1
|
Nikulenkov F, Carbain B, Biswas R, Havel S, Prochazkova J, Sisakova A, Zacpalova M, Chavdarova M, Marini V, Vsiansky V, Weisova V, Slavikova K, Biradar D, Khirsariya P, Vitek M, Sedlak D, Bartunek P, Daniel L, Brezovsky J, Damborsky J, Paruch K, Krejci L. Discovery of new inhibitors of nuclease MRE11. Eur J Med Chem 2025; 285:117226. [PMID: 39793442 DOI: 10.1016/j.ejmech.2024.117226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/10/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
MRE11 nuclease is a central player in signaling and processing DNA damage, and in resolving stalled replication forks. Here, we describe the identification and characterization of new MRE11 inhibitors MU147 and MU1409. Both compounds inhibit MRE11 nuclease more specifically and effectively than the relatively weak state-of-the-art inhibitor mirin. They also abrogate double-strand break repair mechanisms that rely on MRE11 nuclease activity, without impairing ATM activation. Inhibition of MRE11 also impairs nascent strand degradation of stalled replication forks and selectively affects BRCA2-deficient cells. Herein, we illustrate that our newly discovered compounds MU147 and MU1409 can be used as chemical probes to further explore the biological role of MRE11 and support the potential clinical relevance of pharmacological inhibition of this nuclease.
Collapse
Affiliation(s)
- Fedor Nikulenkov
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Benoit Carbain
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Raktim Biswas
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Stepan Havel
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Jana Prochazkova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Alexandra Sisakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Magdalena Zacpalova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Melita Chavdarova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Victoria Marini
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Vit Vsiansky
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Veronika Weisova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Kristina Slavikova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Dhanraj Biradar
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Prashant Khirsariya
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Marco Vitek
- Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - David Sedlak
- CZ-OPENSCREEN, Institute of Molecular Genetics of the ASCR, v.v.i., Prague 4, Czech Republic
| | - Petr Bartunek
- CZ-OPENSCREEN, Institute of Molecular Genetics of the ASCR, v.v.i., Prague 4, Czech Republic
| | - Lukas Daniel
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Jan Brezovsky
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Jiri Damborsky
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Kamil Paruch
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic.
| | - Lumir Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic; NCBR, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic.
| |
Collapse
|
2
|
Yasuda T, Nakajima N, Ogi T, Yanaka T, Tanaka I, Gotoh T, Kagawa W, Sugasawa K, Tajima K. Heavy water inhibits DNA double-strand break repairs and disturbs cellular transcription, presumably via quantum-level mechanisms of kinetic isotope effects on hydrolytic enzyme reactions. PLoS One 2024; 19:e0309689. [PMID: 39361575 PMCID: PMC11449287 DOI: 10.1371/journal.pone.0309689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
Heavy water, containing the heavy hydrogen isotope, is toxic to cells, although the underlying mechanism remains incompletely understood. In addition, certain enzymatic proton transfer reactions exhibit kinetic isotope effects attributed to hydrogen isotopes and their temperature dependencies, indicative of quantum tunneling phenomena. However, the correlation between the biological effects of heavy water and the kinetic isotope effects mediated by hydrogen isotopes remains elusive. In this study, we elucidated the kinetic isotope effects arising from hydrogen isotopes of water and their temperature dependencies in vitro, focusing on deacetylation, DNA cleavage, and protein cleavage, which are crucial enzymatic reactions mediated by hydrolysis. Intriguingly, the intracellular isotope effects of heavy water, related to the in vitro kinetic isotope effects, significantly impeded multiple DNA double-strand break repair mechanisms crucial for cell survival. Additionally, heavy water exposure enhanced histone acetylation and associated transcriptional activation in cells, consistent with the in vitro kinetic isotope effects observed in histone deacetylation reactions. Moreover, as observed for the in vitro kinetic isotope effects, the cytotoxic effect on cell proliferation induced by heavy water exhibited temperature-dependency. These findings reveal the substantial impact of heavy water-induced isotope effects on cellular functions governed by hydrolytic enzymatic reactions, potentially mediated by quantum-level mechanisms underlying kinetic isotope effects.
Collapse
Affiliation(s)
- Takeshi Yasuda
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Nakako Nakajima
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tomoko Yanaka
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Izumi Tanaka
- Institute for Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takaya Gotoh
- Department of Health Science, Daito Bunka University, Saitama, Japan
| | - Wataru Kagawa
- Department of Interdisciplinary Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Tokyo, Japan
| | - Kaoru Sugasawa
- Biosignal Research Center, and Graduate School of Science, Kobe University, Kobe, Japan
| | - Katsushi Tajima
- Department of Hematology, Yamagata Prefectural Central Hospital, Yamagata, Japan
| |
Collapse
|
3
|
Atkinson J, Bezak E, Le H, Kempson I. DNA Double Strand Break and Response Fluorescent Assays: Choices and Interpretation. Int J Mol Sci 2024; 25:2227. [PMID: 38396904 PMCID: PMC10889524 DOI: 10.3390/ijms25042227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Accurately characterizing DNA double-stranded breaks (DSBs) and understanding the DNA damage response (DDR) is crucial for assessing cellular genotoxicity, maintaining genomic integrity, and advancing gene editing technologies. Immunofluorescence-based techniques have proven to be invaluable for quantifying and visualizing DSB repair, providing valuable insights into cellular repair processes. However, the selection of appropriate markers for analysis can be challenging due to the intricate nature of DSB repair mechanisms, often leading to ambiguous interpretations. This comprehensively summarizes the significance of immunofluorescence-based techniques, with their capacity for spatiotemporal visualization, in elucidating complex DDR processes. By evaluating the strengths and limitations of different markers, we identify where they are most relevant chronologically from DSB detection to repair, better contextualizing what each assay represents at a molecular level. This is valuable for identifying biases associated with each assay and facilitates accurate data interpretation. This review aims to improve the precision of DSB quantification, deepen the understanding of DDR processes, assay biases, and pathway choices, and provide practical guidance on marker selection. Each assay offers a unique perspective of the underlying processes, underscoring the need to select markers that are best suited to specific research objectives.
Collapse
Affiliation(s)
- Jake Atkinson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Eva Bezak
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5095, Australia; (E.B.)
- Department of Physics, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Hien Le
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5095, Australia; (E.B.)
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| |
Collapse
|
4
|
Matos‐Rodrigues G, Barroca V, Muhammad A, Dardillac E, Allouch A, Koundrioukoff S, Lewandowski D, Despras E, Guirouilh‐Barbat J, Frappart L, Kannouche P, Dupaigne P, Le Cam E, Perfettini J, Romeo P, Debatisse M, Jasin M, Livera G, Martini E, Lopez BS. In vivo reduction of RAD51-mediated homologous recombination triggers aging but impairs oncogenesis. EMBO J 2023; 42:e110844. [PMID: 37661798 PMCID: PMC10577633 DOI: 10.15252/embj.2022110844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/06/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Homologous recombination (HR) is a prominent DNA repair pathway maintaining genome integrity. Mutations in many HR genes lead to cancer predisposition. Paradoxically, the implication of the pivotal HR factor RAD51 on cancer development remains puzzling. Particularly, no RAD51 mouse models are available to address the role of RAD51 in aging and carcinogenesis in vivo. We engineered a mouse model with an inducible dominant-negative form of RAD51 (SMRad51) that suppresses RAD51-mediated HR without stimulating alternative mutagenic repair pathways. We found that in vivo expression of SMRad51 led to replicative stress, systemic inflammation, progenitor exhaustion, premature aging and reduced lifespan, but did not trigger tumorigenesis. Expressing SMRAD51 in a breast cancer predisposition mouse model (PyMT) decreased the number and the size of tumors, revealing an anti-tumor activity of SMRAD51. We propose that these in vivo phenotypes result from chronic endogenous replication stress caused by HR decrease, which preferentially targets progenitors and tumor cells. Our work underlines the importance of RAD51 activity for progenitor cell homeostasis, preventing aging and more generally for the balance between cancer and aging.
Collapse
Affiliation(s)
- Gabriel Matos‐Rodrigues
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut CochinEquipe Labellisée Ligue Contre le CancerParisFrance
- Université de Paris and Université Paris‐Saclay, Laboratory of Development of the Gonads, IRCM/IBFJ CEA, UMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Vilma Barroca
- Université de Paris and Université Paris‐Saclay, Inserm, IRCM/IBFJ CEAUMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Ali‐Akbar Muhammad
- Genome Maintenance and Molecular Microscopy UMR8126 CNRSUniversité Paris‐Sud, Université Paris‐Saclay, Gustave RoussyVillejuif CedexFrance
| | - Elodie Dardillac
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut CochinEquipe Labellisée Ligue Contre le CancerParisFrance
| | - Awatef Allouch
- Cell Death and Aging Team, INSERM U1030, Laboratory of Molecular RadiotherapyUniversity Paris‐Sud and Gustave RoussyVillejuifFrance
| | - Stephane Koundrioukoff
- CNRS UMR8200 Sorbonne UniversitésUPMC UniversityParisFrance
- Institut Gustave RoussyVillejuifFrance
| | - Daniel Lewandowski
- Université de Paris and Université Paris‐Saclay, Inserm, IRCM/IBFJ CEAUMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Emmanuelle Despras
- CNRS UMR8200, Laboratory of Genetic Instability and OncogenesisUniversity Paris‐Sud and Gustave RoussyVillejuifFrance
| | - Josée Guirouilh‐Barbat
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut CochinEquipe Labellisée Ligue Contre le CancerParisFrance
| | - Lucien Frappart
- Leibniz Institute on Aging‐Fritz Lipmann InstituteJenaGermany
| | - Patricia Kannouche
- CNRS UMR8200, Laboratory of Genetic Instability and OncogenesisUniversity Paris‐Sud and Gustave RoussyVillejuifFrance
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR8126 CNRSUniversité Paris‐Sud, Université Paris‐Saclay, Gustave RoussyVillejuif CedexFrance
| | - Eric Le Cam
- Genome Maintenance and Molecular Microscopy UMR8126 CNRSUniversité Paris‐Sud, Université Paris‐Saclay, Gustave RoussyVillejuif CedexFrance
| | - Jean‐Luc Perfettini
- Cell Death and Aging Team, INSERM U1030, Laboratory of Molecular RadiotherapyUniversity Paris‐Sud and Gustave RoussyVillejuifFrance
| | - Paul‐Henri Romeo
- Université de Paris and Université Paris‐Saclay, Inserm, IRCM/IBFJ CEAUMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Michelle Debatisse
- CNRS UMR8200 Sorbonne UniversitésUPMC UniversityParisFrance
- Institut Gustave RoussyVillejuifFrance
| | - Maria Jasin
- Developmental Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Gabriel Livera
- Université de Paris and Université Paris‐Saclay, Laboratory of Development of the Gonads, IRCM/IBFJ CEA, UMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Emmanuelle Martini
- Université de Paris and Université Paris‐Saclay, Laboratory of Development of the Gonads, IRCM/IBFJ CEA, UMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Bernard S Lopez
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut CochinEquipe Labellisée Ligue Contre le CancerParisFrance
| |
Collapse
|
5
|
Thomas M, Dubacq C, Rabut E, Lopez BS, Guirouilh-Barbat J. Noncanonical Roles of RAD51. Cells 2023; 12:cells12081169. [PMID: 37190078 DOI: 10.3390/cells12081169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Homologous recombination (HR), an evolutionary conserved pathway, plays a paramount role(s) in genome plasticity. The pivotal HR step is the strand invasion/exchange of double-stranded DNA by a homologous single-stranded DNA (ssDNA) covered by RAD51. Thus, RAD51 plays a prime role in HR through this canonical catalytic strand invasion/exchange activity. The mutations in many HR genes cause oncogenesis. Surprisingly, despite its central role in HR, the invalidation of RAD51 is not classified as being cancer prone, constituting the "RAD51 paradox". This suggests that RAD51 exercises other noncanonical roles that are independent of its catalytic strand invasion/exchange function. For example, the binding of RAD51 on ssDNA prevents nonconservative mutagenic DNA repair, which is independent of its strand exchange activity but relies on its ssDNA occupancy. At the arrested replication forks, RAD51 plays several noncanonical roles in the formation, protection, and management of fork reversal, allowing for the resumption of replication. RAD51 also exhibits noncanonical roles in RNA-mediated processes. Finally, RAD51 pathogenic variants have been described in the congenital mirror movement syndrome, revealing an unexpected role in brain development. In this review, we present and discuss the different noncanonical roles of RAD51, whose presence does not automatically result in an HR event, revealing the multiple faces of this prominent actor in genomic plasticity.
Collapse
Affiliation(s)
- Mélissa Thomas
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Caroline Dubacq
- Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, INSERM, CNRS, Sorbonne Université, F-75005 Paris, France
| | - Elise Rabut
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Bernard S Lopez
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Josée Guirouilh-Barbat
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| |
Collapse
|
6
|
Ghantous L, Volman Y, Hefez R, Wald O, Stern E, Friehmann T, Chajut A, Bremer E, Elhalel MD, Rachmilewitz J. The DNA damage response pathway regulates the expression of the immune checkpoint CD47. Commun Biol 2023; 6:245. [PMID: 36882648 PMCID: PMC9992352 DOI: 10.1038/s42003-023-04615-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
CD47 is a cell surface ligand expressed on all nucleated cells. It is a unique immune checkpoint protein acting as "don't eat me" signal to prevent phagocytosis and is constitutively overexpressed in many tumors. However, the underlying mechanism(s) for CD47 overexpression is not clear. Here, we show that irradiation (IR) as well as various other genotoxic agents induce elevated expression of CD47. This upregulation correlates with the extent of residual double-strand breaks (DSBs) as determined by γH2AX staining. Interestingly, cells lacking mre-11, a component of the MRE11-RAD50-NBS1 (MRN) complex that plays a central role in DSB repair, or cells treated with the mre-11 inhibitor, mirin, fail to elevate the expression of CD47 upon DNA damage. On the other hand, both p53 and NF-κB pathways or cell-cycle arrest do not play a role in CD47 upregualtion upon DNA damage. We further show that CD47 expression is upregulated in livers harvested from mice treated with the DNA-damage inducing agent Diethylnitrosamine (DEN) and in cisplatin-treated mesothelioma tumors. Hence, our results indicate that CD47 is upregulated following DNA damage in a mre-11-dependent manner. Chronic DNA damage response in cancer cells might contribute to constitutive elevated expression of CD47 and promote immune evasion.
Collapse
Affiliation(s)
- Lucy Ghantous
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Nephrology and Hypertension, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Volman
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruth Hefez
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Wald
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Cardiothoracic Surgery, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Esther Stern
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tomer Friehmann
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands
| | - Michal Dranitzki Elhalel
- Department of Nephrology and Hypertension, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Jacob Rachmilewitz
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
7
|
Rass E, Willaume S, Bertrand P. 53BP1: Keeping It under Control, Even at a Distance from DNA Damage. Genes (Basel) 2022; 13:genes13122390. [PMID: 36553657 PMCID: PMC9778356 DOI: 10.3390/genes13122390] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Double-strand breaks (DSBs) are toxic lesions that can be generated by exposure to genotoxic agents or during physiological processes, such as during V(D)J recombination. The repair of these DSBs is crucial to prevent genomic instability and to maintain cellular homeostasis. Two main pathways participate in repairing DSBs, namely, non-homologous end joining (NHEJ) and homologous recombination (HR). The P53-binding protein 1 (53BP1) plays a pivotal role in the choice of DSB repair mechanism, promotes checkpoint activation and preserves genome stability upon DSBs. By preventing DSB end resection, 53BP1 promotes NHEJ over HR. Nonetheless, the balance between DSB repair pathways remains crucial, as unscheduled NHEJ or HR events at different phases of the cell cycle may lead to genomic instability. Therefore, the recruitment of 53BP1 to chromatin is tightly regulated and has been widely studied. However, less is known about the mechanism regulating 53BP1 recruitment at a distance from the DNA damage. The present review focuses on the mechanism of 53BP1 recruitment to damage and on recent studies describing novel mechanisms keeping 53BP1 at a distance from DSBs.
Collapse
Affiliation(s)
- Emilie Rass
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Correspondence:
| | - Simon Willaume
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| | - Pascale Bertrand
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| |
Collapse
|
8
|
McCarthy-Leo C, Darwiche F, Tainsky MA. DNA Repair Mechanisms, Protein Interactions and Therapeutic Targeting of the MRN Complex. Cancers (Basel) 2022; 14:5278. [PMID: 36358700 PMCID: PMC9656488 DOI: 10.3390/cancers14215278] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
Repair of a DNA double-strand break relies upon a pathway of proteins to identify damage, regulate cell cycle checkpoints, and repair the damage. This process is initiated by a sensor protein complex, the MRN complex, comprised of three proteins-MRE11, RAD50, and NBS1. After a double-stranded break, the MRN complex recruits and activates ATM, in-turn activating other proteins such as BRCA1/2, ATR, CHEK1/2, PALB2 and RAD51. These proteins have been the focus of many studies for their individual roles in hereditary cancer syndromes and are included on several genetic testing panels. These panels have enabled us to acquire large amounts of genetic data, much of which remains a challenge to interpret due to the presence of variants of uncertain significance (VUS). While the primary aim of clinical testing is to accurately and confidently classify variants in order to inform medical management, the presence of VUSs has led to ambiguity in genetic counseling. Pathogenic variants within MRN complex genes have been implicated in breast, ovarian, prostate, colon cancers and gliomas; however, the hundreds of VUSs within MRE11, RAD50, and NBS1 precludes the application of these data in genetic guidance of carriers. In this review, we discuss the MRN complex's role in DNA double-strand break repair, its interactions with other cancer predisposing genes, the variants that can be found within the three MRN complex genes, and the MRN complex's potential as an anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Claire McCarthy-Leo
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Fatima Darwiche
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Michael A. Tainsky
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute at Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
9
|
Wilson C, Murnane JP. High-throughput screen to identify compounds that prevent or target telomere loss in human cancer cells. NAR Cancer 2022; 4:zcac029. [PMID: 36196242 PMCID: PMC9527662 DOI: 10.1093/narcan/zcac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 11/14/2022] Open
Abstract
Chromosome instability (CIN) is an early step in carcinogenesis that promotes tumor cell progression and resistance to therapy. Using plasmids integrated adjacent to telomeres, we have previously demonstrated that the sensitivity of subtelomeric regions to DNA double-strand breaks (DSBs) contributes to telomere loss and CIN in cancer. A high-throughput screen was created to identify compounds that affect telomere loss due to subtelomeric DSBs introduced by I-SceI endonuclease, as detected by cells expressing green fluorescent protein (GFP). A screen of a library of 1832 biologically-active compounds identified a variety of compounds that increase or decrease the number of GFP-positive cells following activation of I-SceI. A curated screen done in triplicate at various concentrations found that inhibition of classical nonhomologous end joining (C-NHEJ) increased DSB-induced telomere loss, demonstrating that C-NHEJ is functional in subtelomeric regions. Compounds that decreased DSB-induced telomere loss included inhibitors of mTOR, p38 and tankyrase, consistent with our earlier hypothesis that the sensitivity of subtelomeric regions to DSBs is a result of inappropriate resection during repair. Although this assay was also designed to identify compounds that selectively target cells experiencing telomere loss and/or chromosome instability, no compounds of this type were identified in the current screen.
Collapse
Affiliation(s)
- Chris Wilson
- Department of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, CA 94143, USA
| | - John P Murnane
- To whom correspondence should be addressed. Tel: +1 415 680 4434;
| |
Collapse
|
10
|
Zhang Y, Fang M, Li S, Xu H, Ren J, Tu L, Zuo B, Yao W, Liang G. BTApep-TAT peptide inhibits ADP-ribosylation of BORIS to induce DNA damage in cancer. Mol Cancer 2022; 21:158. [PMID: 35918747 PMCID: PMC9344678 DOI: 10.1186/s12943-022-01621-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brother of regulator of imprinted sites (BORIS) is expressed in most cancers and often associated with short survival and poor prognosis in patients. BORIS inhibits apoptosis and promotes proliferation of cancer cells. However, its mechanism of action has not been elucidated, and there is no known inhibitor of BORIS. METHODS A phage display library was used to find the BORIS inhibitory peptides and BTApep-TAT was identified. The RNA sequencing profile of BTApep-TAT-treated H1299 cells was compared with that of BORIS-knockdown cells. Antitumor activity of BTApep-TAT was evaluated in a non-small cell lung cancer (NSCLC) xenograft mouse model. BTApep-TAT was also used to investigate the post-translational modification (PTM) of BORIS and the role of BORIS in DNA damage repair. Site-directed mutants of BORIS were constructed and used for investigating PTM and the function of BORIS. RESULTS BTApep-TAT induced DNA damage in cancer cells and suppressed NSCLC xenograft tumor progression. Investigation of the mechanism of action of BTApep-TAT demonstrated that BORIS underwent ADP ribosylation upon double- or single-strand DNA damage. Substitution of five conserved glutamic acid (E) residues with alanine residues (A) between amino acids (AAs) 198 and 228 of BORIS reduced its ADP ribosylation. Inhibition of ADP ribosylation of BORIS by a site-specific mutation or by BTApep-TAT treatment blocked its interaction with Ku70 and impaired the function of BORIS in DNA damage repair. CONCLUSIONS The present study identified an inhibitor of BORIS, highlighted the importance of ADP ribosylation of BORIS, and revealed a novel function of BORIS in DNA damage repair. The present work provides a practical method for the future screening or optimization of drugs targeting BORIS.
Collapse
Affiliation(s)
- Yanmei Zhang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China.
| | - Mengdie Fang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China.,College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Shouye Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China.,Zhejiang Eyoung Pharmaceutical Research and Development Center, Hangzhou, 311258, Zhejiang, China
| | - Hao Xu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Juan Ren
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Linglan Tu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Bowen Zuo
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wanxin Yao
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Guang Liang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China. .,College of Pharmacy, Hangzhou Medical College, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
11
|
Wang Y, Abolhassani H, Hammarström L, Pan-Hammarström Q. SARS-CoV-2 infection in patients with inborn errors of immunity due to DNA repair defects. Acta Biochim Biophys Sin (Shanghai) 2022; 54:836-846. [PMID: 35713311 PMCID: PMC9827799 DOI: 10.3724/abbs.2022071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clinical information on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in patients with inborn errors of immunity (IEI) during the current Coronavirus disease 2019 (COVID-19) pandemic is still limited. Proper DNA repair machinery is required for the development of the adaptive immune system, which provides specific and long-term protection against SARS-CoV-2. This review highlights the impact of SARS-CoV-2 infections on IEI patients with DNA repair disorders and summarizes susceptibility risk factors, pathogenic mechanisms, clinical manifestations and management strategies of COVID-19 in this special patient population.
Collapse
|
12
|
Bai W, Zhao B, Gu M, Dong J. Alternative end-joining in BCR gene rearrangements and translocations. Acta Biochim Biophys Sin (Shanghai) 2022; 54:782-795. [PMID: 35593472 PMCID: PMC9828324 DOI: 10.3724/abbs.2022051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Programmed DNA double-strand breaks (DSBs) occur during antigen receptor gene recombination, namely V(D)J recombination in developing B lymphocytes and class switch recombination (CSR) in mature B cells. Repair of these DSBs by classical end-joining (c-NHEJ) enables the generation of diverse BCR repertoires for efficient humoral immunity. Deletion of or mutation in c-NHEJ genes in mice and humans confer various degrees of primary immune deficiency and predisposition to lymphoid malignancies that often harbor oncogenic chromosomal translocations. In the absence of c-NHEJ, alternative end-joining (A-EJ) catalyzes robust CSR and to a much lesser extent, V(D)J recombination, but the mechanisms of A-EJ are only poorly defined. In this review, we introduce recent advances in the understanding of A-EJ in the context of V(D)J recombination and CSR with emphases on DSB end processing, DNA polymerases and ligases, and discuss the implications of A-EJ to lymphoid development and chromosomal translocations.
Collapse
Affiliation(s)
- Wanyu Bai
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China
| | - Bo Zhao
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China
| | - Mingyu Gu
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China
| | - Junchao Dong
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China,Correspondence address. Tel: +86-20-87330571; E-mail:
| |
Collapse
|
13
|
Al-Soodani AT, Wu X, Kelp NC, Brown AJ, Roberts SA, Her C. hMSH5 Regulates NHEJ and Averts Excessive Nucleotide Alterations at Repair Joints. Genes (Basel) 2022; 13:genes13040673. [PMID: 35456479 PMCID: PMC9026759 DOI: 10.3390/genes13040673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 02/05/2023] Open
Abstract
Inappropriate repair of DNA double-strand breaks (DSBs) leads to genomic instability, cell death, or malignant transformation. Cells minimize these detrimental effects by selectively activating suitable DSB repair pathways in accordance with their underlying cellular context. Here, we report that hMSH5 down-regulates NHEJ and restricts the extent of DSB end processing before rejoining, thereby reducing “excessive” deletions and insertions at repair joints. RNAi-mediated knockdown of hMSH5 led to large nucleotide deletions and longer insertions at the repair joints, while at the same time reducing the average length of microhomology (MH) at repair joints. Conversely, hMSH5 overexpression reduced end-joining activity and increased RPA foci formation (i.e., more stable ssDNA at DSB ends). Furthermore, silencing of hMSH5 delayed 53BP1 chromatin spreading, leading to increased end resection at DSB ends.
Collapse
|
14
|
DNA damage alters EGFR signaling and reprograms cellular response via Mre-11. Sci Rep 2022; 12:5760. [PMID: 35388101 PMCID: PMC8986772 DOI: 10.1038/s41598-022-09779-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/24/2022] [Indexed: 12/01/2022] Open
Abstract
To combat the various DNA lesions and their harmful effects, cells have evolved different strategies, collectively referred as DNA damage response (DDR). The DDR largely relies on intranuclear protein networks, which sense DNA lesions, recruit DNA repair enzymes, and coordinates several aspects of the cellular response, including a temporary cell cycle arrest. In addition, external cues mediated by the surface EGF receptor (EGFR) through downstream signaling pathways contribute to the cellular DNA repair capacity. However, cell cycle progression driven by EGFR activation should be reconciled with cell cycle arrest necessary for effective DNA repair. Here, we show that in damaged cells, the expression of Mig-6 (mitogen-inducible gene 6), a known regulator of EGFR signaling, is reduced resulting in heightened EGFR phosphorylation and downstream signaling. These changes in Mig-6 expression and EGFR signaling do not occur in cells deficient of Mre-11, a component of the MRN complex, playing a central role in double-strand break (DSB) repair or when cells are treated with the MRN inhibitor, mirin. RNAseq and functional analysis reveal that DNA damage induces a shift in cell response to EGFR triggering that potentiates DDR-induced p53 pathway and cell cycle arrest. These data demonstrate that the cellular response to EGFR triggering is skewed by components of the DDR, thus providing a plausible explanation for the paradox of the known role played by a growth factor such as EGFR in the DNA damage repair.
Collapse
|
15
|
Benjamin R, Banerjee A, Wu X, Geurink C, Buczek L, Eames D, Trimidal SG, Pluth JM, Schiller MR. XRCC4 and MRE11 Roles and Transcriptional Response to Repair of TALEN-Induced Double-Strand DNA Breaks. Int J Mol Sci 2022; 23:ijms23020593. [PMID: 35054780 PMCID: PMC8776116 DOI: 10.3390/ijms23020593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Double-strand breaks (DSB) are one of the most lethal forms of DNA damage that, if left unrepaired, can lead to genomic instability, cellular transformation, and cell death. In this work, we examined how repair of transcription activator-like effector nuclease (TALEN)-induced DNA damage was altered when knocking out, or inhibiting a function of, two DNA repair proteins, XRCC4 and MRE11, respectively. We developed a fluorescent reporter assay that uses TALENs to introduce DSB and detected repair by the presence of GFP fluorescence. We observed repair of TALEN-induced breaks in the XRCC4 knockout cells treated with mirin (a pharmacological inhibitor of MRE11 exonuclease activity), albeit with ~40% reduced efficiency compared to normal cells. Editing in the absence of XRCC4 or MRE11 exonuclease was robust, with little difference between the indel profiles amongst any of the groups. Reviewing the transcriptional profiles of the mirin-treated XRCC4 knockout cells showed 307 uniquely differentially expressed genes, a number far greater than for either of the other cell lines (the HeLa XRCC4 knockout sample had 83 genes, and the mirin-treated HeLa cells had 30 genes uniquely differentially expressed). Pathways unique to the XRCC4 knockout+mirin group included differential expression of p53 downstream pathways, and metabolic pathways indicating cell adaptation for energy regulation and stress response. In conclusion, our study showed that TALEN-induced DSBs are repaired, even when a key DSB repair protein or protein function is not operational, without a change in indel profiles. However, transcriptional profiles indicate the induction of unique cellular responses dependent upon the DNA repair protein(s) hampered.
Collapse
Affiliation(s)
- Ronald Benjamin
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
- Correspondence: (R.B.); (M.R.S.); Tel.: +1-(702)927-9325 (R.B.); +1-(702)895-5546 (M.R.S.)
| | - Atoshi Banerjee
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Xiaogang Wu
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
| | - Corey Geurink
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Lindsay Buczek
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Danielle Eames
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Sara G. Trimidal
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Janice M. Pluth
- Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA;
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
- Correspondence: (R.B.); (M.R.S.); Tel.: +1-(702)927-9325 (R.B.); +1-(702)895-5546 (M.R.S.)
| |
Collapse
|
16
|
So A, Dardillac E, Muhammad A, Chailleux C, Sesma-Sanz L, Ragu S, Le Cam E, Canitrot Y, Masson J, Dupaigne P, Lopez BS, Guirouilh-Barbat J. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2651-2666. [PMID: 35137208 PMCID: PMC8934640 DOI: 10.1093/nar/gkac073] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
Selection of the appropriate DNA double-strand break (DSB) repair pathway is decisive for genetic stability. It is proposed to act according to two steps: 1-canonical nonhomologous end-joining (C-NHEJ) versus resection that generates single-stranded DNA (ssDNA) stretches; 2-on ssDNA, gene conversion (GC) versus nonconservative single-strand annealing (SSA) or alternative end-joining (A-EJ). Here, we addressed the mechanisms by which RAD51 regulates this second step, preventing nonconservative repair in human cells. Silencing RAD51 or BRCA2 stimulated both SSA and A-EJ, but not C-NHEJ, validating the two-step model. Three different RAD51 dominant-negative forms (DN-RAD51s) repressed GC and stimulated SSA/A-EJ. However, a fourth DN-RAD51 repressed SSA/A-EJ, although it efficiently represses GC. In living cells, the three DN-RAD51s that stimulate SSA/A-EJ failed to load efficiently onto damaged chromatin and inhibited the binding of endogenous RAD51, while the fourth DN-RAD51, which inhibits SSA/A-EJ, efficiently loads on damaged chromatin. Therefore, the binding of RAD51 to DNA, rather than its ability to promote GC, is required for SSA/A-EJ inhibition by RAD51. We showed that RAD51 did not limit resection of endonuclease-induced DSBs, but prevented spontaneous and RAD52-induced annealing of complementary ssDNA in vitro. Therefore, RAD51 controls the selection of the DSB repair pathway, protecting genome integrity from nonconservative DSB repair through ssDNA occupancy, independently of the promotion of CG.
Collapse
Affiliation(s)
- Ayeong So
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, France
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Elodie Dardillac
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, France
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Ali Muhammad
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | | | - Laura Sesma-Sanz
- Genome Stability Laboratory, CHU de Québec Research Center (Oncology Division), Quebec City, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Sandrine Ragu
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, France
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Eric Le Cam
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | - Yvan Canitrot
- CBI, CNRS UMR5088, LBCMCP, Toulouse University, Toulouse, France
| | - Jean Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center (Oncology Division), Quebec City, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | - Bernard S Lopez
- To whom correspondence should be addressed. Tel: +33 1 53 73 27 40;
| | | |
Collapse
|
17
|
Schellenbauer A, Guilly MN, Grall R, Le Bars R, Paget V, Kortulewski T, Sutcu H, Mathé C, Hullo M, Biard D, Leteurtre F, Barroca V, Corre Y, Irbah L, Rass E, Theze B, Bertrand P, Demmers JAA, Guirouilh-Barbat J, Lopez BS, Chevillard S, Delic J. Phospho-Ku70 induced by DNA damage interacts with RNA Pol II and promotes the formation of phospho-53BP1 foci to ensure optimal cNHEJ. Nucleic Acids Res 2021; 49:11728-11745. [PMID: 34718776 PMCID: PMC8599715 DOI: 10.1093/nar/gkab980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
Canonical non-homologous end-joining (cNHEJ) is the prominent mammalian DNA double-strand breaks (DSBs) repair pathway operative throughout the cell cycle. Phosphorylation of Ku70 at ser27-ser33 (pKu70) is induced by DNA DSBs and has been shown to regulate cNHEJ activity, but the underlying mechanism remained unknown. Here, we established that following DNA damage induction, Ku70 moves from nucleoli to the sites of damage, and once linked to DNA, it is phosphorylated. Notably, the novel emanating functions of pKu70 are evidenced through the recruitment of RNA Pol II and concomitant formation of phospho-53BP1 foci. Phosphorylation is also a prerequisite for the dynamic release of Ku70 from the repair complex through neddylation-dependent ubiquitylation. Although the non-phosphorylable ala-Ku70 form does not compromise the formation of the NHEJ core complex per se, cells expressing this form displayed constitutive and stress-inducible chromosomal instability. Consistently, upon targeted induction of DSBs by the I-SceI meganuclease into an intrachromosomal reporter substrate, cells expressing pKu70, rather than ala-Ku70, are protected against the joining of distal DNA ends. Collectively, our results underpin the essential role of pKu70 in the orchestration of DNA repair execution in living cells and substantiated the way it paves the maintenance of genome stability.
Collapse
Affiliation(s)
- Amelie Schellenbauer
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Marie-Noelle Guilly
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Romain Grall
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Romain Le Bars
- Light Microscopy Facility, Imagerie-Gif, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Vincent Paget
- IRS[N]/PSE-SANTE/SERAMED/LRMed, 31, Av. De la Division Leclerc, 92260 Fontenay aux Roses, France
| | - Thierry Kortulewski
- Laboratoire de Radiopathologie, UMR Stabilité Génétique Cellules Souches et Radiations, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18 Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Haser Sutcu
- IRS[N]/PSE-SANTE/SERAMED/LRAcc, 31, Av. De la Division Leclerc, 92260 Fontenay aux Roses, France
| | - Cécile Mathé
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Marie Hullo
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Denis Biard
- Service d'étude des prions et maladies atypiques (SEPIA), DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - François Leteurtre
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Vilma Barroca
- Laboratoire Réparation et Transcription dans les cellules Souches, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Youenn Corre
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Lamya Irbah
- Plateforme de Microscopie, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U12745, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Emilie Rass
- Laboratoire de Réparation et Vieillissement; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Benoit Theze
- Laboratoire de Réparation et Vieillissement; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Pascale Bertrand
- Laboratoire de Réparation et Vieillissement; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Jeroen A A Demmers
- Proteomics Center, Room Ee-679A | Faculty Building, Erasmus University Medical Center Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Josée Guirouilh-Barbat
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Bernard S Lopez
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Sylvie Chevillard
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Jozo Delic
- To whom correspondence should be addressed. Tel: +33 1 4654 7552;
| |
Collapse
|
18
|
Bakr A, Hey J, Sigismondo G, Liu CS, Sadik A, Goyal A, Cross A, Iyer RL, Müller P, Trauernicht M, Breuer K, Lutsik P, Opitz C, Krijgsveld J, Weichenhan D, Plass C, Popanda O, Schmezer P. ID3 promotes homologous recombination via non-transcriptional and transcriptional mechanisms and its loss confers sensitivity to PARP inhibition. Nucleic Acids Res 2021; 49:11666-11689. [PMID: 34718742 PMCID: PMC8599806 DOI: 10.1093/nar/gkab964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
The inhibitor of DNA-binding 3 (ID3) is a transcriptional regulator that limits interaction of basic helix-loop-helix transcription factors with their target DNA sequences. We previously reported that ID3 loss is associated with mutational signatures linked to DNA repair defects. Here we demonstrate that ID3 exhibits a dual role to promote DNA double-strand break (DSB) repair, particularly homologous recombination (HR). ID3 interacts with the MRN complex and RECQL helicase to activate DSB repair and it facilitates RAD51 loading and downstream steps of HR. In addition, ID3 promotes the expression of HR genes in response to ionizing radiation by regulating both chromatin accessibility and activity of the transcription factor E2F1. Consistently, analyses of TCGA cancer patient data demonstrate that low ID3 expression is associated with impaired HR. The loss of ID3 leads to sensitivity of tumor cells to PARP inhibition, offering new therapeutic opportunities in ID3-deficient tumors.
Collapse
Affiliation(s)
- Ali Bakr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
- Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Gianluca Sigismondo
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), INF581, 69120 Heidelberg, Germany
| | - Chun-Shan Liu
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Ahmed Sadik
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ashish Goyal
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Alice Cross
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
- Imperial College London, London, SW7 2AZ, UK
| | - Ramya Lakshmana Iyer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Patrick Müller
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Max Trauernicht
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Kersten Breuer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Christiane A Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), INF581, 69120 Heidelberg, Germany
- Heidelberg University, Medical Faculty, INF672, 69120, Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), INF280, 69120 Heidelberg, Germany
| | - Odilia Popanda
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
DNA Repair in Haploid Context. Int J Mol Sci 2021; 22:ijms222212418. [PMID: 34830299 PMCID: PMC8620282 DOI: 10.3390/ijms222212418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 12/15/2022] Open
Abstract
DNA repair is a well-covered topic as alteration of genetic integrity underlies many pathological conditions and important transgenerational consequences. Surprisingly, the ploidy status is rarely considered although the presence of homologous chromosomes dramatically impacts the repair capacities of cells. This is especially important for the haploid gametes as they must transfer genetic information to the offspring. An understanding of the different mechanisms monitoring genetic integrity in this context is, therefore, essential as differences in repair pathways exist that differentiate the gamete’s role in transgenerational inheritance. Hence, the oocyte must have the most reliable repair capacity while sperm, produced in large numbers and from many differentiation steps, are expected to carry de novo variations. This review describes the main DNA repair pathways with a special emphasis on ploidy. Differences between Saccharomyces cerevisiae and Schizosaccharomyces pombe are especially useful to this aim as they can maintain a diploid and haploid life cycle respectively.
Collapse
|
20
|
Etourneaud L, Moussa A, Rass E, Genet D, Willaume S, Chabance-Okumura C, Wanschoor P, Picotto J, Thézé B, Dépagne J, Veaute X, Dizet E, Busso D, Barascu A, Irbah L, Kortulewski T, Campalans A, Le Chalony C, Zinn-Justin S, Scully R, Pennarun G, Bertrand P. Lamin B1 sequesters 53BP1 to control its recruitment to DNA damage. SCIENCE ADVANCES 2021; 7:eabb3799. [PMID: 34452908 PMCID: PMC8397269 DOI: 10.1126/sciadv.abb3799] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/07/2021] [Indexed: 05/09/2023]
Abstract
Double-strand breaks (DSBs) are harmful lesions and a major cause of genome instability. Studies have suggested a link between the nuclear envelope and the DNA damage response. Here, we show that lamin B1, a major component of the nuclear envelope, interacts directly with 53BP1 protein, which plays a pivotal role in the DSB repair. This interaction is dissociated after DNA damage. Lamin B1 overexpression impedes 53BP1 recruitment to DNA damage sites and leads to a persistence of DNA damage, a defect in nonhomologous end joining and an increased sensitivity to DSBs. The identification of interactions domains between lamin B1 and 53BP1 allows us to demonstrate that the defect of 53BP1 recruitment and the DSB persistence upon lamin B1 overexpression are due to sequestration of 53BP1 by lamin B1. This study highlights lamin B1 as a factor controlling the recruitment of 53BP1 to DNA damage sites upon injury.
Collapse
Affiliation(s)
- Laure Etourneaud
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Angela Moussa
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Emilie Rass
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Diane Genet
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Simon Willaume
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Caroline Chabance-Okumura
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Paul Wanschoor
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Julien Picotto
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Benoît Thézé
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Jordane Dépagne
- Genetic Engineering and Expression Platform (CIGEX), iRCM, DRF, CEA, Fontenay-aux-Roses, France
| | - Xavier Veaute
- Genetic Engineering and Expression Platform (CIGEX), iRCM, DRF, CEA, Fontenay-aux-Roses, France
| | - Eléa Dizet
- Genetic Engineering and Expression Platform (CIGEX), iRCM, DRF, CEA, Fontenay-aux-Roses, France
| | - Didier Busso
- Genetic Engineering and Expression Platform (CIGEX), iRCM, DRF, CEA, Fontenay-aux-Roses, France
| | - Aurélia Barascu
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Lamya Irbah
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- Imaging platform, iRCM, DRF, CEA, F-92265 Fontenay-aux-Roses, France
| | - Thierry Kortulewski
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "Radiopathology" Team, iRCM/IBFJ, DRF, CEA, France
| | - Anna Campalans
- Université de Paris and Université Paris Saclay, iRCM/IBFJ, CEA, UMR Stabilité Génétique Cellules Souches et Radiations, "Genetic Instability Research" Team, F-92265 Fontenay-aux-Roses, France
| | - Catherine Le Chalony
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Sophie Zinn-Justin
- Laboratory of Structural Biology and Radiobiology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France
| | - Ralph Scully
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Gaëlle Pennarun
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Pascale Bertrand
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France.
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| |
Collapse
|
21
|
Tatin X, Muggiolu G, Sauvaigo S, Breton J. Evaluation of DNA double-strand break repair capacity in human cells: Critical overview of current functional methods. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108388. [PMID: 34893153 DOI: 10.1016/j.mrrev.2021.108388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
DNA double-strand breaks (DSBs) are highly deleterious lesions, responsible for mutagenesis, chromosomal translocation or cell death. DSB repair (DSBR) is therefore a critical part of the DNA damage response (DDR) to restore molecular and genomic integrity. In humans, this process is achieved through different pathways with various outcomes. The balance between DSB repair activities varies depending on cell types, tissues or individuals. Over the years, several methods have been developed to study variations in DSBR capacity. Here, we mainly focus on functional techniques, which provide dynamic information regarding global DSB repair proficiency or the activity of specific pathways. These methods rely on two kinds of approaches. Indirect techniques, such as pulse field gel electrophoresis (PFGE), the comet assay and immunofluorescence (IF), measure DSB repair capacity by quantifying the time-dependent decrease in DSB levels after exposure to a DNA-damaging agent. On the other hand, cell-free assays and reporter-based methods directly track the repair of an artificial DNA substrate. Each approach has intrinsic advantages and limitations and despite considerable efforts, there is currently no ideal method to quantify DSBR capacity. All techniques provide different information and can be regarded as complementary, but some studies report conflicting results. Parameters such as the type of biological material, the required equipment or the cost of analysis may also limit available options. Improving currently available methods measuring DSBR capacity would be a major step forward and we present direct applications in mechanistic studies, drug development, human biomonitoring and personalized medicine, where DSBR analysis may improve the identification of patients eligible for chemo- and radiotherapy.
Collapse
Affiliation(s)
- Xavier Tatin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France; LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | | | - Sylvie Sauvaigo
- LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | - Jean Breton
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France.
| |
Collapse
|
22
|
Tomasini PP, Guecheva TN, Leguisamo NM, Péricart S, Brunac AC, Hoffmann JS, Saffi J. Analyzing the Opportunities to Target DNA Double-Strand Breaks Repair and Replicative Stress Responses to Improve Therapeutic Index of Colorectal Cancer. Cancers (Basel) 2021; 13:3130. [PMID: 34201502 PMCID: PMC8268241 DOI: 10.3390/cancers13133130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the ample improvements of CRC molecular landscape, the therapeutic options still rely on conventional chemotherapy-based regimens for early disease, and few targeted agents are recommended for clinical use in the metastatic setting. Moreover, the impact of cytotoxic, targeted agents, and immunotherapy combinations in the metastatic scenario is not fully satisfactory, especially the outcomes for patients who develop resistance to these treatments need to be improved. Here, we examine the opportunity to consider therapeutic agents targeting DNA repair and DNA replication stress response as strategies to exploit genetic or functional defects in the DNA damage response (DDR) pathways through synthetic lethal mechanisms, still not explored in CRC. These include the multiple actors involved in the repair of DNA double-strand breaks (DSBs) through homologous recombination (HR), classical non-homologous end joining (NHEJ), and microhomology-mediated end-joining (MMEJ), inhibitors of the base excision repair (BER) protein poly (ADP-ribose) polymerase (PARP), as well as inhibitors of the DNA damage kinases ataxia-telangiectasia and Rad3 related (ATR), CHK1, WEE1, and ataxia-telangiectasia mutated (ATM). We also review the biomarkers that guide the use of these agents, and current clinical trials with targeted DDR therapies.
Collapse
Affiliation(s)
- Paula Pellenz Tomasini
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
- Post-Graduation Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| | - Temenouga Nikolova Guecheva
- Cardiology Institute of Rio Grande do Sul, University Foundation of Cardiology (IC-FUC), Porto Alegre 90620-000, Brazil;
| | - Natalia Motta Leguisamo
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
| | - Sarah Péricart
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Anne-Cécile Brunac
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Jean Sébastien Hoffmann
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
- Post-Graduation Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| |
Collapse
|
23
|
Matos-Rodrigues G, Guirouilh-Barbat J, Martini E, Lopez BS. Homologous recombination, cancer and the 'RAD51 paradox'. NAR Cancer 2021; 3:zcab016. [PMID: 34316706 PMCID: PMC8209977 DOI: 10.1093/narcan/zcab016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 01/22/2023] Open
Abstract
Genetic instability is a hallmark of cancer cells. Homologous recombination (HR) plays key roles in genome stability and variability due to its roles in DNA double-strand break and interstrand crosslink repair, and in the protection and resumption of arrested replication forks. HR deficiency leads to genetic instability, and, as expected, many HR genes are downregulated in cancer cells. The link between HR deficiency and cancer predisposition is exemplified by familial breast and ovarian cancers and by some subgroups of Fanconi anaemia syndromes. Surprisingly, although RAD51 plays a pivotal role in HR, i.e., homology search and in strand exchange with a homologous DNA partner, almost no inactivating mutations of RAD51 have been associated with cancer predisposition; on the contrary, overexpression of RAD51 is associated with a poor prognosis in different types of tumours. Taken together, these data highlight the fact that RAD51 differs from its HR partners with regard to cancer susceptibility and expose what we call the ‘RAD51 paradox’. Here, we catalogue the dysregulations of HR genes in human pathologies, including cancer and Fanconi anaemia or congenital mirror movement syndromes, and we discuss the RAD51 paradox.
Collapse
Affiliation(s)
- Gabriel Matos-Rodrigues
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, F-75014, France
| | - Josée Guirouilh-Barbat
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, F-75014, France
| | - Emmanuelle Martini
- Université de Paris and Université Paris-Saclay, Laboratory of Development of the Gonads, IRCM/IBFJ CEA, UMR Genetic Stability, Stem Cells and Radiation, F-92265 Fontenay aux Roses, France
| | - Bernard S Lopez
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, F-75014, France
| |
Collapse
|
24
|
Roisné-Hamelin F, Pobiega S, Jézéquel K, Miron S, Dépagne J, Veaute X, Busso D, Du MHL, Callebaut I, Charbonnier JB, Cuniasse P, Zinn-Justin S, Marcand S. Mechanism of MRX inhibition by Rif2 at telomeres. Nat Commun 2021; 12:2763. [PMID: 33980827 PMCID: PMC8115599 DOI: 10.1038/s41467-021-23035-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Specific proteins present at telomeres ensure chromosome end stability, in large part through unknown mechanisms. In this work, we address how the Saccharomyces cerevisiae ORC-related Rif2 protein protects telomere. We show that the small N-terminal Rif2 BAT motif (Blocks Addition of Telomeres) previously known to limit telomere elongation and Tel1 activity is also sufficient to block NHEJ and 5' end resection. The BAT motif inhibits the ability of the Mre11-Rad50-Xrs2 complex (MRX) to capture DNA ends. It acts through a direct contact with Rad50 ATP-binding Head domains. Through genetic approaches guided by structural predictions, we identify residues at the surface of Rad50 that are essential for the interaction with Rif2 and its inhibition. Finally, a docking model predicts how BAT binding could specifically destabilise the DNA-bound state of the MRX complex. From these results, we propose that when an MRX complex approaches a telomere, the Rif2 BAT motif binds MRX Head in its ATP-bound resting state. This antagonises MRX transition to its DNA-bound state, and favours a rapid return to the ATP-bound state. Unable to stably capture the telomere end, the MRX complex cannot proceed with the subsequent steps of NHEJ, Tel1-activation and 5' resection.
Collapse
Affiliation(s)
- Florian Roisné-Hamelin
- Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Sabrina Pobiega
- Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Kévin Jézéquel
- Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Simona Miron
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Jordane Dépagne
- CIGEx, Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Xavier Veaute
- CIGEx, Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Didier Busso
- CIGEx, Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Marie-Hélène Le Du
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Jean-Baptiste Charbonnier
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Philippe Cuniasse
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sophie Zinn-Justin
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphane Marcand
- Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France.
| |
Collapse
|
25
|
Mouse Models for Deciphering the Impact of Homologous Recombination on Tumorigenesis. Cancers (Basel) 2021; 13:cancers13092083. [PMID: 33923105 PMCID: PMC8123484 DOI: 10.3390/cancers13092083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
Homologous recombination (HR) is a fundamental evolutionarily conserved process that plays prime role(s) in genome stability maintenance through DNA repair and through the protection and resumption of arrested replication forks. Many HR genes are deregulated in cancer cells. Notably, the breast cancer genes BRCA1 and BRCA2, two important HR players, are the most frequently mutated genes in familial breast and ovarian cancer. Transgenic mice constitute powerful tools to unravel the intricate mechanisms controlling tumorigenesis in vivo. However, the genes central to HR are essential in mammals, and their knockout leads to early embryonic lethality in mice. Elaborated strategies have been developed to overcome this difficulty, enabling one to analyze the consequences of HR disruption in vivo. In this review, we first briefly present the molecular mechanisms of HR in mammalian cells to introduce each factor in the HR process. Then, we present the different mouse models of HR invalidation and the consequences of HR inactivation on tumorigenesis. Finally, we discuss the use of mouse models for the development of targeted cancer therapies as well as perspectives on the future potential for understanding the mechanisms of HR inactivation-driven tumorigenesis in vivo.
Collapse
|
26
|
Willaume S, Rass E, Fontanilla-Ramirez P, Moussa A, Wanschoor P, Bertrand P. A Link between Replicative Stress, Lamin Proteins, and Inflammation. Genes (Basel) 2021; 12:genes12040552. [PMID: 33918867 PMCID: PMC8070205 DOI: 10.3390/genes12040552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Double-stranded breaks (DSB), the most toxic DNA lesions, are either a consequence of cellular metabolism, programmed as in during V(D)J recombination, or induced by anti-tumoral therapies or accidental genotoxic exposure. One origin of DSB sources is replicative stress, a major source of genome instability, especially when the integrity of the replication forks is not properly guaranteed. To complete stalled replication, restarting the fork requires complex molecular mechanisms, such as protection, remodeling, and processing. Recently, a link has been made between DNA damage accumulation and inflammation. Indeed, defects in DNA repair or in replication can lead to the release of DNA fragments in the cytosol. The recognition of this self-DNA by DNA sensors leads to the production of inflammatory factors. This beneficial response activating an innate immune response and destruction of cells bearing DNA damage may be considered as a novel part of DNA damage response. However, upon accumulation of DNA damage, a chronic inflammatory cellular microenvironment may lead to inflammatory pathologies, aging, and progression of tumor cells. Progress in understanding the molecular mechanisms of DNA damage repair, replication stress, and cytosolic DNA production would allow to propose new therapeutical strategies against cancer or inflammatory diseases associated with aging. In this review, we describe the mechanisms involved in DSB repair, the replicative stress management, and its consequences. We also focus on new emerging links between key components of the nuclear envelope, the lamins, and DNA repair, management of replicative stress, and inflammation.
Collapse
|
27
|
Repair of programmed DNA lesions in antibody class switch recombination: common and unique features. ACTA ACUST UNITED AC 2021; 2:115-125. [PMID: 33817557 PMCID: PMC7996122 DOI: 10.1007/s42764-021-00035-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 01/31/2023]
Abstract
The adaptive immune system can diversify the antigen receptors to eliminate various pathogens through programmed DNA lesions at antigen receptor genes. In immune diversification, general DNA repair machineries are applied to transform the programmed DNA lesions into gene mutation or recombination events with common and unique features. Here we focus on antibody class switch recombination (CSR), and review the initiation of base damages, the conversion of damaged base to DNA double-strand break, and the ligation of broken ends. With an emphasis on the unique features in CSR, we discuss recent advances in the understanding of DNA repair/replication coordination, and ERCC6L2-mediated deletional recombination. We further elaborate the application of CSR in end-joining, resection and translesion synthesis assays. In the time of the COVID-19 pandemic, we hope it help to understand the generation of therapeutic antibodies.
Collapse
|
28
|
Single-Strand Annealing in Cancer. Int J Mol Sci 2021; 22:ijms22042167. [PMID: 33671579 PMCID: PMC7926775 DOI: 10.3390/ijms22042167] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/23/2022] Open
Abstract
DNA double-strand breaks (DSBs) are among the most serious forms of DNA damage. In humans, DSBs are repaired mainly by non-homologous end joining (NHEJ) and homologous recombination repair (HRR). Single-strand annealing (SSA), another DSB repair system, uses homologous repeats flanking a DSB to join DNA ends and is error-prone, as it removes DNA fragments between repeats along with one repeat. Many DNA deletions observed in cancer cells display homology at breakpoint junctions, suggesting the involvement of SSA. When multiple DSBs occur in different chromosomes, SSA may result in chromosomal translocations, essential in the pathogenesis of many cancers. Inhibition of RAD52 (RAD52 Homolog, DNA Repair Protein), the master regulator of SSA, results in decreased proliferation of BRCA1/2 (BRCA1/2 DNA Repair Associated)-deficient cells, occurring in many hereditary breast and ovarian cancer cases. Therefore, RAD52 may be targeted in synthetic lethality in cancer. SSA may modulate the response to platinum-based anticancer drugs and radiation. SSA may increase the efficacy of the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR associated 9) genome editing and reduce its off-target effect. Several basic problems associated with SSA, including its evolutionary role, interplay with HRR and NHEJ and should be addressed to better understand its role in cancer pathogenesis and therapy.
Collapse
|
29
|
Qiu S, Huang J. MRN complex is an essential effector of DNA damage repair. J Zhejiang Univ Sci B 2021; 22:31-37. [PMID: 33448185 PMCID: PMC7818010 DOI: 10.1631/jzus.b2000289] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/16/2020] [Indexed: 01/01/2023]
Abstract
Genome stability can be threatened by both endogenous and exogenous agents. Organisms have evolved numerous mechanisms to repair DNA damage, including homologous recombination (HR) and non-homologous end joining (NHEJ). Among the factors associated with DNA repair, the MRE11-RAD50-NBS1 (MRN) complex (MRE11-RAD50-XRS2 in Saccharomyces cerevisiae) plays important roles not only in DNA damage recognition and signaling but also in subsequent HR or NHEJ repair. Upon detecting DNA damage, the MRN complex activates signaling molecules, such as the protein kinase ataxia-telangiectasia mutated (ATM), to trigger a broad DNA damage response, including cell cycle arrest. The nuclease activity of the MRN complex is responsible for DNA end resection, which guides DNA repair to HR in the presence of sister chromatids. The MRN complex is also involved in NHEJ, and has a species-specific role in hairpin repair. This review focuses on the structure of the MRN complex and its function in DNA damage repair.
Collapse
Affiliation(s)
- Shan Qiu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining 314400, China
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
30
|
Eki R, She J, Parlak M, Benamar M, Du KP, Kumar P, Abbas T. A robust CRISPR-Cas9-based fluorescent reporter assay for the detection and quantification of DNA double-strand break repair. Nucleic Acids Res 2020; 48:e126. [PMID: 33068408 PMCID: PMC7708081 DOI: 10.1093/nar/gkaa897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 12/30/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic lesions that can lead to chromosome rearrangements, genomic instability and cell death. Consequently, cells have evolved multiple mechanisms to efficiently repair DSBs to preserve genomic integrity. We have developed a DSB repair assay system, designated CDDR (CRISPR-Cas9-based Dual-fluorescent DSB Repair), that enables the detection and quantification of DSB repair outcomes in mammalian cells with high precision. CDDR is based on the introduction and subsequent resolution of one or two DSB(s) in an intrachromosomal fluorescent reporter following the expression of Cas9 and sgRNAs targeting the reporter. CDDR can discriminate between high-fidelity (HF) and error-prone non-homologous end-joining (NHEJ), as well as between proximal and distal NHEJ repair. Furthermore, CDDR can detect homology-directed repair (HDR) with high sensitivity. Using CDDR, we found HF-NHEJ to be strictly dependent on DNA Ligase IV, XRCC4 and XLF, members of the canonical branch of NHEJ pathway (c-NHEJ). Loss of these genes also stimulated HDR, and promoted error-prone distal end-joining. Deletion of the DNA repair kinase ATM, on the other hand, stimulated HF-NHEJ and suppressed HDR. These findings demonstrate the utility of CDDR in characterizing the effect of repair factors and in elucidating the balance between competing DSB repair pathways.
Collapse
Affiliation(s)
- Rebeka Eki
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22908, USA.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.,Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA
| | - Jane She
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22908, USA
| | - Mahmut Parlak
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22908, USA
| | - Mouadh Benamar
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22908, USA.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.,Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA
| | - Kang-Ping Du
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22908, USA
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Tarek Abbas
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22908, USA.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.,Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA.,Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
31
|
Yang CY, Chanalaris A, Bonelli S, McClurg O, Hiles GL, Cates AL, Zarebska JM, Vincent TL, Day ML, Müller SA, Lichtenthaler SF, Nagase H, Scilabra SD, Troeberg L. Interleukin 13 (IL-13)-regulated expression of the chondroprotective metalloproteinase ADAM15 is reduced in aging cartilage. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100128. [PMID: 33381768 PMCID: PMC7762825 DOI: 10.1016/j.ocarto.2020.100128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
Objective The adamalysin metalloproteinase 15 (ADAM15) has been shown to protect against development of osteoarthritis in mice. Here, we have investigated factors that control ADAM15 levels in cartilage. Design Secretomes from wild-type and Adam15−/− chondrocytes were compared by label-free quantitative mass spectrometry. mRNA was isolated from murine knee joints, either with or without surgical induction of osteoarthritis on male C57BL/6 mice, and the expression of Adam15 and other related genes quantified by RT-qPCR. ADAM15 in human normal and osteoarthritic cartilage was investigated similarly and by fluorescent immunohistochemistry. Cultured HTB94 chondrosarcoma cells were treated with various anabolic and catabolic stimuli, and ADAM15 mRNA and protein levels evaluated. Results There were no significant differences in the secretomes of chondrocytes from WT and Adam15−/− cartilage. Expression of ADAM15 was not altered in either human or murine osteoarthritic cartilage relative to disease-free controls. However, expression of ADAM15 was markedly reduced upon aging in both species, to the extent that expression in joints of 18-month-old mice was 45-fold lower than in that 4.5-month-old animals. IL-13 increased expression of ADAM15 in HTB94 cells by 2.5-fold, while modulators of senescence and autophagy pathways had no effect. Expression of Il13 in the joint was reduced with aging, suggesting this cytokine may control ADAM15 levels in the joint. Conclusion Expression of the chondroprotective metalloproteinase ADAM15 is reduced in aging human and murine joints, possibly due to a concomitant reduction in IL-13 expression. We thus propose IL-13 as a novel factor contributing to increased osteoarthritis risk upon aging.
Collapse
Affiliation(s)
- C Y Yang
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - A Chanalaris
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - S Bonelli
- Fondazione Ri.MED - ISMETT, Department of Research, Via Ernesto Tricomi 5, 90145, Palermo, Italy
| | - O McClurg
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Rosalind Franklin Road, Norwich, NR4 7UQ, United Kingdom
| | - G Lorenzatti Hiles
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - A L Cates
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - J Miotla Zarebska
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - T L Vincent
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - M L Day
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - S A Müller
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - S F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - H Nagase
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - S D Scilabra
- Fondazione Ri.MED - ISMETT, Department of Research, Via Ernesto Tricomi 5, 90145, Palermo, Italy.,German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - L Troeberg
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom.,Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Rosalind Franklin Road, Norwich, NR4 7UQ, United Kingdom
| |
Collapse
|
32
|
Patterson-Fortin J, D'Andrea AD. Exploiting the Microhomology-Mediated End-Joining Pathway in Cancer Therapy. Cancer Res 2020; 80:4593-4600. [PMID: 32651257 PMCID: PMC7641946 DOI: 10.1158/0008-5472.can-20-1672] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 07/07/2020] [Indexed: 01/16/2023]
Abstract
Repair of DNA double-strand breaks (DSB) is performed by two major pathways, homology-dependent repair and classical nonhomologous end-joining. Recent studies have identified a third pathway, microhomology-mediated end-joining (MMEJ). MMEJ has similarities to homology-dependent repair, in that repair is initiated with end resection, leading to single-stranded 3' ends, which require microhomology upstream and downstream of the DSB. Importantly, the MMEJ pathway is commonly upregulated in cancers, especially in homologous recombination-deficient cancers, which display a distinctive mutational signature. Here, we review the molecular process of MMEJ as well as new targets and approaches exploiting the MMEJ pathway in cancer therapy.
Collapse
Affiliation(s)
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
33
|
Wang LP, Chen TY, Kang CK, Huang HP, Chen SL. BCAS2, a protein enriched in advanced prostate cancer, interacts with NBS1 to enhance DNA double-strand break repair. Br J Cancer 2020; 123:1796-1807. [PMID: 32963349 PMCID: PMC7723048 DOI: 10.1038/s41416-020-01086-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022] Open
Abstract
Background Breast cancer amplified sequence 2 (BCAS2) plays crucial roles in pre-mRNA splicing and androgen receptor transcription. Previous studies suggested that BCAS2 is involved in double-strand breaks (DSB); therefore, we aimed to characterise its mechanism and role in prostate cancer (PCa). Methods Western blotting and immunofluorescence microscopy were used to assay the roles of BCAS2 in the DSBs of PCa cells and apoptosis in Drosophila, respectively. The effect of BCAS2 dosage on non-homologous end joining (NHEJ) and homologous recombination (HR) were assayed by precise end-joining assay and flow cytometry, respectively. Glutathione-S-transferase pulldown and co-immunoprecipitation assays were used to determine whether and how BCAS2 interacts with NBS1. The expression of BCAS2 and other proteins in human PCa was determined by immunohistochemistry. Results BCAS2 helped repair radiation-induced DSBs efficiently in both human PCa cells and Drosophila. BCAS2 enhanced both NHEJ and HR, possibly by interacting with NBS1, which involved the BCAS2 N-terminus as well as both the NBS1 N- and C-termini. The overexpression of BCAS2 was significantly associated with higher Gleason and pathology grades and shorter survival in patients with PCa. Conclusion BCAS2 promotes two DSB repair pathways by interacting with NBS1, and it may affect PCa progression.
Collapse
Affiliation(s)
- Li-Po Wang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Yu Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Kai Kang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
34
|
A Survey of Reported Disease-Related Mutations in the MRE11-RAD50-NBS1 Complex. Cells 2020; 9:cells9071678. [PMID: 32668560 PMCID: PMC7407228 DOI: 10.3390/cells9071678] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
The MRE11-RAD50-NBS1 (MRN) protein complex is one of the primary vehicles for repairing DNA double strand breaks and maintaining the genomic stability within the cell. The role of the MRN complex to recognize and process DNA double-strand breaks as well as signal other damage response factors is critical for maintaining proper cellular function. Mutations in any one of the components of the MRN complex that effect function or expression of the repair machinery could be detrimental to the cell and may initiate and/or propagate disease. Here, we discuss, in a structural and biochemical context, mutations in each of the three MRN components that have been associated with diseases such as ataxia telangiectasia-like disorder (ATLD), Nijmegen breakage syndrome (NBS), NBS-like disorder (NBSLD) and certain types of cancers. Overall, deepening our understanding of disease-causing mutations of the MRN complex at the structural and biochemical level is foundational to the future aim of treating diseases associated with these aberrations.
Collapse
|
35
|
Xu Z, Zhang J, Cheng X, Tang Y, Gong Z, Gu M, Yu H. COM1, a factor of alternative non-homologous end joining, lagging behind the classic non-homologous end joining pathway in rice somatic cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:140-153. [PMID: 32022972 DOI: 10.1111/tpj.14715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
The role of rice (Oryza sativa) COM1 in meiotic homologous recombination (HR) is well understood, but its part in somatic double-stranded break (DSB) repair remains unclear. Here, we show that for rice plants COM1 conferred tolerance against DNA damage caused by the chemicals bleomycin and mitomycin C, while the COM1 mutation did not compromise HR efficiencies and HR factor (RAD51 and RAD51 paralogues) localization to irradiation-induced DSBs. Similar retarded growth at the post-germination stage was observed in the com1-2 mre11 double mutant and the mre11 single mutant, while combined mutations in COM1 with the HR pathway gene (RAD51C) or classic non-homologous end joining (NHEJ) pathway genes (KU70, KU80, and LIG4) caused more phenotypic defects. In response to γ-irradiation, COM1 was loaded normally onto DSBs in the ku70 mutant, but could not be properly loaded in the MRE11RNAi plant and in the wortmannin-treated wild-type plant. Under non-irradiated conditions, more DSB sites were occupied by factors (MRE11, COM1, and LIG4) than RAD51 paralogues (RAD51B, RAD51C, and XRCC3) in the nucleus of wild-type; protein loading of COM1 and XRCC3 was increased in the ku70 mutant. Therefore, quite differently to its role for HR in meiocytes, rice COM1 specifically acts in an alternative NHEJ pathway in somatic cells, based on the Mre11-Rad50-Nbs1 (MRN) complex and facilitated by PI3K-like kinases. NHEJ factors, not HR factors, preferentially load onto endogenous DSBs, with KU70 restricting DSB localization of COM1 and XRCC3 in plant somatic cells.
Collapse
Affiliation(s)
- Zhan Xu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Jianxiang Zhang
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Xinjie Cheng
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yujie Tang
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zhiyun Gong
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Minghong Gu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
36
|
Reginato G, Cejka P. The MRE11 complex: A versatile toolkit for the repair of broken DNA. DNA Repair (Amst) 2020; 91-92:102869. [PMID: 32480356 DOI: 10.1016/j.dnarep.2020.102869] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
When DNA breaks, the ends need to be stabilized and processed to facilitate subsequent repair, which can occur by either direct but error-prone end-joining with another broken DNA molecule or a more accurate homology-directed repair by the recombination machinery. At the same time, the presence of broken DNA triggers a signaling cascade that regulates the repair events and cellular progression through the cell cycle. The MRE11 nuclease, together with RAD50 and NBS1 forms a complex termed MRN that participates in all these processes. Although MRE11 was first identified more than 20 years ago, deep insights into its mechanism of action and regulation are much more recent. Here we review how MRE11 functions within MRN, and how the complex is further regulated by CtIP and its phosphorylation in a cell cycle dependent manner. We describe how RAD50, NBS1 and CtIP convert MRE11, exhibiting per se a 3'→5' exonuclease activity, into an ensemble that instead degrades primarily the 5'-terminated strand by endonucleolytic cleavage at DNA break sites to generate 3' overhangs, as required for the initiation of homologous recombination. The unique mechanism of DNA end resection by MRN-CtIP makes it a very flexible toolkit to process DNA breaks with a variety of secondary structures and protein blocks. Such a block can also be the Ku heterodimer, and emerging evidence suggests that MRN-CtIP may often need to remove Ku from DNA ends before initiating homologous recombination. Misregulation of DNA break repair results in mutations and chromosome rearrangements that can drive cancer development. Therefore, a detailed understanding of the underlying processes is highly relevant for human health.
Collapse
Affiliation(s)
- Giordano Reginato
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
| |
Collapse
|
37
|
Wienert B, Wyman SK, Yeh CD, Conklin BR, Corn JE. CRISPR off-target detection with DISCOVER-seq. Nat Protoc 2020; 15:1775-1799. [PMID: 32313254 DOI: 10.1038/s41596-020-0309-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/06/2020] [Indexed: 11/09/2022]
Abstract
DISCOVER-seq (discovery of in situ Cas off-targets and verification by sequencing) is a broadly applicable approach for unbiased CRISPR-Cas off-target identification in cells and tissues. It leverages the recruitment of DNA repair factors to double-strand breaks (DSBs) after genome editing with CRISPR nucleases. Here, we describe a detailed experimental protocol and analysis pipeline with which to perform DISCOVER-seq. The principle of this method is to track the precise recruitment of MRE11 to DSBs by chromatin immunoprecipitation followed by next-generation sequencing. A customized open-source bioinformatics pipeline, BLENDER (blunt end finder), then identifies off-target sequences genome wide. DISCOVER-seq is capable of finding and measuring off-targets in primary cells and in situ. The two main advantages of DISCOVER-seq are (i) low false-positive rates because DNA repair enzyme binding is required for genome edits to occur and (ii) its applicability to a wide variety of systems, including patient-derived cells and animal models. The whole protocol, including the analysis, can be completed within 2 weeks.
Collapse
Affiliation(s)
- Beeke Wienert
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA. .,Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, California, USA.
| | - Stacia K Wyman
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA
| | - Charles D Yeh
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Bruce R Conklin
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA.,Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, California, USA.,Departments of Medicine, Ophthalmology & Pharmacology, University of California, San Francisco, San Francisco, California, USA
| | - Jacob E Corn
- Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
38
|
Ragu S, Matos-Rodrigues G, Lopez BS. Replication Stress, DNA Damage, Inflammatory Cytokines and Innate Immune Response. Genes (Basel) 2020; 11:E409. [PMID: 32283785 PMCID: PMC7230342 DOI: 10.3390/genes11040409] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022] Open
Abstract
Complete and accurate DNA replication is essential to genome stability maintenance during cellular division. However, cells are routinely challenged by endogenous as well as exogenous agents that threaten DNA stability. DNA breaks and the activation of the DNA damage response (DDR) arising from endogenous replication stress have been observed at pre- or early stages of oncogenesis and senescence. Proper detection and signalling of DNA damage are essential for the autonomous cellular response in which the DDR regulates cell cycle progression and controls the repair machinery. In addition to this autonomous cellular response, replicative stress changes the cellular microenvironment, activating the innate immune response that enables the organism to protect itself against the proliferation of damaged cells. Thereby, the recent descriptions of the mechanisms of the pro-inflammatory response activation after replication stress, DNA damage and DDR defects constitute important conceptual novelties. Here, we review the links of replication, DNA damage and DDR defects to innate immunity activation by pro-inflammatory paracrine effects, highlighting the implications for human syndromes and immunotherapies.
Collapse
Affiliation(s)
| | | | - Bernard S. Lopez
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Université de Paris, Equipe Labellisée Ligue Contre le Cancer, 24 rue du Faubourg St Jacques, 75014 Paris, France; (S.R.); (G.M.-R.)
| |
Collapse
|
39
|
He D, Li T, Sheng M, Yang B. Exonuclease 1 (Exo1) Participates in Mammalian Non-Homologous End Joining and Contributes to Drug Resistance in Ovarian Cancer. Med Sci Monit 2020; 26:e918751. [PMID: 32167078 PMCID: PMC7092659 DOI: 10.12659/msm.918751] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Exonuclease 1 (Exo1) participates in a variety of DNA damage repair, including mismatch repair, nucleotide excision repair, and homologous recombination. Genetic study in yeast indicates a role of Exo1 in non-homologous end joining (NHEJ), acting as a regulator for accuracy repairing DNA. This study aimed to investigate the effects of human Exo1 in NHEJ and drug resistance in ovarian cells. Material/Methods Ectopic expression of Exo1 was carried out using pcDNA3.1-EXO1 plasmid in SKOV3 cells. GST-tagged human Exo1 was purified using pTXB1-gst-EXO1 and the his-tagged-Ku was collected using pET15b.his.Ku. Exo1 and Ku70 proteins expressed in bacteria were harvested and purified. DNA-protein binding was examined using affinity capture assay. The cells were treated using drugs for 72 hours. Then, the viabilities of cells were evaluated with sulforhodamine B cell viability analysis. The protein expression was evaluated using western blot assay. Results As expected, human cells that deficient of Exo1 were sensitive to ionizing radiation and DNA damaging drugs (cisplatin and doxorubicin). Cisplatin resistant ovarian cancer cell line and Exo1 deficient cell lines were successfully generated. Exo1 interacts with NHEJ required factor Ku70 and affects NHEJ efficiency. We observed that Exo1 expression level was upregulated in drug resistant cell line and knockdown of Exo1 in drug resistant cells sensitized cells to cisplatin and doxorubicin. Conclusions Exo1 participated in mammalian non-homologous end joining and contributed to drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Dongyun He
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Tao Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Minjia Sheng
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Ben Yang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
40
|
Miller DE. Synaptonemal Complex-Deficient Drosophila melanogaster Females Exhibit Rare DSB Repair Events, Recurrent Copy-Number Variation, and an Increased Rate of de Novo Transposable Element Movement. G3 (BETHESDA, MD.) 2020; 10:525-537. [PMID: 31882405 PMCID: PMC7003089 DOI: 10.1534/g3.119.400853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/23/2019] [Indexed: 01/11/2023]
Abstract
Genetic stability depends on the maintenance of a variety of chromosome structures and the precise repair of DNA breaks. During meiosis, programmed double-strand breaks (DSBs) made in prophase I are normally repaired as gene conversions or crossovers. DSBs can also be made by other mechanisms, such as the movement of transposable elements (TEs), which must also be resolved. Incorrect repair of these DNA lesions can lead to mutations, copy-number changes, translocations, and/or aneuploid gametes. In Drosophila melanogaster, as in most organisms, meiotic DSB repair occurs in the presence of a rapidly evolving multiprotein structure called the synaptonemal complex (SC). Here, whole-genome sequencing is used to investigate the fate of meiotic DSBs in D. melanogaster mutant females lacking functional SC, to assay for de novo CNV formation, and to examine the role of the SC in transposable element movement in flies. The data indicate that, in the absence of SC, copy-number variation still occurs and meiotic DSB repair by gene conversion occurs infrequently. Remarkably, an 856-kilobase de novo CNV was observed in two unrelated individuals of different genetic backgrounds and was identical to a CNV recovered in a previous wild-type study, suggesting that recurrent formation of large CNVs occurs in Drosophila. In addition, the rate of novel TE insertion was markedly higher than wild type in one of two SC mutants tested, suggesting that SC proteins may contribute to the regulation of TE movement and insertion in the genome. Overall, this study provides novel insight into the role that the SC plays in genome stability and provides clues as to why the sequence, but not structure, of SC proteins is rapidly evolving.
Collapse
Affiliation(s)
- Danny E Miller
- Division of Medical Genetics, Department of Medicine, and
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98105, and
- Seattle Children's Hospital, Seattle, Washington 98105
| |
Collapse
|
41
|
Warmerdam DO, Alonso‐de Vega I, Wiegant WW, van den Broek B, Rother MB, Wolthuis RMF, Freire R, van Attikum H, Medema RH, Smits VAJ. PHF6 promotes non-homologous end joining and G2 checkpoint recovery. EMBO Rep 2020; 21:e48460. [PMID: 31782600 PMCID: PMC6944915 DOI: 10.15252/embr.201948460] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
The cellular response to DNA breaks is influenced by chromatin compaction. To identify chromatin regulators involved in the DNA damage response, we screened for genes that affect recovery following DNA damage using an RNAi library of chromatin regulators. We identified genes involved in chromatin remodeling, sister chromatid cohesion, and histone acetylation not previously associated with checkpoint recovery. Among these is the PHD finger protein 6 (PHF6), a gene mutated in Börjeson-Forssman-Lehmann syndrome and leukemic cancers. We find that loss of PHF6 dramatically compromises checkpoint recovery in G2 phase cells. Moreover, PHF6 is rapidly recruited to sites of DNA lesions in a PARP-dependent manner and required for efficient DNA repair through classical non-homologous end joining. These results indicate that PHF6 is a novel DNA damage response regulator that promotes end joining-mediated repair, thereby stimulating timely recovery from the G2 checkpoint.
Collapse
Affiliation(s)
- Daniël O Warmerdam
- CRISPR PlatformCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Division of Cell BiologyOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Ignacio Alonso‐de Vega
- Unidad de InvestigaciónHospital Universitario de CanariasLa LagunaTenerifeSpain
- Instituto de Tecnologías BiomédicasUniversidad de La LagunaTenerifeSpain
| | - Wouter W Wiegant
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Bram van den Broek
- Division of Cell BiologyOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- BioImaging FacilityThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Magdalena B Rother
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Rob MF Wolthuis
- Section of OncogeneticsDepartment of Clinical GeneticsVrije Universiteit Amsterdam, Cancer Center AmsterdamAmsterdam UMCAmsterdamThe Netherlands
| | - Raimundo Freire
- Unidad de InvestigaciónHospital Universitario de CanariasLa LagunaTenerifeSpain
- Instituto de Tecnologías BiomédicasUniversidad de La LagunaTenerifeSpain
- Universidad Fernando Pessoa CanariasLas Palmas de Gran CanariaSpain
| | - Haico van Attikum
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - René H Medema
- Division of Cell BiologyOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Veronique AJ Smits
- Unidad de InvestigaciónHospital Universitario de CanariasLa LagunaTenerifeSpain
- Instituto de Tecnologías BiomédicasUniversidad de La LagunaTenerifeSpain
- Universidad Fernando Pessoa CanariasLas Palmas de Gran CanariaSpain
| |
Collapse
|
42
|
Sun Y, McCorvie TJ, Yates LA, Zhang X. Structural basis of homologous recombination. Cell Mol Life Sci 2020; 77:3-18. [PMID: 31748913 PMCID: PMC6957567 DOI: 10.1007/s00018-019-03365-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
Homologous recombination (HR) is a pathway to faithfully repair DNA double-strand breaks (DSBs). At the core of this pathway is a DNA recombinase, which, as a nucleoprotein filament on ssDNA, pairs with homologous DNA as a template to repair the damaged site. In eukaryotes Rad51 is the recombinase capable of carrying out essential steps including strand invasion, homology search on the sister chromatid and strand exchange. Importantly, a tightly regulated process involving many protein factors has evolved to ensure proper localisation of this DNA repair machinery and its correct timing within the cell cycle. Dysregulation of any of the proteins involved can result in unchecked DNA damage, leading to uncontrolled cell division and cancer. Indeed, many are tumour suppressors and are key targets in the development of new cancer therapies. Over the past 40 years, our structural and mechanistic understanding of homologous recombination has steadily increased with notable recent advancements due to the advances in single particle cryo electron microscopy. These have resulted in higher resolution structural models of the signalling proteins ATM (ataxia telangiectasia mutated), and ATR (ataxia telangiectasia and Rad3-related protein), along with various structures of Rad51. However, structural information of the other major players involved, such as BRCA1 (breast cancer type 1 susceptibility protein) and BRCA2 (breast cancer type 2 susceptibility protein), has been limited to crystal structures of isolated domains and low-resolution electron microscopy reconstructions of the full-length proteins. Here we summarise the current structural understanding of homologous recombination, focusing on key proteins in recruitment and signalling events as well as the mediators for the Rad51 recombinase.
Collapse
Affiliation(s)
- Yueru Sun
- Section of Structural Biology, Department of Infectious Diseases, Imperial College, London, SW7 2AZ, UK
| | - Thomas J McCorvie
- Section of Structural Biology, Department of Infectious Diseases, Imperial College, London, SW7 2AZ, UK
| | - Luke A Yates
- Section of Structural Biology, Department of Infectious Diseases, Imperial College, London, SW7 2AZ, UK
| | - Xiaodong Zhang
- Section of Structural Biology, Department of Infectious Diseases, Imperial College, London, SW7 2AZ, UK.
| |
Collapse
|
43
|
Rai R, Gu P, Broton C, Kumar-Sinha C, Chen Y, Chang S. The Replisome Mediates A-NHEJ Repair of Telomeres Lacking POT1-TPP1 Independently of MRN Function. Cell Rep 2019; 29:3708-3725.e5. [PMID: 31825846 PMCID: PMC7001145 DOI: 10.1016/j.celrep.2019.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/22/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Telomeres use shelterin to protect chromosome ends from activating the DNA damage sensor MRE11-RAD50-NBS1 (MRN), repressing ataxia-telangiectasia, mutated (ATM) and ATM and Rad3-related (ATR) dependent DNA damage checkpoint responses. The MRE11 nuclease is thought to be essential for the resection of the 5' C-strand to generate the microhomologies necessary for alternative non-homologous end joining (A-NHEJ) repair. In the present study, we uncover DNA damage signaling and repair pathways engaged by components of the replisome complex to repair dysfunctional telomeres. In cells lacking MRN, single-stranded telomeric overhangs devoid of POT1-TPP1 do not recruit replication protein A (RPA), ATR-interacting protein (ATRIP), and RAD 51. Rather, components of the replisome complex, including Claspin, Proliferating cell nuclear antigen (PCNA), and Downstream neighbor of SON (DONSON), initiate DNA-PKcs-mediated p-CHK1 activation and A-NHEJ repair. In addition, Claspin directly interacts with TRF2 and recruits EXO1 to newly replicated telomeres to promote 5' end resection. Our data indicate that MRN is dispensable for the repair of dysfunctional telomeres lacking POT1-TPP1 and highlight the contributions of the replisome in telomere repair.
Collapse
Affiliation(s)
- Rekha Rai
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA.
| | - Peili Gu
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA
| | - Cayla Broton
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA; Tri-Institutional MD/PhD Program, Weill Cornell Medical College, New York, NY 10065, USA
| | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Yong Chen
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Sandy Chang
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA; Department of Pathology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA.
| |
Collapse
|
44
|
Trimidal SG, Benjamin R, Bae JE, Han MV, Kong E, Singer A, Williams TS, Yang B, Schiller MR. Can Designer Indels Be Tailored by Gene Editing?: Can Indels Be Customized? Bioessays 2019; 41:e1900126. [PMID: 31693213 PMCID: PMC7202862 DOI: 10.1002/bies.201900126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/01/2019] [Indexed: 12/23/2022]
Abstract
Genome editing with engineered nucleases (GEENs) introduce site-specific DNA double-strand breaks (DSBs) and repairs DSBs via nonhomologous end-joining (NHEJ) pathways that eventually create indels (insertions/deletions) in a genome. Whether the features of indels resulting from gene editing could be customized is asked. A review of the literature reveals how gene editing technologies via NHEJ pathways impact gene editing. The survey consolidates a body of literature that suggests that the type (insertion, deletion, and complex) and the approximate length of indel edits can be somewhat customized with different GEENs and by manipulating the expression of key NHEJ genes. Structural data suggest that binding of GEENs to DNA may interfere with binding of key components of DNA repair complexes, favoring either classical- or alternative-NHEJ. The hypotheses have some limitations, but if validated, will enable scientists to better control indel makeup, holding promise for basic science and clinical applications of gene editing. Also see the video abstract here https://youtu.be/vTkJtUsLi3w.
Collapse
Affiliation(s)
- Sara G Trimidal
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Ronald Benjamin
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Ji Eun Bae
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Mira V Han
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Elizabeth Kong
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Aaron Singer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Tyler S Williams
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Bing Yang
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Martin R Schiller
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| |
Collapse
|
45
|
Nenarokova A, Záhonová K, Krasilnikova M, Gahura O, McCulloch R, Zíková A, Yurchenko V, Lukeš J. Causes and Effects of Loss of Classical Nonhomologous End Joining Pathway in Parasitic Eukaryotes. mBio 2019; 10:e01541-19. [PMID: 31311886 PMCID: PMC6635534 DOI: 10.1128/mbio.01541-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 01/22/2023] Open
Abstract
We report frequent losses of components of the classical nonhomologous end joining pathway (C-NHEJ), one of the main eukaryotic tools for end joining repair of DNA double-strand breaks, in several lineages of parasitic protists. Moreover, we have identified a single lineage among trypanosomatid flagellates that has lost Ku70 and Ku80, the core C-NHEJ components, and accumulated numerous insertions in many protein-coding genes. We propose a correlation between these two phenomena and discuss the possible impact of the C-NHEJ loss on genome evolution and transition to the parasitic lifestyle.IMPORTANCE Parasites tend to evolve small and compact genomes, generally endowed with a high mutation rate, compared with those of their free-living relatives. However, the mechanisms by which they achieve these features, independently in unrelated lineages, remain largely unknown. We argue that the loss of the classical nonhomologous end joining pathway components may be one of the crucial steps responsible for characteristic features of parasite genomes.
Collapse
Affiliation(s)
- Anna Nenarokova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Marija Krasilnikova
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Richard McCulloch
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Vyacheslav Yurchenko
- Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, Russia
- Life Science Research Centre and Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
46
|
Ray S, Breuer G, DeVeaux M, Zelterman D, Bindra R, Sweasy JB. DNA polymerase beta participates in DNA End-joining. Nucleic Acids Res 2019; 46:242-255. [PMID: 29161447 PMCID: PMC5758893 DOI: 10.1093/nar/gkx1147] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022] Open
Abstract
DNA double strand breaks (DSBs) are one of the most deleterious lesions and if left unrepaired, they lead to cell death, genomic instability and carcinogenesis. Cells combat DSBs by two pathways: homologous recombination (HR) and non-homologous end-joining (NHEJ), wherein the two DNA ends are re-joined. Recently a back-up NHEJ pathway has been reported and is referred to as alternative NHEJ (aNHEJ), which joins ends but results in deletions and insertions. NHEJ requires processing enzymes including nucleases and polymerases, although the roles of these enzymes are poorly understood. Emerging evidence indicates that X family DNA polymerases lambda (Pol λ) and mu (Pol μ) promote DNA end-joining. Here, we show that DNA polymerase beta (Pol β), another member of the X family of DNA polymerases, plays a role in aNHEJ. In the absence of DNA Pol β, fewer small deletions are observed. In addition, depletion of Pol β results in cellular sensitivity to bleomycin and DNA protein kinase catalytic subunit inhibitors due to defective repair of DSBs. In summary, our results indicate that Pol β in functions in aNHEJ and provide mechanistic insight into its role in this process.
Collapse
Affiliation(s)
- Sreerupa Ray
- Department of Therapeutic Radiology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | - Gregory Breuer
- Department of Therapeutic Radiology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA.,Department of Pathology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | - Michelle DeVeaux
- School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | - Daniel Zelterman
- School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | - Ranjit Bindra
- Department of Therapeutic Radiology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA.,Department of Pathology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | - Joann B Sweasy
- Department of Therapeutic Radiology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA.,Department of Genetics, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| |
Collapse
|
47
|
Ginsenoside Rg1 impairs homologous recombination repair by targeting CtBP-interacting protein and sensitizes hepatoblastoma cells to DNA damage. Anticancer Drugs 2019; 29:756-766. [PMID: 29952772 DOI: 10.1097/cad.0000000000000646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ginsenoside Rg1, the primary pharmacologically active ingredient of the traditional Chinese herb ginseng, is widely used in the clinical treatment of diseases of the immune and nervous systems. Recent studies have shown that it also has an antitumor effect. In this study, we explored the effects of Rg1 on hepatoblastoma (HB) and its underlying mechanisms. We demonstrated that Rg1 significantly inhibited HB cell growth both in vivo and in vitro. Mechanistic studies revealed that Rg1 impaired homologous recombination and triggered double-strand breaks in HB cells by directly targeting CtBP-interacting protein (CtIP), a key double-strand break repair factor, which is highly expressed in HB tissues. Moreover, we also demonstrated that Rg1 sensitized HB cells to DNA-damaging agents both in vitro and in vivo. In conclusion, our data not only demonstrate the potential clinical application of Rg1 as a novel chemotherapeutic candidate but also offer a mechanism-based therapeutic option by which DNA-damaging agents can be used in combination with Rg1 to target HB.
Collapse
|
48
|
Toma M, Skorski T, Sliwinski T. DNA Double Strand Break Repair - Related Synthetic Lethality. Curr Med Chem 2019; 26:1446-1482. [PMID: 29421999 DOI: 10.2174/0929867325666180201114306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/25/2022]
Abstract
Cancer is a heterogeneous disease with a high degree of diversity between and within tumors. Our limited knowledge of their biology results in ineffective treatment. However, personalized approach may represent a milestone in the field of anticancer therapy. It can increase specificity of treatment against tumor initiating cancer stem cells (CSCs) and cancer progenitor cells (CPCs) with minimal effect on normal cells and tissues. Cancerous cells carry multiple genetic and epigenetic aberrations which may disrupt pathways essential for cell survival. Discovery of synthetic lethality has led a new hope of creating effective and personalized antitumor treatment. Synthetic lethality occurs when simultaneous inactivation of two genes or their products causes cell death whereas individual inactivation of either gene is not lethal. The effectiveness of numerous anti-tumor therapies depends on induction of DNA damage therefore tumor cells expressing abnormalities in genes whose products are crucial for DNA repair pathways are promising targets for synthetic lethality. Here, we discuss mechanistic aspects of synthetic lethality in the context of deficiencies in DNA double strand break repair pathways. In addition, we review clinical trials utilizing synthetic lethality interactions and discuss the mechanisms of resistance.
Collapse
Affiliation(s)
- Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Tomasz Skorski
- Department of Microbiology and Immunology, 3400 North Broad Street, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, United States
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
49
|
Jachimowicz RD, Goergens J, Reinhardt HC. DNA double-strand break repair pathway choice - from basic biology to clinical exploitation. Cell Cycle 2019; 18:1423-1434. [PMID: 31116084 DOI: 10.1080/15384101.2019.1618542] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Mutations in genes encoding components of the DNA damage response (DDR) are among the most frequent aberrations in human tumors. Moreover, a large array of human syndromes is caused by mutations in genes involved in DDR pathways. Among others, homologous recombination repair (HR) of DNA double-strand breaks (DSB) is frequently affected by disabling mutations. While impaired HR is clearly promoting tumorigenesis, it is also associated with an actionable sensitivity against PARP inhibitors. PARP inhibitors have recently received FDA approval for the treatment of breast- and ovarian cancer. However, as with all molecularly targeted agents, acquired resistance limits its use. Both pharmaco-genomic approaches and the study of human genome instability syndromes have led to a profound understanding of PARP inhibitor resistance. These experiments have revealed new insights into the molecular mechanisms that drive mammalian DSB repair. Here, we review recent discoveries in the field and provide a clinical perspective.
Collapse
Affiliation(s)
- Ron D Jachimowicz
- a Clinic I of Internal Medicine , University Hospital Cologne , Cologne , Germany
| | - Jonas Goergens
- a Clinic I of Internal Medicine , University Hospital Cologne , Cologne , Germany
| | - H Christian Reinhardt
- a Clinic I of Internal Medicine , University Hospital Cologne , Cologne , Germany.,b Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases , University of Cologne , Cologne , Germany.,c Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany.,d Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf, Cologne Site , University of Cologne , Cologne , Germany
| |
Collapse
|
50
|
|