1
|
Abstract
Atlastin (ATL) GTPases undergo trans dimerization and a power strokelike crossover conformational rearrangement to drive endoplasmic reticulum membrane fusion. Fusion depends on GTP, but the role of nucleotide hydrolysis has remained controversial. For instance, nonhydrolyzable GTP analogs block fusion altogether, suggesting a requirement for GTP hydrolysis in ATL dimerization and crossover, but this leaves unanswered the question of how the ATL dimer is disassembled after fusion. We recently used the truncated cytoplasmic domain of wild-type Drosophila ATL (DATL) and a novel hydrolysis-deficient D127N variant in single turnover assays to reveal that dimerization and crossover consistently precede GTP hydrolysis, with hydrolysis coinciding more closely with dimer disassembly. Moreover, while nonhydrolyzable analogs can bind the DATL G domain, they fail to fully recapitulate the GTP-bound state. This predicted that nucleotide hydrolysis would be dispensable for fusion. Here we report that the D127N variant of full-length DATL drives both outer and inner leaflet membrane fusion with little to no detectable hydrolysis of GTP. However, the trans dimer fails to disassemble and subsequent rounds of fusion fail to occur. Our findings confirm that ATL mediated fusion is driven in the GTP-bound state, with nucleotide hydrolysis serving to reset the fusion machinery for recycling.
Collapse
Affiliation(s)
- Daniel Crosby
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Tina H. Lee
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213,*Address correspondence to: Tina H. Lee ()
| |
Collapse
|
2
|
The Magnetosome Protein, Mms6 from Magnetospirillum magneticum Strain AMB-1, Is a Lipid-Activated Ferric Reductase. Int J Mol Sci 2022; 23:ijms231810305. [PMID: 36142217 PMCID: PMC9499114 DOI: 10.3390/ijms231810305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/26/2022] Open
Abstract
Magnetosomes of magnetotactic bacteria consist of magnetic nanocrystals with defined morphologies enclosed in vesicles originated from cytoplasmic membrane invaginations. Although many proteins are involved in creating magnetosomes, a single magnetosome protein, Mms6 from Magnetospirillum magneticum strain AMB-1, can direct the crystallization of magnetite nanoparticles in vitro. The in vivo role of Mms6 in magnetosome formation is debated, and the observation that Mms6 binds Fe3+ more tightly than Fe2+ raises the question of how, in a magnetosome environment dominated by Fe3+, Mms6 promotes the crystallization of magnetite, which contains both Fe3+ and Fe2+. Here we show that Mms6 is a ferric reductase that reduces Fe3+ to Fe2+ using NADH and FAD as electron donor and cofactor, respectively. Reductase activity is elevated when Mms6 is integrated into either liposomes or bicelles. Analysis of Mms6 mutants suggests that the C-terminal domain binds iron and the N-terminal domain contains the catalytic site. Although Mms6 forms multimers that involve C-terminal and N-terminal domain interactions, a fusion protein with ubiquitin remains a monomer and displays reductase activity, which suggests that the catalytic site is fully in the monomer. However, the quaternary structure of Mms6 appears to alter the iron binding characteristics of the C-terminal domain. These results are consistent with a hypothesis that Mms6, a membrane protein, promotes the formation of magnetite in vivo by a mechanism that involves reducing iron.
Collapse
|
3
|
Koukalová A, Pokorná Š, Boyle AL, Lopez Mora N, Kros A, Hof M, Šachl R. Distinct roles of SNARE-mimicking lipopeptides during initial steps of membrane fusion. NANOSCALE 2018; 10:19064-19073. [PMID: 30288507 DOI: 10.1039/c8nr05730c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A model system for membrane fusion, inspired by SNARE proteins and based on two complementary lipopeptides CPnE4 and CPnK4, has been recently developed. It consists of cholesterol (C), a poly(ethylene glycol) linker (Pn) and either a cationic peptide K4 (KIAALKE)4 or an anionic peptide E4 (EIAALEK)4. In this paper, fluorescence spectroscopy is used to decipher distinct but complementary roles of these lipopeptides during early stages of membrane fusion. Molecular evidence is provided that different distances of E4 in CPnE4 and K4 in CPnK4 from the bilayer represent an important mechanism, which enables fusion. Whereas E4 is exposed to the bulk and solely promotes membrane binding of CPnK4, K4 loops back to the lipid-water interface where it fulfills two distinct roles: it initiates bilayer contact by binding to CPnE4 containing bilayers; and it initiates fusion by modulating the bilayer properties. The interaction between CPnE4 and CPnK4 is severely down-regulated by binding of K4 to the bilayer and possible only if the lipopeptides approach each other as constituents of different bilayers. When the complementary lipopeptides are localized in the same bilayer, hetero-coiling is disabled. These data provide crucial insights as to how fusion is initiated and highlight the importance of both peptides in this process.
Collapse
Affiliation(s)
- Alena Koukalová
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, Prague, 182 23, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
4
|
SNARE zippering requires activation by SNARE-like peptides in Sec1/Munc18 proteins. Proc Natl Acad Sci U S A 2018; 115:E8421-E8429. [PMID: 30127032 DOI: 10.1073/pnas.1802645115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) catalyze membrane fusion by forming coiled-coil bundles between membrane bilayers. The SNARE bundle zippers progressively toward the membranes, pulling the lipid bilayers into close proximity to fuse. In this work, we found that the +1 and +2 layers in the C-terminal domains (CTDs) of SNAREs are dispensable for reconstituted SNARE-mediated fusion reactions. By contrast, all CTD layers are required for fusion reactions activated by the cognate Sec1/Munc18 (SM) protein or a synthetic Vc peptide derived from the vesicular (v-) SNARE, correlating with strong acceleration of fusion kinetics. These results suggest a similar mechanism underlying the stimulatory functions of SM proteins and Vc peptide in SNARE-dependent membrane fusion. Unexpectedly, we identified a conserved SNARE-like peptide (SLP) in SM proteins that structurally and functionally resembles Vc peptide. Like Vc peptide, SLP binds and activates target (t-) SNAREs, accelerating the fusion reaction. Disruption of the t-SNARE-SLP interaction inhibits exocytosis in vivo. Our findings demonstrated that a t-SNARE-SLP intermediate must form before SNAREs can drive efficient vesicle fusion.
Collapse
|
5
|
Sharma S, Lindau M. t-SNARE Transmembrane Domain Clustering Modulates Lipid Organization and Membrane Curvature. J Am Chem Soc 2017; 139:18440-18443. [PMID: 29231734 PMCID: PMC5802331 DOI: 10.1021/jacs.7b10677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The t-SNARE complex plays a central role in neuronal fusion. Its components, syntaxin-1 and SNAP25, are largely present in individual clusters and partially colocalize at the presumptive fusion site. How these protein clusters modify local lipid composition and membrane morphology is largely unknown. In this work, using coarse-grained molecular dynamics, the transmembrane domains (TMDs) of t-SNARE complexes are shown to form aggregates leading to formation of lipid nanodomains, which are enriched in cholesterol, phosphatidylinositol 4,5-bisphosphate, and gangliosidic lipids. These nano-domains induce membrane curvature that would promote a closer contact between vesicle and plasma membrane.
Collapse
Affiliation(s)
- Satyan Sharma
- Laboratory of Nanoscale Cell Biology, Max-Planck-Institut für Biophysikalische Chemie , Göttingen 37077 Germany
| | - Manfred Lindau
- Laboratory of Nanoscale Cell Biology, Max-Planck-Institut für Biophysikalische Chemie , Göttingen 37077 Germany.,School of Applied and Engineering Physics, Cornell University , Ithaca, New York 14850, United States
| |
Collapse
|
6
|
Cendrowicz E, de Sousa Borges A, Kopacz M, Scheffers DJ. Metal-dependent SpoIIE oligomerization stabilizes FtsZ during asymmetric division in Bacillus subtilis. PLoS One 2017; 12:e0174713. [PMID: 28358838 PMCID: PMC5373596 DOI: 10.1371/journal.pone.0174713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 03/14/2017] [Indexed: 11/26/2022] Open
Abstract
SpoIIE is a bifunctional protein involved in asymmetric septum formation and in activation of the forespore compartment-specific transcription factor σF through dephosphorylation of SpoIIAA-P. The phosphatase activity of SpoIIE requires Mn2+ as a metal cofactor. Here, we show that the presence of a metal cofactor also influences SpoIIE oligomerization and asymmetric septum formation. Absence of Mn2+ from sporulation medium results in a delay of the formation of polar FtsZ-rings, similar to a spoIIE null mutant. We purified the entire cytoplasmic part of the SpoIIE protein, and show that the protein copurifies with bound metals. Metal binding both stimulates SpoIIE oligomerization, and results in the formation of larger oligomeric structures. The presence of SpoIIE oligomers reduces FtsZ GTP hydrolysis activity and stabilizes FtsZ polymers in a light scattering assay. Combined, these results indicate that metal binding is not just required for SpoIIE phosphatase activity but also is important for SpoIIE's role in asymmetric septum formation.
Collapse
Affiliation(s)
- Ewa Cendrowicz
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Anabela de Sousa Borges
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Malgorzata Kopacz
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Dirk-Jan Scheffers
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
- * E-mail:
| |
Collapse
|
7
|
Han J, Pluhackova K, Böckmann RA. The Multifaceted Role of SNARE Proteins in Membrane Fusion. Front Physiol 2017; 8:5. [PMID: 28163686 PMCID: PMC5247469 DOI: 10.3389/fphys.2017.00005] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/04/2017] [Indexed: 12/28/2022] Open
Abstract
Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined.
Collapse
Affiliation(s)
- Jing Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science CenterXi'an, China; Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-NürnbergErlangen, Germany
| | - Kristyna Pluhackova
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen, Germany
| |
Collapse
|
8
|
Dhara M, Yarzagaray A, Makke M, Schindeldecker B, Schwarz Y, Shaaban A, Sharma S, Böckmann RA, Lindau M, Mohrmann R, Bruns D. v-SNARE transmembrane domains function as catalysts for vesicle fusion. eLife 2016; 5:e17571. [PMID: 27343350 PMCID: PMC4972536 DOI: 10.7554/elife.17571] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/24/2016] [Indexed: 12/22/2022] Open
Abstract
Vesicle fusion is mediated by an assembly of SNARE proteins between opposing membranes, but it is unknown whether transmembrane domains (TMDs) of SNARE proteins serve mechanistic functions that go beyond passive anchoring of the force-generating SNAREpin to the fusing membranes. Here, we show that conformational flexibility of synaptobrevin-2 TMD is essential for efficient Ca(2+)-triggered exocytosis and actively promotes membrane fusion as well as fusion pore expansion. Specifically, the introduction of helix-stabilizing leucine residues within the TMD region spanning the vesicle's outer leaflet strongly impairs exocytosis and decelerates fusion pore dilation. In contrast, increasing the number of helix-destabilizing, ß-branched valine or isoleucine residues within the TMD restores normal secretion but accelerates fusion pore expansion beyond the rate found for the wildtype protein. These observations provide evidence that the synaptobrevin-2 TMD catalyzes the fusion process by its structural flexibility, actively setting the pace of fusion pore expansion.
Collapse
Affiliation(s)
- Madhurima Dhara
- Institute for Physiology, Saarland University, Homburg, Germany
| | | | - Mazen Makke
- Institute for Physiology, Saarland University, Homburg, Germany
| | | | - Yvonne Schwarz
- Institute for Physiology, Saarland University, Homburg, Germany
| | - Ahmed Shaaban
- Zentrum für Human- und Molekularbiologie, Saarland University, Homburg, Germany
| | - Satyan Sharma
- Group Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University, Erlangen, Germany
| | - Manfred Lindau
- Group Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ralf Mohrmann
- Zentrum für Human- und Molekularbiologie, Saarland University, Homburg, Germany
| | - Dieter Bruns
- Institute for Physiology, Saarland University, Homburg, Germany
| |
Collapse
|
9
|
Han J, Pluhackova K, Wassenaar TA, Böckmann RA. Synaptobrevin Transmembrane Domain Dimerization Studied by Multiscale Molecular Dynamics Simulations. Biophys J 2016; 109:760-71. [PMID: 26287628 DOI: 10.1016/j.bpj.2015.06.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 11/25/2022] Open
Abstract
Synaptic vesicle fusion requires assembly of the SNARE complex composed of SNAP-25, syntaxin-1, and synaptobrevin-2 (sybII) proteins. The SNARE proteins found in vesicle membranes have previously been shown to dimerize via transmembrane (TM) domain interactions. While syntaxin homodimerization is supposed to promote the transition from hemifusion to complete fusion, the role of synaptobrevin's TM domain association in the fusion process remains poorly understood. Here, we combined coarse-grained and atomistic simulations to model the homodimerization of the sybII transmembrane domain and of selected TM mutants. The wild-type helix is shown to form a stable, right-handed dimer with the most populated helix-helix interface, including key residues predicted in a previous mutagenesis study. In addition, two alternative binding interfaces were discovered, which are essential to explain the experimentally observed higher-order oligomerization of sybII. In contrast, only one dimerization interface was found for a fusion-inactive poly-Leu mutant. Moreover, the association kinetics found for this mutant is lower as compared to the wild-type. These differences in dimerization between the wild-type and the poly-Leu mutant are suggested to be responsible for the reported differences in fusogenic activity between these peptides. This study provides molecular insight into the role of TM sequence specificity for peptide aggregation in membranes.
Collapse
Affiliation(s)
- Jing Han
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kristyna Pluhackova
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tsjerk A Wassenaar
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
10
|
Han J, Pluhackova K, Böckmann RA. Exploring the Formation and the Structure of Synaptobrevin Oligomers in a Model Membrane. Biophys J 2016; 110:2004-15. [PMID: 27166808 PMCID: PMC4939486 DOI: 10.1016/j.bpj.2016.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/03/2016] [Accepted: 04/06/2016] [Indexed: 11/28/2022] Open
Abstract
SNARE complexes have been shown to act cooperatively to enable the synaptic vesicle fusion in neuronal transmission at millisecond timescale. It has previously been suggested that the oligomerization of SNARE complexes required for cooperative action in fusion is mediated by interactions between transmembrane domains (TMDs). We study the oligomerization of synaptobrevin TMD using ensembles of molecular dynamics (MD) simulations at coarse-grained resolution for both the wild-type (WT) and selected mutants. Trimerization and tetramerization of the sybII WT and mutants displayed distinct kinetics depending both on the rate of dimerization and the availability of alternative binding interfaces. Interestingly, the tetramerization kinetics and propensity for the sybII W89A-W90A mutant was significantly increased as compared with the WT; the tryptophans in WT sybII impose sterical restraints on oligomer packing, thereby maintaining an appropriate plasticity and accessibility of sybII to the binding of its cognate SNARE partners during membrane fusion. Higher-order oligomeric models (ranging from pentamer to octamer), built by incremental addition of peptides to smaller oligomers, revealed substantial stability and high compactness. These larger sybII oligomers may induce membrane deformation, thereby possibly facilitating fast fusion exocytosis.
Collapse
Affiliation(s)
- Jing Han
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kristyna Pluhackova
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
11
|
Han J, Pluhackova K, Bruns D, Böckmann RA. Synaptobrevin transmembrane domain determines the structure and dynamics of the SNARE motif and the linker region. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:855-65. [DOI: 10.1016/j.bbamem.2016.01.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/06/2016] [Accepted: 01/27/2016] [Indexed: 12/29/2022]
|
12
|
Ma L, Rebane AA, Yang G, Xi Z, Kang Y, Gao Y, Zhang Y. Munc18-1-regulated stage-wise SNARE assembly underlying synaptic exocytosis. eLife 2015; 4. [PMID: 26701912 PMCID: PMC4744192 DOI: 10.7554/elife.09580] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022] Open
Abstract
Synaptic-soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins couple their stage-wise folding/assembly to rapid exocytosis of neurotransmitters in a Munc18-1-dependent manner. The functions of the different assembly stages in exocytosis and the role of Munc18-1 in SNARE assembly are not well understood. Using optical tweezers, we observed four distinct stages of assembly in SNARE N-terminal, middle, C-terminal, and linker domains (or NTD, MD, CTD, and LD, respectively). We found that SNARE layer mutations differentially affect SNARE assembly. Comparison of their effects on SNARE assembly and on exocytosis reveals that NTD and CTD are responsible for vesicle docking and fusion, respectively, whereas MD regulates SNARE assembly and fusion. Munc18-1 initiates SNARE assembly and structures t-SNARE C-terminus independent of syntaxin N-terminal regulatory domain (NRD) and stabilizes the half-zippered SNARE complex dependent upon the NRD. Our observations demonstrate distinct functions of SNARE domains whose assembly is intimately chaperoned by Munc18-1. DOI:http://dx.doi.org/10.7554/eLife.09580.001 Plants, animals and other eukaryotes transport many large molecules within their cells inside membrane-bound packages called vesicles. These vesicles can fuse with the membrane of a target compartment in the cell to deliver their contents inside, or fuse with the cell’s membrane to release the contents outside of the cell. Membrane fusion is carried out by a group of proteins called SNAREs. These proteins are embedded on the membranes of both the vesicle and its target, and they bind to each other to form a tight complex. This complex docks the vesicle to the target and then acts like a “zipper” to pull the two membranes close enough to fuse. The best-studied SNARE proteins act in nerve cells and fuse vesicles to the cell’s membrane in order to release molecules called neurotransmitters. This process is essential for communication between nerve cells, and relies on a protein called Munc18-1. However, it is not well understood how SNARE proteins assemble into the complex and how Munc18-1 regulates this process. Ma et al. have now used a tool called “optical tweezers” to pull an assembled SNARE complex apart in the laboratory and then observe how it folds and assembles in a step-by-step process. These experiments showed that the complex assembled in four stages and not three as has been reported in previous work. SNARE proteins are made up of four parts called domains, and Ma et al. observed that the N-terminal domains were the first to bind to each other. Next, the binding progressed to the middle domain, then to the C-terminal domain and finally to the linker domain. An intermediate, half-zippered form was also observed. Ma et al. next analysed each domain in more detail and found that the N-terminal and C-terminal domains drive the docking of vesicles to the target membrane, the middle domain is crucial for assembling the SNARE complex correctly, and all three domains regulate the fusing of the membranes. Further experiments showed that Munc18-1 promoted the assembly of new SNARE complexes and stabilized the half-zippered form, rather than stabilizing the complex after it had fully assembled. This study will provide a new tool to examine many other proteins that regulate SNARE assembly, and a basis to understand the role of SNARE proteins in brain activity. DOI:http://dx.doi.org/10.7554/eLife.09580.002
Collapse
Affiliation(s)
- Lu Ma
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Aleksander A Rebane
- Department of Cell Biology, Yale School of Medicine, New Haven, United States.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, United States.,Department of Physics, Yale University, New Haven, United States
| | - Guangcan Yang
- Department of Cell Biology, Yale School of Medicine, New Haven, United States.,Department of Physics, Wenzhou University, Wenzhou, China
| | - Zhiqun Xi
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Yuhao Kang
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Ying Gao
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Yongli Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| |
Collapse
|
13
|
Martzoukou O, Karachaliou M, Yalelis V, Leung J, Byrne B, Amillis S, Diallinas G. Oligomerization of the UapA Purine Transporter Is Critical for ER-Exit, Plasma Membrane Localization and Turnover. J Mol Biol 2015; 427:2679-96. [DOI: 10.1016/j.jmb.2015.05.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/29/2022]
|
14
|
The synaptotagmin juxtamembrane domain is involved in neuroexocytosis. FEBS Open Bio 2015; 5:388-96. [PMID: 25973365 PMCID: PMC4427626 DOI: 10.1016/j.fob.2015.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 12/21/2022] Open
Abstract
The highly cationic juxtamembrane segment of synaptotagmin juxtamembrane domain was synthesized. This peptide inhibits neurotransmitter release at the neuromuscular junction of mice and Drosophila. This peptide localizes mainly on the presynaptic membrane. The synaptotagmin juxtamembrane peptide binds monophosphoinositides in a Ca2+-independent manner. The juxtamembrane segment of synaptotagmin may contribute to the formation of the hemifusion intermediate.
Synaptotagmin is a synaptic vesicle membrane protein which changes conformation upon Ca2+ binding and triggers the fast neuroexocytosis that takes place at synapses. We have synthesized a series of peptides corresponding to the sequence of the cytosolic juxtamembrane domain of synaptotagmin, which is highly conserved among different isoforms and animal species, with or without either a hexyl hydrophobic chain or the hexyl group plus a fluorescein moiety. We show that these peptides inhibit neurotransmitter release, that they localize on the presynaptic membrane of the motor axon terminal at the neuromuscular junction and that they bind monophosphoinositides in a Ca2+-independent manner. Based on these findings, we propose that the juxtamembrane cytosolic domain of synaptotagmin binds the cytosolic layer of the presynaptic membrane at rest. This binding brings synaptic vesicles and plasma membrane in a very close apposition, favouring the formation of hemifusion intermediates that enable rapid vesicle fusion.
Collapse
Key Words
- Anionic phospholipids
- JMS, juxtamembrane segment
- Juxtamembrane domain
- NMJ, neuromuscular junction
- Neuroexocytosis
- Neuromuscular junction
- PM, presynaptic membrane
- SV, synaptic vesicles
- Synaptotagmin
- Syt, synaptotagmin
- TM, transmembrane
- h-FJMS, hexyl fluorescent juxtamembrane segment
- h-JMS, hexyl juxtamembrane segment
- h-sJMS, hexyl scrambled juxtamembrane segment
- α-BTX, alpha-bungarotoxin
Collapse
|
15
|
Flanagan JJ, Mukherjee I, Barlowe C. Examination of Sec22 Homodimer Formation and Role in SNARE-dependent Membrane Fusion. J Biol Chem 2015; 290:10657-66. [PMID: 25750128 DOI: 10.1074/jbc.m114.626911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 11/06/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein complexes play essential roles in catalyzing intracellular membrane fusion events although the assembly pathway and molecular arrangement of SNARE complexes in membrane fusion reactions are not well understood. Here we monitored interactions of the R-SNARE protein Sec22 through a cysteine scanning approach and detected efficient formation of cross-linked Sec22 homodimers in cellular membranes when cysteine residues were positioned in the SNARE motif or C terminus of the transmembrane domain. When specific Sec22 cysteine derivatives are present on both donor COPII vesicles and acceptor Golgi membranes, the formation of disulfide cross-links provide clear readouts on trans- and cis-SNARE arrangements during this fusion event. The Sec22 transmembrane domain was required for efficient homodimer formation and for membrane fusion suggesting a functional role for Sec22 homodimers. We propose that Sec22 homodimers promote assembly of higher-order SNARE complexes to catalyze membrane fusion. Sec22 is also reported to function in macroautophagy and in formation of endoplasmic reticulum-plasma membrane contact sites therefore homodimer assembly may regulate Sec22 activity across a range of cellular processes.
Collapse
Affiliation(s)
- John J Flanagan
- From the Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Indrani Mukherjee
- From the Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Charles Barlowe
- From the Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| |
Collapse
|
16
|
Pantano S, Montecucco C. The blockade of the neurotransmitter release apparatus by botulinum neurotoxins. Cell Mol Life Sci 2014; 71:793-811. [PMID: 23749048 PMCID: PMC11113401 DOI: 10.1007/s00018-013-1380-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/22/2022]
Abstract
The high toxicity of the seven serotypes of botulinum neurotoxins (BoNT/A to G), together with their specificity and reversibility, includes them in the list A of potential bioterrorism weapons and, at the same time, among the therapeutics of choice for a variety of human syndromes. They invade nerve terminals and cleave specifically the three proteins which form the heterotrimeric SNAP REceptors (SNARE) complex that mediates neurotransmitter release. The BoNT-induced cleavage of the SNARE proteins explains by itself the paralysing activity of the BoNTs because the truncated proteins cannot form the SNARE complex. However, in the case of BoNT/A, the most widely used toxin in therapy, additional factors come into play as it only removes a few residues from the synaptosomal associate protein of 25 kDa C-terminus and this results in a long duration of action. To explain these facts and other experimental data, we present here a model for the assembly of the neuroexocytosis apparatus in which Synaptotagmin and Complexin first assist the zippering of the SNARE complex, and then stabilize and clamp an octameric radial assembly of the SNARE complexes.
Collapse
Affiliation(s)
- Sergio Pantano
- Institut Pasteur de Montevideo, Calle Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Institute of Neuroscience, National Research Council, Viale G. Colombo 3, 35121 Padua, Italy
| |
Collapse
|
17
|
Kwon MJ, Arentshorst M, Fiedler M, de Groen FLM, Punt PJ, Meyer V, Ram AFJ. Molecular genetic analysis of vesicular transport in Aspergillus niger reveals partial conservation of the molecular mechanism of exocytosis in fungi. Microbiology (Reading) 2014; 160:316-329. [DOI: 10.1099/mic.0.074252-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The filamentous fungus Aspergillus niger is an industrially exploited protein expression platform, well known for its capacity to secrete high levels of proteins. To study the process of protein secretion in A. niger, we established a GFP-v-SNARE reporter strain in which the trafficking and dynamics of secretory vesicles can be followed in vivo. The biological role of putative A. niger orthologues of seven secretion-specific genes, known to function in key aspects of the protein secretion machinery in Saccharomyces cerevisiae, was analysed by constructing respective gene deletion mutants in the GFP-v-SNARE reporter strain. Comparison of the deletion phenotype of conserved proteins functioning in the secretory pathway revealed common features but also interesting differences between S. cerevisiae and A. niger. Deletion of the S. cerevisiae Sec2p orthologue in A. niger (SecB), encoding a guanine exchange factor for the GTPase Sec4p (SrgA in A. niger), did not have an obvious phenotype, while SEC2 deletion in S. cerevisiae is lethal. Similarly, deletion of the A. niger orthologue of the S. cerevisiae exocyst subunit Sec3p (SecC) did not result in a lethal phenotype as in S. cerevisiae, although severe growth reduction of A. niger was observed. Deletion of secA, secH and ssoA (encoding SecA, SecH and SsoA the A. niger orthologues of S. cerevisiae Sec1p, Sec8p and Sso1/2p, respectively) showed that these genes are essential for A. niger, similar to the situation in S. cerevisiae. These data demonstrate that the orchestration of exocyst-mediated vesicle transport is only partially conserved in S. cerevisiae and A. niger.
Collapse
Affiliation(s)
- Min Jin Kwon
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Mark Arentshorst
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Markus Fiedler
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Florence L. M. de Groen
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Peter J. Punt
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Vera Meyer
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Arthur F. J. Ram
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
18
|
Zhou P, Bacaj T, Yang X, Pang ZP, Südhof TC. Lipid-anchored SNAREs lacking transmembrane regions fully support membrane fusion during neurotransmitter release. Neuron 2013; 80:470-83. [PMID: 24120845 DOI: 10.1016/j.neuron.2013.09.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2013] [Indexed: 11/28/2022]
Abstract
Synaptic vesicle fusion during neurotransmitter release is mediated by assembly of SNARE- and SM-protein complexes composed of syntaxin-1, SNAP-25, synaptobrevin-2/VAMP2, and Munc18-1. Current models suggest that SNARE-complex assembly catalyzes membrane fusion by pulling the transmembrane regions (TMRs) of SNARE proteins together, thus allowing their TMRs to form a fusion pore. These models are consistent with the requirement for TMRs in viral fusion proteins. However, the role of the SNARE TMRs in synaptic vesicle fusion has not yet been tested physiologically. Here, we examined whether synaptic SNAREs require TMRs for catalysis of synaptic vesicle fusion, which was monitored electrophysiologically at millisecond time resolution. Surprisingly, we find that both lipid-anchored syntaxin-1 and lipid-anchored synaptobrevin-2 lacking TMRs efficiently promoted spontaneous and Ca(2+)-triggered membrane fusion. Our data suggest that SNARE proteins function during fusion primarily as force generators, consistent with the notion that forcing lipid membranes close together suffices to induce membrane fusion.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
19
|
Megighian A, Zordan M, Pantano S, Scorzeto M, Rigoni M, Zanini D, Rossetto O, Montecucco C. Evidence for a radial SNARE super-complex mediating neurotransmitter release at the Drosophila neuromuscular junction. J Cell Sci 2013; 126:3134-40. [PMID: 23687382 DOI: 10.1242/jcs.123802] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The SNARE proteins VAMP/synaptobrevin, SNAP-25 and syntaxin are core components of the apparatus that mediates neurotransmitter release. They form a heterotrimeric complex, and an undetermined number of SNARE complexes assemble to form a super-complex. Here, we present a radial model of this nanomachine. Experiments performed with botulinum neurotoxins led to the identification of one arginine residue in SNAP-25 and one aspartate residue in syntaxin (R206 and D253 in Drosophila melanogaster). These residues are highly conserved and predicted to play a major role in the protein-protein interactions between SNARE complexes by forming an ionic couple. Accordingly, we generated transgenic Drosophila lines expressing SNAREs mutated in these residues and performed an electrophysiological analysis of their neuromuscular junctions. Our results indicate that SNAP-25-R206 and syntaxin-D253 play a major role in neuroexocytosis and support a radial assembly of several SNARE complexes interacting via the ionic couple formed by these two residues.
Collapse
Affiliation(s)
- Aram Megighian
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 56 B, 35121 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Robson Marsden H, Korobko AV, Zheng T, Voskuhl J, Kros A. Controlled liposome fusion mediated by SNARE protein mimics. Biomater Sci 2013; 1:1046-1054. [DOI: 10.1039/c3bm60040h] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Kasai H, Takahashi N, Tokumaru H. Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis. Physiol Rev 2012; 92:1915-64. [DOI: 10.1152/physrev.00007.2012] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dynamics of exocytosis are diverse and have been optimized for the functions of synapses and a wide variety of cell types. For example, the kinetics of exocytosis varies by more than five orders of magnitude between ultrafast exocytosis in synaptic vesicles and slow exocytosis in large dense-core vesicles. However, in all cases, exocytosis is mediated by the same fundamental mechanism, i.e., the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is often assumed that vesicles need to be docked at the plasma membrane and SNARE proteins must be preassembled before exocytosis is triggered. However, this model cannot account for the dynamics of exocytosis recently reported in synapses and other cells. For example, vesicles undergo exocytosis without prestimulus docking during tonic exocytosis of synaptic vesicles in the active zone. In addition, epithelial and hematopoietic cells utilize cAMP and kinases to trigger slow exocytosis of nondocked vesicles. In this review, we summarize the manner in which the diversity of exocytosis reflects the initial configurations of SNARE assembly, including trans-SNARE, binary-SNARE, unitary-SNARE, and cis-SNARE configurations. The initial SNARE configurations depend on the particular SNARE subtype (syntaxin, SNAP25, or VAMP), priming proteins (Munc18, Munc13, CAPS, complexin, or snapin), triggering proteins (synaptotagmins, Doc2, and various protein kinases), and the submembraneous cytomatrix, and they are the key to determining the kinetics of subsequent exocytosis. These distinct initial configurations will help us clarify the common SNARE assembly processes underlying exocytosis and membrane trafficking in eukaryotic cells.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Hiroshi Tokumaru
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| |
Collapse
|
22
|
A hypothetical model of cargo-selective rab recruitment during organelle maturation. Cell Biochem Biophys 2012; 63:59-71. [PMID: 22328341 DOI: 10.1007/s12013-012-9341-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rabs constitute a group of small GTPases that confer directionality to intracellular vesicle transport by promoting on the membrane of transport vesicles in the formation of specific protein complexes allowing for efficient fusion with a selected set of target organelles. The molecular mechanism controlling recruitment of the correct Rab at the right time is not fully understood. We propose a model according to which the residence time of a given Rab on the membrane of an organelle is determined by its transient trapping into a Rab effector complex (REC) composed of cargo receptor, SNAREs and further effectors. The stability of REC is controlled by the conformational state of the receptor which may change due to binding and release of cargo or changes in the luminal ion milieu. We use a conceptual mathematical model to calculate temporal changes in the Rab decoration of an organelle brought about by exchange with a cytosolic pool of Rabs or alternatively by budding and uptake of Rab-carrying vesicles. Considering the time-dependent drop in pH as one crucial factor for the conformational change of endocytic cargo receptors, our model provides a good quantitative description of the switch from Rab5 to Rab7 during the early-to-late endosome transition and correctly explains the arrest of this transition at insufficient luminal acidification. Model simulations suggest that a switch from one Rab to another may be continuous or abrupt. We discuss mechanisms, e.g. specific signalling pathways, which may restore an arrested organelle maturation.
Collapse
|
23
|
Abstract
At the synapse, vesicles stably dock at the active zone. However, in cellular membranes, proteins undergo a diffusive motion. It is not known how the motion of membrane proteins involved in vesicle exocytosis is compatible with both vesicle docking and the dynamic remodeling of the plasma membrane imposed by cycles of exocytosis and endocytosis. To address this question, we studied the motion of the presynaptic membrane protein syntaxin1A at both the population and single-molecule levels in primary cultures of rat spinal cord neurons. Syntaxin1A was rapidly exchanged between synaptic and extrasynaptic regions. Changes in syntaxin1A mobility were associated with interactions related to the formation of the exocytotic complex. Finally, we propose a reaction-diffusion model reconciling the observed diffusive properties of syntaxin at the population level and at the molecular level. This work allows us to describe the diffusive behavior and kinetics of interactions between syntaxin1A and its partners that lead to its transient stabilization at the synapse.
Collapse
|
24
|
Long R, Hui CY, Jagota A, Bykhovskaia M. Adhesion energy can regulate vesicle fusion and stabilize partially fused states. J R Soc Interface 2012; 9:1555-67. [PMID: 22258550 DOI: 10.1098/rsif.2011.0827] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Release of neurotransmitters from nerve terminals occurs by fusion of synaptic vesicles with the plasma membrane, and this process is highly regulated. Although major molecular components that control docking and fusion of vesicles to the synaptic membrane have been identified, the detailed mechanics of this process is not yet understood. We have developed a mathematical model that predicts how adhesion forces imposed by docking and fusion molecular machinery would affect the fusion process. We have computed the membrane stress that is produced by adhesion-driven vesicle bending and find that it is compressive. Further, our computations of the membrane curvature predict that strong adhesion can create a metastable state with a partially opened pore that would correspond to the 'kiss and run' release mode. Our model predicts that the larger the vesicle size, the more likely the metastable state with a transiently opened pore. These results contribute to understanding the mechanics of the fusion process, including possible clamping of the fusion by increasing molecular adhesion, and a balance between 'kiss and run' and full collapse fusion modes.
Collapse
Affiliation(s)
- Rong Long
- Field of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY, USA.
| | | | | | | |
Collapse
|
25
|
Wang L, Prozorov T, Palo PE, Liu X, Vaknin D, Prozorov R, Mallapragada S, Nilsen-Hamilton M. Self-Assembly and Biphasic Iron-Binding Characteristics of Mms6, A Bacterial Protein That Promotes the Formation of Superparamagnetic Magnetite Nanoparticles of Uniform Size and Shape. Biomacromolecules 2011; 13:98-105. [DOI: 10.1021/bm201278u] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lijun Wang
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United
States
| | - Tanya Prozorov
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United
States
| | - Pierre E. Palo
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United
States
| | - Xunpei Liu
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United
States
| | - David Vaknin
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United
States
| | - Ruslan Prozorov
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United
States
| | - Surya Mallapragada
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United
States
| | | |
Collapse
|
26
|
Yoon TY, Kweon DH, Shin YK. Chasing the trails of SNAREs and lipids along the membrane fusion pathway. CURRENT TOPICS IN MEMBRANES 2011; 68:161-84. [PMID: 21771499 DOI: 10.1016/b978-0-12-385891-7.00007-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Tae-Young Yoon
- Department of Physics and KAIST Institute for the BioCentury, KAIST, Daejeon, South Korea
| | | | | |
Collapse
|
27
|
Megighian A, Scorzeto M, Zanini D, Pantano S, Rigoni M, Benna C, Rossetto O, Montecucco C, Zordan M. Arg206 of SNAP-25 is essential for neuroexocytosis at the Drosophila melanogaster neuromuscular junction. J Cell Sci 2010; 123:3276-83. [DOI: 10.1242/jcs.071316] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An analysis of SNAP-25 isoform sequences indicates that there is a highly conserved arginine residue (198 in vertebrates, 206 in the genus Drosophila) within the C-terminal region, which is cleaved by botulinum neurotoxin A, with consequent blockade of neuroexocytosis. The possibility that it may play an important role in the function of the neuroexocytosis machinery was tested at neuromuscular junctions of Drosophila melanogaster larvae expressing SNAP-25 in which Arg206 had been replaced by alanine. Electrophysiological recordings of spontaneous and evoked neurotransmitter release under different conditions as well as testing for the assembly of the SNARE complex indicate that this residue, which is at the P1′ position of the botulinum neurotoxin A cleavage site, plays an essential role in neuroexocytosis. Computer graphic modelling suggests that this arginine residue mediates protein–protein contacts within a rosette of SNARE complexes that assembles to mediate the fusion of synaptic vesicles with the presynaptic plasma membrane.
Collapse
Affiliation(s)
- Aram Megighian
- Department of Human Anatomy and Physiology, Section of Physiology, University of Padova, 35131, Italy
| | - Michele Scorzeto
- Department of Human Anatomy and Physiology, Section of Physiology, University of Padova, 35131, Italy
| | - Damiano Zanini
- Department of Human Anatomy and Physiology, Section of Physiology, University of Padova, 35131, Italy
- Department of Biology, University of Padova, 35121, Italy
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay
| | - Michela Rigoni
- Department of Biomedical Sciences, University of Padova, 35121, Italy
| | - Clara Benna
- Department of Biology, University of Padova, 35121, Italy
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, 35121, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, 35121, Italy
| | - Mauro Zordan
- Department of Biology, University of Padova, 35121, Italy
| |
Collapse
|
28
|
Fdez E, Martínez-Salvador M, Beard M, Woodman P, Hilfiker S. Transmembrane-domain determinants for SNARE-mediated membrane fusion. J Cell Sci 2010; 123:2473-80. [PMID: 20571052 DOI: 10.1242/jcs.061325] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neurosecretion involves fusion of vesicles with the plasma membrane. Such membrane fusion is mediated by the SNARE complex, which is composed of the vesicle-associated protein synaptobrevin (VAMP2), and the plasma membrane proteins syntaxin-1A and SNAP-25. Although clearly important at the point of membrane fusion, the precise structural and functional requirements for the transmembrane domains (TMDs) of SNAREs in bringing about neurosecretion remain largely unknown. Here, we used a bimolecular fluorescence complementation (BiFC) approach to study SNARE protein interactions involving TMDs in vivo. VAMP2 molecules were found to dimerise through their TMDs in intact cells. Dimerisation was abolished when replacing a glycine residue in the centre of the TMD with residues of increasing molecular volume. However, such mutations still were fully competent in bringing about membrane-fusion events, suggesting that dimerisation of the VAMP2 TMDs does not have an important functional role. By contrast, a series of deletion or insertion mutants in the C-terminal half of the TMD were largely deficient in supporting neurosecretion, whereas mutations in the N-terminal half did not display severe secretory deficits. Thus, structural length requirements, largely confined to the C-terminal half of the VAMP2 TMD, seem to be essential for SNARE-mediated membrane-fusion events in cells.
Collapse
Affiliation(s)
- Elena Fdez
- Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas, Avda del Conocimiento s/n, 18100 Granada, Spain
| | | | | | | | | |
Collapse
|
29
|
Pieren M, Schmidt A, Mayer A. The SM protein Vps33 and the t-SNARE H(abc) domain promote fusion pore opening. Nat Struct Mol Biol 2010; 17:710-7. [PMID: 20453860 DOI: 10.1038/nsmb.1809] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 03/18/2010] [Indexed: 11/09/2022]
Abstract
Intracellular membrane fusion proceeds via distinct stages of membrane docking, hemifusion and fusion pore opening and depends on interacting families of Rab, SNARE and SM proteins. Trans-SNARE complexes dock the membranes in close apposition. Efficient fusion requires further SNARE-associated proteins. They might increase the number of trans-SNARE complexes or the fusogenic potential of a single SNARE complex. We investigated the contributions of the SM protein Vps33 to hemifusion and pore opening between yeast vacuoles. Mutations in Vps33 that weaken its interactions with the SNARE complex allowed normal trans-SNARE pairing and lipid mixing but retarded content mixing. Deleting the H(abc) domain of the vacuolar t-SNARE Vam3, which interacts with Vps33, had the same effect. This suggests that SM proteins promote fusion pore opening by enhancing the fusogenic activity of a SNARE complex. They should thus be considered integral parts of the fusion machinery.
Collapse
Affiliation(s)
- Michel Pieren
- Département de Biochimie, Université de Lausanne, Epalinges, Switzerland
| | | | | |
Collapse
|
30
|
Abstract
Macromolecules drive the complex behavior of neurons. For example, channels and transporters control the movements of ions across membranes, SNAREs direct the fusion of vesicles at the synapse, and motors move cargo throughout the cell. Understanding the structure, assembly, and conformational movements of these and other neuronal proteins is essential to understanding the brain. Developments in fluorescence have allowed the architecture and dynamics of proteins to be studied in real time and in a cellular context with great accuracy. In this review, we cover classic and recent methods for studying protein structure, assembly, and dynamics with fluorescence. These methods include fluorescence and luminescence resonance energy transfer, single-molecule bleaching analysis, intensity measurements, colocalization microscopy, electron transfer, and bimolecular complementation analysis. We present the principles of these methods, highlight recent work that uses the methods, and discuss a framework for interpreting results as they apply to molecular neurobiology.
Collapse
Affiliation(s)
- Justin W. Taraska
- Department of Physiology and Biophysics, Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - William N. Zagotta
- Department of Physiology and Biophysics, Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195
| |
Collapse
|
31
|
Diao J, Su Z, Lu X, Yoon TY, Shin YK, Ha T. Single-Vesicle Fusion Assay Reveals Munc18-1 Binding to the SNARE Core Is Sufficient for Stimulating Membrane Fusion. ACS Chem Neurosci 2010; 1:168-174. [PMID: 20300453 PMCID: PMC2841011 DOI: 10.1021/cn900034p] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/06/2010] [Indexed: 01/11/2023] Open
Abstract
Munc18, an essential regulatory protein for intracellular membrane fusion mediated by SNAREs, is known for stabilizing the closed conformation of syntaxin through the interaction with the N-terminal Habc domain (amino acids 28-146) of syntaxin. In addition, Munc18 accelerates membrane fusion and its interaction with SNARE core and the N-peptide (amino acids 1-24) of syntaxin is thought to be necessary for this function. Using the recently developed fluorescence resonance energy transfer assay to detect the fusion between two individual vesicles harboring cognate SNARE proteins, we studied the effect of Munc18 on the fusion induced by neuronal SNARE proteins by following the mixing of lipid molecules between the two vesicles. We found that Munc18-1 stimulates neuronal SNARE-mediated fusion not only with full-length syntaxin 1A but also with a truncated syntaxin 1A that is missing both the Habc domain and the N-peptide. The electron paramagnetic resonance analysis indicates that the SNARE core/Munc18 interaction is responsible for this stimulatory function and the membrane plays a role for establishing this interaction.
Collapse
Affiliation(s)
- Jiajie Diao
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Zengliu Su
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Xiaobing Lu
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Tae-Young Yoon
- Department of Physics and KAIST Institute for the BioCentury, KAIST, Yuseong-gu, Daejeon 305-701, Korea
| | - Yeon-Kyun Shin
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Taekjip Ha
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| |
Collapse
|
32
|
Plattner H. Membrane Trafficking in Protozoa. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:79-184. [DOI: 10.1016/s1937-6448(10)80003-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
A conceptual mathematical model of the dynamic self-organisation of distinct cellular organelles. PLoS One 2009; 4:e8295. [PMID: 20041124 PMCID: PMC2795802 DOI: 10.1371/journal.pone.0008295] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 11/03/2009] [Indexed: 11/24/2022] Open
Abstract
Formation, degradation and renewal of cellular organelles is a dynamic process based on permanent budding, fusion and inter-organelle traffic of vesicles. These processes include many regulatory proteins such as SNAREs, Rabs and coats. Given this complex machinery, a controversially debated issue is the definition of a minimal set of generic mechanisms necessary to enable the self-organization of organelles differing in number, size and chemical composition. We present a conceptual mathematical model of dynamic organelle formation based on interacting vesicles which carry different types of fusogenic proteins (FP) playing the role of characteristic marker proteins. Our simulations (ODEs) show that a de novo formation of non-identical organelles, each accumulating a different type of FP, requires a certain degree of disproportionation of FPs during budding. More importantly however, the fusion kinetics must indispensably exhibit positive cooperativity among these FPs, particularly for the formation of larger organelles. We compared different types of cooperativity: sequential alignment of corresponding FPs on opposite vesicle/organelles during fusion and pre-formation of FP-aggregates (equivalent, e.g., to SNARE clusters) prior to fusion described by Hill kinetics. This showed that the average organelle size in the system is much more sensitive to the disproportionation strength of FPs during budding if the vesicular transport system gets along with a fusion mechanism based on sequential alignments of FPs. Therefore, pre-formation of FP aggregates within the membranes prior to fusion introduce robustness with respect to organelle size. Our findings provide a plausible explanation for the evolution of a relatively large number of molecules to confer specificity on the fusion machinery compared to the relatively small number involved in the budding process. Moreover, we could speculate that a specific cooperativity which may be described by Hill kinetics (aggregates or Rab/SNARE complex formation) is suitable if maturation/identity switching of organelles play a role (bistability).
Collapse
|
34
|
Abstract
Prm1 is a pheromone-induced membrane glycoprotein that promotes plasma membrane fusion in yeast mating pairs. HA-Prm1 migrates at twice its expected molecular weight on non-reducing SDS-PAGE gels and coprecipitates with Prm1-TAP, indicating that Prm1 is a disulfide-linked homodimer. The N terminus of a plasma membrane-localized GFP-Prm1 endocytic mutant projects into the cytoplasm, where it is protected from low pH quenching in live cells and from external protease in spheroplasts. In a revised topological map, Prm1 has four transmembrane domains and two large extracellular loops. Mutation of all four cysteines in the extracellular loops blocked disulfide bond formation and destabilized the Prm1 homodimer without preventing Prm1 transport to contact sites in mating pairs. Cys(120) in loop 1 and Cys(545) in loop 2 form disulfide cross-links in the Prm1 homodimer and are required for fusion activity. Cys(120) lies between a hydrophobic segment formerly thought to be a transmembrane domain and an amphipathic helix. An interaction between either of these regions and the opposing membrane could promote fusion.
Collapse
Affiliation(s)
- Valerie N Olmo
- Department of Biochemistry and Molecular Biology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
35
|
Affiliation(s)
- Jakob B. Sørensen
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| |
Collapse
|
36
|
Williams D, Vicôgne J, Zaitseva I, McLaughlin S, Pessin JE. Evidence that electrostatic interactions between vesicle-associated membrane protein 2 and acidic phospholipids may modulate the fusion of transport vesicles with the plasma membrane. Mol Biol Cell 2009; 20:4910-9. [PMID: 19812247 DOI: 10.1091/mbc.e09-04-0284] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The juxtamembrane domain of vesicle-associated membrane protein (VAMP) 2 (also known as synaptobrevin2) contains a conserved cluster of basic/hydrophobic residues that may play an important role in membrane fusion. Our measurements on peptides corresponding to this domain determine the electrostatic and hydrophobic energies by which this domain of VAMP2 could bind to the adjacent lipid bilayer in an insulin granule or other transport vesicle. Mutation of residues within the juxtamembrane domain that reduce the VAMP2 net positive charge, and thus its interaction with membranes, inhibits secretion of insulin granules in beta cells. Increasing salt concentration in permeabilized cells, which reduces electrostatic interactions, also results in an inhibition of insulin secretion. Similarly, amphipathic weak bases (e.g., sphingosine) that reverse the negative electrostatic surface potential of a bilayer reverse membrane binding of the positively charged juxtamembrane domain of a reconstituted VAMP2 protein and inhibit membrane fusion. We propose a model in which the positively charged VAMP and syntaxin juxtamembrane regions facilitate fusion by bridging the negatively charged vesicle and plasma membrane leaflets.
Collapse
Affiliation(s)
- Dumaine Williams
- Department of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
Exocytosis is a highly conserved and essential process. Although numerous proteins are involved throughout the exocytotic process, the defining membrane fusion step appears to occur through a lipid-dominated mechanism. Here we review and integrate the current literature on protein and lipid roles in exocytosis, with emphasis on the multiple roles of cholesterol in exocytosis and membrane fusion, in an effort to promote a more molecular systems-level view of the as yet poorly understood process of Ca2+-triggered membrane mergers.
Collapse
|
38
|
Reversible transition between α-helix and β-sheet conformation of a transmembrane domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1722-30. [DOI: 10.1016/j.bbamem.2009.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 05/16/2009] [Accepted: 05/19/2009] [Indexed: 12/28/2022]
|
39
|
Murray DH, Tamm LK. Clustering of syntaxin-1A in model membranes is modulated by phosphatidylinositol 4,5-bisphosphate and cholesterol. Biochemistry 2009; 48:4617-25. [PMID: 19364135 PMCID: PMC2724070 DOI: 10.1021/bi9003217] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Syntaxin-1A is part of the SNARE complex that forms in membrane fusion in neuronal exocytosis of synaptic vesicles. Together with SNAP-25 the single-span transmembrane protein syntaxin-1A forms the receptor complex on the plasma membrane of neuroendocrine cells. Previous studies have shown that syntaxin-1A occurs in clusters that are different from lipid rafts in neuroendocrine plasma membranes. However, the interactions that promote these clusters have been largely unexplored. Here, we have reconstituted syntaxin-1A into lipid model membranes, and we show that syntaxin cluster formation depends on cholesterol in a lipid system that lacks sphingomyelin and therefore does not form liquid-ordered phases that are commonly believed to represent lipid rafts in cell membranes. Rather, the cholesterol-induced clustering of syntaxin is found to be reversed by as little as 1-5 mol % of the regulatory lipid phosphatidylinositol 4,5-bisphosphate (PI-4,5-P(2)), and PI-4,5-P(2) is shown to bind electrostatically to syntaxin, presumably mediated by the highly positively charged juxtamembrane domain of syntaxin. Possible implications of these results to the regulation of SNARE-mediated membrane fusion are discussed.
Collapse
Affiliation(s)
- David H. Murray
- Center for Membrane Biology and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908
| | - Lukas K. Tamm
- Center for Membrane Biology and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908
| |
Collapse
|
40
|
Fusion step-specific influence of cholesterol on SNARE-mediated membrane fusion. Biophys J 2009; 96:1839-46. [PMID: 19254542 DOI: 10.1016/j.bpj.2008.11.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 11/17/2008] [Indexed: 11/22/2022] Open
Abstract
Cholesterol is a major component of biological membranes and is known to affect vesicle fusion. However, the mechanism by which cholesterol modulates SNARE-dependent intracellular fusion is not well understood. Using the fluorescence assay and dye-labeled SNAREs and the fluorescent lipids, we dissected cholesterol effects on individual fusion steps including SNARE complex formation, hemifusion, pore formation, and pore dilation. At physiological high concentrations, cholesterol stimulated hemifusion as much as 30-fold, but its stimulatory effect diminished to 10-fold and three-fold for subsequent pore formation and pore expansion at 40 mol %, respectively. The results show that cholesterol serves as a strong stimulator for hemifusion but acts as mild stimulators for pore opening and expansion. Strong stimulation of hemifusion and mild stimulation of pore formation are consistent with the fusion model based on the intrinsic negative curvature of cholesterol. However, even a milder effect of cholesterol on pore expansion is contradictory to such a simple curvature-based prediction. Thus, we speculate that cholesterol also affects the conformation of the transmembrane domains of SNAREs, which modulates the fusion kinetics.
Collapse
|
41
|
Schwartz ML, Merz AJ. Capture and release of partially zipped trans-SNARE complexes on intact organelles. J Cell Biol 2009; 185:535-49. [PMID: 19414611 PMCID: PMC2700395 DOI: 10.1083/jcb.200811082] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 04/07/2009] [Indexed: 11/22/2022] Open
Abstract
Soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptors (SNAREs) are hypothesized to trigger membrane fusion by complexing in trans through their membrane-distal N termini and zippering toward their membrane-embedded C termini, which in turn drives the two membranes together. In this study, we use a set of truncated SNAREs to trap kinetically stable, partially zipped trans-SNARE complexes on intact organelles in the absence of hemifusion and content mixing. We show that the C-terminal zippering of SNARE cytoplasmic domains controls the onset of lipid mixing but not the subsequent transition from hemifusion to full fusion. Moreover, we find that a partially zipped nonfusogenic trans-complex is rescued by Sec17, a universal SNARE cochaperone. Rescue occurs independently of the Sec17-binding partner Sec18, and it exhibits steep cooperativity, indicating that Sec17 engages multiple stalled trans-complexes to drive fusion. These experiments delineate distinct functions within the trans-complex, provide a straightforward method to trap and study prefusion complexes on native membranes, and reveal that Sec17 can rescue a stalled, partially zipped trans-complex.
Collapse
Affiliation(s)
- Matthew L Schwartz
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
42
|
Ashery U, Bielopolski N, Barak B, Yizhar O. Friends and foes in synaptic transmission: the role of tomosyn in vesicle priming. Trends Neurosci 2009; 32:275-82. [PMID: 19307030 PMCID: PMC2713869 DOI: 10.1016/j.tins.2009.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 01/06/2009] [Accepted: 01/07/2009] [Indexed: 12/24/2022]
Abstract
Priming is the process by which vesicles become available for fusion at nerve terminals and is modulated by numerous proteins and second messengers. One of the prominent members of this diverse family is tomosyn. Tomosyn has been identified as a syntaxin-binding protein; it inhibits vesicle priming, but its mode of action is not fully understood. The inhibitory activity of tomosyn depends on its N-terminal WD40-repeat domain and is regulated by the binding of its SNARE motif to syntaxin. Here, we describe new physiological information on the function of tomosyn and address possible interpretations of these results in the framework of the recently described crystal structure of the yeast tomosyn homolog Sro7. We also present possible molecular scenarios for vesicle priming and the involvement of tomosyn in these processes.
Collapse
Affiliation(s)
- Uri Ashery
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | |
Collapse
|
43
|
Tong J, Borbat PP, Freed JH, Shin YK. A scissors mechanism for stimulation of SNARE-mediated lipid mixing by cholesterol. Proc Natl Acad Sci U S A 2009; 106:5141-6. [PMID: 19251653 PMCID: PMC2663986 DOI: 10.1073/pnas.0813138106] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Indexed: 01/07/2023] Open
Abstract
Neurotransmitter release at the synapse requires membrane fusion. The SNARE complex, composed of the plasma membrane t-SNAREs syntaxin 1A and SNAP-25 and the vesicle v-SNARE synaptobrevin, mediates the fusion of 2 membranes. Synaptic vesicles contain unusually high cholesterol, but the exact role of cholesterol in fusion is not known. In this study, cholesterol was found to stimulate SNARE-mediated lipid mixing of proteoliposomes by a factor of 5 at a physiological concentration. Surprisingly, however, the stimulatory effect was more pronounced when cholesterol was on the v-SNARE side than when it was on the t-SNARE side. Site-directed spin labeling and both continuous wave (CW) and pulsed EPR revealed that cholesterol induces a conformational change of the v-SNARE transmembrane domain (TMD) from an open scissors-like dimer to a parallel dimer. When the TMD was forced to form a parallel dimer by the disulfide bond, the rate was stimulated 2.3-fold even without cholesterol, supporting the relevance of the open-to-closed conformational change to the fusion activity. The open scissors-like conformation may be unfavorable for fusion and cholesterol may relieve this inhibitory factor.
Collapse
Affiliation(s)
- Jiansong Tong
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011; and
| | - Peter P. Borbat
- Department of Chemistry and Chemical Biology and the Advanced ESR Technology Center, B52 Baker Laboratory, Cornell University, Ithaca, NY 14853; and
| | - Jack H. Freed
- Department of Chemistry and Chemical Biology and the Advanced ESR Technology Center, B52 Baker Laboratory, Cornell University, Ithaca, NY 14853; and
| | - Yeon-Kyun Shin
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011; and
- Integrative Biology and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
44
|
Muraro L, Tosatto S, Motterlini L, Rossetto O, Montecucco C. The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane. Biochem Biophys Res Commun 2009; 380:76-80. [PMID: 19161982 DOI: 10.1016/j.bbrc.2009.01.037] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 01/08/2009] [Indexed: 10/21/2022]
Abstract
Botulinum neurotoxin type A (BoNT/A) is largely employed in human therapy because of its specific inhibition of peripheral cholinergic nerve terminals. BoNT/A binds to them rapidly and with high specificity via its receptor binding domain termed HC. Recent evidence indicate that BoNT/A interacts specifically with polysialogangliosides and with a luminal loop of the synaptic vesicle protein SV2 via the C-terminal half of HC. Here we show that the N-terminal half of HC binds to sphingomyelin-enriched membrane microdomains and that it has a defined interaction with phosphatidylinositol phosphates (PIP). We have identified a PIP binding site in this half of HC and we show how this interaction could predispose BoNT/A for membrane insertion, which is the step subsequent to binding, in the four-steps route leading BoNT/A inside nerve terminals.
Collapse
Affiliation(s)
- Lucia Muraro
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy
| | | | | | | | | |
Collapse
|