile complex.
Collapse
Affiliation(s)
- Alok K Sharma
- Divison of Molecular and Vascular Medicine, Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Olesen LE, Ford MG, Schmid EM, Vallis Y, Babu MM, Li PH, Mills IG, McMahon HT, Praefcke GJ. Solitary and Repetitive Binding Motifs for the AP2 Complex α-Appendage in Amphiphysin and Other Accessory Proteins. J Biol Chem 2008; 283:5099-109. [DOI: 10.1074/jbc.m708621200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
10
|
Ritter B, Denisov AY, Philie J, Allaire PD, Legendre-Guillemin V, Zylbergold P, Gehring K, McPherson PS. The NECAP PHear domain increases clathrin accessory protein binding potential. EMBO J 2007; 26:4066-77. [PMID: 17762867 PMCID: PMC2230672 DOI: 10.1038/sj.emboj.7601836] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 07/30/2007] [Indexed: 11/08/2022] Open
Abstract
AP-2 is a key regulator of the endocytic protein machinery driving clathrin-coated vesicle (CCV) formation. One critical function, mediated primarily by the AP-2 alpha-ear, is the recruitment of accessory proteins. NECAPs are alpha-ear-binding proteins that enrich on CCVs. Here, we have solved the structure of the conserved N-terminal region of NECAP 1, revealing a unique module in the pleckstrin homology (PH) domain superfamily, which we named the PHear domain. The PHear domain binds accessory proteins bearing FxDxF motifs, which were previously thought to bind exclusively to the AP-2 alpha-ear. Structural analysis of the PHear domain reveals the molecular surface for FxDxF motif binding, which was confirmed by site-directed mutagenesis. The reciprocal analysis of the FxDxF motif in amphiphysin I identified distinct binding requirements for binding to the alpha-ear and PHear domain. We show that NECAP knockdown compromises transferrin uptake and establish a functional role for NECAPs in clathrin-mediated endocytosis. Our data uncover a striking convergence of two evolutionarily and structurally distinct modules to recognize a common peptide motif and promote efficient endocytosis.
Collapse
Affiliation(s)
- Brigitte Ritter
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Alexei Yu Denisov
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jacynthe Philie
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Patrick D Allaire
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Valerie Legendre-Guillemin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Peter Zylbergold
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Kalle Gehring
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Canada H3G 1Y6. Tel.: +514 398 7287; Fax: +514 847 0220; E-mail:
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Canada H3A 2B4. Tel.: +514 398 7355; Fax: +514 398 8106; E-mail:
| |
Collapse
|
11
|
Kametaka S, Moriyama K, Burgos PV, Eisenberg E, Greene LE, Mattera R, Bonifacino JS. Canonical interaction of cyclin G associated kinase with adaptor protein 1 regulates lysosomal enzyme sorting. Mol Biol Cell 2007; 18:2991-3001. [PMID: 17538018 PMCID: PMC1949374 DOI: 10.1091/mbc.e06-12-1162] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 05/01/2007] [Accepted: 05/21/2007] [Indexed: 12/17/2022] Open
Abstract
The adaptor protein 1 (AP1) complex is a heterotetramer that participates in cargo sorting into clathrin-coated vesicles at the trans-Golgi network (TGN) and endosomes. The gamma subunit of AP1 possesses a C-terminal "ear" domain that recruits a cohort of accessory proteins through recognition of a shared canonical motif, PsiG[PDE][PsiLM] (where Psi is an aromatic residue). The physiological relevance of these ear-motif interactions, however, remains to be demonstrated. Here we report that the cyclin G-associated kinase (GAK) has two sequences fitting this motif, FGPL and FGEF, which mediate binding to the AP1-gamma-ear domain in vitro. Mutation of both gamma-ear-binding sequences or depletion of AP1-gamma by RNA interference (RNAi) decreases the association of GAK with the TGN in vivo. Depletion of GAK by RNAi impairs the sorting of the acid hydrolase, cathepsin D, to lysosomes. Importantly, expression of RNAi-resistant GAK restores the lysosomal sorting of cathepsin D in cells depleted of endogenous GAK, whereas expression of a similar construct bearing mutations in both gamma-ear-binding sequences fails to correct the sorting defect. Thus, interactions between the PsiG[PDE][PsiLM]-motif sequences in GAK and the AP1-gamma-ear domain are critical for the recruitment of GAK to the TGN and the function of GAK in lysosomal enzyme sorting.
Collapse
Affiliation(s)
- Satoshi Kametaka
- *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, and
| | - Kengo Moriyama
- *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, and
| | - Patricia V. Burgos
- *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, and
| | - Evan Eisenberg
- Laboratory of Cell Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lois E. Greene
- Laboratory of Cell Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rafael Mattera
- *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, and
| | - Juan S. Bonifacino
- *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, and
| |
Collapse
|
12
|
Mills IG. The interplay between clathrin-coated vesicles and cell signalling. Semin Cell Dev Biol 2007; 18:459-70. [PMID: 17692542 DOI: 10.1016/j.semcdb.2007.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 06/28/2007] [Accepted: 07/02/2007] [Indexed: 01/26/2023]
Abstract
Internalization of cargo proteins and lipids at the cell surface occurs in both a constitutive and signal-regulated manner through clathrin-mediated and other endocytic pathways. Clathrin-coated vesicle formation is a principal uptake route in response to signalling events. Protein-lipid and protein-protein interactions control both the targeting of signalling molecules and their binding partners to membrane compartments and the assembly of clathrin coats. An emerging aspect of membrane trafficking research is now addressing how signalling cascades and vesicle coat assembly and subsequently disassembly are integrated.
Collapse
Affiliation(s)
- Ian G Mills
- Cancer Research UK, Cambridge Research Institute, Robinson Way, Cambridge CB2 ORE, UK.
| |
Collapse
|
13
|
Mardones GA, Burgos PV, Brooks DA, Parkinson-Lawrence E, Mattera R, Bonifacino JS. The trans-Golgi network accessory protein p56 promotes long-range movement of GGA/clathrin-containing transport carriers and lysosomal enzyme sorting. Mol Biol Cell 2007; 18:3486-501. [PMID: 17596511 PMCID: PMC1951763 DOI: 10.1091/mbc.e07-02-0190] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The sorting of acid hydrolase precursors at the trans-Golgi network (TGN) is mediated by binding to mannose 6-phosphate receptors (MPRs) and subsequent capture of the hydrolase-MPR complexes into clathrin-coated vesicles or transport carriers (TCs) destined for delivery to endosomes. This capture depends on the function of three monomeric clathrin adaptors named GGAs. The GGAs comprise a C-terminal "ear" domain that binds a specific set of accessory proteins. Herein we show that one of these accessory proteins, p56, colocalizes and physically interacts with the three GGAs at the TGN. Moreover, overexpression of the GGAs enhances the association of p56 with the TGN, and RNA interference (RNAi)-mediated depletion of the GGAs decreases the TGN association and total levels of p56. RNAi-mediated depletion of p56 or the GGAs causes various degrees of missorting of the precursor of the acid hydrolase, cathepsin D. In the case of p56 depletion, this missorting correlates with decreased mobility of GGA-containing TCs. Transfection with an RNAi-resistant p56 construct, but not with a p56 construct lacking the GGA-ear-interacting motif, restores the mobility of the TCs. We conclude that p56 tightly cooperates with the GGAs in the sorting of cathepsin D to lysosomes, probably by enabling the movement of GGA-containing TCs.
Collapse
Affiliation(s)
- Gonzalo A. Mardones
- *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Patricia V. Burgos
- *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Doug A. Brooks
- Sansom Institute, University of South Australia, Adelaide, SA 5001, Australia; and
- Lysosomal Diseases Research Unit, Department of Genetic Medicine, Children Youth and Women's Health Service, North Adelaide, SA 5006, Australia
| | - Emma Parkinson-Lawrence
- Sansom Institute, University of South Australia, Adelaide, SA 5001, Australia; and
- Lysosomal Diseases Research Unit, Department of Genetic Medicine, Children Youth and Women's Health Service, North Adelaide, SA 5006, Australia
| | - Rafael Mattera
- *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Juan S. Bonifacino
- *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
14
|
Inoue M, Shiba T, Ihara K, Yamada Y, Hirano S, Kamikubo H, Kataoka M, Kawasaki M, Kato R, Nakayama K, Wakatsuki S. Molecular Basis for Autoregulatory Interaction Between GAE Domain and Hinge Region of GGA1. Traffic 2007; 8:904-13. [PMID: 17506864 DOI: 10.1111/j.1600-0854.2007.00577.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Golgi-localizing, gamma-adaptin ear domain homology, ADP ribosylation factor-binding (GGA) proteins and the adaptor protein (AP) complex, AP-1, are involved in membrane traffic between the trans Golgi network and the endosomes. The gamma-adaptin ear (GAE) domain of GGAs and the gamma1 ear domain of AP-1 interact with an acidic phenylalanine motif found in accessory proteins. The GAE domain of GGA1 (GGA1-GAE) interacts with a WNSF-containing peptide derived from its own hinge region, although the peptide sequence deviates from the standard acidic phenylalanine motif. We report here the structure of GGA1-GAE in complex with the GGA1 hinge peptide, which revealed that the two aromatic side chains of the WNSF sequence fit into a hydrophobic groove formed by aliphatic portions of the side chains of conserved arginine and lysine residues of GGA1-GAE, in a similar manner to the interaction between GGA-GAEs and acidic phenylalanine sequences from the accessory proteins. Fluorescence quenching experiments indicate that the GGA1 hinge region binds to GGA1-GAE and competes with accessory proteins for binding. Taken together with the previous observation that gamma1 ear binds to the GGA1 hinge region, the interaction between the hinge region and the GAE domain underlies the autoregulation of GGA function in clathrin-mediated trafficking through competing with the accessory proteins and the AP-1 complex.
Collapse
Affiliation(s)
- Michio Inoue
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Knuehl C, Chen CY, Manalo V, Hwang PK, Ota N, Brodsky FM. Novel Binding Sites on Clathrin and Adaptors Regulate Distinct Aspects of Coat Assembly. Traffic 2006; 7:1688-700. [PMID: 17052248 DOI: 10.1111/j.1600-0854.2006.00499.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Clathrin-coated vesicles (CCVs) sort proteins at the plasma membrane, endosomes and trans Golgi network for multiple membrane traffic pathways. Clathrin recruitment to membranes and its self-assembly into a polyhedral coat depends on adaptor molecules, which interact with membrane-associated vesicle cargo. To determine how adaptors induce clathrin recruitment and assembly, we mapped novel interaction sites between these coat components. A site in the ankle domain of the clathrin triskelion leg was identified that binds a common site on the appendages of tetrameric [AP1 and AP2] and monomeric (GGA1) adaptors. Mutagenesis and modeling studies suggested that the clathrin-GGA1 appendage interface is nonlinear, unlike other peptide-appendage interactions, but overlaps with a sandwich domain binding site for accessory protein peptides, allowing for competitive regulation of coated vesicle formation. A novel clathrin box in the GGA1 hinge region was also identified and shown to mediate membrane recruitment of clathrin, while disruption of the clathrin-GGA1 appendage interaction did not affect recruitment. Thus, the distinct sites for clathrin-adaptor interactions perform distinct functions, revealing new aspects to regulation of CCV formation.
Collapse
Affiliation(s)
- Christine Knuehl
- The G.W. Hooper Foundation, Departments of Microbiology and Immunology, Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0552, USA
| | | | | | | | | | | |
Collapse
|
16
|
Shi H, Rojas R, Bonifacino JS, Hurley JH. The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its C-terminal domain. Nat Struct Mol Biol 2006; 13:540-8. [PMID: 16732284 PMCID: PMC1584284 DOI: 10.1038/nsmb1103] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 05/03/2006] [Indexed: 11/09/2022]
Abstract
The mammalian retromer complex consists of SNX1, SNX2, Vps26, Vps29 and Vps35, and retrieves lysosomal enzyme receptors from endosomes to the trans-Golgi network. The structure of human Vps26A at 2.1-A resolution reveals two curved beta-sandwich domains connected by a polar core and a flexible linker. Vps26 has an unpredicted structural relationship to arrestins. The Vps35-binding site on Vps26 maps to a mobile loop spanning residues 235-246, near the tip of the C-terminal domain. The loop is phylogenetically conserved and provides a mechanism for Vps26 integration into the complex that leaves the rest of the structure free for engagements with membranes and for conformational changes. Hydrophobic residues and a glycine in this loop are required for integration into the retromer complex and endosomal localization of human Vps26, and for the function of yeast Vps26 in carboxypeptidase Y sorting.
Collapse
Affiliation(s)
- Hang Shi
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases
| | - Raul Rojas
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Juan S. Bonifacino
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD 20892, USA
| | - James H. Hurley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases
- To whom correspondence should be addressed: James H. Hurley, (301) 402–4703, fax (301) 480–0639; E-mail:
| |
Collapse
|
17
|
Abstract
ADP-ribosylation factor 1 (Arf1) is a GTP-binding protein that regulates membrane traffic. This function of Arf1 is, at least in part, mediated by Arf1 x GTP binding to coat proteins such as coatomer, clathrin adaptor protein (AP) complexes 1 and 3, and gamma-adaptin homology-Golgi associated Arf-binding (GGA) proteins. Binding to Arf1 x GTP recruits these coat proteins to membranes, leading to the formation of transport vesicles. Whereas coatomer and the AP complexes are hetero-oligomers, GGAs are single polypeptide chains. Therefore, working with recombinant GGAs is straightforward compared to the other Arf1 effectors. Consequently, the GGAs have been used as a model for studying Arf1 interactions with effectors and as reagents to determine Arf1 x GTP levels in cells. In this chapter, we describe in vitro assays for analysis of GGA interaction with Arf1 x GTP and for determining intracellular Arf1 x GTP levels.
Collapse
Affiliation(s)
- Hye-Young Yoon
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
18
|
Edeling MA, Mishra SK, Keyel PA, Steinhauser AL, Collins BM, Roth R, Heuser JE, Owen DJ, Traub LM. Molecular Switches Involving the AP-2 β2 Appendage Regulate Endocytic Cargo Selection and Clathrin Coat Assembly. Dev Cell 2006; 10:329-42. [PMID: 16516836 DOI: 10.1016/j.devcel.2006.01.016] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 12/30/2005] [Accepted: 01/12/2006] [Indexed: 10/24/2022]
Abstract
Clathrin-associated sorting proteins (CLASPs) expand the repertoire of endocytic cargo sorted into clathrin-coated vesicles beyond the transmembrane proteins that bind physically to the AP-2 adaptor. LDL and GPCRs are internalized by ARH and beta-arrestin, respectively. We show that these two CLASPs bind selectively to the AP-2 beta2 appendage platform via an alpha-helical [DE](n)X(1-2)FXX[FL]XXXR motif, and that this motif also occurs and is functional in the epsins. In beta-arrestin, this motif maintains the endocytosis-incompetent state by binding back on the folded core of the protein in a beta strand conformation. Triggered via a beta-arrestin/GPCR interaction, the motif must be displaced and must undergo a strand to helix transition to enable the beta2 appendage binding that drives GPCR-beta-arrestin complexes into clathrin coats. Another interaction surface on the beta2 appendage sandwich is identified for proteins such as eps15 and clathrin, suggesting a mechanism by which clathrin displaces eps15 to lattice edges during assembly.
Collapse
Affiliation(s)
- Melissa A Edeling
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Edeling MA, Smith C, Owen D. Life of a clathrin coat: insights from clathrin and AP structures. Nat Rev Mol Cell Biol 2006; 7:32-44. [PMID: 16493411 DOI: 10.1038/nrm1786] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Membrane sorting between secretory and endocytic organelles is predominantly controlled by small carrier vesicles or tubules that have specific protein coats on their cytoplasmic surfaces. Clathrin-clathrin-adaptor coats function in many steps of intracellular transport and are the most extensively studied of all transport-vesicle coats. In recent years, the determination of structures of clathrin assemblies by electron microscopy, of domains of clathrin and of its adaptors has improved our understanding of the molecular mechanisms of clathrin-coated-vesicle assembly and disassembly.
Collapse
Affiliation(s)
- Melissa A Edeling
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Hills Road, Cambridge, CB2 2XY, UK
| | | | | |
Collapse
|
20
|
Kawasaki M, Nakayama K, Wakatsuki S. Membrane recruitment of effector proteins by Arf and Rab GTPases. Curr Opin Struct Biol 2005; 15:681-9. [PMID: 16289847 DOI: 10.1016/j.sbi.2005.10.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 09/28/2005] [Accepted: 10/21/2005] [Indexed: 01/05/2023]
Abstract
In their GTP-bound form, Arf and Rab family GTPases associate with distinct organelle membranes, to which they recruit specific sets of effector proteins that regulate vesicular transport. The Arf GTPases are involved in the formation of coated carrier vesicles by recruiting coat proteins. On the other hand, the Rab GTPases are involved in the tethering, docking and fusion of transport vesicles with target organelles, acting in concert with the tethering and fusion machineries. Recent structural studies of the Arf1-GGA and Rab5-Rabaptin-5 complexes, as well as other effector structures in complex with the Arf and Rab GTPases, have shed light on the mechanisms underlying the GTP-dependent membrane recruitment of these effector proteins.
Collapse
Affiliation(s)
- Masato Kawasaki
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | | | | |
Collapse
|
21
|
Traub LM. Common principles in clathrin-mediated sorting at the Golgi and the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:415-37. [PMID: 15922462 DOI: 10.1016/j.bbamcr.2005.04.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 04/17/2005] [Accepted: 04/19/2005] [Indexed: 12/12/2022]
Abstract
Clathrin-mediated vesicular trafficking events underpin the vectorial transfer of macromolecules between several eukaryotic membrane-bound compartments. Classical models for coat operation, focused principally on interactions between clathrin, the heterotetrameric adaptor complexes, and cargo molecules, fail to account for the full complexity of the coat assembly and sorting process. New data reveal that targeting of clathrin adaptor complexes is generally supported by phosphoinositides, that cargo recognition by heterotetrameric adaptors depends on phosphorylation-driven conformational alterations, and that dedicated clathrin-associated sorting proteins (CLASPs) exist to promote the selective trafficking of specific categories of cargo. A host of accessory factors also participate in coat polymerization events, and the independently folded appendage domains that project off the heterotetrameric adaptor core function as recruitment platforms that appear to oversee assembly operations. It is also now clear that focal polymerization of branched actin microfilaments contributes to clathrin-coated vesicle assembly and movement at both plasma membrane and Golgi sites. This improved appreciation of the complex mechanisms governing clathrin-dependent sorting events reveals several common principles of clathrin operation at the Golgi and the plasma membrane.
Collapse
Affiliation(s)
- Linton M Traub
- Department of Cell Biology and Physiology University of Pittsburgh School of Medicine 3500 Terrace Street, S325BST Pittsburgh, PA 15206, USA.
| |
Collapse
|
22
|
Hirst J, Borner GHH, Harbour M, Robinson MS. The aftiphilin/p200/gamma-synergin complex. Mol Biol Cell 2005; 16:2554-65. [PMID: 15758025 PMCID: PMC1087257 DOI: 10.1091/mbc.e04-12-1077] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 02/11/2005] [Accepted: 02/24/2005] [Indexed: 11/11/2022] Open
Abstract
Aftiphilin is a protein that was recently identified in database searches for proteins with motifs that interact with AP-1 and clathrin, but its function is unknown. Here we demonstrate that aftiphilin has a second, atypical clathrin binding site, YQW, that colocalizes with AP-1 by immunofluorescence, and that is enriched in clathrin-coated vesicles (CCVs), confirming that it is a bona fide component of the CCV machinery. By gel filtration, aftiphilin coelutes with two other AP-1 binding partners, p200a and gamma-synergin. Antibodies against any one of these three proteins immunoprecipitate the other two, and knocking down any of the three proteins by siRNA causes a reduction in the levels of the other two, indicating that they form a stable complex. Like AP-1-depleted cells, aftiphilin-depleted cells missort a CD8-furin chimera and the lysosomal enzyme cathepsin D. However, whereas AP-1-depleted cells recycle endocytosed transferrin more slowly than untreated cells, aftiphilin-depleted cells accumulate endocytosed transferrin in a peripheral compartment and recycle it more rapidly. These observations show that in general, the aftiphilin/p200/gamma-synergin complex facilitates AP-1 function, but the complex may have additional functions as well, because of the opposing effects of the two knockdowns on transferrin recycling.
Collapse
Affiliation(s)
- Jennifer Hirst
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | | | | | | |
Collapse
|
23
|
Neubrand VE, Will RD, Möbius W, Poustka A, Wiemann S, Schu P, Dotti CG, Pepperkok R, Simpson JC. Gamma-BAR, a novel AP-1-interacting protein involved in post-Golgi trafficking. EMBO J 2005; 24:1122-33. [PMID: 15775984 PMCID: PMC556403 DOI: 10.1038/sj.emboj.7600600] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 02/04/2005] [Indexed: 01/31/2023] Open
Abstract
A novel peripheral membrane protein (2c18) that interacts directly with the gamma 'ear' domain of the adaptor protein complex 1 (AP-1) in vitro and in vivo is described. Ultrastructural analysis demonstrates a colocalization of 2c18 and gamma1-adaptin at the trans-Golgi network (TGN) and on vesicular profiles. Overexpression of 2c18 increases the fraction of membrane-bound gamma1-adaptin and inhibits its release from membranes in response to brefeldin A. Knockdown of 2c18 reduces the steady-state levels of gamma1-adaptin on membranes. Overexpression or downregulation of 2c18 leads to an increased secretion of the lysosomal hydrolase cathepsin D, which is sorted by the mannose-6-phosphate receptor at the TGN, which itself involves AP-1 function for trafficking between the TGN and endosomes. This suggests that the direct interaction of 2c18 and gamma1-adaptin is crucial for membrane association and thus the function of the AP-1 complex in living cells. We propose to name this protein gamma-BAR.
Collapse
Affiliation(s)
- Veronika E Neubrand
- Cell Biology and Cell Biophysics Programme, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Rainer D Will
- Molecular Genome Analysis, German Cancer Research Centre, Heidelberg, Germany
| | - Wiebke Möbius
- Max Planck Institute for Experimental Medicine, Neurogenetics, Göttingen, Germany
| | - Annemarie Poustka
- Molecular Genome Analysis, German Cancer Research Centre, Heidelberg, Germany
| | - Stefan Wiemann
- Molecular Genome Analysis, German Cancer Research Centre, Heidelberg, Germany
| | - Peter Schu
- Zentrum fuer Biochemie und Molekulare Zellbiologie, Department Biochemie II, Universitaet Göttingen, Goettingen, Germany
| | - Carlos G Dotti
- Cavalieri Ottolenghi Scientific Institute, Unversita degli Studi di Torino, AO San Luigi Gonzaga, Orbassano (Torino), Italy
| | - Rainer Pepperkok
- Cell Biology and Cell Biophysics Programme, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Cell Biology and Cell Biophysics Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. Tel.: +49 6221 387 8332; Fax: +49 6221 387 8306; E-mail:
| | - Jeremy C Simpson
- Cell Biology and Cell Biophysics Programme, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
24
|
Ghosh P, Kornfeld S. The GGA proteins: key players in protein sorting at the trans-Golgi network. Eur J Cell Biol 2005; 83:257-62. [PMID: 15511083 DOI: 10.1078/0171-9335-00374] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The GGA (Golgi-localized, gamma-ear containing, ADP-ribosylation factor binding) family of multidomain coat proteins was first described in the year 2000. They are now known to occupy a central position in the trafficking of the mannose 6-phosphate receptors and other cargo molecules from the trans-Golgi network to the endosome/lysosome system. This review covers the recent structural and cell biological studies that have provided mechanistic insights into the function of the GGAs in mannose 6-phosphate receptor trafficking.
Collapse
Affiliation(s)
- Pradipta Ghosh
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
25
|
Mishra SK, Keyel PA, Edeling MA, Dupin AL, Owen DJ, Traub LM. Functional dissection of an AP-2 beta2 appendage-binding sequence within the autosomal recessive hypercholesterolemia protein. J Biol Chem 2005; 280:19270-80. [PMID: 15728179 DOI: 10.1074/jbc.m501029200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The autosomal recessive hypercholesterolemia (ARH) protein plays a critical role in regulating plasma low density lipoprotein (LDL) levels. Inherited defects in ARH lead to a hypercholesterolemia that closely phenocopies that caused by a defective LDL receptor. The elevated serum LDL-cholesterol levels typical of ARH patients and the pronounced accumulation of the LDL receptor at the cell surface of hepatocytes in ARH-null mice argue that ARH operates by promoting the internalization of the LDL receptor within clathrin-coated vesicles. ARH contains an amino-terminal phosphotyrosine-binding domain that associates physically with the LDL receptor internalization sequence and with phosphoinositides. The carboxyl-terminal half of ARH contains a clathrin-binding sequence and a separate AP-2 adaptor binding region providing a plausible mechanism for how ARH can act as an endocytic adaptor or CLASP (clathrin-associated sorting protein) to couple LDL receptors with the clathrin machinery. Because the interaction with AP-2 is highly selective for the independently folded appendage domain of the beta2 subunit, we have characterized the ARH beta2 appendage-binding sequence in detail. Unlike the known alpha appendage-binding motifs, ARH requires an extensive sequence tract to bind the beta appendage with comparably high affinity. A minimal 16-residue sequence functions autonomously and depends upon ARH residues Asp253, Phe259, Leu262, and Arg266. We suggested that biased beta subunit engagement by ARH and the only other beta2 appendage selective adaptor, beta-arrestin, promotes efficient incorporation of this mechanistically distinct subset of CLASPs into clathrin-coated buds.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Alanine/chemistry
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Arginine/chemistry
- Arrestins/metabolism
- Calorimetry
- Carbocyanines/pharmacology
- Cholesterol, LDL/blood
- Clathrin/metabolism
- Cytosol/metabolism
- DNA/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/physiology
- Endocytosis
- Fluorescent Dyes/pharmacology
- Genes, Recessive
- Glutathione Transferase/metabolism
- Green Fluorescent Proteins/chemistry
- Green Fluorescent Proteins/metabolism
- Humans
- Hypercholesterolemia/genetics
- Kinetics
- Lipoproteins, LDL/metabolism
- Mice
- Microtubule-Associated Proteins/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis
- Peptides/chemistry
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, LDL
- Sequence Homology, Amino Acid
- Transcription Factor AP-2
- Transcription Factors/chemistry
- Transcription Factors/physiology
- Two-Hybrid System Techniques
- beta-Arrestins
Collapse
Affiliation(s)
- Sanjay K Mishra
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Clathrin-coated vesicles (CCVs) are responsible for the transport of proteins between various compartments of the secretory and endocytic systems. Clathrin forms a scaffold around these vesicles that is linked to membranes by clathrin adaptors. The adaptors simultaneously bind to clathrin and to transmembrane proteins and/or phospholipids and can also interact with each other and with other components of the CCV formation machinery. The result is a collection of proteins that can make multiple, moderate strength (microM Kd) interactions and thereby establish the dynamic regulatable networks to drive vesicle genesis at the correct time and place in the cell. This review focuses on the structure of clathrin adaptors and how these structures provide functional information on the mechanism of CCV formation.
Collapse
Affiliation(s)
- David J Owen
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge CB2 2XY, UK.
| | | | | |
Collapse
|
27
|
Praefcke GJK, Ford MGJ, Schmid EM, Olesen LE, Gallop JL, Peak-Chew SY, Vallis Y, Babu MM, Mills IG, McMahon HT. Evolving nature of the AP2 alpha-appendage hub during clathrin-coated vesicle endocytosis. EMBO J 2004; 23:4371-83. [PMID: 15496985 PMCID: PMC526462 DOI: 10.1038/sj.emboj.7600445] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 09/21/2004] [Indexed: 11/08/2022] Open
Abstract
Clathrin-mediated endocytosis involves the assembly of a network of proteins that select cargo, modify membrane shape and drive invagination, vesicle scission and uncoating. This network is initially assembled around adaptor protein (AP) appendage domains, which are protein interaction hubs. Using crystallography, we show that FxDxF and WVxF peptide motifs from synaptojanin bind to distinct subdomains on alpha-appendages, called 'top' and 'side' sites. Appendages use both these sites to interact with their binding partners in vitro and in vivo. Occupation of both sites simultaneously results in high-affinity reversible interactions with lone appendages (e.g. eps15 and epsin1). Proteins with multiple copies of only one type of motif bind multiple appendages and so will aid adaptor clustering. These clustered alpha(appendage)-hubs have altered properties where they can sample many different binding partners, which in turn can interact with each other and indirectly with clathrin. In the final coated vesicle, most appendage binding partners are absent and thus the functional status of the appendage domain as an interaction hub is temporal and transitory giving directionality to vesicle assembly.
Collapse
Affiliation(s)
| | - Marijn G J Ford
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Eva M Schmid
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Lene E Olesen
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jennifer L Gallop
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Sew-Yeu Peak-Chew
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Yvonne Vallis
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - M Madan Babu
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Ian G Mills
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Harvey T McMahon
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Laboratory of Molecular Biology, Medical Research Council, Hills Road, Cambridge CB2 2QH, UK. Tel.: +44 1223 402311; Fax: +44 1223 402310; E-mail:
| |
Collapse
|
28
|
Mishra SK, Hawryluk MJ, Brett TJ, Keyel PA, Dupin AL, Jha A, Heuser JE, Fremont DH, Traub LM. Dual Engagement Regulation of Protein Interactions with the AP-2 Adaptor α Appendage. J Biol Chem 2004; 279:46191-203. [PMID: 15292237 DOI: 10.1074/jbc.m408095200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clathrin-mediated endocytosis depends upon the coordinated assembly of a large number of discrete clathrin coat components to couple cargo selection with rapid internalization from the cell surface. Accordingly, the heterotetrameric AP-2 adaptor complex binds not only to clathrin and select cargo molecules, but also to an extensive family of endocytic accessory factors and alternate sorting adaptors. Physical associations between accessory proteins and AP-2 occur primarily through DP(F/W) or FXDXF motifs, which engage an interaction surface positioned on the C-terminal platform subdomain of the independently folded alpha subunit appendage. Here, we find that the WXX(F/W)X(D/E) interaction motif found in several endocytic proteins, including synaptojanin 1, stonin 2, AAK1, GAK, and NECAP1, binds a second interaction site on the bilobal alpha appendage, located on the N-terminal beta sandwich subdomain. Both alpha appendage binding sites can be engaged synchronously, and our data reveal that varied assemblies of interaction motifs with different affinities for two sites upon the alpha appendage can provide a mechanism for temporal ordering of endocytic accessory proteins during clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Sanjay K Mishra
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ritter B, Denisov AY, Philie J, Deprez C, Tung EC, Gehring K, McPherson PS. Two WXXF-based motifs in NECAPs define the specificity of accessory protein binding to AP-1 and AP-2. EMBO J 2004; 23:3701-10. [PMID: 15359277 PMCID: PMC522786 DOI: 10.1038/sj.emboj.7600378] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Accepted: 07/29/2004] [Indexed: 11/08/2022] Open
Abstract
The adaptor proteins AP-2 and AP-1/GGAs are essential components of clathrin coats at the plasma membrane and trans-Golgi network, respectively. The adaptors recruit accessory proteins to clathrin-coated pits, which is dependent on the adaptor ear domains engaging short peptide motifs in the accessory proteins. Here, we perform an extensive mutational analysis of a novel WXXF-based motif that functions to mediate the binding of an array of accessory proteins to the alpha-adaptin ear domain of AP-2. Using nuclear magnetic resonance and mutational studies, we identified WXXF-based motifs as major ligands for a site on the alpha-ear previously shown to bind the DPW-bearing proteins epsin 1/2. We also defined the determinants that allow for specific binding of the alpha-ear motif to AP-2 as compared to those that allow a highly related WXXF-based motif to bind to the ear domains of AP-1/GGAs. Intriguingly, placement of acidic residues around the WXXF cores is critical for binding specificity. These studies provide a structural basis for the specific recruitment of accessory proteins to appropriate sites of clathrin-coated vesicle formation.
Collapse
Affiliation(s)
- Brigitte Ritter
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Alexei Yu Denisov
- Department of Biochemistry and Montreal Joint Centre for Structural Biology, McGill University, Montreal, QC, Canada
| | - Jacynthe Philie
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Christophe Deprez
- Department of Biochemistry and Montreal Joint Centre for Structural Biology, McGill University, Montreal, QC, Canada
| | - Elaine C Tung
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Kalle Gehring
- Department of Biochemistry and Montreal Joint Centre for Structural Biology, McGill University, Montreal, QC, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- CBET Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University St., Montreal, Quebec, Canada, H3A 2B4. Tel.: +1 514 398 7355; Fax: +1 514 398 8106; E-mail:
| |
Collapse
|
30
|
McMahon HT, Mills IG. COP and clathrin-coated vesicle budding: different pathways, common approaches. Curr Opin Cell Biol 2004; 16:379-91. [PMID: 15261670 DOI: 10.1016/j.ceb.2004.06.009] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Vesicle and tubule transport containers move proteins and lipids from one membrane system to another. Newly forming transport containers frequently have electron-dense coats. Coats coordinate the accumulation of cargo and sculpt the membrane. Recent advances have shown that components of both COP1 and clathrin-adaptor coats share the same structure and the same motif-based cargo recognition and accessory factor recruitment mechanisms, which leads to insights on conserved aspects of coat recruitment, polymerisation and membrane deformation. These themes point to the way in which evolutionarily conserved features underpin these diverse pathways.
Collapse
Affiliation(s)
- Harvey T McMahon
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK.
| | | |
Collapse
|
31
|
Bai H, Doray B, Kornfeld S. GGA1 Interacts with the Adaptor Protein AP-1 through a WNSF Sequence in Its Hinge Region. J Biol Chem 2004; 279:17411-7. [PMID: 14973137 DOI: 10.1074/jbc.m401158200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Golgi-associated gamma-adaptin-related ADP-ribosylation factor-binding proteins (GGAs) are critical components of the transport machinery that mediates the trafficking of the mannose 6-phosphate receptors and associated cargo from the trans-Golgi network to the endosomes. The GGAs colocalize in vivo with the clathrin adaptor protein AP-1 and bind to AP-1 in vitro, suggesting that the two proteins may cooperate in packaging the mannose 6-phosphate receptors into clathrin-coated vesicles at the trans-Golgi network. Here, we demonstrate that the sequence, (382)WNSF(385), in the hinge region of GGA1 mediates its interaction with the AP-1 gamma-ear. The Trp and Phe constitute critical amino acids in this interaction. The binding of Rabaptin5 to the AP-1 gamma-ear, which occurs through a FXXPhi motif, is inhibited by a peptide encoding the GGA1 (382)WNSF(385) sequence. Moreover, mutations in the AP-1 gamma-ear that abolish its interaction with Rabaptin5 also preclude its association with GGA1. These results suggest that the GGA1 WXXF-type and Rabaptin5 FXXPhi-type motifs bind to the same or highly overlapping sites in the AP-1 gamma-ear. This binding is modulated by residues adjacent to the core motifs.
Collapse
Affiliation(s)
- Hongdong Bai
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
32
|
Abstract
Adaptors select cargo for inclusion into coated vesicles in the late secretory and endocytic pathways. Although originally there were thought to be just two adaptors, AP-1 and AP-2, it is now clear that there are many more: two additional adaptor complexes, AP-3 and AP-4, which might function independently of clathrin; a family of monomeric adaptors, the GGAs; and an ever-growing number of cargo-specific adaptors. The adaptors are targeted to the appropriate membrane at least in part by interacting with phosphoinositides, and, once on the membrane, they form interconnected networks to get different types of cargo into the same vesicle. Adaptors participate in trafficking pathways shared by all cells, and they are also used to generate specialized organelles and to influence cell fate during development.
Collapse
Affiliation(s)
- Margaret S Robinson
- University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge, UK CB2 2XY.
| |
Collapse
|
33
|
Miele AE, Watson PJ, Evans PR, Traub LM, Owen DJ. Two distinct interaction motifs in amphiphysin bind two independent sites on the clathrin terminal domain β-propeller. Nat Struct Mol Biol 2004; 11:242-8. [PMID: 14981508 DOI: 10.1038/nsmb736] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Accepted: 01/29/2004] [Indexed: 01/26/2023]
Abstract
During the assembly of clathrin-coated vesicles, many peripheral membrane proteins, including the amphiphysins, use LLDLD-type clathrin-box motifs to interact with the N-terminal beta-propeller domain (TD) of clathrin. The 2.3 A-resolution structure of the clathrin TD in complex with a TLPWDLWTT peptide from amphiphysin 1 delineates a second clathrin-binding motif, PWXXW (the W box), that binds at a site on the TD remote from the clathrin box-binding site. The presence of both sequence motifs within the unstructured region of the amphiphysins allows them to bind more tightly to free TDs than do other endocytic proteins that contain only clathrin-box motifs. This property, along with the propensity of the N-terminal BAR domain to bind curved membranes, will preferentially localize amphiphysin and its partner, dynamin, to the periphery of invaginated clathrin lattices.
Collapse
Affiliation(s)
- Adriana E Miele
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | |
Collapse
|
34
|
Abstract
The GGA proteins are a family of ubiquitously expressed, Arf-dependent clathrin adaptors that mediate the sorting of mannose-6-phosphate receptors between the trans-Golgi network and endosomes. Recent studies have elucidated the biochemical and structural bases for the interaction of the GGA proteins with many binding partners, and have shed light on the molecular and cellular mechanisms by which the GGA proteins participate in protein sorting.
Collapse
Affiliation(s)
- Juan S Bonifacino
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Building 18T/Room 101, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
35
|
Sarret P, Esdaile MJ, McPherson PS, Schonbrunn A, Kreienkamp HJ, Beaudet A. Role of Amphiphysin II in Somatostatin Receptor Trafficking in Neuroendocrine Cells. J Biol Chem 2004; 279:8029-37. [PMID: 14660576 DOI: 10.1074/jbc.m310792200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amphiphysins are SH3 domain-containing proteins thought to function in clathrin-mediated endocytosis. To investigate the potential role of amphiphysin II in cellular trafficking of G protein-coupled somatostatin (SRIF) receptors, we generated an AtT-20 cell line stably overexpressing amphiphysin IIb, a splice variant that does not bind clathrin. Endocytosis of (125)I-[d-Trp(8)]SRIF was not affected by amphiphysin IIb overexpression. However, the maximal binding capacity (B(max)) of the ligand on intact cells was significantly lower in amphiphysin IIb overexpressing than in non-transfected cells. This difference was no longer apparent when the experiments were performed on crude cell homogenates, suggesting that amphiphysin IIb overexpression interferes with SRIF receptor targeting to the cell surface and not with receptor synthesis. Accordingly, immunofluorescence experiments demonstrated that, in amphiphysin overexpressing cells, sst(2A) and sst(5) receptors were segregated in a juxtanuclear compartment identified as the trans-Golgi network. Amphiphysin IIb overexpression had no effect on corticotrophin-releasing factor 41-stimulated adrenocorticotropic hormone secretion, suggesting that it is not involved in the regulated secretory pathway. Taken together, these results suggest that amphiphysin II is not necessary for SRIF receptor endocytosis but is critical for its constitutive targeting to the plasma membrane. Therefore, amphiphysin IIb may be an important component of the constitutive secretory pathway.
Collapse
Affiliation(s)
- Philippe Sarret
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Cliff MJ, Gutierrez A, Ladbury JE. A survey of the year 2003 literature on applications of isothermal titration calorimetry. J Mol Recognit 2004; 17:513-23. [PMID: 15384176 DOI: 10.1002/jmr.714] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Over the last decade isothermal titration calorimetry (ITC) has developed from a specialist method which was largely restricted in its use to dedicated experts, to a major, commercially available tool in the arsenal directed at understanding molecular interactions. The number of those proficient in this field has multiplied dramatically, as has the range of experiments to which this method has been applied. This has led to an overwhelming amount of new data and novel applications to be assessed. With the increasing number of publications in this field comes a need to highlight works of interest and impact. In this overview of the literature we have attempted to draw attention to papers and issues for which both the experienced calorimetrist and the interested dilettante hopefully will share our enthusiasm.
Collapse
Affiliation(s)
- Matthew J Cliff
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
37
|
Mattera R, Ritter B, Sidhu SS, McPherson PS, Bonifacino JS. Definition of the consensus motif recognized by gamma-adaptin ear domains. J Biol Chem 2003; 279:8018-28. [PMID: 14665628 DOI: 10.1074/jbc.m311873200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heterotetrameric adaptor complex 1 (AP-1) and the monomeric Golgi-localized, gamma ear-containing, Arf-binding (GGA) proteins are components of clathrin coats associated with the trans-Golgi network and endosomes. The carboxyl-terminal ear domains (or gamma-adaptin ear (GAE) domains) of two gamma-adaptin subunit isoforms of AP-1 and of the GGAs are structurally similar and bind to a common set of accessory proteins. In this study, we have systematically defined a core tetrapeptide motif PsiG(P/D/E)(Psi/L/M) (where Psi is an aromatic residue), which is responsible for the interactions of accessory proteins with GAE domains. The definition of this motif has allowed us to identify novel GAE-binding partners named NECAP and aftiphilin, which also contain clathrin-binding motifs. These findings shed light on the mechanism of accessory protein recruitment to trans-Golgi network and endosomal clathrin coats.
Collapse
Affiliation(s)
- Rafael Mattera
- Cell Biology and Metabolism Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
38
|
Wasiak S, Denisov AY, Han Z, Leventis PA, de Heuvel E, Boulianne GL, Kay BK, Gehring K, McPherson PS. Characterization of a γ-adaptin ear-binding motif in enthoprotin. FEBS Lett 2003; 555:437-42. [PMID: 14675752 DOI: 10.1016/s0014-5793(03)01299-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Enthoprotin, a newly identified component of clathrin-coated vesicles, interacts with the trans-Golgi network (TGN) clathrin adapters AP-1 and GGA2. Here we perform a multi-faceted analysis of the site in enthoprotin that is responsible for the binding to the gamma-adaptin ear (gamma-ear) domain of AP-1. Alanine scan mutagenesis and nuclear magnetic resonance (NMR) studies reveal the full extent of the site as well as critical residues for this interaction. NMR studies of the gamma-ear in complex with a synthetic peptide from enthoprotin provide structural details of the binding site for TGN accessory proteins within the gamma-ear.
Collapse
Affiliation(s)
- Sylwia Wasiak
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University St., Montreal, QC, Canada H3A 2B4.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jha A, Agostinelli NR, Mishra SK, Keyel PA, Hawryluk MJ, Traub LM. A novel AP-2 adaptor interaction motif initially identified in the long-splice isoform of synaptojanin 1, SJ170. J Biol Chem 2003; 279:2281-90. [PMID: 14565955 DOI: 10.1074/jbc.m305644200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoinositides play a fundamental role in clathrin-coat assembly at the cell surface. Several endocytic components and accessory factors contain independently folded phosphoinositide-binding modules that facilitate, in part, membrane placement at the bud site. As the clathrin-coat assembly process progresses toward deeply invaginated buds, focally synthesized phosphoinositides are dephosphorylated, principally through the action of the phosphoinositide polyphosphatase synaptojanin 1. Failure to catabolize polyphosphoinositides retards the fission process and endocytic activity. The long-splice isoform of synaptojanin 1, termed SJ170, contains a carboxyl-terminal extension that harbors interaction motifs for engaging several components of the endocytic machinery. Here, we demonstrate that in addition to DPF and FXDXF sequences, the SJ170 carboxyl terminus contains a novel AP-2 binding sequence, the WXXF motif. The WXXF sequence engages the independently folded alpha-subunit appendage that projects off the heterotetrameric AP-2 adaptor core. The endocytic protein kinases AAK1 and GAK also contain functional WXX(FW) motifs in addition to two DPF repeats, whereas stonin 2 harbors three tandem WXXF repeats. Each of the discrete SJ170 adaptor-interaction motifs bind to appendages relatively weakly but, as tandemly arrayed within the SJ170 extension, can cooperate to bind bivalent AP-2 with good apparent affinity. These interactions likely contribute to the appropriate targeting of certain endocytic components to clathrin bud sites assembling at the cell surface.
Collapse
Affiliation(s)
- Anupma Jha
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Miller GJ, Mattera R, Bonifacino JS, Hurley JH. Recognition of accessory protein motifs by the gamma-adaptin ear domain of GGA3. Nat Struct Mol Biol 2003; 10:599-606. [PMID: 12858162 DOI: 10.1038/nsb953] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Accepted: 06/11/2003] [Indexed: 11/09/2022]
Abstract
Adaptor proteins load transmembrane protein cargo into transport vesicles and serve as nexuses for the formation of large multiprotein complexes on the nascent vesicles. The gamma-adaptin ear (GAE) domains of the AP-1 adaptor protein complex and the GGA adaptor proteins recruit accessory proteins to these multiprotein complexes by binding to a hydrophobic motif. We determined the structure of the GAE domain of human GGA3 in complex with a peptide based on the DFGPLV sequence of the accessory protein Rabaptin-5 and refined it at a resolution of 2.2 A. The leucine and valine residues of the peptide are partly buried in two contiguous shallow, hydrophobic depressions. The anchoring phenylalanine is buried in a deep pocket formed by the aliphatic portions of two conserved arginine residues, along with an alanine and a proline, illustrating the unusual function of a cluster of basic residues in binding a hydrophobic motif.
Collapse
Affiliation(s)
- Gregory J Miller
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
42
|
Nakayama K, Wakatsuki S. The Structure and Function of GGAs, the Traffic Controllers at the TGN Sorting Crossroads. Cell Struct Funct 2003; 28:431-42. [PMID: 14745135 DOI: 10.1247/csf.28.431] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
GGAs (Golgi-localizing, gamma-adaptin ear homology domain, ARF-binding proteins) are a family of monomeric clathrin adaptor proteins that are conserved from yeasts to humans. Data published during the past four years have provided detailed pictures of the localization, domain organization and structure-function relationships of GGAs. GGAs possess four conserved functional domains, each of which interacts with cargo proteins including mannose 6-phosphate receptors, the small GTPase ARF, clathrin, or accessory proteins including Rabaptin-5 and gamma-synergin. Together with or independent of the adaptor protein complex AP-1, GGAs regulate selective transport of cargo proteins, such as mannose 6-phosphate receptors, from the trans-Golgi network to endosomes mediated by clathrin-coated vesicles.
Collapse
Affiliation(s)
- Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida-shimoadachi, Sakyo-ku, Kyoto 606-8501, Japan.
| | | |
Collapse
|