1
|
Potemkin N, Cawood SMF, Guévremont D, Mockett B, Treece J, Stanton JAL, Williams JM. Whole Transcriptome RNA-Seq Reveals Drivers of Pathological Dysfunction in a Transgenic Model of Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04878-6. [PMID: 40186694 DOI: 10.1007/s12035-025-04878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/20/2025] [Indexed: 04/07/2025]
Abstract
Alzheimer's disease (AD) affects more than 55 million people worldwide, yet current theories cannot fully explain its aetiology. Accordingly, gene expression profiling has been used to provide a holistic view of the biology underpinning AD. Focusing primarily on protein-coding genes, such approaches have highlighted a critical involvement of microglia-related inflammatory processes. Simultaneous investigation of transcriptional regulators and noncoding RNA (ncRNA) can offer further insight into AD biology and inform the development of disease-modifying therapies. We previously described a method for whole transcriptome sampling to simultaneously investigate protein-coding genes and ncRNA. Here, we use this technique to explore transcriptional changes in a murine model of AD (15-month-old APP/PS1 mice). We confirmed the extensive involvement of microglia-associated genes and gene networks, consistent with literature. We also report a wealth of differentially-expressed non-coding RNA - including microRNA, long non-coding RNA, small nuclear and small nucleolar RNA, and pseudogenes - many of which have been overlooked previously. Transcription factor analysis determined that six transcription factors likely regulate gene expression changes in this model (Irf8, Junb, c-Fos, Lmo2, Runx1, and Nfe2l2). We then utilised validated miRNA-target interactions, finding 60 interactions between 15 miRNA and 42 mRNA (messenger RNA) with largely consistent directionality. Furthermore, we found that eight transcription factors (Clock, Lmo2, Runx1, Nfe2l2, Egr2, c-Fos, Junb, and Nr4a1) are likely responsible for the regulation of miRNA expression. Taken together, these data indicate a complex interplay of coding and non-coding RNA, driven by a small number of specific transcription factors, contributing to transcriptional changes in 15-month-old APP/PS1 mice.
Collapse
Affiliation(s)
- Nikita Potemkin
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
- Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Sophie M F Cawood
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
- Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
- Department of Psychology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Diane Guévremont
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
- Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Bruce Mockett
- Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
- Department of Psychology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Jackson Treece
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Jo-Ann L Stanton
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Joanna M Williams
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand.
- Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
2
|
Haberman N, Digby H, Faraway R, Cheung R, Chakrabarti AM, Jobbins AM, Parr C, Yasuzawa K, Kasukawa T, Yip CW, Kato M, Takahashi H, Carninci P, Vernia S, Ule J, Sibley CR, Martinez-Sanchez A, Lenhard B. Widespread 3'UTR capped RNAs derive from G-rich regions in proximity to AGO2 binding sites. BMC Biol 2024; 22:254. [PMID: 39511645 PMCID: PMC11546257 DOI: 10.1186/s12915-024-02032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/02/2024] [Indexed: 11/15/2024] Open
Abstract
The 3' untranslated region (3'UTR) plays a crucial role in determining mRNA stability, localisation, translation and degradation. Cap analysis of gene expression (CAGE), a method for the detection of capped 5' ends of mRNAs, additionally reveals a large number of apparently 5' capped RNAs derived from locations within the body of the transcript, including 3'UTRs. Here, we provide direct evidence that these 3'UTR-derived RNAs are indeed capped and widespread in mammalian cells. By using a combination of AGO2 enhanced individual nucleotide resolution UV crosslinking and immunoprecipitation (eiCLIP) and CAGE following siRNA treatment, we find that these 3'UTR-derived RNAs likely originate from AGO2-binding sites, and most often occur at locations with G-rich motifs bound by the RNA-binding protein UPF1. High-resolution imaging and long-read sequencing analysis validate several 3'UTR-derived RNAs, showcase their variable abundance and show that they may not co-localise with the parental mRNAs. Taken together, we provide new insights into the origin and prevalence of 3'UTR-derived RNAs, show the utility of CAGE-seq for their genome-wide detection and provide a rich dataset for exploring new biology of a poorly understood new class of RNAs.
Collapse
Affiliation(s)
- Nejc Haberman
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, W12 0NN, UK.
| | - Holly Digby
- UK Dementia Research Institute at King's College London, London, SE5 9RX, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Rupert Faraway
- UK Dementia Research Institute at King's College London, London, SE5 9RX, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Rebecca Cheung
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Anob M Chakrabarti
- UCL Respiratory, Division of Medicine, University College London, London, WC1E 6JF, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Andrew M Jobbins
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Callum Parr
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Kayoko Yasuzawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Chi Wai Yip
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Masaki Kato
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Hazuki Takahashi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Human Technopole, Milan, 20157, Italy
| | - Santiago Vernia
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, London, W12 0NN, UK
- Institute of Biomedicine of Valencia (CSIC), Valencia, 46012, Spain
| | - Jernej Ule
- UK Dementia Research Institute at King's College London, London, SE5 9RX, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Christopher R Sibley
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK.
| | - Boris Lenhard
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
3
|
Li X, Mills WT, Jin DS, Meffert MK. Genome-wide and cell-type-selective profiling of in vivo small noncoding RNA:target RNA interactions by chimeric RNA sequencing. CELL REPORTS METHODS 2024; 4:100836. [PMID: 39127045 PMCID: PMC11384083 DOI: 10.1016/j.crmeth.2024.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
Small noncoding RNAs (sncRNAs) regulate biological processes by impacting post-transcriptional gene expression through repressing the translation and levels of targeted transcripts. Despite the clear biological importance of sncRNAs, approaches to unambiguously define genome-wide sncRNA:target RNA interactions remain challenging and not widely adopted. We present CIMERA-seq, a robust strategy incorporating covalent ligation of sncRNAs to their target RNAs within the RNA-induced silencing complex (RISC) and direct detection of in vivo interactions by sequencing of the resulting chimeric RNAs. Modifications are incorporated to increase the capacity for processing low-abundance samples and permit cell-type-selective profiling of sncRNA:target RNA interactions, as demonstrated in mouse brain cortex. CIMERA-seq represents a cohesive and optimized method for unambiguously characterizing the in vivo network of sncRNA:target RNA interactions in numerous biological contexts and even subcellular fractions. Genome-wide and cell-type-selective CIMERA-seq enhances researchers' ability to study gene regulation by sncRNAs in diverse model systems and tissue types.
Collapse
Affiliation(s)
- Xinbei Li
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William T Mills
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel S Jin
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mollie K Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Samal S, Barik D, Shyamal S, Jena S, Panda AC, Dash M. Synergistic Interaction between Polysaccharide-Based Extracellular Matrix and Mineralized Osteoblast-Derived EVs Promotes Bone Regeneration via miRNA-mRNA Regulatory Axis. Biomacromolecules 2024; 25:4139-4155. [PMID: 38924768 DOI: 10.1021/acs.biomac.4c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Extracellular vesicles (EVs) derived from bone progenitor cells are advantageous as cell-free and non-immunogenic cargo delivery vehicles. In this study, EVs are isolated from MC3T3-E1 cells before (GM-EVs) and after mineralization for 7 and 14 days (DM-EVs). It was observed that DM-EVs accelerate the process of differentiation in recipient cells more prominently. The small RNA sequencing of EVs revealed that miR-204-5p, miR-221-3p, and miR-148a-3p are among the highly upregulated miRNAs that have an inhibitory effect on the function of mRNAs, Sox11, Timp3, and Ccna2 in host cells, which is probably responsible for enhancing the activity of osteoblastic genes. To enhance the bioavailability of EVs, they are encapsulated in a chitosan-collagen composite hydrogel that serves as a bioresorbable extracellular matrix (ECM). The EVs-integrated scaffold (DM-EVs + Scaffold) enhances bone regeneration in critical-sized calvarial bone defects in rats within 8 weeks of implantation by providing the ECM cues. The shelf life of DM-EVs + Scaffold indicates that the bioactivity of EVs and their cargo in the polymer matrix remains intact for up to 30 days. Integrating mineralized cell-derived EVs into an ECM represents a bioresorbable matrix with a cell-free method for promoting new bone formation through the miRNA-mRNA regulatory axis.
Collapse
Affiliation(s)
- Sasmita Samal
- BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023 Odisha, India
- School of Biotechnology, KIIT University, Bhubaneswar 751024 Odisha, India
| | - Debyashreeta Barik
- BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023 Odisha, India
- School of Biotechnology, KIIT University, Bhubaneswar 751024 Odisha, India
| | - Sharmishtha Shyamal
- BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023 Odisha, India
- ICMR-National Institute for Reproduction Biology and Child Health, Mumbai 400012, India
| | - Sarita Jena
- BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023 Odisha, India
| | - Amaresh C Panda
- BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023 Odisha, India
| | - Mamoni Dash
- BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023 Odisha, India
| |
Collapse
|
5
|
Liu Y, Li X, Ma X, Du Q, Wang J, Yu H. MiR-290 Family Maintains Pluripotency and Self-Renewal by Regulating MAPK Signaling Pathway in Intermediate Pluripotent Stem Cells. Int J Mol Sci 2024; 25:2681. [PMID: 38473927 DOI: 10.3390/ijms25052681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 03/14/2024] Open
Abstract
Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are derived from pre- and post-implantation embryos, representing the initial "naïve" and final "primed" states of pluripotency, respectively. In this study, novel reprogrammed pluripotent stem cells (rPSCs) were induced from mouse EpiSCs using a chemically defined medium containing mouse LIF, BMP4, CHIR99021, XAV939, and SB203580. The rPSCs exhibited domed clones and expressed key pluripotency genes, with both X chromosomes active in female cells. Furthermore, rPSCs differentiated into cells of all three germ layers in vivo through teratoma formation. Regarding epigenetic modifications, the DNA methylation of Oct4, Sox2, and Nanog promoter regions and the mRNA levels of Dnmt3a, Dnmt3b, and Dnmt1 were reduced in rPSCs compared with EpiSCs. However, the miR-290 family was significantly upregulated in rPSCs. After removing SB203580, an inhibitor of the p38 MAPK pathway, the cell colonies changed from domed to flat, with a significant decrease in the expression of pluripotency genes and the miR-290 family. Conversely, overexpression of pri-miR-290 reversed these changes. In addition, Map2k6 was identified as a direct target gene of miR-291b-3p, indicating that the miR-290 family maintains pluripotency and self-renewal in rPSCs by regulating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Yueshi Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, Hohhot 010070, China
| | - Xiangnan Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, Hohhot 010070, China
| | - Xiaozhuang Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, Hohhot 010070, China
| | - Qiankun Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, Hohhot 010070, China
| | - Jiemin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, Hohhot 010070, China
| | - Haiquan Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
6
|
Vali R, Azadi A, Tizno A, Farkhondeh T, Samini F, Samarghandian S. miRNA contributes to neuropathic pains. Int J Biol Macromol 2023; 253:126893. [PMID: 37730007 DOI: 10.1016/j.ijbiomac.2023.126893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Neuropathic pain (NP) is a kind of chronic pain caused by direct injury to the peripheral or central nervous system (CNS). microRNAs (miRNAs) are small noncoding RNAs that mostly interact with the 3 untranslated region of messenger RNAs (mRNAs) to regulate the expression of multiple genes. NP is characterized by changes in the expression of receptors and mediators, and there is evidence that miRNAs may contribute to some of these alterations. In this review, we aimed to fully comprehend the connection between NP and miRNA; and also, to establish a link between neurology, biology, and dentistry. Studies have shown that targeting miRNAs may be an effective therapeutic strategy for the treatment of chronic pain and potential target for the prevention of NP.
Collapse
Affiliation(s)
- Reyhaneh Vali
- Department of Biology, Faculty of Modern Science, Tehran Medical Branch, Islamic Azad University, Tehran, Iran; Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Azadi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Tizno
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Farkhondeh
- Neuroscience Research Center, Kamyab Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariborz Samini
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
7
|
Guidi R, Wedeles C, Xu D, Kolmus K, Headland SE, Teng G, Guillory J, Zeng YJ, Cheung TK, Chaudhuri S, Modrusan Z, Liang Y, Horswell S, Haley B, Rutz S, Rose C, Franke Y, Kirkpatrick DS, Hackney JA, Wilson MS. Argonaute3-SF3B3 complex controls pre-mRNA splicing to restrain type 2 immunity. Cell Rep 2023; 42:113515. [PMID: 38096048 DOI: 10.1016/j.celrep.2023.113515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/28/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Abstract
Argonaute (AGO) proteins execute microRNA (miRNA)-mediated gene silencing. However, it is unclear whether all 4 mammalian AGO proteins (AGO1, AGO2, AGO3, and AGO4) are required for miRNA activity. We generate Ago1, Ago3, and Ago4-deficient mice (Ago134Δ) and find AGO1/3/4 to be redundant for miRNA biogenesis, homeostasis, or function, a role that is carried out by AGO2. Instead, AGO1/3/4 regulate the expansion of type 2 immunity via precursor mRNA splicing in CD4+ T helper (Th) lymphocytes. Gain- and loss-of-function experiments demonstrate that nuclear AGO3 interacts directly with SF3B3, a component of the U2 spliceosome complex, to aid global mRNA splicing, and in particular the isoforms of the gene Nisch, resulting in a dysregulated Nisch isoform ratio. This work uncouples AGO1, AGO3, and AGO4 from miRNA-mediated RNA interference, identifies an AGO3:SF3B3 complex in the nucleus, and reveals a mechanism by which AGO proteins regulate inflammatory diseases.
Collapse
Affiliation(s)
- Riccardo Guidi
- Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | | | - Daqi Xu
- Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | - Krzysztof Kolmus
- OMNI Bioinformatics, Genentech, South San Francisco, CA 94080, USA
| | - Sarah E Headland
- Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | - Grace Teng
- Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | - Joseph Guillory
- Next Generation Sequencing (NGS), Genentech, South San Francisco, CA 94080, USA
| | - Yi Jimmy Zeng
- Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080, USA
| | - Tommy K Cheung
- Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080, USA
| | - Subhra Chaudhuri
- Next Generation Sequencing (NGS), Genentech, South San Francisco, CA 94080, USA
| | - Zora Modrusan
- Next Generation Sequencing (NGS), Genentech, South San Francisco, CA 94080, USA
| | - Yuxin Liang
- Next Generation Sequencing (NGS), Genentech, South San Francisco, CA 94080, USA
| | - Stuart Horswell
- Bioinformatic and Biostatistics, The Francis Crick Institute, London, UK
| | - Benjamin Haley
- Molecular Biology, Genentech, South San Francisco, CA 94080, USA
| | - Sascha Rutz
- Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Christopher Rose
- Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080, USA
| | - Yvonne Franke
- Protein Sciences, Genentech, South San Francisco, CA 94080, USA
| | - Donald S Kirkpatrick
- Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080, USA
| | - Jason A Hackney
- OMNI Bioinformatics, Genentech, South San Francisco, CA 94080, USA
| | - Mark S Wilson
- Immunology Discovery, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
8
|
Koopmans PJ, Ismaeel A, Goljanek-Whysall K, Murach KA. The roles of miRNAs in adult skeletal muscle satellite cells. Free Radic Biol Med 2023; 209:228-238. [PMID: 37879420 PMCID: PMC10911817 DOI: 10.1016/j.freeradbiomed.2023.10.403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Satellite cells are bona fide muscle stem cells that are indispensable for successful post-natal muscle growth and regeneration after severe injury. These cells also participate in adult muscle adaptation in several capacities. MicroRNAs (miRNAs) are post-transcriptional regulators of mRNA that are implicated in several aspects of stem cell function. There is evidence to suggest that miRNAs affect satellite cell behavior in vivo during development and myogenic progenitor behavior in vitro, but the role of miRNAs in adult skeletal muscle satellite cells is less studied. In this review, we provide evidence for how miRNAs control satellite cell function with emphasis on satellite cells of adult skeletal muscle in vivo. We first outline how miRNAs are indispensable for satellite cell viability and control the phases of myogenesis. Next, we discuss the interplay between miRNAs and myogenic cell redox status, senescence, and communication to other muscle-resident cells during muscle adaptation. Results from recent satellite cell miRNA profiling studies are also summarized. In vitro experiments in primary myogenic cells and cell lines have been invaluable for exploring the influence of miRNAs, but we identify a need for novel genetic tools to further interrogate how miRNAs control satellite cell behavior in adult skeletal muscle in vivo.
Collapse
Affiliation(s)
- Pieter Jan Koopmans
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40506, USA
| | - Katarzyna Goljanek-Whysall
- School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Kevin A Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
9
|
Lai H, Feng N, Zhai Q. Discovery of the major 15-30 nt mammalian small RNAs, their biogenesis and function. Nat Commun 2023; 14:5796. [PMID: 37723159 PMCID: PMC10507107 DOI: 10.1038/s41467-023-41554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023] Open
Abstract
Small RNAs (sRNAs) within 15-30 nt such as miRNA, tsRNA, srRNA with 3'-OH have been identified. However, whether these sRNAs are the major 15-30 nt sRNAs is still unknown. Here we show about 90% mammalian sRNAs within 15-30 nt end with 2',3'-cyclic phosphate (3'-cP). TANT-seq was developed to simultaneously profile sRNAs with 3'-cP (sRNA-cPs) and sRNA-OHs, and huge amount of sRNA-cPs were detected. Surprisingly, sRNA-cPs and sRNA-OHs usually have distinct sequences. The data from TANT-seq were validated by a novel method termed TE-qPCR, and Northern blot. Furthermore, we found that Angiogenin and RNase 4 contribute to the biogenesis of sRNA-cPs. Moreover, much more sRNA-cPs than sRNA-OHs bind to Ago2, and can regulate gene expression. Particularly, snR-2-cP regulates Bcl2 by targeting to its 3'UTR dependent on Ago2, and subsequently regulates apoptosis. In addition, sRNA-cPs can guide the cleavage of target RNAs in Ago2 complex as miRNAs without the requirement of 3'-cP. Our discovery greatly expands the repertoire of mammalian sRNAs, and provides strategies and powerful tools towards further investigation of sRNA-cPs.
Collapse
Affiliation(s)
- Hejin Lai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ning Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Zhai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
10
|
Kshirsagar A, Doroshev SM, Gorelik A, Olender T, Sapir T, Tsuboi D, Rosenhek-Goldian I, Malitsky S, Itkin M, Argoetti A, Mandel-Gutfreund Y, Cohen SR, Hanna JH, Ulitsky I, Kaibuchi K, Reiner O. LIS1 RNA-binding orchestrates the mechanosensitive properties of embryonic stem cells in AGO2-dependent and independent ways. Nat Commun 2023; 14:3293. [PMID: 37280197 DOI: 10.1038/s41467-023-38797-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/15/2023] [Indexed: 06/08/2023] Open
Abstract
Lissencephaly-1 (LIS1) is associated with neurodevelopmental diseases and is known to regulate the molecular motor cytoplasmic dynein activity. Here we show that LIS1 is essential for the viability of mouse embryonic stem cells (mESCs), and it governs the physical properties of these cells. LIS1 dosage substantially affects gene expression, and we uncovered an unexpected interaction of LIS1 with RNA and RNA-binding proteins, most prominently the Argonaute complex. We demonstrate that LIS1 overexpression partially rescued the extracellular matrix (ECM) expression and mechanosensitive genes conferring stiffness to Argonaute null mESCs. Collectively, our data transforms the current perspective on the roles of LIS1 in post-transcriptional regulation underlying development and mechanosensitive processes.
Collapse
Affiliation(s)
- Aditya Kshirsagar
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Svetlana Maslov Doroshev
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Gorelik
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Sapir
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Daisuke Tsuboi
- International Center for Brain Science, Fujita Health University, Toyoake, Japan
| | - Irit Rosenhek-Goldian
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Argoetti
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Sidney R Cohen
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob H Hanna
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Kozo Kaibuchi
- International Center for Brain Science, Fujita Health University, Toyoake, Japan
| | - Orly Reiner
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
11
|
Mufteev M, Rodrigues DC, Yuki KE, Narula A, Wei W, Piekna A, Liu J, Pasceri P, Rissland OS, Wilson MD, Ellis J. Transcriptional buffering and 3'UTR lengthening are shaped during human neurodevelopment by shifts in mRNA stability and microRNA load. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530249. [PMID: 36909614 PMCID: PMC10002768 DOI: 10.1101/2023.03.01.530249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The contribution of mRNA half-life is commonly overlooked when examining changes in mRNA abundance during development. mRNA levels of some genes are regulated by transcription rate only, but others may be regulated by mRNA half-life only shifts. Furthermore, transcriptional buffering is predicted when changes in transcription rates have compensating shifts in mRNA half-life resulting in no change to steady-state levels. Likewise, transcriptional boosting should result when changes in transcription rate are accompanied by amplifying half-life shifts. During neurodevelopment there is widespread 3'UTR lengthening that could be shaped by differential shifts in the stability of existing short or long 3'UTR transcript isoforms. We measured transcription rate and mRNA half-life changes during induced human Pluripotent Stem Cell (iPSC)-derived neuronal development using RATE-seq. During transitions to progenitor and neuron stages, transcriptional buffering occurred in up to 50%, and transcriptional boosting in up to 15%, of genes with changed transcription rates. The remaining changes occurred by transcription rate only or mRNA half-life only shifts. Average mRNA half-life decreased two-fold in neurons relative to iPSCs. Short gene isoforms were more destabilized in neurons and thereby increased the average 3'UTR length. Small RNA sequencing captured an increase in microRNA copy number per cell during neurodevelopment. We propose that mRNA destabilization and 3'UTR lengthening are driven in part by an increase in microRNA load in neurons. Our findings identify mRNA stability mechanisms in human neurodevelopment that regulate gene and isoform level abundance and provide a precedent for similar post-transcriptional regulatory events as other tissues develop.
Collapse
Affiliation(s)
- Marat Mufteev
- Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Deivid C Rodrigues
- Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Kyoko E Yuki
- Genetics & Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Ashrut Narula
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Wei Wei
- Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Alina Piekna
- Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Jiajie Liu
- Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Peter Pasceri
- Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Olivia S Rissland
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- RNA Bioscience Initiative and Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Genetics & Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - James Ellis
- Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
12
|
Zhao A, Zhou H, Yang J, Li M, Niu T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther 2023; 8:71. [PMID: 36797244 PMCID: PMC9935927 DOI: 10.1038/s41392-023-01342-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023] Open
Abstract
Hematologic malignancies are one of the most common cancers, and the incidence has been rising in recent decades. The clinical and molecular features of hematologic malignancies are highly heterogenous, and some hematologic malignancies are incurable, challenging the treatment, and prognosis of the patients. However, hematopoiesis and oncogenesis of hematologic malignancies are profoundly affected by epigenetic regulation. Studies have found that methylation-related mutations, abnormal methylation profiles of DNA, and abnormal histone deacetylase expression are recurrent in leukemia and lymphoma. Furthermore, the hypomethylating agents and histone deacetylase inhibitors are effective to treat acute myeloid leukemia and T-cell lymphomas, indicating that epigenetic regulation is indispensable to hematologic oncogenesis. Epigenetic regulation mainly includes DNA modifications, histone modifications, and noncoding RNA-mediated targeting, and regulates various DNA-based processes. This review presents the role of writers, readers, and erasers of DNA methylation and histone methylation, and acetylation in hematologic malignancies. In addition, this review provides the influence of microRNAs and long noncoding RNAs on hematologic malignancies. Furthermore, the implication of epigenetic regulation in targeted treatment is discussed. This review comprehensively presents the change and function of each epigenetic regulator in normal and oncogenic hematopoiesis and provides innovative epigenetic-targeted treatment in clinical practice.
Collapse
Affiliation(s)
- Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jinrong Yang
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Meng Li
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Mazloom AR, Xu H, Reig-Palou J, Vasileva A, Román AC, Mulero-Navarro S, Lemischka IR, Sevilla A. Esrrb Regulates Specific Feed-Forward Loops to Transit From Pluripotency Into Early Stages of Differentiation. Front Cell Dev Biol 2022; 10:820255. [PMID: 35652095 PMCID: PMC9149258 DOI: 10.3389/fcell.2022.820255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/24/2022] [Indexed: 01/15/2023] Open
Abstract
Characterization of pluripotent states, in which cells can both self-renew or differentiate, with the irreversible loss of pluripotency, are important research areas in developmental biology. Although microRNAs (miRNAs) have been shown to play a relevant role in cellular differentiation, the role of miRNAs integrated into gene regulatory networks and its dynamic changes during these early stages of embryonic stem cell (ESC) differentiation remain elusive. Here we describe the dynamic transcriptional regulatory circuitry of stem cells that incorporate protein-coding and miRNA genes based on miRNA array expression and quantitative sequencing of short transcripts upon the downregulation of the Estrogen Related Receptor Beta (Esrrb). The data reveals how Esrrb, a key stem cell transcription factor, regulates a specific stem cell miRNA expression program and integrates dynamic changes of feed-forward loops contributing to the early stages of cell differentiation upon its downregulation. Together these findings provide new insights on the architecture of the combined transcriptional post-transcriptional regulatory network in embryonic stem cells.
Collapse
Affiliation(s)
- Amin R. Mazloom
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Huilei Xu
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jaume Reig-Palou
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Ana Vasileva
- Center for Radiological Research, Columbia University, New York, NY, United States
| | - Angel-Carlos Román
- Department of Biochemistry, Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Sonia Mulero-Navarro
- Department of Biochemistry, Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Ihor R. Lemischka
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ana Sevilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- *Correspondence: Ana Sevilla,
| |
Collapse
|
14
|
Dori M, Caroli J, Forcato M. Circr, a Computational Tool to Identify miRNA:circRNA Associations. FRONTIERS IN BIOINFORMATICS 2022; 2:852834. [PMID: 36304313 PMCID: PMC9580875 DOI: 10.3389/fbinf.2022.852834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/21/2022] [Indexed: 08/21/2023] Open
Abstract
Circular RNAs (circRNAs) are known to act as important regulators of the microRNA (miRNA) activity. Yet, computational resources to identify miRNA:circRNA interactions are mostly limited to already annotated circRNAs or affected by high rates of false positive predictions. To overcome these limitations, we developed Circr, a computational tool for the prediction of associations between circRNAs and miRNAs. Circr combines three publicly available algorithms for de novo prediction of miRNA binding sites on target sequences (miRanda, RNAhybrid, and TargetScan) and annotates each identified miRNA:target pairs with experimentally validated miRNA:RNA interactions and binding sites for Argonaute proteins derived from either ChIPseq or CLIPseq data. The combination of multiple tools for the identification of a single miRNA recognition site with experimental data allows to efficiently prioritize candidate miRNA:circRNA interactions for functional studies in different organisms. Circr can use its internal annotation database or custom annotation tables to enhance the identification of novel and not previously annotated miRNA:circRNA sites in virtually any species. Circr is written in Python 3.6 and is released under the GNU GPL3.0 License at https://github.com/bicciatolab/Circr.
Collapse
Affiliation(s)
- Martina Dori
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena,Italy
| | - Jimmy Caroli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena,Italy
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena,Italy
| |
Collapse
|
15
|
Xu C, Fang X, Lu T, Dean C. Antagonistic cotranscriptional regulation through ARGONAUTE1 and the THO/TREX complex orchestrates FLC transcriptional output. Proc Natl Acad Sci U S A 2021; 118:e2113757118. [PMID: 34789567 PMCID: PMC8617408 DOI: 10.1073/pnas.2113757118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
Quantitative transcriptional control is essential for physiological and developmental processes in many organisms. Transcriptional output is influenced by cotranscriptional processes interconnected to chromatin regulation, but how the functions of different cotranscriptional regulators are integrated is poorly understood. The Arabidopsis floral repressor locus FLOWERING LOCUS C (FLC) is cotranscriptionally repressed by alternative processing of the antisense transcript COOLAIR. Proximal 3'-end processing of COOLAIR resolves a cotranscriptionally formed R-loop, and this process physically links to a histone-modifying complex FLD/SDG26/LD. This induces a chromatin environment locally that determines low transcription initiation and a slow elongation rate to both sense and antisense strands. Here, we show that ARGONAUTE1 (AGO1) genetically functions in this cotranscriptional repression mechanism. AGO1 associates with COOLAIR and influences COOLAIR splicing dynamics to promote proximal COOLAIR, R-loop resolution, and chromatin silencing. Proteomic analyses revealed physical associations between AGO1, subunits of RNA Polymerase II (Pol II), the splicing-related proteins-the spliceosome NineTeen Complex (NTC) and related proteins (NTR)-and the THO/TREX complex. We connect these activities by demonstrating that the THO/TREX complex activates FLC expression acting antagonistically to AGO1 in COOLAIR processing. Together these data reveal that antagonistic cotranscriptional regulation through AGO1 or THO/TREX influences COOLAIR processing to deliver a local chromatin environment that determines FLC transcriptional output. The involvement of these conserved cotranscriptional regulators suggests similar mechanisms may underpin quantitative transcriptional regulation generally.
Collapse
Affiliation(s)
- Congyao Xu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Xiaofeng Fang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Tiancong Lu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
16
|
Kesharwani D, Kumar A, Poojary M, Scaria V, Datta M. RNA sequencing reveals potential interacting networks between the altered transcriptome and ncRNome in the skeletal muscle of diabetic mice. Biosci Rep 2021; 41:BSR20210495. [PMID: 34190986 PMCID: PMC8276098 DOI: 10.1042/bsr20210495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
For a global epidemic like Type 2 diabetes mellitus (T2DM), while impaired gene regulation is identified as a primary cause of aberrant cellular physiology; in the past few years, non-coding RNAs (ncRNAs) have emerged as important regulators of cellular metabolism. However, there are no reports of comprehensive in-depth cross-talk between these regulatory elements and the potential consequences in the skeletal muscle during diabetes. Here, using RNA sequencing, we identified 465 mRNAs and 12 long non-coding RNAs (lncRNAs), to be differentially regulated in the skeletal muscle of diabetic mice and pathway enrichment analysis of these altered transcripts revealed pathways of insulin, FOXO and AMP-activated protein kinase (AMPK) signaling to be majorly over-represented. Construction of networks showed that these pathways significantly interact with each other that might underlie aberrant skeletal muscle metabolism during diabetes. Gene-gene interaction network depicted strong interactions among several differentially expressed genes (DEGs) namely, Prkab2, Irs1, Pfkfb3, Socs2 etc. Seven altered lncRNAs depicted multiple interactions with the altered transcripts, suggesting possible regulatory roles of these lncRNAs. Inverse patterns of expression were observed between several of the deregulated microRNAs (miRNAs) and the differentially expressed transcripts in the tissues. Towards validation, overexpression of miR-381-3p and miR-539-5p in skeletal muscle C2C12 cells significantly decreased the transcript levels of their targets, Nfkbia, Pik3r1 and Pi3kr1, Cdkn2d, respectively. Collectively, the findings provide a comprehensive understanding of the interactions and cross-talk between the ncRNome and transcriptome in the skeletal muscle during diabetes and put forth potential therapeutic options for improving insulin sensitivity.
Collapse
Affiliation(s)
- Devesh Kesharwani
- CSIR-Institute of Genomics and Integrative Biology, Functional and Genomics Unit, Mall Road, Delhi, India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Kamala Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Amit Kumar
- CSIR-Institute of Genomics and Integrative Biology, Functional and Genomics Unit, Mall Road, Delhi, India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Kamala Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Mukta Poojary
- Academy of Scientific and Innovative Research, CSIR-HRDC, Kamala Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- GN Ramachandran Knowledge Centre for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110025, India
| | - Vinod Scaria
- Academy of Scientific and Innovative Research, CSIR-HRDC, Kamala Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- GN Ramachandran Knowledge Centre for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110025, India
| | - Malabika Datta
- CSIR-Institute of Genomics and Integrative Biology, Functional and Genomics Unit, Mall Road, Delhi, India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Kamala Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
17
|
Serra F, Bottini S, Pratella D, Stathopoulou MG, Sebille W, El-Hami L, Repetto E, Mauduit C, Benahmed M, Grandjean V, Trabucchi M. Systemic CLIP-seq analysis and game theory approach to model microRNA mode of binding. Nucleic Acids Res 2021; 49:e66. [PMID: 33823551 PMCID: PMC8216473 DOI: 10.1093/nar/gkab198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/19/2021] [Accepted: 03/10/2021] [Indexed: 12/18/2022] Open
Abstract
microRNAs (miRNAs) associate with Ago proteins to post-transcriptionally silence gene expression by targeting mRNAs. To characterize the modes of miRNA-binding, we developed a novel computational framework, called optiCLIP, which considers the reproducibility of the identified peaks among replicates based on the peak overlap. We identified 98 999 binding sites for mouse and human miRNAs, from eleven Ago2 CLIP-seq datasets. Clustering the binding preferences, we found heterogeneity of the mode of binding for different miRNAs. Finally, we set up a quantitative model, named miRgame, based on an adaptation of the game theory. We have developed a new algorithm to translate the miRgame into a score that corresponds to a miRNA degree of occupancy for each Ago2 peak. The degree of occupancy summarizes the number of miRNA-binding sites and miRNAs targeting each binding site, and binding energy of each miRNA::RNA heteroduplex in each peak. Ago peaks were stratified accordingly to the degree of occupancy. Target repression correlates with higher score of degree of occupancy and number of miRNA-binding sites within each Ago peak. We validated the biological performance of our new method on miR-155-5p. In conclusion, our data demonstrate that miRNA-binding sites within each Ago2 CLIP-seq peak synergistically interplay to enhance target repression.
Collapse
Affiliation(s)
- Fabrizio Serra
- Inserm U1065, C3M, Team Control of Gene Expression (10), Nice, France.,Université Côte d'Azur, Inserm, C3M, Nice, France
| | - Silvia Bottini
- Inserm U1065, C3M, Team Control of Gene Expression (10), Nice, France.,Université Côte d'Azur, Inserm, C3M, Nice, France
| | - David Pratella
- Inserm U1065, C3M, Team Control of Gene Expression (10), Nice, France.,Université Côte d'Azur, Inserm, C3M, Nice, France
| | - Maria G Stathopoulou
- Inserm U1065, C3M, Team Control of Gene Expression (10), Nice, France.,Université Côte d'Azur, Inserm, C3M, Nice, France
| | - Wanda Sebille
- Inserm U1065, C3M, Team Control of Gene Expression (10), Nice, France.,Université Côte d'Azur, Inserm, C3M, Nice, France
| | - Loubna El-Hami
- Inserm U1065, C3M, Team Control of Gene Expression (10), Nice, France.,Université Côte d'Azur, Inserm, C3M, Nice, France
| | - Emanuela Repetto
- Inserm U1065, C3M, Team Control of Gene Expression (10), Nice, France.,Université Côte d'Azur, Inserm, C3M, Nice, France
| | - Claire Mauduit
- Inserm U1065, C3M, Team Control of Gene Expression (10), Nice, France.,Université Côte d'Azur, Inserm, C3M, Nice, France
| | - Mohamed Benahmed
- Inserm U1065, C3M, Team Control of Gene Expression (10), Nice, France.,Université Côte d'Azur, Inserm, C3M, Nice, France
| | - Valerie Grandjean
- Inserm U1065, C3M, Team Control of Gene Expression (10), Nice, France.,Université Côte d'Azur, Inserm, C3M, Nice, France
| | - Michele Trabucchi
- Inserm U1065, C3M, Team Control of Gene Expression (10), Nice, France.,Université Côte d'Azur, Inserm, C3M, Nice, France
| |
Collapse
|
18
|
Rozen-Gagnon K, Gu M, Luna JM, Luo JD, Yi S, Novack S, Jacobson E, Wang W, Paul MR, Scheel TKH, Carroll T, Rice CM. Argonaute-CLIP delineates versatile, functional RNAi networks in Aedes aegypti, a major vector of human viruses. Cell Host Microbe 2021; 29:834-848.e13. [PMID: 33794184 DOI: 10.1016/j.chom.2021.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/20/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Argonaute (AGO) proteins bind small RNAs to silence complementary RNA transcripts, and they are central to RNA interference (RNAi). RNAi is critical for regulation of gene expression and antiviral defense in Aedes aegypti mosquitoes, which transmit Zika, chikungunya, dengue, and yellow fever viruses. In mosquitoes, AGO1 mediates miRNA interactions, while AGO2 mediates siRNA interactions. We applied AGO-crosslinking immunoprecipitation (AGO-CLIP) for both AGO1 and AGO2, and we developed a universal software package for CLIP analysis (CLIPflexR), identifying 230 small RNAs and 5,447 small RNA targets that comprise a comprehensive RNAi network map in mosquitoes. RNAi network maps predicted expression levels of small RNA targets in specific tissues. Additionally, this resource identified unexpected, context-dependent AGO2 target preferences, including endogenous viral elements and 3'UTRs. Finally, contrary to current thinking, mosquito AGO2 repressed imperfect targets. These findings expand our understanding of small RNA networks and have broad implications for the study of antiviral RNAi.
Collapse
Affiliation(s)
- Kathryn Rozen-Gagnon
- Laboratory of Virology and Infectious Disease, the Rockefeller University, New York, NY 10065, USA.
| | - Meigang Gu
- Laboratory of Virology and Infectious Disease, the Rockefeller University, New York, NY 10065, USA
| | - Joseph M Luna
- Laboratory of Virology and Infectious Disease, the Rockefeller University, New York, NY 10065, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, the Rockefeller University, New York, NY 10065, USA
| | - Soon Yi
- Laboratory of Virology and Infectious Disease, the Rockefeller University, New York, NY 10065, USA
| | - Sasha Novack
- Laboratory of Virology and Infectious Disease, the Rockefeller University, New York, NY 10065, USA
| | - Eliana Jacobson
- Laboratory of Virology and Infectious Disease, the Rockefeller University, New York, NY 10065, USA
| | - Wei Wang
- Bioinformatics Resource Center, the Rockefeller University, New York, NY 10065, USA
| | - Matthew R Paul
- Bioinformatics Resource Center, the Rockefeller University, New York, NY 10065, USA
| | - Troels K H Scheel
- Laboratory of Virology and Infectious Disease, the Rockefeller University, New York, NY 10065, USA; Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, DK-2650 Hvidovre, Denmark; Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Thomas Carroll
- Bioinformatics Resource Center, the Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, the Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
19
|
Biasini A, Abdulkarim B, de Pretis S, Tan JY, Arora R, Wischnewski H, Dreos R, Pelizzola M, Ciaudo C, Marques AC. Translation is required for miRNA-dependent decay of endogenous transcripts. EMBO J 2021; 40:e104569. [PMID: 33300180 PMCID: PMC7849302 DOI: 10.15252/embj.2020104569] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 11/09/2022] Open
Abstract
Post-transcriptional repression of gene expression by miRNAs occurs through transcript destabilization or translation inhibition. mRNA decay is known to account for most miRNA-dependent repression. However, because transcript decay occurs co-translationally, whether target translation is a requirement for miRNA-dependent transcript destabilization remains unknown. To decouple these two molecular processes, we used cytosolic long noncoding RNAs (lncRNAs) as models for endogenous transcripts that are not translated. We show that, despite interacting with the miRNA-loaded RNA-induced silencing complex, the steady-state abundance and decay rates of these transcripts are minimally affected by miRNA loss. To further validate the apparent requirement of translation for miRNA-dependent decay, we fused two lncRNA candidates to the 3'-end of a protein-coding gene reporter and found this results in their miRNA-dependent destabilization. Further analysis revealed that the few natural lncRNAs whose levels are regulated by miRNAs in mESCs tend to associate with translating ribosomes, and possibly represent misannotated micropeptides, further substantiating the necessity of target translation for miRNA-dependent transcript decay. In summary, our analyses suggest that translation is required for miRNA-dependent transcript destabilization, and demonstrate that the levels of coding and noncoding transcripts are differently affected by miRNAs.
Collapse
Affiliation(s)
- Adriano Biasini
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Baroj Abdulkarim
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Stefano de Pretis
- Center for Genomic SciencesIstituto Italiano di Tecnologia (IIT)MilanoItaly
| | - Jennifer Y Tan
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Rajika Arora
- Institute of Molecular Health SciencesETHZZurichSwitzerland
| | | | - Rene Dreos
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Mattia Pelizzola
- Center for Genomic SciencesIstituto Italiano di Tecnologia (IIT)MilanoItaly
| | | | - Ana Claudia Marques
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
20
|
Tarbier M, Mackowiak SD, Frade J, Catuara-Solarz S, Biryukova I, Gelali E, Menéndez DB, Zapata L, Ossowski S, Bienko M, Gallant CJ, Friedländer MR. Nuclear gene proximity and protein interactions shape transcript covariations in mammalian single cells. Nat Commun 2020; 11:5445. [PMID: 33116115 PMCID: PMC7595044 DOI: 10.1038/s41467-020-19011-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 09/15/2020] [Indexed: 01/19/2023] Open
Abstract
Single-cell RNA sequencing studies on gene co-expression patterns could yield important regulatory and functional insights, but have so far been limited by the confounding effects of differentiation and cell cycle. We apply a tailored experimental design that eliminates these confounders, and report thousands of intrinsically covarying gene pairs in mouse embryonic stem cells. These covariations form a network with biological properties, outlining known and novel gene interactions. We provide the first evidence that miRNAs naturally induce transcriptome-wide covariations and compare the relative importance of nuclear organization, transcriptional and post-transcriptional regulation in defining covariations. We find that nuclear organization has the greatest impact, and that genes encoding for physically interacting proteins specifically tend to covary, suggesting importance for protein complex formation. Our results lend support to the concept of post-transcriptional RNA operons, but we further present evidence that nuclear proximity of genes may provide substantial functional regulation in mammalian single cells. Gene expression covariation can be studied by single-cell RNA sequencing. Here the authors analyze intrinsically covarying gene pairs by eliminating the confounding effects in single-cell experiments and observe covariation of proximal genes and miRNA-induced covariation of target mRNAs.
Collapse
Affiliation(s)
- Marcel Tarbier
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sebastian D Mackowiak
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - João Frade
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Silvina Catuara-Solarz
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Inna Biryukova
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Eleni Gelali
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Diego Bárcena Menéndez
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Luis Zapata
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Center for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Stephan Ossowski
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Magda Bienko
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Caroline J Gallant
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
21
|
Kelly TJ, Brümmer A, Hooshdaran N, Tariveranmoshabad M, Zamudio JR. Temporal Control of the TGF-β Signaling Network by Mouse ESC MicroRNA Targets of Different Affinities. Cell Rep 2020; 29:2702-2717.e7. [PMID: 31775039 PMCID: PMC6939994 DOI: 10.1016/j.celrep.2019.10.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/03/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
Although microRNAs (miRNAs) function in the control of embryonic stem cell (ESC) pluripotency, a systems-level understanding is still being developed. Through the analysis of progressive Argonaute (Ago)-miRNA depletion and rescue, including stable Ago knockout mouse ESCs, we uncover transforming growth factor beta (TGF-β) pathway activation as a direct and early response to ESC miRNA reduction. Mechanistically, we link the derepression of weaker miRNA targets, including TGF-β receptor 1 (Tgfbr1), to the sensitive TGF-β pathway activation. In contrast, stronger miRNA targets impart a more robust repression, which dampens concurrent transcriptional activation. We verify such dampened induction for TGF-β antagonist Lefty. We find that TGF-β pathway activation contributes to the G1 cell-cycle accumulation of miRNA-deficient ESCs. We propose that miRNA target affinity is a determinant of the temporal response to miRNA changes, which enables the coordination of gene network responses. Kelly et al. report the transcriptional and post-transcriptional dynamics that occur with loss of Argonaute proteins in embryonic stem cells. They find that Argonaute proteins are not required for ESC viability, function to control the transforming growth factor beta (TGF-β) pathway, and mediate temporal responses during changes in miRNA levels.
Collapse
Affiliation(s)
- Timothy J Kelly
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anneke Brümmer
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nima Hooshdaran
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mito Tariveranmoshabad
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jesse R Zamudio
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
22
|
Atsumi S, Katoh H, Komura D, Hashimoto I, Furuya G, Koda H, Konishi H, Suzuki R, Yamamoto A, Yuba S, Abe H, Rino Y, Oshima T, Ushiku T, Fukayama M, Seto Y, Ishikawa S. Focal adhesion ribonucleoprotein complex proteins are major humoral cancer antigens and targets in autoimmune diseases. Commun Biol 2020; 3:588. [PMID: 33067514 PMCID: PMC7567837 DOI: 10.1038/s42003-020-01305-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 09/15/2020] [Indexed: 01/06/2023] Open
Abstract
Despite the accumulating evidences of the significance of humoral cancer immunity, its molecular mechanisms have largely remained elusive. Here we show that B-cell repertoire sequencing of 102 clinical gastric cancers and molecular biological analyses unexpectedly reveal that the major humoral cancer antigens are not case-specific neo-antigens but are rather commonly identified as ribonucleoproteins (RNPs) in the focal adhesion complex. These common antigens are shared as autoantigens with multiple autoimmune diseases, suggesting a direct molecular link between cancer- and auto-immunity on the focal adhesion RNP complex. This complex is partially exposed to the outside of cancer cell surfaces, which directly evokes humoral immunity and enables functional bindings of antibodies to cancer cell surfaces in physiological conditions. These findings shed light on humoral cancer immunity in that it commonly targets cellular components fundamental for cytoskeletal integrity and cell movement, pointing to a novel modality of immunotherapy using humoral immunological reactions to cancers.
Collapse
Affiliation(s)
- Shinichiro Atsumi
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.,Department of Gastrointestinal Surgery, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Itaru Hashimoto
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.,Department of Surgery, Yokohama City University, Kanagawa, Japan
| | - Genta Furuya
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.,Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Hirotomo Koda
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.,Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Hiroki Konishi
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Ryohei Suzuki
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Asami Yamamoto
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Satsuki Yuba
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.,Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Yasushi Rino
- Department of Surgery, Yokohama City University, Kanagawa, Japan
| | - Takashi Oshima
- Department of Surgery, Yokohama City University, Kanagawa, Japan.,Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Kanagawa, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
| |
Collapse
|
23
|
Haig D, Mainieri A. The Evolution of Imprinted microRNAs and Their RNA Targets. Genes (Basel) 2020; 11:genes11091038. [PMID: 32899179 PMCID: PMC7564603 DOI: 10.3390/genes11091038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022] Open
Abstract
Mammalian genomes contain many imprinted microRNAs. When an imprinted miRNA targets an unimprinted mRNA their interaction may have different fitness consequences for the loci encoding the miRNA and mRNA. In one possible outcome, the mRNA sequence evolves to evade regulation by the miRNA by a simple change of target sequence. Such a response is unavailable if the targeted sequence is strongly constrained by other functions. In these cases, the mRNA evolves to accommodate regulation by the imprinted miRNA. These evolutionary dynamics are illustrated using the examples of the imprinted C19MC cluster of miRNAs in primates and C2MC cluster in mice that are paternally expressed in placentas. The 3′ UTR of PTEN, a gene with growth-related and metabolic functions, appears to be an important target of miRNAs from both clusters.
Collapse
|
24
|
Ghosh S, Guimaraes JC, Lanzafame M, Schmidt A, Syed AP, Dimitriades B, Börsch A, Ghosh S, Mittal N, Montavon T, Correia AL, Danner J, Meister G, Terracciano LM, Pfeffer S, Piscuoglio S, Zavolan M. Prevention of dsRNA-induced interferon signaling by AGO1x is linked to breast cancer cell proliferation. EMBO J 2020; 39:e103922. [PMID: 32812257 PMCID: PMC7507497 DOI: 10.15252/embj.2019103922] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 01/05/2023] Open
Abstract
Translational readthrough, i.e., elongation of polypeptide chains beyond the stop codon, was initially reported for viral RNA, but later found also on eukaryotic transcripts, resulting in proteome diversification and protein‐level modulation. Here, we report that AGO1x, an evolutionarily conserved translational readthrough isoform of Argonaute 1, is generated in highly proliferative breast cancer cells, where it curbs accumulation of double‐stranded RNAs (dsRNAs) and consequent induction of interferon responses and apoptosis. In contrast to other mammalian Argonaute protein family members with primarily cytoplasmic functions, AGO1x exhibits nuclear localization in the vicinity of nucleoli. We identify AGO1x interaction with the polyribonucleotide nucleotidyltransferase 1 (PNPT1) and show that the depletion of this protein further augments dsRNA accumulation. Our study thus uncovers a novel function of an Argonaute protein in buffering the endogenous dsRNA‐induced interferon responses, different than the canonical function of AGO proteins in the miRNA effector pathway. As AGO1x expression is tightly linked to breast cancer cell proliferation, our study thus suggests a new direction for limiting tumor growth.
Collapse
Affiliation(s)
- Souvik Ghosh
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Joao C Guimaraes
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Manuela Lanzafame
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Afzal Pasha Syed
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Beatrice Dimitriades
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Anastasiya Börsch
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Shreemoyee Ghosh
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Nitish Mittal
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Thomas Montavon
- Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Ana Luisa Correia
- Department of Biomedicine, University of Basel/University Hospital Basel, Basel, Switzerland
| | - Johannes Danner
- Department of Biochemistry, Department of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Department of Biochemistry, Department of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | | | - Sébastien Pfeffer
- Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Salvatore Piscuoglio
- Institute of Pathology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel/University Hospital Basel, Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
25
|
Yang B, McJunkin K. CRISPR screening strategies for microRNA target identification. FEBS J 2020; 287:2914-2922. [DOI: 10.1111/febs.15218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/20/2019] [Accepted: 01/17/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Bing Yang
- National Institutes of Diabetes and Digestive and Kidney Diseases Intramural Research Program National Institutes of Health Bethesda MD USA
| | - Katherine McJunkin
- National Institutes of Diabetes and Digestive and Kidney Diseases Intramural Research Program National Institutes of Health Bethesda MD USA
| |
Collapse
|
26
|
Zhang K, Pomyen Y, Barry AE, Martin SP, Khatib S, Knight L, Forgues M, Dominguez DA, Parhar R, Shah AP, Bodzin AS, Wang XW, Dang H. AGO2 Mediates MYC mRNA Stability in Hepatocellular Carcinoma. Mol Cancer Res 2020; 18:612-622. [PMID: 31941754 DOI: 10.1158/1541-7786.mcr-19-0805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/07/2019] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
Abstract
Deregulated RNA-binding proteins (RBP), such as Argonaute 2 (AGO2), mediate tumor-promoting transcriptomic changes during carcinogenesis, including hepatocellular carcinoma (HCC). While AGO2 is well characterized as a member of the RNA-induced silencing complex (RISC), which represses gene expression through miRNAs, its role as a bona fide RBP remains unclear. In this study, we investigated AGO2's role as an RBP that regulates the MYC transcript to promote HCC. Using mRNA and miRNA arrays from patients with HCC, we demonstrate that HCCs with elevated AGO2 levels are more likely to have the mRNA transcriptome deregulated and are associated with poor survival. Moreover, AGO2 overexpression stabilizes the MYC transcript independent of miRNAs. These observations provide a novel mechanism of gene regulation by AGO2 and provide further insights into the potential functions of AGO2 as an RBP in addition to RISC. IMPLICATIONS: Authors demonstrate that the RBP Argonaute 2 stabilizes the MYC transcript to promote HCC.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Surgery, Department of Surgical Research, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yotsawat Pomyen
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,Translational Research Unit, Chulabhorn Research Institute, Bangkok, Thailand
| | - Anna E Barry
- Department of Surgery, Department of Surgical Research, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sean P Martin
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Subreen Khatib
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lucy Knight
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Dana A Dominguez
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Ravinder Parhar
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Ashesh P Shah
- Department of Surgery, Department of Surgical Research, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam S Bodzin
- Department of Surgery, Department of Surgical Research, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| | - Hien Dang
- Department of Surgery, Department of Surgical Research, Thomas Jefferson University, Philadelphia, Pennsylvania. .,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Pasini L, Ulivi P. Extracellular Vesicles in Non-Small-Cell Lung Cancer: Functional Role and Involvement in Resistance to Targeted Treatment and Immunotherapy. Cancers (Basel) 2019; 12:E40. [PMID: 31877735 PMCID: PMC7016858 DOI: 10.3390/cancers12010040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 01/08/2023] Open
Abstract
Targeted and immunological therapies have become the gold standard for a large portion of non-small cell lung cancer (NSCLC) patients by improving significantly clinical prognosis. However, resistance mechanisms inevitably develop after a first response, and almost all patients undergo progression. The knowledge of such a resistance mechanism is crucial to improving the efficacy of therapies. So far, monitoring therapy responses through liquid biopsy has been carried out mainly in terms of circulating tumor (ctDNA) analysis. However, other particles of tumor origin, such as extracellular vehicles (EVs) represent an emerging tool for the studying and monitoring of resistance mechanisms. EVs are now considered to be ubiquitous mediators of cell-to-cell communication, allowing cells to exchange biologically active cargoes that vary in response to the microenvironment and include proteins, metabolites, RNA species, and nucleic acids. Novel findings on the biogenesis and fate of these vesicles reveal their fundamental role in cancer progression, with foreseeable and not-far-to-come clinical applications in NSCLC.
Collapse
Affiliation(s)
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| |
Collapse
|
28
|
Beck R, Chandi M, Kanke M, Stýblo M, Sethupathy P. Arsenic is more potent than cadmium or manganese in disrupting the INS-1 beta cell microRNA landscape. Arch Toxicol 2019; 93:3099-3109. [PMID: 31555879 DOI: 10.1007/s00204-019-02574-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022]
Abstract
Diabetes is a metabolic disorder characterized by fasting hyperglycemia and impaired glucose tolerance. Laboratory and population studies have shown that inorganic arsenic (iAs) can impair these pathways. Other metals including cadmium (Cd) and manganese (Mn) have also been linked to diabetes phenotypes. MicroRNAs, short non-coding RNAs that regulate gene expression, have emerged as potential drivers of metabolic dysfunction. MicroRNAs responsive to metal exposures in vitro have also been reported in independent studies to regulate insulin secretion in vivo. We hypothesize that microRNA dysregulation may associate with and possibly contribute to insulin secretion impairment upon exposure to iAs, Cd, or Mn. We exposed insulin secreting rat insulinoma cells to non-cytotoxic concentrations of iAs (1 µM), Cd (5 µM), and Mn (25 µM) for 24 h followed by small RNA sequencing to identify dysregulated microRNAs. RNA sequencing was then performed to further investigate changes in gene expression caused by iAs exposure. While all three metals significantly inhibited glucose-stimulated insulin secretion, high-throughput sequencing revealed distinct microRNA profiles specific to each exposure. One of the most significantly upregulated microRNAs post-iAs treatment is miR-146a (~ + 2-fold), which is known to be activated by nuclear factor κB (NF-κB) signaling. Accordingly, we found by RNA-seq analysis that genes upregulated by iAs exposure are enriched in the NF-κB signaling pathway and genes down-regulated by iAs exposure are enriched in miR-146a binding sites and are involved in regulating beta cell function. Notably, iAs exposure caused a significant decrease in the expression of Camk2a, a calcium-dependent protein kinase that regulates insulin secretion, has been implicated in type 2 diabetes, and is a likely target of miR-146a. Further studies are needed to elucidate potential interactions among NF-kB, miR-146a, and Camk2a in the context of iAs exposure.
Collapse
Affiliation(s)
- Rowan Beck
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Mohit Chandi
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
29
|
Der Vartanian A, Chabanais J, Carrion C, Maftah A, Germot A. Downregulation of POFUT1 Impairs Secondary Myogenic Fusion Through a Reduced NFATc2/IL-4 Signaling Pathway. Int J Mol Sci 2019; 20:ijms20184396. [PMID: 31500188 PMCID: PMC6770550 DOI: 10.3390/ijms20184396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/25/2022] Open
Abstract
Past work has shown that the protein O-fucosyltransferase 1 (POFUT1) is involved in mammal myogenic differentiation program. Pofut1 knockdown (Po –) in murine C2C12 cells leads to numerous elongated and thin myotubes, suggesting significant defects in secondary fusion. Among the few pathways involved in this process, NFATc2/IL-4 is described as the major one. To unravel the impact of POFUT1 on secondary fusion, we used wild-type (WT) C2C12 and Po – cell lines to follow Myf6, Nfatc2, Il-4 and Il-4rα expressions during a 120 h myogenic differentiation time course. Secreted IL-4 was quantified by ELISA. IL-4Rα expression and its labeling on myogenic cell types were investigated by Western blot and immunofluorescence, respectively. Phenotypic observations of cells treated with IL-4Rα blocking antibody were performed. In Po –, we found a decrease in nuclei number per myotube and a downexpression of Myf6. The observed downregulation of Nfatc2 is correlated to a diminution of secreted IL-4 and to the low level of IL-4Rα for reserve cells. Neutralization of IL-4Rα on WT C2C12 promotes myonuclear accretion defects, similarly to those identified in Po –. Thus, POFUT1 could be a new controller of myotube growth during myogenesis, especially through NFATc2/IL-4 signaling pathway.
Collapse
Affiliation(s)
- Audrey Der Vartanian
- PEIRENE, EA 7500, Glycosylation et différenciation cellulaire, Université de Limoges, F-87000 Limoges, France
- present address: INSERM, IMRB U955-E10, Faculté de Médecine, Université Paris Est Créteil, F-94000 Créteil, France
| | - Julien Chabanais
- PEIRENE, EA 7500, Glycosylation et différenciation cellulaire, Université de Limoges, F-87000 Limoges, France
| | - Claire Carrion
- UMR CNRS 7276, Contrôle de la Réponse Immune et des Lymphoproliférations, Université de Limoges, F-87000 Limoges, France
| | - Abderrahman Maftah
- PEIRENE, EA 7500, Glycosylation et différenciation cellulaire, Université de Limoges, F-87000 Limoges, France
| | - Agnès Germot
- PEIRENE, EA 7500, Glycosylation et différenciation cellulaire, Université de Limoges, F-87000 Limoges, France
- Correspondence: ; Tel.: +33-(0)5-55-45-76-57
| |
Collapse
|
30
|
Dori M, Bicciato S. Integration of Bioinformatic Predictions and Experimental Data to Identify circRNA-miRNA Associations. Genes (Basel) 2019; 10:genes10090642. [PMID: 31450634 PMCID: PMC6769881 DOI: 10.3390/genes10090642] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs (circRNAs) have recently emerged as a novel class of transcripts, characterized by covalently linked 3'-5' ends that result in the so-called backsplice junction. During the last few years, thousands of circRNAs have been identified in different organisms. Yet, despite their role as disease biomarker started to emerge, depicting their function remains challenging. Different studies have shown that certain circRNAs act as miRNA sponges, but any attempt to generalize from the single case to the "circ-ome" has failed so far. In this review, we explore the potential to define miRNA "sponging" as a more general function of circRNAs and describe the different approaches to predict miRNA response elements (MREs) in known or novel circRNA sequences. Moreover, we discuss how experiments based on Ago2-IP and experimentally validated miRNA:target duplexes can be used to either prioritize or validate putative miRNA-circRNA associations.
Collapse
Affiliation(s)
- Martina Dori
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi, 287, 41100 Modena, Italy.
| | - Silvio Bicciato
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi, 287, 41100 Modena, Italy.
| |
Collapse
|
31
|
Amaya Ramirez CC, Hubbe P, Mandel N, Béthune J. 4EHP-independent repression of endogenous mRNAs by the RNA-binding protein GIGYF2. Nucleic Acids Res 2019; 46:5792-5808. [PMID: 29554310 PMCID: PMC6009589 DOI: 10.1093/nar/gky198] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/07/2018] [Indexed: 11/12/2022] Open
Abstract
Initially identified as a factor involved in tyrosine kinase receptor signaling, Grb10-interacting GYF protein 2 (GIGYF2) has later been shown to interact with the 5′ cap-binding protein 4EHP as part of a translation repression complex, and to mediate post-transcriptional repression of tethered reporter mRNAs. A current model proposes that GIGYF2 is indirectly recruited to mRNAs by specific RNA-binding proteins (RBPs) leading to translation repression through its association with 4EHP. Accordingly, we recently observed that GIGYF2 also interacts with the miRNA-induced silencing complex and probably modulates its translation repression activity. Here we have further investigated how GIGYF2 represses mRNA function. In a tethering reporter assay, we identify three independent domains of GIGYF2 with repressive activity. In this assay, GIGYF2-mediated repression is independent of 4EHP but largely dependent on the CCR4/NOT complex that GIGYF2 recruits through multiple interfaces. Importantly, we show that GIGYF2 is an RBP and identify for the first time endogenous mRNA targets that recapitulate 4EHP-independent repression. Altogether, we propose that GIGYF2 has two distinct mechanisms of repression: one depends on 4EHP binding and mainly affects translation; the other is 4EHP-independent and involves the CCR4/NOT complex and its deadenylation activity.
Collapse
Affiliation(s)
- Cinthia C Amaya Ramirez
- CellNetworks Junior Research Group Posttranscriptional Regulation of mRNA Expression and Localization, Heidelberg University, D-69120 Heidelberg, Germany.,Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany
| | - Petra Hubbe
- CellNetworks Junior Research Group Posttranscriptional Regulation of mRNA Expression and Localization, Heidelberg University, D-69120 Heidelberg, Germany.,Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany
| | - Nicolas Mandel
- CellNetworks Junior Research Group Posttranscriptional Regulation of mRNA Expression and Localization, Heidelberg University, D-69120 Heidelberg, Germany.,Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany
| | - Julien Béthune
- CellNetworks Junior Research Group Posttranscriptional Regulation of mRNA Expression and Localization, Heidelberg University, D-69120 Heidelberg, Germany.,Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
32
|
Luo Z, Zhang Z, Tai L, Zhang L, Sun Z, Zhou L. Comprehensive analysis of differences of N 6-methyladenosine RNA methylomes between high-fat-fed and normal mouse livers. Epigenomics 2019; 11:1267-1282. [PMID: 31290331 DOI: 10.2217/epi-2019-0009] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To assess the m6A methylome in mouse fatty liver induced by a high-fat diet (HFD). Materials & methods: MeRIP-seq was performed to identify differences in the m6A methylomes between the normal liver and fatty liver induced by an HFD. Results: As compared with the control group, the upmethylated coding genes upon feeding an HFD were primarily enriched in processes associated with lipid metabolism, while genes with downmethylation were enriched in processes associated with metabolism and translation. Furthermore, many RNA-binding proteins that potentially bind to differentially methylated m6A sites were mainly annotated in processes of RNA splicing. Conclusion: These findings suggest that differential m6A methylation may act on functional genes through RNA-binding proteins to regulate the metabolism of lipids in fatty liver disease.
Collapse
Affiliation(s)
- Zupeng Luo
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-bioresources, College of Animal Science & Technology, Guangxi University, Nanning 530004, PR China
| | - Zhiwang Zhang
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-bioresources, College of Animal Science & Technology, Guangxi University, Nanning 530004, PR China
| | - Lina Tai
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-bioresources, College of Animal Science & Technology, Guangxi University, Nanning 530004, PR China
| | - Lifang Zhang
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-bioresources, College of Animal Science & Technology, Guangxi University, Nanning 530004, PR China
| | - Zheng Sun
- Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lei Zhou
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-bioresources, College of Animal Science & Technology, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
33
|
Bottini S, Pratella D, Grandjean V, Repetto E, Trabucchi M. Recent computational developments on CLIP-seq data analysis and microRNA targeting implications. Brief Bioinform 2019; 19:1290-1301. [PMID: 28605404 PMCID: PMC6291801 DOI: 10.1093/bib/bbx063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Indexed: 01/18/2023] Open
Abstract
Cross-Linking
Immunoprecipitation associated to
high-throughput sequencing (CLIP-seq) is a technique used to
identify RNA directly bound to RNA-binding proteins across the entire transcriptome in
cell or tissue samples. Recent technological and computational advances permit the
analysis of many CLIP-seq samples simultaneously, allowing us to reveal the comprehensive
network of RNA–protein interaction and to integrate it to other genome-wide analyses.
Therefore, the design and quality management of the CLIP-seq analyses are of critical
importance to extract clean and biological meaningful information from CLIP-seq
experiments. The application of CLIP-seq technique to Argonaute 2 (Ago2) protein, the main
component of the microRNA (miRNA)-induced silencing complex, reveals the direct binding
sites of miRNAs, thus providing insightful information about the role played by miRNA(s).
In this review, we summarize and discuss the most recent computational methods for
CLIP-seq analysis, and discuss their impact on Ago2/miRNA-binding site identification and
prediction with a regard toward human pathologies.
Collapse
Affiliation(s)
- Silvia Bottini
- Université Côte d'Azur, Inserm, C3M, 151 route de St-Antoine-de-Ginestière, B.P. 2 3194, 06204 Nice, France
| | - David Pratella
- Université Côte d'Azur, Inserm, C3M, 151 route de St-Antoine-de-Ginestière, B.P. 2 3194, 06204 Nice, France
| | - Valerie Grandjean
- Université Côte d'Azur, Inserm, C3M, 151 route de St-Antoine-de-Ginestière, B.P. 2 3194, 06204 Nice, France
| | - Emanuela Repetto
- Université Côte d'Azur, Inserm, C3M, 151 route de St-Antoine-de-Ginestière, B.P. 2 3194, 06204 Nice, France
| | - Michele Trabucchi
- Université Côte d'Azur, Inserm, C3M, 151 route de St-Antoine-de-Ginestière, B.P. 2 3194, 06204 Nice, France
| |
Collapse
|
34
|
Ma X, Zuo Z, Shao W, Jin Y, Meng Y. The expanding roles of Argonautes: RNA interference, splicing and beyond. Brief Funct Genomics 2019; 17:191-197. [PMID: 29240875 DOI: 10.1093/bfgp/elx045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Argonaute (AGO) protein family is highly conserved in eukaryotes and prokaryotes, reflecting its evolutionarily indispensible role in maintaining normal life cycle of the organisms. Small RNA-guided, AGO-dependent RNA interference (RNAi) is a well-studied pathway for gene expression regulation, which can be performed at transcriptional, posttranscriptional or translational level. In addition to RNAi, growing pieces of evidence point to a novel role of AGOs in pre-mRNA (messenger RNA precursor) splicing in animals. Many noncoding RNAs (ncRNAs) share common structural features with protein-coding genes, indicating that these ncRNAs might be subject to AGO-mediated splicing. Finally, we provide a comprehensive view that RNAi, transcription and RNA splicing are highly interactive processes, all of which involve several key factors such as AGOs. In this regard, the AGO proteins contribute to orchestrate an exquisite gene regulatory network in vivo. However, more research efforts are needed to reach a thorough understanding of the AGO activities.
Collapse
|
35
|
Fan Y, Xia J. miRNet-Functional Analysis and Visual Exploration of miRNA-Target Interactions in a Network Context. Methods Mol Biol 2019; 1819:215-233. [PMID: 30421406 DOI: 10.1007/978-1-4939-8618-7_10] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To gain functional insights into microRNAs (miRNAs), researchers usually look for pathways or biological processes that are overrepresented in their target genes. The interpretation is often complicated by the fact that a single miRNA can target many genes and multiple miRNAs can regulate a single gene. Here we introduce miRNet ( www.mirnet.ca ), an easy-to-use web-based tool designed for creation, customization, visual exploration and functional interpretation of miRNA-target interaction networks. By integrating multiple high-quality miRNA-target data sources and advanced statistical methods into a powerful network visualization system, miRNet allows researchers to easily navigate the complex landscape of miRNA-target interactions to obtain deep biological insights. This tutorial provides a step-by-step protocol on how to use miRNet to create miRNA-target networks for visual exploration and functional analysis from different types of data inputs.
Collapse
Affiliation(s)
- Yannan Fan
- Institute of Parasitology, McGill University, Montreal, Quebec, Canada
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Montreal, Quebec, Canada. .,Department of Animal Science, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
36
|
Bajczyk M, Bhat SS, Szewc L, Szweykowska-Kulinska Z, Jarmolowski A, Dolata J. Novel Nuclear Functions of Arabidopsis ARGONAUTE1: Beyond RNA Interference. PLANT PHYSIOLOGY 2019; 179:1030-1039. [PMID: 30606888 PMCID: PMC6393810 DOI: 10.1104/pp.18.01351] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/21/2018] [Indexed: 05/04/2023]
Abstract
Argonaute1 activity is not limited to the cytoplasm and has been found to be associated with the regulation of gene expression in the nucleus and to be tightly associated with chromatin and transcription.
Collapse
Affiliation(s)
- Mateusz Bajczyk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Susheel Sagar Bhat
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Lukasz Szewc
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Jakub Dolata
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| |
Collapse
|
37
|
Shivram H, Le SV, Iyer VR. MicroRNAs reinforce repression of PRC2 transcriptional targets independently and through a feed-forward regulatory network. Genome Res 2019; 29:184-192. [PMID: 30651280 PMCID: PMC6360819 DOI: 10.1101/gr.238311.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/21/2018] [Indexed: 12/17/2022]
Abstract
Gene expression can be regulated at multiple levels, but it is not known if and how there is broad coordination between regulation at the transcriptional and post-transcriptional levels. Transcription factors and chromatin regulate gene expression transcriptionally, whereas microRNAs (miRNAs) are small regulatory RNAs that function post-transcriptionally. Systematically identifying the post-transcriptional targets of miRNAs and the mechanism of transcriptional regulation of the same targets can shed light on regulatory networks connecting transcriptional and post-transcriptional control. We used individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) for the RNA-induced silencing complex (RISC) component AGO2 and global miRNA depletion to identify genes directly targeted by miRNAs. We found that Polycomb repressive complex 2 (PRC2) and its associated histone mark, H3K27me3, is enriched at hundreds of miRNA-repressed genes. We show that these genes are directly repressed by PRC2 and constitute a significant proportion of direct PRC2 targets. For just over half of the genes corepressed by PRC2 and miRNAs, PRC2 promotes their miRNA-mediated repression by increasing expression of the miRNAs that are likely to target them. miRNAs also repress the remainder of the PRC2 target genes, but independently of PRC2. Thus, miRNAs post-transcriptionally reinforce silencing of PRC2-repressed genes that are inefficiently repressed at the level of chromatin, by either forming a feed-forward regulatory network with PRC2 or repressing them independently of PRC2.
Collapse
Affiliation(s)
- Haridha Shivram
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Steven V Le
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Vishwanath R Iyer
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
38
|
LincRNA-p21 Inhibits Cell Viability and Promotes Cell Apoptosis in Parkinson's Disease through Activating α-Synuclein Expression. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8181374. [PMID: 30671473 PMCID: PMC6323514 DOI: 10.1155/2018/8181374] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/10/2018] [Indexed: 12/15/2022]
Abstract
Long intergenic noncoding RNA-p21 (lincRNA-p21) has been reported to be increased in Parkinson's disease (PD). However, the function and underlying mechanisms of lincRNA-p21 remain not clear. In order to explore the role of lincRNA-p21 in PD, we used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce in vivo PD model (C57BL/6 mice) and utilized N-methyl-4-phenylpyridinium (MPP+) to create in vitro PD model (SH-SY5Y cells). Results showed that the expression level of lincRNA-p21 was increased significantly in PD models. High abundance of lincRNA-p21 inhibited viability and promoted apoptosis markedly in SH-SY5Y cells treated with MPP+. Mechanistically, further experiments demonstrated that upregulation of lincRNA-p21 could sponge miR-1277-5p and indirectly increase the expression of α-synuclein to suppress viability and activate apoptosis in SH-SY5Y cells. In short, our study illustrated that lincRNA-p21/miR-1277-5p axis regulated viability and apoptosis in SH-SY5Y cells treated with MPP+ via targeting α-synuclein. LincRNA-p21 might be a novel target for PD.
Collapse
|
39
|
Darnell JC, Mele A, Hung KYS, Darnell RB. Mapping of In Vivo RNA-Binding Sites by Ultraviolet (UV)-Cross-Linking Immunoprecipitation (CLIP). Cold Spring Harb Protoc 2018; 2018:2018/12/pdb.top097931. [PMID: 30510132 DOI: 10.1101/pdb.top097931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RNA "CLIP" (cross-linking immunoprecipitation), the method by which RNA-protein complexes are covalently cross-linked and purified and the RNA sequenced, has attracted attention as a powerful means of developing genome-wide maps of direct, functional RNA-protein interaction sites. These maps have been used to identify points of regulation, and they hold promise for understanding the dynamics of RNA regulation in normal cell function and its dysregulation in disease.
Collapse
|
40
|
Barckmann B, Dufourt J, Simonelig M. iCLIP of the PIWI Protein Aubergine in Drosophila Embryos. Methods Mol Biol 2018; 1720:89-110. [PMID: 29236253 DOI: 10.1007/978-1-4939-7540-2_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are a class of small noncoding RNAs bound to specific Argonaute proteins, the PIWI proteins. piRNAs target mRNAs by complementarity to silence them; they play an important role in the repression of transposable elements in the germ line of many species. piRNAs and PIWI proteins are also involved in diverse biological processes through their role in the regulation of cellular mRNAs. In the Drosophila embryo, they contribute to the maternal mRNA decay occurring during the maternal-to-zygotic transition. CLIP (UV cross-linking and immunoprecipitation) techniques have been used to identify target mRNAs of Argonaute proteins. Here we describe the iCLIP (individual-nucleotide resolution CLIP) protocol that we have adapted for the PIWI protein Aubergine in Drosophila embryos.
Collapse
Affiliation(s)
- Bridlin Barckmann
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Université de Montpellier, Montpellier Cedex 5, France
| | - Jérémy Dufourt
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Université de Montpellier, Montpellier Cedex 5, France
| | - Martine Simonelig
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Université de Montpellier, Montpellier Cedex 5, France.
| |
Collapse
|
41
|
Abstract
MicroRNAs (miRNAs) are ~22nt-long single-stranded RNA molecules that form a RNA-induced silencing complex with Argonaute (AGO) protein to post-transcriptionally downregulate their target messenger RNAs (mRNAs). To understand the regulatory mechanisms of miRNA, discovering the underlying functional rules for how miRNAs recognize and repress their target mRNAs is of utmost importance. To determine functional miRNA targeting rules, previous studies extensively utilized various methods including high-throughput biochemical assays and bioinformatics analyses. However, targeting rules reported in one study often fail to be reproduced in other studies and therefore the general rules for functional miRNA targeting remain elusive. In this review, we evaluate previously-reported miRNA targeting rules and discuss the biological impact of the functional miRNAs on gene-regulatory networks as well as the future direction of miRNA targeting research.
Collapse
Affiliation(s)
- Doyeon Kim
- Center for RNA Research, Institute for Basic Science, and School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hee Ryung Chang
- Center for RNA Research, Institute for Basic Science, and School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Daehyun Baek
- Center for RNA Research, Institute for Basic Science, School of Biological Sciences, and Bioinformatics Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
42
|
Seok H, Lee H, Jang ES, Chi SW. Evaluation and control of miRNA-like off-target repression for RNA interference. Cell Mol Life Sci 2018; 75:797-814. [PMID: 28905147 PMCID: PMC11105550 DOI: 10.1007/s00018-017-2656-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 01/08/2023]
Abstract
RNA interference (RNAi) has been widely adopted to repress specific gene expression and is easily achieved by designing small interfering RNAs (siRNAs) with perfect sequence complementarity to the intended target mRNAs. Although siRNAs direct Argonaute (Ago), a core component of the RNA-induced silencing complex (RISC), to recognize and silence target mRNAs, they also inevitably function as microRNAs (miRNAs) and suppress hundreds of off-targets. Such miRNA-like off-target repression is potentially detrimental, resulting in unwanted toxicity and phenotypes. Despite early recognition of the severity of miRNA-like off-target repression, this effect has often been overlooked because of difficulties in recognizing and avoiding off-targets. However, recent advances in genome-wide methods and knowledge of Ago-miRNA target interactions have set the stage for properly evaluating and controlling miRNA-like off-target repression. Here, we describe the intrinsic problems of miRNA-like off-target effects caused by canonical and noncanonical interactions. We particularly focus on various genome-wide approaches and chemical modifications for the evaluation and prevention of off-target repression to facilitate the use of RNAi with secured specificity.
Collapse
Affiliation(s)
- Heeyoung Seok
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Haejeong Lee
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Eun-Sook Jang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
- EncodeGEN Co. Ltd, Seoul, 06329, Korea
| | - Sung Wook Chi
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
43
|
Vest KE, Paskavitz AL, Lee JB, Padilla-Benavides T. Dynamic changes in copper homeostasis and post-transcriptional regulation of Atp7a during myogenic differentiation. Metallomics 2018; 10:309-322. [PMID: 29333545 PMCID: PMC5824686 DOI: 10.1039/c7mt00324b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022]
Abstract
Copper (Cu) is an essential metal required for activity of a number of redox active enzymes that participate in critical cellular pathways such as metabolism and cell signaling. Because it is also a toxic metal, Cu must be tightly controlled by a series of transporters and chaperone proteins that regulate Cu homeostasis. The critical nature of Cu is highlighted by the fact that mutations in Cu homeostasis genes cause pathologic conditions such as Menkes and Wilson diseases. While Cu homeostasis in highly affected tissues like the liver and brain is well understood, no study has probed the role of Cu in development of skeletal muscle, another tissue that often shows pathology in these conditions. Here, we found an increase in whole cell Cu content during differentiation of cultured immortalized or primary myoblasts derived from mouse satellite cells. We demonstrate that Cu is required for both proliferation and differentiation of primary myoblasts. We also show that a key Cu homeostasis gene, Atp7a, undergoes dynamic changes in expression during myogenic differentiation. Alternative polyadenylation and stability of Atp7a mRNA fluctuates with differentiation stage of the myoblasts, indicating post-transcriptional regulation of Atp7a that depends on the differentiation state. This is the first report of a requirement for Cu during myogenic differentiation and provides the basis for understanding the network of Cu transport associated with myogenesis.
Collapse
Affiliation(s)
- Katherine E. Vest
- Department of Biology , Emory University , 1510 Clifton Road , Atlanta , GA 30322 , USA
| | - Amanda L. Paskavitz
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , 394 Plantation St. , Worcester , MA 01605 , USA .
| | - Joseph B. Lee
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , 394 Plantation St. , Worcester , MA 01605 , USA .
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , 394 Plantation St. , Worcester , MA 01605 , USA .
| |
Collapse
|
44
|
Inhibition of the JNK/MAPK signaling pathway by myogenesis-associated miRNAs is required for skeletal muscle development. Cell Death Differ 2018; 25:1581-1597. [PMID: 29449644 PMCID: PMC6143622 DOI: 10.1038/s41418-018-0063-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 12/24/2017] [Accepted: 01/04/2018] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle differentiation is controlled by multiple cell signaling pathways, however, the JNK/MAPK signaling pathway dominating this process has not been fully elucidated. Here, we report that the JNK/MAPK pathway was significantly downregulated in the late stages of myogenesis, and in contrast to P38/MAPK pathway, it negatively regulated skeletal muscle differentiation. Based on the PAR-CLIP-seq analysis, we identified six elevated miRNAs (miR-1a-3p, miR-133a-3p, miR-133b-3p, miR-206-3p, miR-128-3p, miR-351-5p), namely myogenesis-associated miRNAs (mamiRs), negatively controlled the JNK/MAPK pathway by repressing multiple factors for the phosphorylation of the JNK/MAPK pathway, including MEKK1, MEKK2, MKK7, and c-Jun but not JNK protein itself, and as a result, expression of transcriptional factor MyoD and mamiRs were further promoted. Our study revealed a novel double-negative feedback regulatory pattern of cell-specific miRNAs by targeting phosphorylation kinase signaling cascade responsible for skeletal muscle development.
Collapse
|
45
|
Brumbaugh J, Di Stefano B, Wang X, Borkent M, Forouzmand E, Clowers KJ, Ji F, Schwarz BA, Kalocsay M, Elledge SJ, Chen Y, Sadreyev RI, Gygi SP, Hu G, Shi Y, Hochedlinger K. Nudt21 Controls Cell Fate by Connecting Alternative Polyadenylation to Chromatin Signaling. Cell 2018; 172:106-120.e21. [PMID: 29249356 PMCID: PMC5766360 DOI: 10.1016/j.cell.2017.11.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/08/2017] [Accepted: 11/10/2017] [Indexed: 10/18/2022]
Abstract
Cell fate transitions involve rapid gene expression changes and global chromatin remodeling, yet the underlying regulatory pathways remain incompletely understood. Here, we identified the RNA-processing factor Nudt21 as a novel regulator of cell fate change using transcription-factor-induced reprogramming as a screening assay. Suppression of Nudt21 enhanced the generation of induced pluripotent stem cells, facilitated transdifferentiation into trophoblast stem cells, and impaired differentiation of myeloid precursors and embryonic stem cells, suggesting a broader role for Nudt21 in cell fate change. We show that Nudt21 directs differential polyadenylation of over 1,500 transcripts in cells acquiring pluripotency, although only a fraction changed protein levels. Remarkably, these proteins were strongly enriched for chromatin regulators, and their suppression neutralized the effect of Nudt21 during reprogramming. Collectively, our data uncover Nudt21 as a novel post-transcriptional regulator of cell fate and establish a direct, previously unappreciated link between alternative polyadenylation and chromatin signaling.
Collapse
Affiliation(s)
- Justin Brumbaugh
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Bruno Di Stefano
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Xiuye Wang
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Marti Borkent
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Elmira Forouzmand
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Katie J Clowers
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Benjamin A Schwarz
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Marian Kalocsay
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen J Elledge
- Howard Hughes Medical Institute, Brigham and Women's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota, Saint Paul, MN 55018, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Guang Hu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
46
|
Zhang Q, Sun X, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang Z, Qi C, Wang T, Wang X. Maternal chromium restriction induces insulin resistance in adult mice offspring through miRNA. Int J Mol Med 2017; 41:1547-1559. [PMID: 29286159 PMCID: PMC5819906 DOI: 10.3892/ijmm.2017.3328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/08/2017] [Indexed: 01/22/2023] Open
Abstract
Increasing evidence suggests that undernutrition during the fetal period may lead to glucose intolerance, impair the insulin response and induce insulin resistance (IR). Considering the importance of chromium (Cr) in maintaining carbohydrate metabolism, the present study aimed to determine the effects of maternal low Cr (LC) on glucose metabolism in C57BL mice offspring, and the involved mechanisms. Weaned C57BL mice were born from mothers fed a control diet or LC diet, and were then fed a control or LC diet for 13 weeks. Subsequently, the liver microRNA (miRNA/miR) expression profile was analyzed by miRNA array analysis. A maternal LC diet increased fasting serum glucose (P<0.05) and insulin levels (P<0.05), homeostasis model assessment of IR index (P<0.01), and the area under curve for glucose concentration during oral glucose tolerance test (P<0.01). In addition, 8 upregulated and 6 downregulated miRNAs were identified in the maternal LC group (fold change ≥2, P<0.05). miRNA‑gene networks, Kyoto Encyclopedia of Genes and Genomes pathway analysis of differentially expressed miRNAs, and miRNA overexpression in HepG2 cells revealed the critical role of insulin signaling, via miR‑327, miR‑466f‑3p and miR‑223‑3p, in the effects of early life Cr restriction on glucose metabolism. In conclusion, maternal Cr restriction may irreversibly increase IR, which may involve a specific miRNA affecting the insulin signaling pathway.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Xiaofang Sun
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Jia Zheng
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Ming Li
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Miao Yu
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Fan Ping
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Zhixin Wang
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Cuijuan Qi
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Tong Wang
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Xiaojing Wang
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| |
Collapse
|
47
|
|
48
|
Lee HC, Jung SH, Hwang HJ, Kang D, De S, Dudekula DB, Martindale JL, Park B, Park SK, Lee EK, Lee JH, Jeong S, Han K, Park HJ, Ko YG, Gorospe M, Lee JS. WIG1 is crucial for AGO2-mediated ACOT7 mRNA silencing via miRNA-dependent and -independent mechanisms. Nucleic Acids Res 2017; 45:6894-6910. [PMID: 28472401 PMCID: PMC5499809 DOI: 10.1093/nar/gkx307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 04/28/2017] [Indexed: 12/14/2022] Open
Abstract
RNA-binding proteins (RBPs) are involved in mRNA splicing, maturation, transport, translation, storage and turnover. Here, we identified ACOT7 mRNA as a novel target of human WIG1. ACOT7 mRNA decay was triggered by the microRNA miR-9 in a WIG1-dependent manner via classic recruitment of Argonaute 2 (AGO2). Interestingly, AGO2 was also recruited to ACOT7 mRNA in a WIG1-dependent manner in the absence of miR-9, which indicates an alternative model whereby WIG1 controls AGO2-mediated gene silencing. The WIG1–AGO2 complex attenuated translation initiation via an interaction with translation initiation factor 5B (eIF5B). These results were confirmed using a WIG1 tethering system based on the MS2 bacteriophage coat protein and a reporter construct containing an MS2-binding site, and by immunoprecipitation of WIG1 and detection of WIG1-associated proteins using liquid chromatography-tandem mass spectrometry. We also identified WIG1-binding motifs using photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation analyses. Altogether, our data indicate that WIG1 governs the miRNA-dependent and the miRNA-independent recruitment of AGO2 to lower the stability of and suppress the translation of ACOT7 mRNA.
Collapse
Affiliation(s)
- Hyung Chul Lee
- Department of Molecular Medicine, Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea.,Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea
| | - Seung Hee Jung
- Department of Molecular Medicine, Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea.,Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea
| | - Hyun Jung Hwang
- Department of Molecular Medicine, Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea.,Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea
| | - Donghee Kang
- Department of Molecular Medicine, Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea.,Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea
| | - Supriyo De
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Dawood B Dudekula
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Byungkyu Park
- Department of Computer Science and Engineering, Inha University, Incheon 22212, Korea
| | - Seung Kuk Park
- Department of Molecular Biology, Dankook University, Yongin 16890, Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sunjoo Jeong
- Department of Molecular Biology, Dankook University, Yongin 16890, Korea
| | - Kyungsook Han
- Department of Computer Science and Engineering, Inha University, Incheon 22212, Korea
| | - Heon Joo Park
- Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea.,Department of Microbiology, Inha University College of Medicine, Incheon 22212, Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Jae-Seon Lee
- Department of Molecular Medicine, Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea.,Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea
| |
Collapse
|
49
|
Post-transcriptional gene silencing mediated by microRNAs is controlled by nucleoplasmic Sfpq. Nat Commun 2017; 8:1189. [PMID: 29084942 PMCID: PMC5662751 DOI: 10.1038/s41467-017-01126-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/18/2017] [Indexed: 02/06/2023] Open
Abstract
There is a growing body of evidence about the presence and the activity of the miRISC in the nucleus of mammalian cells. Here, we show by quantitative proteomic analysis that Ago2 interacts with the nucleoplasmic protein Sfpq in an RNA-dependent fashion. By a combination of HITS-CLIP and transcriptomic analyses, we demonstrate that Sfpq directly controls the miRNA targeting of a subset of binding sites by local binding. Sfpq modulates miRNA targeting in both nucleoplasm and cytoplasm, indicating a nucleoplasmic commitment of Sfpq-target mRNAs that globally influences miRNA modes of action. Mechanistically, Sfpq binds to a sizeable set of long 3′UTRs forming aggregates to optimize miRNA positioning/recruitment at selected binding sites, including let-7a binding to Lin28A 3′UTR. Our results extend the miRNA-mediated post-transcriptional gene silencing into the nucleoplasm and indicate that an Sfpq-dependent strategy for controlling miRNA activity takes place in cells, contributing to the complexity of miRNA-dependent gene expression control. MicroRNAs have been best characterized for their functions in the cytoplasm; however, there is growing evidence of a nuclear localized role. Here, the authors identify Sfpq as an Ago2-interacting protein that modulates miRNA activity in both the nucleus and cytoplasm.
Collapse
|
50
|
Cinghu S, Yang P, Kosak JP, Conway AE, Kumar D, Oldfield AJ, Adelman K, Jothi R. Intragenic Enhancers Attenuate Host Gene Expression. Mol Cell 2017; 68:104-117.e6. [PMID: 28985501 DOI: 10.1016/j.molcel.2017.09.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/10/2017] [Accepted: 09/06/2017] [Indexed: 01/06/2023]
Abstract
Eukaryotic gene transcription is regulated at many steps, including RNA polymerase II (Pol II) recruitment, transcription initiation, promoter-proximal Pol II pause release, and transcription termination; however, mechanisms regulating transcription during productive elongation remain poorly understood. Enhancers, which activate gene transcription, themselves undergo Pol II-mediated transcription, but our understanding of enhancer transcription and enhancer RNAs (eRNAs) remains incomplete. Here we show that transcription at intragenic enhancers interferes with and attenuates host gene transcription during productive elongation. While the extent of attenuation correlates positively with nascent eRNA expression, the act of intragenic enhancer transcription alone, but not eRNAs, explains the attenuation. Through CRISPR/Cas9-mediated deletions, we demonstrate a physiological role for intragenic enhancer-mediated transcription attenuation in cell fate determination. We propose that intragenic enhancers not only enhance transcription of one or more genes from a distance but also fine-tune transcription of their host gene through transcription interference, facilitating differential utilization of the same regulatory element for disparate functions.
Collapse
Affiliation(s)
- Senthilkumar Cinghu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Pengyi Yang
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Justin P Kosak
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Amanda E Conway
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Dhirendra Kumar
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Andrew J Oldfield
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Karen Adelman
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Raja Jothi
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|