1
|
Kable B, Portillo-Ledesma S, Popova EY, Jentink N, Swulius M, Li Z, Schlick T, Grigoryev SA. Compromised 2-start zigzag chromatin folding in immature mouse retina cells driven by irregularly spaced nucleosomes with short DNA linkers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633430. [PMID: 39868111 PMCID: PMC11760397 DOI: 10.1101/2025.01.16.633430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The formation of condensed heterochromatin is critical for establishing cell-specific transcriptional programs. To reveal structural transitions underlying heterochromatin formation in maturing mouse rod photoreceptors, we apply cryo-EM tomography, AI-assisted deep denoising, and molecular modeling. We find that chromatin isolated from immature retina cells contains many closely apposed nucleosomes with extremely short or absent nucleosome linkers, which are inconsistent with the typical two-start zigzag chromatin folding. In mature retina cells, the fraction of short-linker nucleosomes is much lower, supporting stronger chromatin compaction. By Cryo-EM-assisted nucleosome interaction capture we observe that chromatin in immature retina is enriched with i±1 interactions while chromatin in mature retina contains predominantly i±2 interactions typical of the two-start zigzag. By mesoscale modeling and computational simulation, we clarify that the unusually short linkers typical of immature retina are sufficient to inhibit the two-start zigzag and chromatin compaction by the interference of very short linkers with linker DNA stems. We propose that this short linker composition renders nucleosome arrays more open in immature retina and that, as the linker DNA length increases in mature retina, chromatin fibers become globally condensed via tight zigzag folding. This mechanism may be broadly utilized to introduce higher chromatin folding entropy for epigenomic plasticity.
Collapse
|
2
|
Kennedy DR, Lemiere J, Tan C, Simental E, Braxton J, Maxwell RA, Amine AAA, Al-Sady B. Phosphorylation of HP1/Swi6 relieves competition with Suv39/Clr4 on nucleosomes and enables H3K9 trimethyl spreading. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620326. [PMID: 39554105 PMCID: PMC11565791 DOI: 10.1101/2024.10.25.620326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Heterochromatin formation in Schizosaccharomyces pombe requires the spreading of histone 3 (H3) Lysine 9 (K9) methylation (me) from nucleation centers by the H3K9 methylase, Suv39/Clr4, and the reader protein, HP1/Swi6. To accomplish this, Suv39/Clr4 and HP1/Swi6 have to associate with nucleosomes both nonspecifically, binding DNA and octamer surfaces and specifically, via recognition of methylated H3K9 by their respective chromodomains. However, how both proteins avoid competition for the same nucleosomes in this process is unclear. Here, we show that phosphorylation tunes the nucleosome affinity of HP1/Swi6 such that it preferentially partitions onto Suv39/Clr4's trimethyl product rather than its unmethylated substrates. Preferential partitioning enables efficient conversion from di-to trimethylation on nucleosomes in vitro and H3K9me3 spreading in vivo. Together, our data suggests that phosphorylation of HP1/Swi6 creates a regime that relieves competition with the "read-write" mechanism of Suv39/Clr4 for productive heterochromatin spreading.
Collapse
Affiliation(s)
- Dana R Kennedy
- Department of Microbiology and Immunology and GW Hooper Foundation, UCSF
- TETRAD graduate program, UCSF
| | | | - Catherine Tan
- Biomedical Sciences graduate program, UCSF
- Department of Cell and Tissue Biology, UCSF
| | - Eric Simental
- Department of Microbiology and Immunology and GW Hooper Foundation, UCSF
- TETRAD graduate program, UCSF
| | - Julian Braxton
- Chemistry and Chemical Biology graduate program, UCSF
- Institute for Neurodegenerative Diseases, UCSF
| | - Robert A Maxwell
- The Vincent J. Coates Proteomics/Mass Spectrometry Core Laboratory, University of California, Berkeley, CA, USA
| | - Ahmed AA Amine
- Department of Microbiology and Immunology and GW Hooper Foundation, UCSF
| | - Bassem Al-Sady
- Department of Microbiology and Immunology and GW Hooper Foundation, UCSF
| |
Collapse
|
3
|
Chivu AG, Basso BA, Abuhashem A, Leger MM, Barshad G, Rice EJ, Vill AC, Wong W, Chou SP, Chovatiya G, Brady R, Smith JJ, Wikramanayake AH, Arenas-Mena C, Brito IL, Ruiz-Trillo I, Hadjantonakis AK, Lis JT, Lewis JJ, Danko CG. Evolution of promoter-proximal pausing enabled a new layer of transcription control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.19.529146. [PMID: 39416036 PMCID: PMC11482795 DOI: 10.1101/2023.02.19.529146] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Promoter-proximal pausing of RNA polymerase II (Pol II) is a key regulatory step during transcription. Despite the central role of pausing in gene regulation, we do not understand the evolutionary processes that led to the emergence of Pol II pausing or its transition to a rate-limiting step actively controlled by transcription factors. Here we analyzed transcription in species across the tree of life. Unicellular eukaryotes display a slow acceleration of Pol II near transcription start sites that transitioned to a longer-lived, focused pause in metazoans. This event coincided with the evolution of new subunits in the NELF and 7SK complexes. Depletion of NELF in mammals shifted the promoter-proximal buildup of Pol II from the pause site into the early gene body and compromised transcriptional activation for a set of heat shock genes. Our work details the evolutionary history of Pol II pausing and sheds light on how new transcriptional regulatory mechanisms evolve.
Collapse
Affiliation(s)
- Alexandra G. Chivu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Brent A. Basso
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Abderhman Abuhashem
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, NY 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, NY 10065, USA
- Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, NY 10065, USA
| | - Michelle M. Leger
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, 08003, Spain
| | - Gilad Barshad
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Edward J. Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Albert C. Vill
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Wilfred Wong
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Tri-Institutional training Program in Computational Biology and Medicine, New York, NY 10065, USA
| | - Shao-Pei Chou
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Gopal Chovatiya
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Rebecca Brady
- Department of Biology, Ithaca College, Ithaca NY 14850, USA
| | - Jeramiah J. Smith
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | | | - César Arenas-Mena
- Department of Biology at the College of Staten Island and PhD Programs in Biology and Biochemistry at The Graduate Center, The City University of New York (CUNY), Staten Island, NY 10314, USA
| | - Ilana L. Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Iñaki Ruiz-Trillo
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, 08003, Spain
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain., Barcelona, 08003, Spain
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, NY 10065, USA
- Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, NY 10065, USA
| | - John T. Lis
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - James J. Lewis
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Genetics and Biochemistry, Clemson University, 105 Collings St, Clemson, SC 29634
| | - Charles G. Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Masoudi-Sobhanzadeh Y, Li S, Peng Y, Panchenko A. Interpretable deep residual network uncovers nucleosome positioning and associated features. Nucleic Acids Res 2024; 52:8734-8745. [PMID: 39036965 PMCID: PMC11347144 DOI: 10.1093/nar/gkae623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/31/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Abstract
Nucleosomes represent elementary building units of eukaryotic chromosomes and consist of DNA wrapped around a histone octamer flanked by linker DNA segments. Nucleosomes are central in epigenetic pathways and their genomic positioning is associated with regulation of gene expression, DNA replication, DNA methylation and DNA repair, among other functions. Building on prior discoveries that DNA sequences noticeably affect nucleosome positioning, our objective is to identify nucleosome positions and related features across entire genome. Here, we introduce an interpretable framework based on the concepts of deep residual networks (NuPoSe). Trained on high-coverage human experimental MNase-seq data, NuPoSe is able to learn sequence and structural patterns associated with nucleosome organization in human genome. NuPoSe can be also applied to unseen data from different organisms and cell types. Our findings point to 43 informative features, most of them constitute tri-nucleotides, di-nucleotides and one tetra-nucleotide. Most features are significantly associated with the nucleosomal structural characteristics, namely, periodicity of nucleosomal DNA and its location with respect to a histone octamer. Importantly, we show that features derived from the 27 bp linker DNA flanking nucleosomes contribute up to 10% to the quality of the prediction model. This, along with the comprehensive training sets, deep-learning architecture, and feature selection method, may contribute to the NuPoSe's 80-89% classification accuracy on different independent datasets.
Collapse
Affiliation(s)
| | - Shuxiang Li
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, K7L3N6, Canada
| | - Yunhui Peng
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, K7L3N6, Canada
- Department of Biology and Molecular Sciences, Queen's University, Kingston, K7L3N6, Canada
- School of Computing, Queen's University, Kingston, K7L3N6, Canada
- Ontario Institute of Cancer Research, Toronto, M5G 0A3, Canada
| |
Collapse
|
5
|
Hu G, Grover CE, Vera DL, Lung PY, Girimurugan SB, Miller ER, Conover JL, Ou S, Xiong X, Zhu D, Li D, Gallagher JP, Udall JA, Sui X, Zhang J, Bass HW, Wendel JF. Evolutionary Dynamics of Chromatin Structure and Duplicate Gene Expression in Diploid and Allopolyploid Cotton. Mol Biol Evol 2024; 41:msae095. [PMID: 38758089 PMCID: PMC11140268 DOI: 10.1093/molbev/msae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Polyploidy is a prominent mechanism of plant speciation and adaptation, yet the mechanistic understandings of duplicated gene regulation remain elusive. Chromatin structure dynamics are suggested to govern gene regulatory control. Here, we characterized genome-wide nucleosome organization and chromatin accessibility in allotetraploid cotton, Gossypium hirsutum (AADD, 2n = 4X = 52), relative to its two diploid parents (AA or DD genome) and their synthetic diploid hybrid (AD), using DNS-seq. The larger A-genome exhibited wider average nucleosome spacing in diploids, and this intergenomic difference diminished in the allopolyploid but not hybrid. Allopolyploidization also exhibited increased accessibility at promoters genome-wide and synchronized cis-regulatory motifs between subgenomes. A prominent cis-acting control was inferred for chromatin dynamics and demonstrated by transposable element removal from promoters. Linking accessibility to gene expression patterns, we found distinct regulatory effects for hybridization and later allopolyploid stages, including nuanced establishment of homoeolog expression bias and expression level dominance. Histone gene expression and nucleosome organization are coordinated through chromatin accessibility. Our study demonstrates the capability to track high-resolution chromatin structure dynamics and reveals their role in the evolution of cis-regulatory landscapes and duplicate gene expression in polyploids, illuminating regulatory ties to subgenomic asymmetry and dominance.
Collapse
Affiliation(s)
- Guanjing Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated, Chinese Academy of Agricultural Sciences, Institute of Cotton Research, Anyang 455000, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Daniel L Vera
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Pei-Yau Lung
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | | | - Emma R Miller
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Justin L Conover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Shujun Ou
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Xianpeng Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - De Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Dongming Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Joseph P Gallagher
- Forage Seed and Cereal Research Unit, USDA/Agricultural Research Service, Corvallis, OR 97331, USA
| | - Joshua A Udall
- Crop Germplasm Research Unit, USDA/Agricultural Research Service, College Station, TX 77845, USA
| | - Xin Sui
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Hank W Bass
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
6
|
García A, Durán L, Sánchez M, González S, Santamaría R, Antequera F. Asymmetrical nucleosomal DNA signatures regulate transcriptional directionality. Cell Rep 2024; 43:113605. [PMID: 38127622 DOI: 10.1016/j.celrep.2023.113605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 10/03/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Despite the symmetrical structure of nucleosomes, in vitro studies have shown that transcription proceeds with different efficiency depending on the orientation of the DNA sequence around them. However, it is unclear whether this functional asymmetry is present in vivo and whether it could regulate transcriptional directionality. Here, we report that the proximal and distal halves of nucleosomal DNA contribute differentially to nucleosome stability in the genome. In +1 nucleosomes, this asymmetry facilitates or hinders transcription depending on the orientation of its underlying DNA, and this difference is associated with an asymmetrical interaction between DNA and histones. These properties are encoded in the DNA signature of +1 nucleosomes, since its incorporation in the two orientations into downstream nucleosomes renders them asymmetrically accessible to MNase and inverts the balance between sense and antisense transcription. Altogether, our results show that nucleosomal DNA endows nucleosomes with asymmetrical properties that modulate the directionality of transcription.
Collapse
Affiliation(s)
- Alicia García
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Laura Durán
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Mar Sánchez
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Sara González
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Rodrigo Santamaría
- Departamento de Informática y Automática, Universidad de Salamanca/Facultad de Ciencias, Plaza de los Caídos s/n, 37007 Salamanca, Spain
| | - Francisco Antequera
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
| |
Collapse
|
7
|
Vega M, Barrios R, Fraile R, de Castro Cogle K, Castillo D, Anglada R, Casals F, Ayté J, Lowy-Gallego E, Hidalgo E. Topoisomerase 1 facilitates nucleosome reassembly at stress genes during recovery. Nucleic Acids Res 2023; 51:12161-12173. [PMID: 37956308 PMCID: PMC10711424 DOI: 10.1093/nar/gkad1066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Chromatin remodeling is essential to allow full development of alternative gene expression programs in response to environmental changes. In fission yeast, oxidative stress triggers massive transcriptional changes including the activation of hundreds of genes, with the participation of histone modifying complexes and chromatin remodelers. DNA transcription is associated to alterations in DNA topology, and DNA topoisomerases facilitate elongation along gene bodies. Here, we test whether the DNA topoisomerase Top1 participates in the RNA polymerase II-dependent activation of the cellular response to oxidative stress. Cells lacking Top1 are resistant to H2O2 stress. The transcriptome of Δtop1 strain was not greatly affected in the absence of stress, but activation of the anti-stress gene expression program was more sustained than in wild-type cells. Top1 associated to stress open reading frames. While the nucleosomes of stress genes are partially and transiently evicted during stress, the chromatin configuration remains open for longer times in cells lacking Top1, facilitating RNA polymerase II progression. We propose that, by removing DNA tension arising from transcription, Top1 facilitates nucleosome reassembly and works in synergy with the chromatin remodeler Hrp1 as opposing forces to transcription and to Snf22 / Hrp3 opening remodelers.
Collapse
Affiliation(s)
- Montserrat Vega
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Rubén Barrios
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Rodrigo Fraile
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | | | | | - Roger Anglada
- Genomics Core Facility, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Ferran Casals
- Genomics Core Facility, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Ernesto Lowy-Gallego
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona 08003, Spain
| |
Collapse
|
8
|
Sun K, Li Y, Gai Y, Wang J, Jian Y, Liu X, Wu L, Shim WB, Lee YW, Ma Z, Haas H, Yin Y. HapX-mediated H2B deub1 and SreA-mediated H2A.Z deposition coordinate in fungal iron resistance. Nucleic Acids Res 2023; 51:10238-10260. [PMID: 37650633 PMCID: PMC10602907 DOI: 10.1093/nar/gkad708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/26/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023] Open
Abstract
Plant pathogens are challenged by host-derived iron starvation or excess during infection, but the mechanism through which pathogens counteract iron stress is unclear. Here, we found that Fusarium graminearum encounters iron excess during the colonization of wheat heads. Deletion of heme activator protein X (FgHapX), siderophore transcription factor A (FgSreA) or both attenuated virulence. Further, we found that FgHapX activates iron storage under iron excess by promoting histone H2B deubiquitination (H2B deub1) at the promoter of the responsible gene. Meanwhile, FgSreA is shown to inhibit genes mediating iron acquisition during iron excess by facilitating the deposition of histone variant H2A.Z and histone 3 lysine 27 trimethylation (H3K27 me3) at the first nucleosome after the transcription start site. In addition, the monothiol glutaredoxin FgGrx4 is responsible for iron sensing and control of the transcriptional activity of FgHapX and FgSreA via modulation of their enrichment at target genes and recruitment of epigenetic regulators, respectively. Taken together, our findings elucidated the molecular mechanisms for adaptation to iron excess mediated by FgHapX and FgSreA during infection in F. graminearum and provide novel insights into regulation of iron homeostasis at the chromatin level in eukaryotes.
Collapse
Affiliation(s)
- Kewei Sun
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yiqing Li
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunpeng Gai
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Jingrui Wang
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunqing Jian
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xin Liu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liang Wu
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, USA
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Hubertus Haas
- Instiute of Molecular Biology, Biocenter, Medical University Innsbruck, Innsbruck A-6020, Austria
| | - Yanni Yin
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Fréchard A, Faux C, Hexnerova R, Crucifix C, Papai G, Smirnova E, McKeon C, Ping FLY, Helmlinger D, Schultz P, Ben-Shem A. The structure of the NuA4-Tip60 complex reveals the mechanism and importance of long-range chromatin modification. Nat Struct Mol Biol 2023; 30:1337-1345. [PMID: 37550452 DOI: 10.1038/s41594-023-01056-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/26/2023] [Indexed: 08/09/2023]
Abstract
Histone acetylation regulates most DNA transactions and is dynamically controlled by highly conserved enzymes. The only essential histone acetyltransferase (HAT) in yeast, Esa1, is part of the 1-MDa NuA4 complex, which plays pivotal roles in both transcription and DNA-damage repair. NuA4 has the unique capacity to acetylate histone targets located several nucleosomes away from its recruitment site. Neither the molecular mechanism of this activity nor its physiological importance are known. Here we report the structure of the Pichia pastoris NuA4 complex, with its core resolved at 3.4-Å resolution. Three subunits, Epl1, Eaf1 and Swc4, intertwine to form a stable platform that coordinates all other modules. The HAT module is firmly anchored into the core while retaining the ability to stretch out over a long distance. We provide structural, biochemical and genetic evidence that an unfolded linker region of the Epl1 subunit is critical for this long-range activity. Specifically, shortening the Epl1 linker causes severe growth defects and reduced H4 acetylation levels over broad chromatin regions in fission yeast. Our work lays the foundations for a mechanistic understanding of NuA4's regulatory role and elucidates how its essential long-range activity is attained.
Collapse
Affiliation(s)
- Alexander Fréchard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Integrated Structural Biology Department, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Equipe labellisée Ligue Contre le Cancer, Illkirch, France
| | - Céline Faux
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Rozalie Hexnerova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Integrated Structural Biology Department, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Equipe labellisée Ligue Contre le Cancer, Illkirch, France
| | - Corinne Crucifix
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Integrated Structural Biology Department, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Equipe labellisée Ligue Contre le Cancer, Illkirch, France
| | - Gabor Papai
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Integrated Structural Biology Department, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Equipe labellisée Ligue Contre le Cancer, Illkirch, France
| | - Ekaterina Smirnova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Integrated Structural Biology Department, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Equipe labellisée Ligue Contre le Cancer, Illkirch, France
| | - Conor McKeon
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Florie Lo Ying Ping
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Dominique Helmlinger
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France.
| | - Patrick Schultz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Integrated Structural Biology Department, Illkirch, France.
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.
- Université de Strasbourg, Illkirch, France.
- Equipe labellisée Ligue Contre le Cancer, Illkirch, France.
| | - Adam Ben-Shem
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Integrated Structural Biology Department, Illkirch, France.
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.
- Université de Strasbourg, Illkirch, France.
- Equipe labellisée Ligue Contre le Cancer, Illkirch, France.
| |
Collapse
|
10
|
Skjegstad LEJ, Nickels JF, Sneppen K, Kirkegaard JB. Epigenetic switching with asymmetric bridging interactions. Biophys J 2023; 122:2421-2429. [PMID: 37085994 PMCID: PMC10322878 DOI: 10.1016/j.bpj.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
Gene expression states are often stably sustained in cis despite massively disruptive events like DNA replication. This is achieved by on-going enzymatic activity that maintains parts of the DNA in either heterochromatic (packed) or euchromatic (free) states, each of which is stabilized by both positive feedback and bridging interactions between individual nucleosomes. In contrast to condensed matter, however, the dynamics is not only governed by equilibrium binding interactions but is also mediated by enzymes that recognize and act on specific amino acid tails of the nucleosomes. The mechanical result is that some nucleosomes can bind to one another and form tightly packed polymer configurations, whereas others remain unbound and form free, noncompact polymer configurations. Here, we study the consequences of such an asymmetric interaction pattern on the dynamics of epigenetic switching. We develop a 3D polymer model and show that traits associated with epigenetic switching, such as bistability and epigenetic memory, are permitted by such a model. We find, however, that the experimentally observed burst-like nature of some epigenetic switches is difficult to reproduce by this biologically motivated interaction. Instead, the behavior seen in experiments can be explained by introducing partial confinement, which particularly affects the euchromatic regions of the chromosome.
Collapse
Affiliation(s)
| | - Jan Fabio Nickels
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kim Sneppen
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | | |
Collapse
|
11
|
Opposing Roles of FACT for Euchromatin and Heterochromatin in Yeast. Biomolecules 2023; 13:biom13020377. [PMID: 36830746 PMCID: PMC9953268 DOI: 10.3390/biom13020377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
DNA is stored in the nucleus of a cell in a folded state; however, only the necessary genetic information is extracted from the required group of genes. The key to extracting genetic information is chromatin ambivalence. Depending on the chromosomal region, chromatin is characterized into low-density "euchromatin" and high-density "heterochromatin", with various factors being involved in its regulation. Here, we focus on chromatin regulation and gene expression by the yeast FACT complex, which functions in both euchromatin and heterochromatin. FACT is known as a histone H2A/H2B chaperone and was initially reported as an elongation factor associated with RNA polymerase II. In budding yeast, FACT activates promoter chromatin by interacting with the transcriptional activators SBF/MBF via the regulation of G1/S cell cycle genes. In fission yeast, FACT plays an important role in the formation of higher-order chromatin structures and transcriptional repression by binding to Swi6, an HP1 family protein, at heterochromatin. This FACT property, which refers to the alternate chromatin-regulation depending on the binding partner, is an interesting phenomenon. Further analysis of nucleosome regulation within heterochromatin is expected in future studies.
Collapse
|
12
|
Smrt ST, Gonzalez Salguero N, Thomas JK, Zandian M, Poirier MG, Jaroniec CP. Histone H3 core domain in chromatin with different DNA linker lengths studied by 1H-Detected solid-state NMR spectroscopy. Front Mol Biosci 2023; 9:1106588. [PMID: 36660422 PMCID: PMC9846530 DOI: 10.3389/fmolb.2022.1106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Chromatin, a dynamic protein-DNA complex that regulates eukaryotic genome accessibility and essential functions, is composed of nucleosomes connected by linker DNA with each nucleosome consisting of DNA wrapped around an octamer of histones H2A, H2B, H3 and H4. Magic angle spinning solid-state nuclear magnetic resonance (NMR) spectroscopy can yield unique insights into histone structure and dynamics in condensed nucleosomes and nucleosome arrays representative of chromatin at physiological concentrations. Recently we used J-coupling-based solid-state NMR methods to investigate with residue-specific resolution the conformational dynamics of histone H3 N-terminal tails in 16-mer nucleosome arrays containing 15, 30 or 60 bp DNA linkers. Here, we probe the H3 core domain in the 16-mer arrays as a function of DNA linker length via dipolar coupling-based 1H-detected solid-state NMR techniques. Specifically, we established nearly complete assignments of backbone chemical shifts for H3 core residues in arrays with 15-60 bp DNA linkers reconstituted with 2H,13C,15N-labeled H3. Overall, these chemical shifts were similar irrespective of the DNA linker length indicating no major changes in H3 core conformation. Notably, however, multiple residues at the H3-nucleosomal DNA interface in arrays with 15 bp DNA linkers exhibited relatively pronounced differences in chemical shifts and line broadening compared to arrays with 30 and 60 bp linkers. These findings are consistent with increased heterogeneity in nucleosome packing and structural strain within arrays containing short DNA linkers that likely leads to side-chains of these interfacial residues experiencing alternate conformations or shifts in their rotamer populations relative to arrays with the longer DNA linkers.
Collapse
Affiliation(s)
- Sean T. Smrt
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Nicole Gonzalez Salguero
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Justin K. Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Mohamad Zandian
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Michael G. Poirier
- Department of Physics, The Ohio State University, Columbus, OH, United States
| | - Christopher P. Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
13
|
Liu J, Zhou D, Jin W. Prediction of nucleosome dynamic interval based on long-short-term memory network (LSTM). J Bioinform Comput Biol 2022; 20:2250009. [PMID: 35603935 DOI: 10.1142/s0219720022500093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Nucleosome localization is a dynamic process and consists of nucleosome dynamic intervals (NDIs). We preprocessed nucleosome sequence data as time series data (TSD) and developed a long short-term memory network (LSTM) model for training time series data (TSD; LSTM-TSD model) using iterative training and feature learning that predicts NDIs with high accuracy. Sn, Sp, Acc, and MCC of the obtained LSTM model is 91.88%, 92.72%, 92.30%, and 84.61%, respectively. LSTM model could precisely predict the NDIs of yeast 16 chromosome. The NDIs contain 90.29% of nucleosome core DNA and 91.20% of nucleosome central sites, indicating that NDIs have high confidence. We found that the binding sites of transcriptional proteins and other proteins are outside NDIs, not in NDIs. These results are important for analysis of nucleosome localization and gene transcriptional regulation.
Collapse
Affiliation(s)
- Jianli Liu
- School of Water Resource and Environment Engineering, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Deliang Zhou
- Beijing Zhongdianyida Technology Co., Ltd, Beijing 100190, P. R. China
| | - Wen Jin
- Department of Clinical Medical Research Center/Inner Mongolia, Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People's Hospital, Hohhot 010010, P. R. China
| |
Collapse
|
14
|
Greenstein RA, Ng H, Barrales RR, Tan C, Braun S, Al-Sady B. Local chromatin context regulates the genetic requirements of the heterochromatin spreading reaction. PLoS Genet 2022; 18:e1010201. [PMID: 35584134 PMCID: PMC9154106 DOI: 10.1371/journal.pgen.1010201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/31/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Heterochromatin spreading, the expansion of repressive chromatin structure from sequence-specific nucleation sites, is critical for stable gene silencing. Spreading re-establishes gene-poor constitutive heterochromatin across cell cycles but can also invade gene-rich euchromatin de novo to steer cell fate decisions. How chromatin context (i.e. euchromatic, heterochromatic) or different nucleation pathways influence heterochromatin spreading remains poorly understood. Previously, we developed a single-cell sensor in fission yeast that can separately record heterochromatic gene silencing at nucleation sequences and distal sites. Here we couple our quantitative assay to a genetic screen to identify genes encoding nuclear factors linked to the regulation of heterochromatin nucleation and the distal spreading of gene silencing. We find that mechanisms underlying gene silencing distal to a nucleation site differ by chromatin context. For example, Clr6 histone deacetylase complexes containing the Fkh2 transcription factor are specifically required for heterochromatin spreading at constitutive sites. Fkh2 recruits Clr6 to nucleation-distal chromatin sites in such contexts. In addition, we find that a number of chromatin remodeling complexes antagonize nucleation-distal gene silencing. Our results separate the regulation of heterochromatic gene silencing at nucleation versus distal sites and show that it is controlled by context-dependent mechanisms. The results of our genetic analysis constitute a broad community resource that will support further analysis of the mechanisms underlying the spread of epigenetic silencing along chromatin. Repressive structures, or heterochromatin, are seeded at specific genome sequences and then “spread” to silence nearby chromosomal regions. While much is known about the factors that seed heterochromatin, the genetic requirements for spreading are less clear. We devised a fission yeast single-cell method to examine how gene silencing is propagated by the heterochromatin spreading process specifically. Here we use this platform to ask if specific genes are required for the spreading process and whether the same or different genes direct spreading from different chromosomal seeding sites. We find a significant number of genes that specifically promote or antagonize the heterochromatin spreading process. However, different genes are required to enact spreading from different seeding sites. These results have potential implications for cell fate specification, where genes are newly silenced by heterochromatin spreading from diverse chromosomal sites. In a central finding, we show that the Clr6 protein complex, which removes chromatin marks linked to active genes, associates with the Forkhead 2 transcription factor to promote spreading of silencing structures from seeding sites at numerous chromosomal loci. In contrast, we show that proteins that remodel chromatin antagonize the spreading of gene silencing.
Collapse
Affiliation(s)
- R. A. Greenstein
- Department of Microbiology &Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, United States of America
- TETRAD graduate program, University of California San Francisco, San Francisco, California, United States of America
| | - Henry Ng
- Department of Microbiology &Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, United States of America
- TETRAD graduate program, University of California San Francisco, San Francisco, California, United States of America
| | - Ramon R. Barrales
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität of Munich, Planegg-Martinsried, Germany
| | - Catherine Tan
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Biomedical Sciences graduate program, University of California San Francisco, San Francisco, California, United States of America
| | - Sigurd Braun
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität of Munich, Planegg-Martinsried, Germany
- Institute for Genetics, Justus-Liebig University Giessen, Giessen, Germany
| | - Bassem Al-Sady
- Department of Microbiology &Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Trotta E. GC content strongly influences the role of poly(dA) in the intrinsic nucleosome positioning in Saccharomyces cerevisiae. Yeast 2022; 39:262-271. [PMID: 35348238 PMCID: PMC9541940 DOI: 10.1002/yea.3701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/08/2022] Open
Abstract
The nucleosome is the basic structural element of genomic DNA packaging and plays a role in transcription, replication, and recombination. Poly(dA) tracts are considered major sequence determinants of nucleosome positioning, although their role is not well understood. Here, we show that the homopolymeric character and the low GC content of poly(dA)s play different roles in nucleosome formation. We found that the inherent low GC content of poly(dA) alone can account for the deep and anisotropic nucleosome depletion at structurally and functionally important regions of promoters and origins of replication. We also show that the level of nucleosome occupancy at poly(dA) is strongly related to the local nucleotide background and its high frequency of occurrence in Saccharomyces cerevisiae does not appear merely to be associated with its intrinsic nucleosome-excluding properties. In addition, we show that the GC content alone can predict more than 60% of the in vitro nucleosome map, providing further evidence that the intrinsic nucleosome positioning is more greatly determined by GC content than poly(dA) stretches. Our results are consistent with a model in which poly(dA) stretches act at two distinct levels: first, by its low GC content, which intrinsically contributes to hinder nucleosome formation, and second, by its contiguous runs of dA that selectively drive the recruitment of non-histone proteins with structural and functional roles.
Collapse
Affiliation(s)
- Edoardo Trotta
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| |
Collapse
|
16
|
Faber MW, Vo TV. Long RNA-Mediated Chromatin Regulation in Fission Yeast and Mammals. Int J Mol Sci 2022; 23:968. [PMID: 35055152 PMCID: PMC8778201 DOI: 10.3390/ijms23020968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
As part of a complex network of genome control, long regulatory RNAs exert significant influences on chromatin dynamics. Understanding how this occurs could illuminate new avenues for disease treatment and lead to new hypotheses that would advance gene regulatory research. Recent studies using the model fission yeast Schizosaccharomyces pombe (S. pombe) and powerful parallel sequencing technologies have provided many insights in this area. This review will give an overview of key findings in S. pombe that relate long RNAs to multiple levels of chromatin regulation: histone modifications, gene neighborhood regulation in cis and higher-order chromosomal ordering. Moreover, we discuss parallels recently found in mammals to help bridge the knowledge gap between the study systems.
Collapse
Affiliation(s)
| | - Tommy V. Vo
- Department of Biochemistry and Molecular Biology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
17
|
Cui Y, Guo Y. The local integration preference of the Tf1 retrotransposon in Schizosaccharomyces pombe. Virology 2021; 565:52-57. [PMID: 34736160 DOI: 10.1016/j.virol.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
Transposons are mobile DNAs that can move to different locations in host genomes. The integration site selection of transposons is critical for both themselves and host cells. Studies on the integration of retrotransposons and retroviruses have focused more on the global preference than on the local preference. The local preferences of retrotransposons are usually weak and of large diversity. Here, we analyzed hundreds of thousands of independent integration events of the Tf1 retrotransposon in Schizosaccharomyces pombe. The consensus sequence at the Tf1 integration sites shows a palindromic pattern, which can be divided into four sections, each of them contains one or more CGnTA units with a period of 10 base pairs, indicating interaction with subunits of the integrase oligomer in the pre-integration complex. Moreover, the analysis on the nucleosome occupancy flanking Tf1 target sites shows that Tf1 integration favors regions with one entire nucleosome depletion.
Collapse
Affiliation(s)
- Yujin Cui
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Guangzhou PharmaRays Technology Co., Ltd, Guangzhou, 510000, China
| | - Yabin Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
18
|
Barnes T, Korber P. The Active Mechanism of Nucleosome Depletion by Poly(dA:dT) Tracts In Vivo. Int J Mol Sci 2021; 22:ijms22158233. [PMID: 34360997 PMCID: PMC8347975 DOI: 10.3390/ijms22158233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022] Open
Abstract
Poly(dA:dT) tracts cause nucleosome depletion in many species, e.g., at promoters and replication origins. Their intrinsic biophysical sequence properties make them stiff and unfavorable for nucleosome assembly, as probed by in vitro nucleosome reconstitution. The mere correlation between nucleosome depletion over poly(dA:dT) tracts in in vitro reconstituted and in in vivo chromatin inspired an intrinsic nucleosome exclusion mechanism in vivo that is based only on DNA and histone properties. However, we compile here published and new evidence that this correlation does not reflect mechanistic causation. (1) Nucleosome depletion over poly(dA:dT) in vivo is not universal, e.g., very weak in S. pombe. (2) The energy penalty for incorporating poly(dA:dT) tracts into nucleosomes is modest (<10%) relative to ATP hydrolysis energy abundantly invested by chromatin remodelers. (3) Nucleosome depletion over poly(dA:dT) is much stronger in vivo than in vitro if monitored without MNase and (4) actively maintained in vivo. (5) S. cerevisiae promoters evolved a strand-biased poly(dA) versus poly(dT) distribution. (6) Nucleosome depletion over poly(dA) is directional in vivo. (7) The ATP dependent chromatin remodeler RSC preferentially and directionally displaces nucleosomes towards 5′ of poly(dA). Especially distribution strand bias and displacement directionality would not be expected for an intrinsic mechanism. Together, this argues for an in vivo mechanism where active and species-specific read out of intrinsic sequence properties, e.g., by remodelers, shapes nucleosome organization.
Collapse
|
19
|
Zandian M, Salguero NG, Shannon MD, Purusottam RN, Theint T, Poirier MG, Jaroniec CP. Conformational Dynamics of Histone H3 Tails in Chromatin. J Phys Chem Lett 2021; 12:6174-6181. [PMID: 34184895 PMCID: PMC8788308 DOI: 10.1021/acs.jpclett.1c01187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chromatin is a supramolecular DNA-protein complex that compacts eukaryotic genomes and regulates their accessibility and functions. Dynamically disordered histone H3 N-terminal tails are among key chromatin regulatory components. Here, we used high-resolution-magic-angle-spinning NMR measurements of backbone amide 15N spin relaxation rates to investigate, with residue-specific detail, the dynamics and interactions of H3 tails in recombinant 13C,15N-enriched nucleosome arrays containing 15, 30, or 60 bp linker DNA between the nucleosome repeats. These measurements were compared to analogous data available for mononucleosomes devoid of linker DNA or containing two 20 bp DNA overhangs. The H3 tail dynamics in nucleosome arrays were found to be considerably attenuated compared with nucleosomes with or without linker DNA due to transient electrostatic interactions with the linker DNA segments and the structured chromatin environment. Remarkably, however, the H3 tail dynamics were not modulated by the specific linker DNA length within the 15-60 bp range investigated here.
Collapse
Affiliation(s)
- Mohamad Zandian
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | | | - Matthew D. Shannon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Rudra N. Purusottam
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Theint Theint
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | | | | |
Collapse
|
20
|
Barbier J, Vaillant C, Volff JN, Brunet FG, Audit B. Coupling between Sequence-Mediated Nucleosome Organization and Genome Evolution. Genes (Basel) 2021; 12:genes12060851. [PMID: 34205881 PMCID: PMC8228248 DOI: 10.3390/genes12060851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
The nucleosome is a major modulator of DNA accessibility to other cellular factors. Nucleosome positioning has a critical importance in regulating cell processes such as transcription, replication, recombination or DNA repair. The DNA sequence has an influence on the position of nucleosomes on genomes, although other factors are also implicated, such as ATP-dependent remodelers or competition of the nucleosome with DNA binding proteins. Different sequence motifs can promote or inhibit the nucleosome formation, thus influencing the accessibility to the DNA. Sequence-encoded nucleosome positioning having functional consequences on cell processes can then be selected or counter-selected during evolution. We review the interplay between sequence evolution and nucleosome positioning evolution. We first focus on the different ways to encode nucleosome positions in the DNA sequence, and to which extent these mechanisms are responsible of genome-wide nucleosome positioning in vivo. Then, we discuss the findings about selection of sequences for their nucleosomal properties. Finally, we illustrate how the nucleosome can directly influence sequence evolution through its interactions with DNA damage and repair mechanisms. This review aims to provide an overview of the mutual influence of sequence evolution and nucleosome positioning evolution, possibly leading to complex evolutionary dynamics.
Collapse
Affiliation(s)
- Jérémy Barbier
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France; (J.B.); (F.G.B.)
- Laboratoire de Physique, Univ Lyon, ENS de Lyon, CNRS, F-69342 Lyon, France;
| | - Cédric Vaillant
- Laboratoire de Physique, Univ Lyon, ENS de Lyon, CNRS, F-69342 Lyon, France;
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France; (J.B.); (F.G.B.)
- Correspondence: (J.-N.V.); (B.A.)
| | - Frédéric G. Brunet
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France; (J.B.); (F.G.B.)
| | - Benjamin Audit
- Laboratoire de Physique, Univ Lyon, ENS de Lyon, CNRS, F-69342 Lyon, France;
- Correspondence: (J.-N.V.); (B.A.)
| |
Collapse
|
21
|
Ötvös K, Miskolczi P, Marhavý P, Cruz-Ramírez A, Benková E, Robert S, Bakó L. Pickle Recruits Retinoblastoma Related 1 to Control Lateral Root Formation in Arabidopsis. Int J Mol Sci 2021; 22:ijms22083862. [PMID: 33917959 PMCID: PMC8068362 DOI: 10.3390/ijms22083862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/31/2022] Open
Abstract
Lateral root (LR) formation is an example of a plant post-embryonic organogenesis event. LRs are issued from non-dividing cells entering consecutive steps of formative divisions, proliferation and elongation. The chromatin remodeling protein PICKLE (PKL) negatively regulates auxin-mediated LR formation through a mechanism that is not yet known. Here we show that PKL interacts with RETINOBLASTOMA-RELATED 1 (RBR1) to repress the LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16) promoter activity. Since LBD16 function is required for the formative division of LR founder cells, repression mediated by the PKL–RBR1 complex negatively regulates formative division and LR formation. Inhibition of LR formation by PKL–RBR1 is counteracted by auxin, indicating that, in addition to auxin-mediated transcriptional responses, the fine-tuned process of LR formation is also controlled at the chromatin level in an auxin-signaling dependent manner.
Collapse
Affiliation(s)
- Krisztina Ötvös
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, S-901 87 Umeå, Sweden
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria; (P.M.); (E.B.)
- Bioresources Unit, AIT Austrian Institute of Technology, 3430 Tulln, Austria
- Correspondence: (K.Ö.); (L.B.); Tel.: +46-907867970 (K.Ö.); Fax: +46-907866676 (K.Ö.)
| | - Pál Miskolczi
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, S-901 87 Umeå, Sweden; (P.M.); (S.R.)
| | - Peter Marhavý
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria; (P.M.); (E.B.)
| | - Alfredo Cruz-Ramírez
- Laboratory of Molecular and Developmental Complexity at Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, (CINVESTAV-IPN), 36590 Irapuato, Mexico;
| | - Eva Benková
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria; (P.M.); (E.B.)
| | - Stéphanie Robert
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, S-901 87 Umeå, Sweden; (P.M.); (S.R.)
| | - László Bakó
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, S-901 87 Umeå, Sweden
- Correspondence: (K.Ö.); (L.B.); Tel.: +46-907867970 (K.Ö.); Fax: +46-907866676 (K.Ö.)
| |
Collapse
|
22
|
Abstract
Methylation of histone H3K9 is a hallmark of epigenetic silencing in eukaryotes. Nucleosome modifications often rely on positive feedback where enzymes are recruited by modified nucleosomes. A combination of local and global feedbacks has been proposed to account for some dynamic properties of heterochromatin, but the range at which the global feedbacks operate and the exact mode of heterochromatin propagation are not known. We investigated these questions in fission yeast. Guided by mathematical modeling, we incrementally increased the size of the mating-type region and profiled heterochromatin establishment over time. We observed exponential decays in the proportion of cells with active reporters, with rates that decreased with domain size. Establishment periods varied from a few generations in wild type to >200 generations in the longest region examined, and highly correlated silencing of two reporters located outside the nucleation center was observed. On a chromatin level, this indicates that individual regions are silenced in sudden bursts. Mathematical modeling accounts for these bursts if heterochromatic nucleosomes facilitate a deacetylation or methylation reaction at long range, in a distance-independent manner. A likely effector of three-dimensional interactions is the evolutionarily conserved Swi6HP1 H3K9me reader, indicating the bursting behavior might be a general mode of heterochromatin propagation.
Collapse
|
23
|
Misova I, Pitelova A, Budis J, Gazdarica J, Sedlackova T, Jordakova A, Benko Z, Smondrkova M, Mayerova N, Pichlerova K, Strieskova L, Prevorovsky M, Gregan J, Cipak L, Szemes T, Polakova SB. Repression of a large number of genes requires interplay between homologous recombination and HIRA. Nucleic Acids Res 2021; 49:1914-1934. [PMID: 33511417 PMCID: PMC7913671 DOI: 10.1093/nar/gkab027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
During homologous recombination, Dbl2 protein is required for localisation of Fbh1, an F-box helicase that efficiently dismantles Rad51-DNA filaments. RNA-seq analysis of dbl2Δ transcriptome showed that the dbl2 deletion results in upregulation of more than 500 loci in Schizosaccharomyces pombe. Compared with the loci with no change in expression, the misregulated loci in dbl2Δ are closer to long terminal and long tandem repeats. Furthermore, the misregulated loci overlap with antisense transcripts, retrotransposons, meiotic genes and genes located in subtelomeric regions. A comparison of the expression profiles revealed that Dbl2 represses the same type of genes as the HIRA histone chaperone complex. Although dbl2 deletion does not alleviate centromeric or telomeric silencing, it suppresses the silencing defect at the outer centromere caused by deletion of hip1 and slm9 genes encoding subunits of the HIRA complex. Moreover, our analyses revealed that cells lacking dbl2 show a slight increase of nucleosomes at transcription start sites and increased levels of methylated histone H3 (H3K9me2) at centromeres, subtelomeres, rDNA regions and long terminal repeats. Finally, we show that other proteins involved in homologous recombination, such as Fbh1, Rad51, Mus81 and Rad54, participate in the same gene repression pathway.
Collapse
Affiliation(s)
- Ivana Misova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Alexandra Pitelova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Jaroslav Budis
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Slovak Centre of Scientific and Technical Information, 811 04 Bratislava, Slovakia
| | - Juraj Gazdarica
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Slovak Centre of Scientific and Technical Information, 811 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| | - Tatiana Sedlackova
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Anna Jordakova
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Praha 2, Czechia
| | - Zsigmond Benko
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, H-4010 Debrecen, Hungary
| | - Maria Smondrkova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| | - Nina Mayerova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| | - Karoline Pichlerova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Lucia Strieskova
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Martin Prevorovsky
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Praha 2, Czechia
| | - Juraj Gregan
- Advanced Microscopy Facility, VBCF and Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Lubos Cipak
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Tomas Szemes
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Slovak Centre of Scientific and Technical Information, 811 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| | - Silvia Bagelova Polakova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| |
Collapse
|
24
|
Nucleosome Positioning and Spacing: From Mechanism to Function. J Mol Biol 2021; 433:166847. [PMID: 33539878 DOI: 10.1016/j.jmb.2021.166847] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023]
Abstract
Eukaryotes associate their genomes with histone proteins, forming nucleosome particles. Nucleosomes regulate and protect the genetic information. They often assemble into evenly spaced arrays of nucleosomes. These regular nucleosome arrays cover significant portions of the genome, in particular over genes. The presence of these evenly spaced nucleosome arrays is highly conserved throughout the entire eukaryotic domain. Here, we review the mechanisms behind the establishment of this primary structure of chromatin with special emphasis on the biogenesis of evenly spaced nucleosome arrays. We highlight the roles that transcription, nucleosome remodelers, DNA sequence, and histone density play towards the formation of evenly spaced nucleosome arrays and summarize our current understanding of their cellular functions. We end with key unanswered questions that remain to be explored to obtain an in-depth understanding of the biogenesis and function of the nucleosome landscape.
Collapse
|
25
|
Sánchez-Mir L, Fraile R, Ayté J, Hidalgo E. Phosphorylation of the Transcription Factor Atf1 at Multiple Sites by the MAP Kinase Sty1 Controls Homologous Recombination and Transcription. J Mol Biol 2020; 432:5430-5446. [PMID: 32795531 DOI: 10.1016/j.jmb.2020.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 01/21/2023]
Abstract
Transcription factors are often the downstream effectors of signaling cascades. In fission yeast, the transcription factor Atf1 is phosphorylated by the MAP kinase Sty1 under several environmental stressors to promote transcription initiation of stress genes. However, Sty1 and Atf1 have also been involved in other cellular processes such as homologous recombination at hotspots, ste11 gene expression during mating and meiosis, or regulation of fbp1 gene transcription under glucose starvation conditions. Using different phospho-mutants of Atf1, we have investigated the role of Atf1 phosphorylation by Sty1 in those biological processes. An Atf1 mutant lacking the canonical MAP kinase phosphorylation sites cannot activate fbp1 transcription when glucose is depleted, but it is still able to induce recombination at ade6.M26 and to induce ste11 after nitrogen depletion; in these last cases, Sty1 is still required, suggesting that additional non-canonical sites are activating the transcription factor. In all cases, an Atf1 phosphomimetic mutant bypasses the requirement of the Sty1 kinase in these diverse biological processes, highlighting the essential role of the DNA binding factor Atf1 on chromatin remodeling and cell adaptation to nutritional changes. We propose that post-translational modifications of Atf1 by Sty1, either at canonical or non-canonical sites, are sufficient to activate some of the functions of Atf1, those involving chromatin remodeling and transcription initiation. However, in the case of fbp1 where Atf1 acts synergistically with other transcription factors, elimination of the canonical sites is sufficient to hamper some of the interactions required in this complex scenario and to impair transcription initiation.
Collapse
Affiliation(s)
- Laura Sánchez-Mir
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rodrigo Fraile
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
26
|
Wang Y, Sun Q, Liang J, Li H, Czajkowsky DM, Shao Z. Q-Nuc: a bioinformatics pipeline for the quantitative analysis of nucleosomal profiles. Interdiscip Sci 2020; 12:69-81. [PMID: 31845186 PMCID: PMC7990035 DOI: 10.1007/s12539-019-00354-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/20/2019] [Accepted: 11/22/2019] [Indexed: 12/26/2022]
Abstract
Nucleosomal profiling is an effective method to determine the positioning and occupancy of nucleosomes, which is essential to understand their roles in genomic processes. However, the positional randomness across the genome and its relationship with nucleosome occupancy remains poorly understood. Here we present a computational method that segments the profile into nucleosomal domains and quantifies their randomness and relative occupancy level. Applying this method to published data, we find on average ~ 3-fold differences in the degree of positional randomness between regions typically considered "well-ordered", as well as an unexpected predominance of only two types of domains of positional randomness in yeast cells. Further, we find that occupancy levels between domains actually differ maximally by ~ 2-3-fold in both cells, which has not been described before. We also developed a procedure by which one can estimate the sequencing depth that is required to identify nucleosomal positions even when regional positional randomness is high. Overall, we have developed a pipeline to quantitatively characterize domain-level features of nucleosome randomness and occupancy genome-wide, enabling the identification of otherwise unknown features in nucleosomal organization.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory for Oncogenes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiu Sun
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Hua Li
- State Key Laboratory for Oncogenes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Daniel M Czajkowsky
- State Key Laboratory for Oncogenes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhifeng Shao
- State Key Laboratory for Oncogenes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
27
|
McMillan J, Lu Z, Rodriguez JS, Ahn TH, Lin Z. YeasTSS: an integrative web database of yeast transcription start sites. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5479513. [PMID: 31032841 PMCID: PMC6484093 DOI: 10.1093/database/baz048] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022]
Abstract
The transcription initiation landscape of eukaryotic genes is complex and highly dynamic. In eukaryotes, genes can generate multiple transcript variants that differ in 5' boundaries due to usages of alternative transcription start sites (TSSs), and the abundance of transcript isoforms are highly variable. Due to a large number and complexity of the TSSs, it is not feasible to depict details of transcript initiation landscape of all genes using text-format genome annotation files. Therefore, it is necessary to provide data visualization of TSSs to represent quantitative TSS maps and the core promoters (CPs). In addition, the selection and activity of TSSs are influenced by various factors, such as transcription factors, chromatin remodeling and histone modifications. Thus, integration and visualization of functional genomic data related to these features could provide a better understanding of the gene promoter architecture and regulatory mechanism of transcription initiation. Yeast species play important roles for the research and human society, yet no database provides visualization and integration of functional genomic data in yeast. Here, we generated quantitative TSS maps for 12 important yeast species, inferred their CPs and built a public database, YeasTSS (www.yeastss.org). YeasTSS was designed as a central portal for visualization and integration of the TSS maps, CPs and functional genomic data related to transcription initiation in yeast. YeasTSS is expected to benefit the research community and public education for improving genome annotation, studies of promoter structure, regulated control of transcription initiation and inferring gene regulatory network.
Collapse
Affiliation(s)
- Jonathan McMillan
- Department of Biology, Saint Louis University, St. Louis, MO, USA.,Parks College of Engineering, Aviation and Technology, Program in Computer Engineering, Saint Louis University, St. Louis, MO, USA
| | - Zhaolian Lu
- Department of Biology, Saint Louis University, St. Louis, MO, USA
| | - Judith S Rodriguez
- Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO, USA
| | - Tae-Hyuk Ahn
- Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO, USA.,Department of Computer Sciences, Saint Louis University, St. Louis, MO, USA
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, MO, USA.,Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO, USA
| |
Collapse
|
28
|
Greenstein RA, Barrales RR, Sanchez NA, Bisanz JE, Braun S, Al-Sady B. Set1/COMPASS repels heterochromatin invasion at euchromatic sites by disrupting Suv39/Clr4 activity and nucleosome stability. Genes Dev 2020; 34:99-117. [PMID: 31805521 PMCID: PMC6938669 DOI: 10.1101/gad.328468.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/30/2019] [Indexed: 12/27/2022]
Abstract
Protection of euchromatin from invasion by gene-repressive heterochromatin is critical for cellular health and viability. In addition to constitutive loci such as pericentromeres and subtelomeres, heterochromatin can be found interspersed in gene-rich euchromatin, where it regulates gene expression pertinent to cell fate. While heterochromatin and euchromatin are globally poised for mutual antagonism, the mechanisms underlying precise spatial encoding of heterochromatin containment within euchromatic sites remain opaque. We investigated ectopic heterochromatin invasion by manipulating the fission yeast mating type locus boundary using a single-cell spreading reporter system. We found that heterochromatin repulsion is locally encoded by Set1/COMPASS on certain actively transcribed genes and that this protective role is most prominent at heterochromatin islands, small domains interspersed in euchromatin that regulate cell fate specifiers. Sensitivity to invasion by heterochromatin, surprisingly, is not dependent on Set1 altering overall gene expression levels. Rather, the gene-protective effect is strictly dependent on Set1's catalytic activity. H3K4 methylation, the Set1 product, antagonizes spreading in two ways: directly inhibiting catalysis by Suv39/Clr4 and locally disrupting nucleosome stability. Taken together, these results describe a mechanism for spatial encoding of euchromatic signals that repel heterochromatin invasion.
Collapse
Affiliation(s)
- R A Greenstein
- Department of Microbiology and Immunology, George Williams Hooper Foundation, University of California at San Francisco, San Francisco, California 94143, USA
- TETRAD Graduate Program, University of California at San Francisco, San Francisco, California 94143, USA
| | - Ramon R Barrales
- Department of Physiological Chemistry, Biomedical Center (BMC), Ludwig Maximilians University of Munich, 82152 Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, 82152 Martinsried, Germany
| | - Nicholas A Sanchez
- Department of Microbiology and Immunology, George Williams Hooper Foundation, University of California at San Francisco, San Francisco, California 94143, USA
- TETRAD Graduate Program, University of California at San Francisco, San Francisco, California 94143, USA
| | - Jordan E Bisanz
- Department of Microbiology and Immunology, George Williams Hooper Foundation, University of California at San Francisco, San Francisco, California 94143, USA
| | - Sigurd Braun
- Department of Physiological Chemistry, Biomedical Center (BMC), Ludwig Maximilians University of Munich, 82152 Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, 82152 Martinsried, Germany
| | - Bassem Al-Sady
- Department of Microbiology and Immunology, George Williams Hooper Foundation, University of California at San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
29
|
Tarbell ED, Liu T. HMMRATAC: a Hidden Markov ModeleR for ATAC-seq. Nucleic Acids Res 2019; 47:e91. [PMID: 31199868 PMCID: PMC6895260 DOI: 10.1093/nar/gkz533] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/23/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
ATAC-seq has been widely adopted to identify accessible chromatin regions across the genome. However, current data analysis still utilizes approaches initially designed for ChIP-seq or DNase-seq, without considering the transposase digested DNA fragments that contain additional nucleosome positioning information. We present the first dedicated ATAC-seq analysis tool, a semi-supervised machine learning approach named HMMRATAC. HMMRATAC splits a single ATAC-seq dataset into nucleosome-free and nucleosome-enriched signals, learns the unique chromatin structure around accessible regions, and then predicts accessible regions across the entire genome. We show that HMMRATAC outperforms the popular peak-calling algorithms on published human ATAC-seq datasets. We find that single-end sequenced or size-selected ATAC-seq datasets result in a loss of sensitivity compared to paired-end datasets without size-selection.
Collapse
Affiliation(s)
- Evan D Tarbell
- Department of Biochemistry, University at Buffalo, Buffalo, NY 14203, USA.,Enhanced Pharmacodynamics LLC, Buffalo, NY 14203, USA
| | - Tao Liu
- Department of Biochemistry, University at Buffalo, Buffalo, NY 14203, USA.,Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
30
|
Mukiza TO, Protacio RU, Davidson MK, Steiner WW, Wahls WP. Diverse DNA Sequence Motifs Activate Meiotic Recombination Hotspots Through a Common Chromatin Remodeling Pathway. Genetics 2019; 213:789-803. [PMID: 31511300 PMCID: PMC6827382 DOI: 10.1534/genetics.119.302679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
In meiosis, multiple different DNA sequence motifs help to position homologous recombination at hotspots in the genome. How do the seemingly disparate cis-acting regulatory modules each promote locally the activity of the basal recombination machinery? We defined molecular mechanisms of action for five different hotspot-activating DNA motifs (M26, CCAAT, Oligo-C, 4095, 4156) located independently at the same site within the ade6 locus of the fission yeast Schizosaccharomyces pombe Each motif promoted meiotic recombination (i.e., is active) within this context, and this activity required the respective binding proteins (transcription factors Atf1, Pcr1, Php2, Php3, Php5, Rst2). High-resolution analyses of chromatin structure by nucleosome scanning assays revealed that each motif triggers the displacement of nucleosomes surrounding the hotspot motif in meiosis. This chromatin remodeling required the respective sequence-specific binding proteins, was constitutive for two motifs, and was enhanced meiotically for three others. Hotspot activity of each motif strongly required the ATP-dependent chromatin remodeling enzyme Snf22 (Snf2/Swi2), with lesser dependence on Gcn5, Mst2, and Hrp3. These findings support a model in which most meiotic recombination hotspots are positioned by the binding of transcription factors to their respective DNA sites. The functional redundancy of multiple, sequence-specific protein-DNA complexes converges upon shared chromatin remodeling pathways that help provide the basal recombination machinery (Spo11/Rec12 complex) access to its DNA substrates within chromatin.
Collapse
Affiliation(s)
- Tresor O Mukiza
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199
| | - Reine U Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199
| | - Mari K Davidson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199
| | - Walter W Steiner
- Department of Biology, Niagara University, Lewiston, New York 14109
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199
| |
Collapse
|
31
|
Giaimo BD, Ferrante F, Herchenröther A, Hake SB, Borggrefe T. The histone variant H2A.Z in gene regulation. Epigenetics Chromatin 2019; 12:37. [PMID: 31200754 PMCID: PMC6570943 DOI: 10.1186/s13072-019-0274-9] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/23/2019] [Indexed: 01/04/2023] Open
Abstract
The histone variant H2A.Z is involved in several processes such as transcriptional control, DNA repair, regulation of centromeric heterochromatin and, not surprisingly, is implicated in diseases such as cancer. Here, we review the recent developments on H2A.Z focusing on its role in transcriptional activation and repression. H2A.Z, as a replication-independent histone, has been studied in several model organisms and inducible mammalian model systems. Its loading machinery and several modifying enzymes have been recently identified, and some of the long-standing discrepancies in transcriptional activation and/or repression are about to be resolved. The buffering functions of H2A.Z, as supported by genome-wide localization and analyzed in several dynamic systems, are an excellent example of transcriptional control. Posttranslational modifications such as acetylation and ubiquitination of H2A.Z, as well as its specific binding partners, are in our view central players in the control of gene expression. Understanding the key-mechanisms in either turnover or stabilization of H2A.Z-containing nucleosomes as well as defining the H2A.Z interactome will pave the way for therapeutic applications in the future.
Collapse
Affiliation(s)
| | - Francesca Ferrante
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Andreas Herchenröther
- Institute for Genetics, University of Giessen, Heinrich-Buff-Ring 58-62, 35392, Giessen, Germany
| | - Sandra B Hake
- Institute for Genetics, University of Giessen, Heinrich-Buff-Ring 58-62, 35392, Giessen, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392, Giessen, Germany.
| |
Collapse
|
32
|
Harwood JC, Kent NA, Allen ND, Harwood AJ. Nucleosome dynamics of human iPSC during neural differentiation. EMBO Rep 2019; 20:embr.201846960. [PMID: 31036712 PMCID: PMC6549019 DOI: 10.15252/embr.201846960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 01/07/2023] Open
Abstract
Nucleosome positioning is important for neurodevelopment, and genes mediating chromatin remodelling are strongly associated with human neurodevelopmental disorders. To investigate changes in nucleosome positioning during neural differentiation, we generate genome‐wide nucleosome maps from an undifferentiated human‐induced pluripotent stem cell (hiPSC) line and after its differentiation to the neural progenitor cell (NPC) stage. We find that nearly 3% of nucleosomes are highly positioned in NPC, but significantly, there are eightfold fewer positioned nucleosomes in pluripotent cells, indicating increased positioning during cell differentiation. Positioned nucleosomes do not strongly correlate with active chromatin marks or gene transcription. Unexpectedly, we find a small population of nucleosomes that occupy similar positions in pluripotent and neural progenitor cells and are found at binding sites of the key gene regulators NRSF/REST and CTCF. Remarkably, the presence of these nucleosomes appears to be independent of the associated regulatory complexes. Together, these results present a scenario in human cells, where positioned nucleosomes are sparse and dynamic, but may act to alter gene expression at a distance via the structural conformation at sites of chromatin regulation.
Collapse
Affiliation(s)
- Janet C Harwood
- MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, UK
| | | | | | - Adrian J Harwood
- School of Biosciences, Cardiff University, Cardiff, UK .,Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Cardiff, UK
| |
Collapse
|
33
|
Nucleosome positioning and spacing: from genome-wide maps to single arrays. Essays Biochem 2019; 63:5-14. [PMID: 31015380 DOI: 10.1042/ebc20180058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 01/07/2023]
Abstract
The positioning of nucleosomes relative to DNA and their neighboring nucleosomes represents a fundamental layer of chromatin organization. Changes in nucleosome positioning and spacing affect the accessibility of DNA to regulatory factors and the formation of higher order chromatin structures. Sequencing of mononucleosomal fragments allowed mapping nucleosome positions on a genome-wide level in many organisms. This revealed that successions of evenly spaced and well-positioned nucleosomes-so called phased nucleosome arrays-occur at the 5' end of many active genes and in the vicinity of transcription factor and other protein binding sites. Phased arrays arise from the interplay of barrier elements on the DNA, which position adjacent nucleosomes, and the nucleosome spacing activity of ATP-dependent chromatin remodelers. A shortcoming of classic mononucleosomal mapping experiments is that they only reveal nucleosome spacing and array regularity at select sites in the genome with well-positioned nucleosomes. However, new technological approaches elucidate nucleosome array structure throughout the genome and with single-cell resolution. In the future, it will be interesting to see whether changes in nucleosome array regularity and spacing contribute to the formation of higher order chromatin structures and the spatial organization of the genome in vivo.
Collapse
|
34
|
Thodberg M, Thieffry A, Bornholdt J, Boyd M, Holmberg C, Azad A, Workman CT, Chen Y, Ekwall K, Nielsen O, Sandelin A. Comprehensive profiling of the fission yeast transcription start site activity during stress and media response. Nucleic Acids Res 2019; 47:1671-1691. [PMID: 30566651 PMCID: PMC6393241 DOI: 10.1093/nar/gky1227] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/09/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
Fission yeast, Schizosaccharomyces pombe, is an attractive model organism for transcriptional and chromatin biology research. Such research is contingent on accurate annotation of transcription start sites (TSSs). However, comprehensive genome-wide maps of TSSs and their usage across commonly applied laboratory conditions and treatments for S. pombe are lacking. To this end, we profiled TSS activity genome-wide in S. pombe cultures exposed to heat shock, nitrogen starvation, hydrogen peroxide and two commonly applied media, YES and EMM2, using Cap Analysis of Gene Expression (CAGE). CAGE-based annotation of TSSs is substantially more accurate than existing PomBase annotation; on average, CAGE TSSs fall 50-75 bp downstream of PomBase TSSs and co-localize with nucleosome boundaries. In contrast to higher eukaryotes, dispersed TSS distributions are not common in S. pombe. Our data recapitulate known S. pombe stress expression response patterns and identify stress- and media-responsive alternative TSSs. Notably, alteration of growth medium induces changes of similar magnitude as some stressors. We show a link between nucleosome occupancy and genetic variation, and that the proximal promoter region is genetically diverse between S. pombe strains. Our detailed TSS map constitutes a central resource for S. pombe gene regulation research.
Collapse
Affiliation(s)
- Malte Thodberg
- Department of Biology and Biotech Research and Innovation Centre, The Bioinformatics Centre, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Axel Thieffry
- Department of Biology and Biotech Research and Innovation Centre, The Bioinformatics Centre, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Jette Bornholdt
- Department of Biology and Biotech Research and Innovation Centre, The Bioinformatics Centre, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Mette Boyd
- Department of Biology and Biotech Research and Innovation Centre, The Bioinformatics Centre, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Christian Holmberg
- Department of Biology, Cell cycle and genome stability Group, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Ajuna Azad
- Department of Biology and Biotech Research and Innovation Centre, The Bioinformatics Centre, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK2800 Kongens Lyngby, Denmark
| | - Yun Chen
- Department of Biology and Biotech Research and Innovation Centre, The Bioinformatics Centre, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institute, SE14183 Huddinge, Sweden
| | - Olaf Nielsen
- Department of Biology, Cell cycle and genome stability Group, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Albin Sandelin
- Department of Biology and Biotech Research and Innovation Centre, The Bioinformatics Centre, University of Copenhagen, DK2100 Copenhagen N, Denmark
| |
Collapse
|
35
|
van Emden TS, Forn M, Forné I, Sarkadi Z, Capella M, Martín Caballero L, Fischer-Burkart S, Brönner C, Simonetta M, Toczyski D, Halic M, Imhof A, Braun S. Shelterin and subtelomeric DNA sequences control nucleosome maintenance and genome stability. EMBO Rep 2018; 20:embr.201847181. [PMID: 30420521 DOI: 10.15252/embr.201847181] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 11/09/2022] Open
Abstract
Telomeres and the shelterin complex cap and protect the ends of chromosomes. Telomeres are flanked by the subtelomeric sequences that have also been implicated in telomere regulation, although their role is not well defined. Here, we show that, in Schizosaccharomyces pombe, the telomere-associated sequences (TAS) present on most subtelomeres are hyper-recombinogenic, have metastable nucleosomes, and unusual low levels of H3K9 methylation. Ccq1, a subunit of shelterin, protects TAS from nucleosome loss by recruiting the heterochromatic repressor complexes CLRC and SHREC, thereby linking nucleosome stability to gene silencing. Nucleosome instability at TAS is independent of telomeric repeats and can be transmitted to an intrachromosomal locus containing an ectopic TAS fragment, indicating that this is an intrinsic property of the underlying DNA sequence. When telomerase recruitment is compromised in cells lacking Ccq1, DNA sequences present in the TAS promote recombination between chromosomal ends, independent of nucleosome abundance, implying an active function of these sequences in telomere maintenance. We propose that Ccq1 and fragile subtelomeres co-evolved to regulate telomere plasticity by controlling nucleosome occupancy and genome stability.
Collapse
Affiliation(s)
- Thomas S van Emden
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany.,International Max Planck Research School for Molecular and Cellular Life Sciences, Martinsried, Germany
| | - Marta Forn
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Ignasi Forné
- Protein Analysis Unit (ZfP), BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Zsuzsa Sarkadi
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Matías Capella
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Lucía Martín Caballero
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany.,International Max Planck Research School for Molecular and Cellular Life Sciences, Martinsried, Germany
| | - Sabine Fischer-Burkart
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Cornelia Brönner
- Department of Biochemistry, Gene Center, Ludwig Maximilians University of Munich, Munich, Germany
| | - Marco Simonetta
- Department of Biophysics and Biochemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - David Toczyski
- Department of Biophysics and Biochemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Mario Halic
- Department of Biochemistry, Gene Center, Ludwig Maximilians University of Munich, Munich, Germany
| | - Axel Imhof
- Protein Analysis Unit (ZfP), BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Sigurd Braun
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany .,International Max Planck Research School for Molecular and Cellular Life Sciences, Martinsried, Germany
| |
Collapse
|
36
|
Cryo-ET reveals the macromolecular reorganization of S. pombe mitotic chromosomes in vivo. Proc Natl Acad Sci U S A 2018; 115:10977-10982. [PMID: 30297429 DOI: 10.1073/pnas.1720476115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chromosomes condense during mitosis in most eukaryotes. This transformation involves rearrangements at the nucleosome level and has consequences for transcription. Here, we use cryo-electron tomography (cryo-ET) to determine the 3D arrangement of nuclear macromolecular complexes, including nucleosomes, in frozen-hydrated Schizosaccharomyces pombe cells. Using 3D classification analysis, we did not find evidence that nucleosomes resembling the crystal structure are abundant. This observation and those from other groups support the notion that a subset of fission yeast nucleosomes may be partially unwrapped in vivo. In both interphase and mitotic cells, there is also no evidence of monolithic structures the size of Hi-C domains. The chromatin is mingled with two features: pockets, which are positions free of macromolecular complexes; and "megacomplexes," which are multimegadalton globular complexes like preribosomes. Mitotic chromatin is more crowded than interphase chromatin in subtle ways. Nearest-neighbor distance analyses show that mitotic chromatin is more compacted at the oligonucleosome than the dinucleosome level. Like interphase, mitotic chromosomes contain megacomplexes and pockets. This uneven chromosome condensation helps explain a longstanding enigma of mitosis: a subset of genes is up-regulated.
Collapse
|
37
|
Knezevic I, González-Medina A, Gaspa L, Hidalgo E, Ayté J. The INO80 complex activates the transcription of S-phase genes in a cell cycle-regulated manner. FEBS J 2018; 285:3870-3881. [PMID: 30134042 DOI: 10.1111/febs.14640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/30/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022]
Abstract
Chromatin structure is an essential factor in the proper regulation of DNA repair, DNA replication and transcription. The INO80 complex and the SWR complex have been shown to play a fundamental role in transcription regulation through remodeling chromatin at specific genes and loci. Here, we report that the Schizosaccharomyces pombe INO80 complex physically interacts with the mlui-binding factor (MBF) complex. Furthermore, we are able to detect the INO80 complex in MBF-regulated promoters. Binding of INO80 to these genes is cell cycle regulated, with a maximum binding preceding their transcription and accumulation of their mRNAs. In fact, the INO80 complex is required to fully and timely activate the transcription of these genes. We also show that the accumulation of acetylated H2A.Z at the +1 nucleosome is cell cycle regulated. Cells in which H2A.Z acetylation is abolished still have some cell cycle-regulated transcription of MBF-dependent genes, although to a much lesser extent.
Collapse
Affiliation(s)
- Iva Knezevic
- Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alberto González-Medina
- Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laura Gaspa
- Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Hidalgo
- Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - José Ayté
- Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
38
|
Chow TT, Shi X, Wei JH, Guan J, Stadler G, Huang B, Blackburn EH. Local enrichment of HP1alpha at telomeres alters their structure and regulation of telomere protection. Nat Commun 2018; 9:3583. [PMID: 30181605 PMCID: PMC6123478 DOI: 10.1038/s41467-018-05840-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/26/2018] [Indexed: 12/27/2022] Open
Abstract
Enhanced telomere maintenance is evident in malignant cancers. While telomeres are thought to be inherently heterochromatic, detailed mechanisms of how epigenetic modifications impact telomere protection and structures are largely unknown in human cancers. Here we develop a molecular tethering approach to experimentally enrich heterochromatin protein HP1α specifically at telomeres. This results in increased deposition of H3K9me3 at cancer cell telomeres. Telomere extension by telomerase is attenuated, and damage-induced foci at telomeres are reduced, indicating augmentation of telomere stability. Super-resolution STORM imaging shows an unexpected increase in irregularity of telomeric structure. Telomere-tethered chromo shadow domain (CSD) mutant I165A of HP1α abrogates both the inhibition of telomere extension and the irregularity of telomeric structure, suggesting the involvement of at least one HP1α-ligand in mediating these effects. This work presents an approach to specifically manipulate the epigenetic status locally at telomeres to uncover insights into molecular mechanisms underlying telomere structural dynamics.
Collapse
Affiliation(s)
- Tracy T Chow
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Xiaoyu Shi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Jen-Hsuan Wei
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Juan Guan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94143, USA
| | | | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Elizabeth H Blackburn
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
39
|
Atkinson SR, Marguerat S, Bitton DA, Rodríguez-López M, Rallis C, Lemay JF, Cotobal C, Malecki M, Smialowski P, Mata J, Korber P, Bachand F, Bähler J. Long noncoding RNA repertoire and targeting by nuclear exosome, cytoplasmic exonuclease, and RNAi in fission yeast. RNA (NEW YORK, N.Y.) 2018; 24:1195-1213. [PMID: 29914874 PMCID: PMC6097657 DOI: 10.1261/rna.065524.118] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/14/2018] [Indexed: 05/31/2023]
Abstract
Long noncoding RNAs (lncRNAs), which are longer than 200 nucleotides but often unstable, contribute a substantial and diverse portion to pervasive noncoding transcriptomes. Most lncRNAs are poorly annotated and understood, although several play important roles in gene regulation and diseases. Here we systematically uncover and analyze lncRNAs in Schizosaccharomyces pombe. Based on RNA-seq data from twelve RNA-processing mutants and nine physiological conditions, we identify 5775 novel lncRNAs, nearly 4× the previously annotated lncRNAs. The expression of most lncRNAs becomes strongly induced under the genetic and physiological perturbations, most notably during late meiosis. Most lncRNAs are cryptic and suppressed by three RNA-processing pathways: the nuclear exosome, cytoplasmic exonuclease, and RNAi. Double-mutant analyses reveal substantial coordination and redundancy among these pathways. We classify lncRNAs by their dominant pathway into cryptic unstable transcripts (CUTs), Xrn1-sensitive unstable transcripts (XUTs), and Dicer-sensitive unstable transcripts (DUTs). XUTs and DUTs are enriched for antisense lncRNAs, while CUTs are often bidirectional and actively translated. The cytoplasmic exonuclease, along with RNAi, dampens the expression of thousands of lncRNAs and mRNAs that become induced during meiosis. Antisense lncRNA expression mostly negatively correlates with sense mRNA expression in the physiological, but not the genetic conditions. Intergenic and bidirectional lncRNAs emerge from nucleosome-depleted regions, upstream of positioned nucleosomes. Our results highlight both similarities and differences to lncRNA regulation in budding yeast. This broad survey of the lncRNA repertoire and characteristics in S. pombe, and the interwoven regulatory pathways that target lncRNAs, provides a rich framework for their further functional analyses.
Collapse
Affiliation(s)
- Sophie R Atkinson
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Samuel Marguerat
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
- MRC London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Danny A Bitton
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Maria Rodríguez-López
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Charalampos Rallis
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Jean-François Lemay
- Department of Biochemistry, Sherbrooke, Université de Sherbrooke, Quebec J1H 5N4, Canada
| | - Cristina Cotobal
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Michal Malecki
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Pawel Smialowski
- LMU Munich, Biomedical Center, 82152 Planegg-Martinsried near Munich, Germany
| | - Juan Mata
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Philipp Korber
- LMU Munich, Biomedical Center, 82152 Planegg-Martinsried near Munich, Germany
| | - François Bachand
- Department of Biochemistry, Sherbrooke, Université de Sherbrooke, Quebec J1H 5N4, Canada
| | - Jürg Bähler
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
40
|
Abstract
The precise positioning of nucleosomes along the underlying DNA is critical for a variety of biological processes, especially in regulating transcription. The interplay between nucleosomes and transcription factors for accessing the underlying DNA sequences is one of the key determinants that affect transcriptional regulation. Moreover, nucleosomes with various packing statuses confer distinct functions in regulating gene expressions in response to various internal or external signals. Therefore, global mapping of nucleosome positions is one informative way to elucidate the relationship between patterns of nucleosome positioning/occupancy and transcriptional regulations. MNase digestion coupled with high-throughput sequencing (MNase-seq) has been utilized widely for global mapping of nucleosome positioning in eukaryotes that have a sequenced genome. We have developed a robust MNase-seq procedure in plants. It mainly includes plant nuclei isolation, treatment of purified nuclei with MNase, gel recovery of MNase-trimmed mononucleosomal DNA with an approximate size of 150 bp, MNase-seq library preparation followed by Illumina sequencing, and data analysis. MNase-seq has already been successfully applied to identify genome-wide nucleosome positioning in model plants, rice, and Arabidopsis thaliana.
Collapse
|
41
|
Chereji RV, Clark DJ. Major Determinants of Nucleosome Positioning. Biophys J 2018; 114:2279-2289. [PMID: 29628211 DOI: 10.1016/j.bpj.2018.03.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/27/2018] [Accepted: 03/08/2018] [Indexed: 12/21/2022] Open
Abstract
The compact structure of the nucleosome limits DNA accessibility and inhibits the binding of most sequence-specific proteins. Nucleosomes are not randomly located on the DNA but positioned with respect to the DNA sequence, suggesting models in which critical binding sites are either exposed in the linker, resulting in activation, or buried inside a nucleosome, resulting in repression. The mechanisms determining nucleosome positioning are therefore of paramount importance for understanding gene regulation and other events that occur in chromatin, such as transcription, replication, and repair. Here, we review our current understanding of the major determinants of nucleosome positioning: DNA sequence, nonhistone DNA-binding proteins, chromatin-remodeling enzymes, and transcription. We outline the major challenges for the future: elucidating the precise mechanisms of chromatin opening and promoter activation, identifying the complexes that occupy promoters, and understanding the multiscale problem of chromatin fiber organization.
Collapse
Affiliation(s)
- Răzvan V Chereji
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| | - David J Clark
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
42
|
Shukla A, Bhargava P. Regulation of tRNA gene transcription by the chromatin structure and nucleosome dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:295-309. [PMID: 29313808 DOI: 10.1016/j.bbagrm.2017.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 01/19/2023]
Abstract
The short, non-coding genes transcribed by the RNA polymerase (pol) III, necessary for survival of a cell, need to be repressed under the stress conditions in vivo. The pol III-transcribed genes have adopted several novel chromatin-based regulatory mechanisms to their advantage. In the budding yeast, the sub-nucleosomal size tRNA genes are found in the nucleosome-free regions, flanked by positioned nucleosomes at both the ends. With their chromosomes-wide distribution, all tRNA genes have a different chromatin context. A single nucleosome dynamics controls the accessibility of the genes for transcription. This dynamics operates under the influence of several chromatin modifiers in a gene-specific manner, giving the scope for differential regulation of even the isogenes within a tRNA gene family. The chromatin structure around the pol III-transcribed genes provides a context conducive for steady-state transcription as well as gene-specific transcriptional regulation upon signaling from the environmental cues. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Ashutosh Shukla
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
43
|
Diament A, Tuller T. Tracking the evolution of 3D gene organization demonstrates its connection to phenotypic divergence. Nucleic Acids Res 2017; 45:4330-4343. [PMID: 28369658 PMCID: PMC5416853 DOI: 10.1093/nar/gkx205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/20/2017] [Indexed: 12/20/2022] Open
Abstract
It has recently been shown that the organization of genes in eukaryotic genomes, and specifically in 3D, is strongly related to gene expression and function and partially conserved between organisms. However, previous studies of 3D genomic organization analyzed each organism independently from others. Here, we propose an approach for unified inter-organismal analysis of gene organization based on a network representation of Hi-C data. We define and detect four classes of spatially co-evolving orthologous modules (SCOMs), i.e. gene families that co-evolve in their 3D organization, based on patterns of divergence and conservation of distances. We demonstrate our methodology on Hi-C data from Saccharomyces cerevisiae and Schizosaccharomyces pombe, and identify, among others, modules relating to RNA splicing machinery and chromatin silencing by small RNA which are central to S. pombe's lifestyle. Our results emphasize the importance of 3D genomic organization in eukaryotes and suggest that the evolutionary mechanisms that shape gene organization affect the organism fitness and phenotypes. The proposed algorithms can be utilized in future studies of genome evolution and comparative analysis of spatial genomic organization in different tissues, conditions and single cells.
Collapse
Affiliation(s)
- Alon Diament
- Biomedical Engineering Dept., Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamir Tuller
- Biomedical Engineering Dept., Tel Aviv University, Tel Aviv 6997801, Israel.,The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
44
|
Ekundayo B, Richmond TJ, Schalch T. Capturing Structural Heterogeneity in Chromatin Fibers. J Mol Biol 2017; 429:3031-3042. [PMID: 28893533 DOI: 10.1016/j.jmb.2017.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 10/18/2022]
Abstract
Chromatin fiber organization is implicated in processes such as transcription, DNA repair and chromosome segregation, but how nucleosomes interact to form higher-order structure remains poorly understood. We solved two crystal structures of tetranucleosomes with approximately 11-bp DNA linker length at 5.8 and 6.7 Å resolution. Minimal intramolecular nucleosome-nucleosome interactions result in a fiber model resembling a flat ribbon that is compatible with a two-start helical architecture, and that exposes histone and DNA surfaces to the environment. The differences in the two structures combined with electron microscopy reveal heterogeneous structural states, and we used site-specific chemical crosslinking to assess the diversity of nucleosome-nucleosome interactions through identification of structure-sensitive crosslink sites that provide a means to characterize fibers in solution. The chromatin fiber architectures observed here provide a basis for understanding heterogeneous chromatin higher-order structures as they occur in a genomic context.
Collapse
Affiliation(s)
- Babatunde Ekundayo
- Department of Molecular Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Timothy J Richmond
- Institute of Molecular Biology and Biophysics, Department of Biology, Swiss Federal Institute of Technology Zurich, CH-8093 Zurich, Switzerland
| | - Thomas Schalch
- Department of Molecular Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
45
|
García A, González S, Antequera F. Nucleosomal organization and DNA base composition patterns. Nucleus 2017. [PMID: 28635365 PMCID: PMC5703254 DOI: 10.1080/19491034.2017.1337611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nucleosomes are the basic units of chromatin. They compact the genome inside the nucleus and regulate the access of proteins to DNA. In the yeast genome, most nucleosomes occupy well-defined positions, which are maintained under many different physiological situations and genetic backgrounds. Although several short sequence elements have been described that favor or reduce the affinity between histones and DNA, the extent to which the DNA sequence affects nucleosome positioning in the genomic context remains unclear. Recent analyses indicate that the base composition pattern of mononucleosomal DNA differs among species, and that the same sequence elements have a different impact on nucleosome positioning in different genomes despite the high level of phylogenetic conservation of histones. These studies have also shown that the DNA sequence contributes to nucleosome positioning to the point that it is possible to design synthetic DNA molecules capable of generating regular and species-specific nucleosomal patterns in vivo.
Collapse
Affiliation(s)
- Alicia García
- a Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca , Salamanca , Spain
| | - Sara González
- a Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca , Salamanca , Spain
| | - Francisco Antequera
- a Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca , Salamanca , Spain
| |
Collapse
|
46
|
A comparison of nucleosome organization in Drosophila cell lines. PLoS One 2017; 12:e0178590. [PMID: 28570602 PMCID: PMC5453549 DOI: 10.1371/journal.pone.0178590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 05/16/2017] [Indexed: 01/25/2023] Open
Abstract
Changes in the distribution of nucleosomes along the genome influence chromatin structure and impact gene expression by modulating the accessibility of DNA to transcriptional machinery. However, the role of genome-wide nucleosome positioning in gene expression and in maintaining differentiated cell states remains poorly understood. Drosophila melanogaster cell lines represent distinct tissue types and exhibit cell-type specific gene expression profiles. They thus could provide a useful tool for investigating cell-type specific nucleosome organization of an organism's genome. To evaluate this possibility, we compared genome-wide nucleosome positioning and occupancy in five different Drosophila tissue-specific cell lines, and in reconstituted chromatin, and then tested for correlations between nucleosome positioning, transcription factor binding motifs, and gene expression. Nucleosomes in all cell lines were positioned in accordance with previously known DNA-nucleosome interactions, with helically repeating A/T di-nucleotide pairs arranged within nucleosomal DNAs and AT-rich pentamers generally excluded from nucleosomal DNA. Nucleosome organization in all cell lines differed markedly from in vitro reconstituted chromatin, with highly expressed genes showing strong nucleosome organization around transcriptional start sites. Importantly, comparative analysis identified genomic regions that exhibited cell line-specific nucleosome enrichment or depletion. Further analysis of these regions identified 91 out of 16,384 possible heptamer sequences that showed differential nucleosomal occupation between cell lines, and 49 of the heptamers matched one or more known transcription factor binding sites. These results demonstrate that there is differential nucleosome positioning between these Drosophila cell lines and therefore identify a system that could be used to investigate the functional significance of differential nucleosomal positioning in cell type specification.
Collapse
|
47
|
Shetty A, Kallgren SP, Demel C, Maier KC, Spatt D, Alver BH, Cramer P, Park PJ, Winston F. Spt5 Plays Vital Roles in the Control of Sense and Antisense Transcription Elongation. Mol Cell 2017; 66:77-88.e5. [PMID: 28366642 DOI: 10.1016/j.molcel.2017.02.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/12/2017] [Accepted: 02/22/2017] [Indexed: 12/11/2022]
Abstract
Spt5 is an essential and conserved factor that functions in transcription and co-transcriptional processes. However, many aspects of the requirement for Spt5 in transcription are poorly understood. We have analyzed the consequences of Spt5 depletion in Schizosaccharomyces pombe using four genome-wide approaches. Our results demonstrate that Spt5 is crucial for a normal rate of RNA synthesis and distribution of RNAPII over transcription units. In the absence of Spt5, RNAPII localization changes dramatically, with reduced levels and a relative accumulation over the first ∼500 bp, suggesting that Spt5 is required for transcription past a barrier. Spt5 depletion also results in widespread antisense transcription initiating within this barrier region. Deletions of this region alter the distribution of RNAPII on the sense strand, suggesting that the barrier observed after Spt5 depletion is normally a site at which Spt5 stimulates elongation. Our results reveal a global requirement for Spt5 in transcription elongation.
Collapse
Affiliation(s)
- Ameet Shetty
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Scott P Kallgren
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Carina Demel
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Kerstin C Maier
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Dan Spatt
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Burak H Alver
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Fred Winston
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Genomes of Multicellular Organisms Have Evolved to Attract Nucleosomes to Promoter Regions. Biophys J 2017; 112:505-511. [PMID: 28131316 DOI: 10.1016/j.bpj.2016.12.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/19/2016] [Accepted: 12/29/2016] [Indexed: 02/07/2023] Open
Abstract
Sequences that influence nucleosome positioning in promoter regions, and their relation to gene regulation, have been the topic of much research over the last decade. In yeast, significant nucleosome-depleted regions are found, which facilitate transcription. With the arrival of nucleosome positioning maps for the human genome, it was discovered that in our genome, unlike in that of yeast, promoters encode for high nucleosome occupancy. In this work, we look at the genomes of a range of different organisms, to provide a catalog of nucleosome positioning signals in promoters across the tree of life. We utilize a computational model of the nucleosome, based on crystallographic analyses of the structure and elasticity of the nucleosome, to predict the nucleosome positioning signals in promoter regions. To be able to apply our model to large genomic datasets, we introduce an approximative scheme that makes use of the limited range of correlations in nucleosomal sequence preferences to create a computationally efficient approximation of the full biophysical model. Our predictions show that a clear distinction between unicellular and multicellular life is visible in the intrinsically encoded nucleosome affinity. Furthermore, the strength of the nucleosome positioning signals correlates with the complexity of the organism. We conclude that encoding for high nucleosome occupancy, as in the human genome, is in fact a universal feature of multicellular life.
Collapse
|
49
|
Xiong J, Gao S, Dui W, Yang W, Chen X, Taverna SD, Pearlman RE, Ashlock W, Miao W, Liu Y. Dissecting relative contributions of cis- and trans-determinants to nucleosome distribution by comparing Tetrahymena macronuclear and micronuclear chromatin. Nucleic Acids Res 2016; 44:10091-10105. [PMID: 27488188 PMCID: PMC5137421 DOI: 10.1093/nar/gkw684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 02/06/2023] Open
Abstract
The ciliate protozoan Tetrahymena thermophila contains two types of structurally and functionally differentiated nuclei: the transcriptionally active somatic macronucleus (MAC) and the transcriptionally silent germ-line micronucleus (MIC). Here, we demonstrate that MAC features well-positioned nucleosomes downstream of transcription start sites and flanking splice sites. Transcription-associated trans-determinants promote nucleosome positioning in MAC. By contrast, nucleosomes in MIC are dramatically delocalized. Nucleosome occupancy in MAC and MIC are nonetheless highly correlated with each other, as well as with in vitro reconstitution and predictions based upon DNA sequence features, revealing unexpectedly strong contributions from cis-determinants. In particular, well-positioned nucleosomes are often matched with GC content oscillations. As many nucleosomes are coordinately accommodated by both cis- and trans-determinants, we propose that their distribution is shaped by the impact of these nucleosomes on the mutational and transcriptional landscape, and driven by evolutionary selection.
Collapse
Affiliation(s)
- Jie Xiong
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,These authors contributed equally to this work as first authors
| | - Shan Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China,These authors contributed equally to this work as first authors
| | - Wen Dui
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wentao Yang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao Chen
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Sean D. Taverna
- Department of Pharmacology and Molecular Sciences and The Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ronald E. Pearlman
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Wendy Ashlock
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,Correspondence may also be addressed to Wei Miao.
| | - Yifan Liu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA,To whom correspondence should be addressed. Tel: +1 734 6154239;
| |
Collapse
|
50
|
Matsuda A, Asakawa H, Haraguchi T, Hiraoka Y. Spatial organization of the Schizosaccharomyces pombe genome within the nucleus. Yeast 2016; 34:55-66. [PMID: 27766670 DOI: 10.1002/yea.3217] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/06/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe is a useful experimental system for studying the organization of chromosomes within the cell nucleus. S. pombe has a small genome that is organized into three chromosomes. The small size of the genome and the small number of chromosomes are advantageous for cytological and genome-wide studies of chromosomes; however, the small size of the nucleus impedes microscopic observations owing to limits in spatial resolution during imaging. Recent advances in microscopy, such as super-resolution microscopy, have greatly expanded the use of S. pombe as a model organism in a wide range of studies. In addition, biochemical studies, such as chromatin immunoprecipitation and chromosome conformation capture, have provided complementary approaches. Here, we review the spatial organization of the S. pombe genome as determined by a combination of cytological and biochemical studies. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| |
Collapse
|