1
|
Shepherd C, Lawson-Williams M, Holland A, Bello AJ, Sexton DW, Olorunniji FJ. Conditional Split Inteins: Adaptable Tools for Programming Protein Functions. Int J Mol Sci 2025; 26:586. [PMID: 39859302 PMCID: PMC11766414 DOI: 10.3390/ijms26020586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Split inteins are biological mechanisms for the operation of the spatiotemporal control of protein activities. They function through protein trans-splicing, in which their N- and C-terminal fragments are expressed contiguously with two protein halves. The subsequent self-excision upon recognition of the complimentary fragment yields a mature, complete, and functional protein. The conditional regulation of protein splicing through environmental factors or the attachment of regulatory modules can be used to determine when and where a protein will operate, providing potential novel approaches for engineering biology applications. This review will discuss current split intein applications and the mechanistic basis for novel species classification. These considerations can provide guidance in intein and extein engineering through activation strategies, in the design of spatial arrangements, and in taking advantage of unique reaction environments. This can pave the way for the future implementation of novel split intein discoveries and the selection of appropriate intein species and aid in designing novel protein engineering strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Femi J. Olorunniji
- School of Pharmacy & Biomolecular Sciences, Faculty of Health, Innovation, Technology and Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
2
|
Liman GLS, Lennon CW, Mandley JL, Galyon AM, Zatopek KM, Gardner AF, Santangelo TJ. Intein splicing efficiency and RadA levels can control the mode of archaeal DNA replication. SCIENCE ADVANCES 2024; 10:eadp4995. [PMID: 39292776 PMCID: PMC11409957 DOI: 10.1126/sciadv.adp4995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/08/2024] [Indexed: 09/20/2024]
Abstract
Inteins (intervening proteins), mobile genetic elements removed through protein splicing, often interrupt proteins required for DNA replication, recombination, and repair. An abundance of in vitro evidence implies that inteins may act as regulatory elements, whereby reduced splicing inhibits production of the mature protein lacking the intein, but in vivo evidence of regulatory intein excision in the native host is absent. The model archaeon Thermococcus kodakarensis encodes 15 inteins, and we establish the impacts of intein splicing inhibition on host physiology and replication in vivo. We report that a decrease in intein splicing efficiency of the recombinase RadA, a Rad51/RecA homolog, has widespread physiological consequences, including a general growth defect, increased sensitivity to DNA damage, and a switch in the mode of DNA replication from recombination-dependent replication toward origin-dependent replication.
Collapse
Affiliation(s)
- Geraldy L. S. Liman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Jaylin L. Mandley
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Alina M. Galyon
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | | | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
3
|
Anastassov S, Filo M, Khammash M. Inteins: A Swiss army knife for synthetic biology. Biotechnol Adv 2024; 73:108349. [PMID: 38552727 DOI: 10.1016/j.biotechadv.2024.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/13/2024]
Abstract
Inteins are proteins found in nature that execute protein splicing. Among them, split inteins stand out for their versatility and adaptability, presenting creative solutions for addressing intricate challenges in various biological applications. Their exquisite attributes, including compactness, reliability, orthogonality, low toxicity, and irreversibility, make them of interest to various fields including synthetic biology, biotechnology and biomedicine. In this review, we delve into the inherent challenges of using inteins, present approaches for overcoming these challenges, and detail their reliable use for specific cellular tasks. We will discuss the use of conditional inteins in areas like cancer therapy, drug screening, patterning, infection treatment, diagnostics and biocontainment. Additionally, we will underscore the potential of inteins in executing basic logical operations with practical implications. We conclude by showcasing their potential in crafting complex genetic circuits for performing computations and feedback control that achieves robust perfect adaptation.
Collapse
Affiliation(s)
- Stanislav Anastassov
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4056, Switzerland
| | - Maurice Filo
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4056, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4056, Switzerland.
| |
Collapse
|
4
|
Wood DW, Belfort M, Lennon CW. Inteins-mechanism of protein splicing, emerging regulatory roles, and applications in protein engineering. Front Microbiol 2023; 14:1305848. [PMID: 38029209 PMCID: PMC10663303 DOI: 10.3389/fmicb.2023.1305848] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Protein splicing is a posttranslational process in which an intein segment excises itself from two flanking peptides, referred to as exteins. In the native context, protein splicing results in two separate protein products coupled to the activation of the intein-containing host protein. Inteins are generally described as either full-length inteins, mini-inteins or split inteins, which are differentiated by their genetic structure and features. Inteins can also be divided into three classes based on their splicing mechanisms, which differ in the location of conserved residues that mediate the splicing pathway. Although inteins were once thought to be selfish genetic elements, recent evidence suggests that inteins may confer a genetic advantage to their host cells through posttranslational regulation of their host proteins. Finally, the ability of modified inteins to splice and cleave their fused exteins has enabled many new applications in protein science and synthetic biology. In this review, we briefly cover the mechanisms of protein splicing, evidence for some inteins as environmental sensors, and intein-based applications in protein engineering.
Collapse
Affiliation(s)
- David W. Wood
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, NY, United States
| | - Christopher W. Lennon
- Department of Biological Sciences, Murray State University, Murray, KY, United States
| |
Collapse
|
5
|
Abstract
The ability to manipulate the chemical composition of proteins and peptides has been central to the development of improved polypeptide-based therapeutics and has enabled researchers to address fundamental biological questions that would otherwise be out of reach. Protein ligation, in which two or more polypeptides are covalently linked, is a powerful strategy for generating semisynthetic products and for controlling polypeptide topology. However, specialized tools are required to efficiently forge a peptide bond in a chemoselective manner with fast kinetics and high yield. Fortunately, nature has addressed this challenge by evolving enzymatic mechanisms that can join polypeptides using a diverse set of chemical reactions. Here, we summarize how such nature-inspired protein ligation strategies have been repurposed as chemical biology tools that afford enhanced control over polypeptide composition.
Collapse
Affiliation(s)
- Rasmus Pihl
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA.
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Yalala VR, Lynch AK, Mills KV. Conditional Alternative Protein Splicing Promoted by Inteins from Haloquadratum walsbyi. Biochemistry 2022; 61:294-302. [PMID: 35073064 PMCID: PMC8847336 DOI: 10.1021/acs.biochem.1c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein splicing is a post-translational process by which an intervening protein, or an intein, catalyzes its own excision from flanking polypeptides, or exteins, coupled to extein ligation. Four inteins interrupt the MCM helicase of the halophile Haloquadratum walsbyi, two of which are mini-inteins that lack a homing endonuclease. Both inteins can be overexpressed in Escherichia coli and purified as unspliced precursors; splicing can be induced in vitro by incubation with salt. However, one intein can splice in 0.5 M NaCl in vitro, whereas the other splices efficiently only in buffer containing over 2 M NaCl; the organism also requires high salt to grow, with the standard growth media containing over 3 M NaCl and about 0.75 M magnesium salts. Consistent with this difference in salt-dependent activity, an intein-containing precursor protein with both inteins promotes conditional alternative protein splicing (CAPS) to yield different spliced products dependent on the salt concentration. Native Trp fluorescence of the inteins suggests that the difference in activity may be due to partial unfolding of the inteins at lower salt concentrations. This differential salt sensitivity of intein activity may provide a useful mechanism for halophiles to respond to environmental changes.
Collapse
Affiliation(s)
- Vaishnavi R Yalala
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Abigeal K Lynch
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| |
Collapse
|
7
|
Abstract
Intervening proteins, or inteins, are mobile genetic elements that are translated within host polypeptides and removed at the protein level by splicing. In protein splicing, a self-mediated reaction removes the intein, leaving a peptide bond in place. While protein splicing can proceed in the absence of external cofactors, several examples of conditional protein splicing (CPS) have emerged. In CPS, the rate and accuracy of splicing are highly dependent on environmental conditions. Because the activity of the intein-containing host protein is compromised prior to splicing and inteins are highly abundant in the microbial world, CPS represents an emerging form of posttranslational regulation that is potentially widespread in microbes. Reactive chlorine species (RCS) are highly potent oxidants encountered by bacteria in a variety of natural environments, including within cells of the mammalian innate immune system. Here, we demonstrate that two naturally occurring RCS, namely, hypochlorous acid (the active compound in bleach) and N-chlorotaurine, can reversibly block splicing of DnaB inteins from Mycobacterium leprae and Mycobacterium smegmatis in vitro. Further, using a reporter that monitors DnaB intein activity within M. smegmatis, we show that DnaB protein splicing is inhibited by RCS in the native host. DnaB, an essential replicative helicase, is the most common intein-housing protein in bacteria. These results add to the growing list of environmental conditions that are relevant to the survival of the intein-containing host and influence protein splicing, as well as suggesting a novel mycobacterial response to RCS. We propose a model in which DnaB splicing, and therefore replication, is paused when these mycobacteria encounter RCS. IMPORTANCE Inteins are both widespread and abundant in microbes, including within several bacterial and fungal pathogens. Inteins are domains translated within host proteins and removed at the protein level by splicing. Traditionally considered molecular parasites, some inteins have emerged in recent years as adaptive posttranslational regulatory elements. Several studies have demonstrated CPS, in which the rate and accuracy of protein splicing, and thus host protein functions, are responsive to environmental conditions relevant to the intein-containing organism. In this work, we demonstrate that two naturally occurring RCS, including the active compound in household bleach, reversibly inhibit protein splicing of Mycobacterium leprae and Mycobacterium smegmatis DnaB inteins. In addition to describing a new physiologically relevant condition that can temporarily inhibit protein splicing, this study suggests a novel stress response in Mycobacterium, a bacterial genus of tremendous importance to humans.
Collapse
|
8
|
Dongre AV, Das S, Bellur A, Kumar S, Chandrashekarmath A, Karmakar T, Balaram P, Balasubramanian S, Balaram H. Structural basis for the hyperthermostability of an archaeal enzyme induced by succinimide formation. Biophys J 2021; 120:3732-3746. [PMID: 34302792 DOI: 10.1016/j.bpj.2021.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/18/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022] Open
Abstract
Stability of proteins from hyperthermophiles (organisms existing under boiling water conditions) enabled by a reduction of conformational flexibility is realized through various mechanisms. A succinimide (SNN) arising from the post-translational cyclization of the side chains of aspartyl/asparaginyl residues with the backbone amide -NH of the succeeding residue would restrain the torsion angle Ψ and can serve as a new route for hyperthermostability. However, such a succinimide is typically prone to hydrolysis, transforming to either an aspartyl or β-isoaspartyl residue. Here, we present the crystal structure of Methanocaldococcus jannaschii glutamine amidotransferase and, using enhanced sampling molecular dynamics simulations, address the mechanism of its increased thermostability, up to 100°C, imparted by an unexpectedly stable succinimidyl residue at position 109. The stability of SNN109 to hydrolysis is seen to arise from its electrostatic shielding by the side-chain carboxylate group of its succeeding residue Asp110, as well as through n → π∗ interactions between SNN109 and its preceding residue Glu108, both of which prevent water access to SNN. The stable succinimidyl residue induces the formation of an α-turn structure involving 13-atom hydrogen bonding, which locks the local conformation, reducing protein flexibility. The destabilization of the protein upon replacement of SNN with a Φ-restricted prolyl residue highlights the specificity of the succinimidyl residue in imparting hyperthermostability to the enzyme. The conservation of the succinimide-forming tripeptide sequence (E(N/D)(E/D)) in several archaeal GATases strongly suggests an adaptation of this otherwise detrimental post-translational modification as a harbinger of thermostability.
Collapse
Affiliation(s)
- Aparna Vilas Dongre
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Sudip Das
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Asutosh Bellur
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Sanjeev Kumar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Anusha Chandrashekarmath
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Tarak Karmakar
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India; Department of Chemistry and Applied Biosciences, ETH Zurich, Lugano, Ticino, Switzerland; Facoltà di Informatica, Istituto di Scienze Computationali, Università della Svizzera Italiana, Lugano, Ticino, Switzerland
| | - Padmanabhan Balaram
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| |
Collapse
|
9
|
Woods D, LeSassier DS, Egbunam I, Lennon CW. Construction and Quantitation of a Selectable Protein Splicing Sensor Using Gibson Assembly and Spot Titers. Curr Protoc 2021; 1:e82. [PMID: 33739627 DOI: 10.1002/cpz1.82] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inteins (intervening proteins) are translated within host proteins and removed through protein splicing. Conditional protein splicing (CPS), where the rate and accuracy of splicing are highly dependent on environmental cues, has emerged as a novel form of post-translational regulation. While CPS has been demonstrated for several inteins in vitro, a comprehensive understanding of inteins requires tools to quantitatively monitor their activity within the cellular context. Here, we describe a method for construction of a splicing-dependent system that can be used to quantitatively assay for conditions that modulate protein splicing. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Construction of an intein-containing KanR2 library using Gibson assembly Basic Protocol 2: Phenotype determination using quantitative spot titers Support Protocol 1: Preparation of LB agar plates for spot titers Support Protocol 2: Preparation and transformation of competent M. smegmatis cells.
Collapse
Affiliation(s)
- Daniel Woods
- Wadsworth Center, New York State Department of Health, Albany, New York
| | | | | | | |
Collapse
|
10
|
Vasilev RA, Chernikovich VY, Evteeva MA, Sakharov DA, Patrushev MV. Synthetic Biology: Current State and Applications. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2021. [DOI: 10.3103/s0891416821010079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Inteins in Science: Evolution to Application. Microorganisms 2020; 8:microorganisms8122004. [PMID: 33339089 PMCID: PMC7765530 DOI: 10.3390/microorganisms8122004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Inteins are mobile genetic elements that apply standard enzymatic strategies to excise themselves post-translationally from the precursor protein via protein splicing. Since their discovery in the 1990s, recent advances in intein technology allow for them to be implemented as a modern biotechnological contrivance. Radical improvement in the structure and catalytic framework of cis- and trans-splicing inteins devised the development of engineered inteins that contribute to various efficient downstream techniques. Previous literature indicates that implementation of intein-mediated splicing has been extended to in vivo systems. Besides, the homing endonuclease domain also acts as a versatile biotechnological tool involving genetic manipulation and control of monogenic diseases. This review orients the understanding of inteins by sequentially studying the distribution and evolution pattern of intein, thereby highlighting a role in genetic mobility. Further, we include an in-depth summary of specific applications branching from protein purification using self-cleaving tags to protein modification, post-translational processing and labelling, followed by the development of intein-based biosensors. These engineered inteins offer a disruptive approach towards research avenues like biomaterial construction, metabolic engineering and synthetic biology. Therefore, this linear perspective allows for a more comprehensive understanding of intein function and its diverse applications.
Collapse
|
12
|
Xia HF, Zhou TJ, Du YX, Wang YJ, Shi CH, Wood DW. Improved protein purification system based on C-terminal cleavage of Npu DnaE split intein. Bioprocess Biosyst Eng 2020; 43:1931-1941. [PMID: 32447513 DOI: 10.1007/s00449-020-02382-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/17/2020] [Indexed: 10/24/2022]
Abstract
A purification system was constructed with the N-segment of the Npu DnaE split intein as an affinity ligand immobilized onto an epoxy-activated medium and the C-segment used as the cleavable tag fusing target protein. The affinity properties of C-tagged proteins adsorbed on IN affinity chromatography medium were studied with GFP as a model target protein. The saturated adsorption capacity and dynamic adsorption capacity reached 51.9-21.0 mg mL-1, respectively. With this system, two model proteins, GFP and alcohol dehydrogenase (ADH), has been successfully taglessly purified with regulation of Zn2+ and DTT. The yield, purification factor and purity of purified tagless GFP reached 39, 11.7 and 97%, respectively; while these values for purified tagless ADH were 38.2, 6.8 and 91%, respectively. These results showed that the system for Npu DnaE split intein-mediated affinity adsorption and in situ cleavage is a potential platform for recombinant protein production.
Collapse
Affiliation(s)
- Hai-Feng Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China. .,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| | - Ting-Jun Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Ye-Xing Du
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yu-Jun Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chang-Hua Shi
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, 43210, USA
| | - David W Wood
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
13
|
Robinzon S, Cawood AR, Ruiz MA, Gophna U, Altman-Price N, Mills KV. Protein Splicing Activity of the Haloferax volcanii PolB-c Intein Is Sensitive to Homing Endonuclease Domain Mutations. Biochemistry 2020; 59:3359-3367. [PMID: 32822531 DOI: 10.1021/acs.biochem.0c00512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inteins are selfish genetic elements residing in open reading frames that can splice post-translationally, resulting in the ligation of an uninterrupted, functional protein. Like other inteins, the DNA polymerase B (PolB) intein of the halophilic archaeon Haloferax volcanii has an active homing endonuclease (HEN) domain, facilitating its horizontal transmission. Previous work has shown that the presence of the PolB intein exerts a significant fitness cost on the organism compared to an intein-free isogenic H. volcanii. Here, we show that mutation of a conserved residue in the HEN domain not only reduces intein homing but also slows growth. Surprisingly, although this mutation is far from the protein splicing active site, it also significantly reduces in vitro protein splicing. Moreover, two additional HEN domain mutations, which could not be introduced to H. volcanii, presumably due to lethality, also eliminate protein splicing activity in vitro. These results suggest an interplay between HEN residues and the protein splicing domain, despite an over 35 Å separation in a PolB intein homology model. The combination of in vivo and in vitro evidence strongly supports a model of codependence between the self-splicing domain and the HEN domain that has been alluded to by previous in vitro studies of protein splicing with HEN domain-containing inteins.
Collapse
Affiliation(s)
- Shachar Robinzon
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alexandra R Cawood
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610, United States
| | - Mercedes A Ruiz
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610, United States
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Neta Altman-Price
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,The Open University, Raanana 43107, Israel
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610, United States
| |
Collapse
|
14
|
Woods D, Vangaveti S, Egbanum I, Sweeney AM, Li Z, Bacot-Davis V, LeSassier DS, Stanger M, Hardison GE, Li H, Belfort M, Lennon CW. Conditional DnaB Protein Splicing Is Reversibly Inhibited by Zinc in Mycobacteria. mBio 2020; 11:e01403-20. [PMID: 32665276 PMCID: PMC7360933 DOI: 10.1128/mbio.01403-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 11/20/2022] Open
Abstract
Inteins, as posttranslational regulatory elements, can tune protein function to environmental changes by conditional protein splicing (CPS). Translated as subdomains interrupting host proteins, inteins splice to scarlessly join flanking sequences (exteins). We used DnaB-intein1 (DnaBi1) from a replicative helicase of Mycobacterium smegmatis to build a kanamycin intein splicing reporter (KISR) that links splicing of DnaBi1 to kanamycin resistance. Using expression in heterologous Escherichia coli, we observed phenotypic classes of various levels of splicing-dependent resistance (SDR) and related these to the insertion position of DnaBi1 within the kanamycin resistance protein (KanR). The KanR-DnaBi1 construct demonstrating the most stringent SDR was used to probe for CPS of DnaB in the native host environment, M. smegmatis We show here that zinc, important during mycobacterial pathogenesis, inhibits DnaB splicing in M. smegmatis Using an in vitro reporter system, we demonstrated that zinc potently and reversibly inhibited DnaBi1 splicing, as well as splicing of a comparable intein from Mycobacterium leprae Finally, in a 1.95 Å crystal structure, we show that zinc inhibits splicing through binding to the very cysteine that initiates the splicing reaction. Together, our results provide compelling support for a model whereby mycobacterial DnaB protein splicing, and thus DNA replication, is responsive to environmental zinc.IMPORTANCE Inteins are present in a large fraction of prokaryotes and localize within conserved proteins, including the mycobacterial replicative helicase DnaB. In addition to their extensive protein engineering applications, inteins have emerged as environmentally responsive posttranslational regulators of the genes that encode them. While several studies have shown compelling evidence of conditional protein splicing (CPS), examination of splicing in the native host of the intein has proven to be challenging. Here, we demonstrated through a number of measures, including the use of a splicing-dependent sensor capable of monitoring intein activity in the native host, that zinc is a potent and reversible inhibitor of mycobacterial DnaB splicing. This work also expands our knowledge of site selection for intein insertion within nonnative proteins, demonstrating that splicing-dependent host protein activation correlates with proximity to the active site. Additionally, we surmise that splicing regulation by zinc has mycobacteriocidal and CPS application potential.
Collapse
Affiliation(s)
- Daniel Woods
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Sweta Vangaveti
- The RNA Institute, University at Albany, Albany, New York, USA
| | - Ikechukwu Egbanum
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Allison M Sweeney
- Department of Biology, Murray State University, Murray, Kentucky, USA
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Valjean Bacot-Davis
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | | | - Matthew Stanger
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | | | - Hongmin Li
- Department of Biological Sciences, University at Albany, Albany, New York, USA
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Marlene Belfort
- Department of Biological Sciences, University at Albany, Albany, New York, USA
- The RNA Institute, University at Albany, Albany, New York, USA
| | | |
Collapse
|
15
|
Yang F, Jin H, Wang XQ, Li Q, Zhang JT, Cui N, Jiang YL, Chen Y, Wu QF, Zhou CZ, Li WF. Genomic Analysis of Mic1 Reveals a Novel Freshwater Long-Tailed Cyanophage. Front Microbiol 2020; 11:484. [PMID: 32322241 PMCID: PMC7156551 DOI: 10.3389/fmicb.2020.00484] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Lake Chaohu, one of the five largest freshwater lakes in China, has been suffering from severe cyanobacterial blooms in the summer for many years. Cyanophages, the viruses that specifically infect cyanobacteria, play a key role in modulating cyanobacterial population, and thus regulate the emergence and decline of cyanobacterial blooms. Here we report a long-tailed cyanophage isolated from Lake Chaohu, termed Mic1, which specifically infects the cyanobacterium Microcystis aeruginosa. Mic1 has an icosahedral head of 88 nm in diameter and a long flexible tail of 400 nm. It possesses a circular genome of 92,627 bp, which contains 98 putative open reading frames. Genome sequence analysis enabled us to define a novel terminase large subunit that consists of two types of intein, indicating that the genome packaging of Mic1 is under fine control via posttranslational maturation of the terminase. Moreover, phylogenetic analysis suggested Mic1 and mitochondria share a common evolutionary origin of DNA polymerase γ gene. All together, these findings provided a start-point for investigating the co-evolution of cyanophages and its cyanobacterial hosts.
Collapse
Affiliation(s)
- Feng Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hua Jin
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiao-Qian Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qiong Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jun-Tao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ning Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qing-Fa Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Wei-Fang Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
16
|
Eichler J. Modifying Post‐Translational Modifications: A Strategy Used by Archaea for Adapting to Changing Environments? Bioessays 2020; 42:e1900207. [DOI: 10.1002/bies.201900207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/15/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Jerry Eichler
- Department of Life SciencesBen Gurion University of the Negev Beersheva 84105 Israel
| |
Collapse
|
17
|
Bahrami A, Najafi A, Hashemi M, Miraie-Ashtiani SR. PSSP: Protein splice site prediction algorithm using Bayesian approach. J Bioinform Comput Biol 2020; 17:1950034. [PMID: 32019415 DOI: 10.1142/s0219720019500343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study aimed to introduce an algorithm and identify intein motif and blocks involved in protein splicing, and explore the underlying methods in the development of detection of protein motifs. Inteins are mobile protein splicing elements capable of self-splicing post-translationally. They exist in viruses and bacteriophage, notwithstanding this broad phylogenetic distribution, all inteins apportion common structural features. A method was developed to predict intein in a raw sequence, using a ranking and scoring scheme based on amino acid θ value tables. This method aided in the identification and assessment of patterns characterizing the intein sequences. New intein conserved properties are revealed and the known ones are described and localized. We have computed the θ value of each amino acid at block A positions +1 to +13, block B positions l+13 to l+26 and block G positions -7 to +1 for the three categories. The consensus amino acids thus found are listed at the end of each row. We gave statistics for the distance between the blocks, block A to B, block B to F, and block F to G with the average being 66.1, 294, and 10.2 amino acids, respectively. The actual blocks A, B, and G of the one intein found in vacuolar membrane ATPase subunit, a precursor protein, are ranked 1. The results indicate all of the block sequences that are found in nine proteins are ranked at top of the list. The intein sequence is used to search the databases for intein-like proteins. Understanding the functional, structural, and dynamical aspects of inteins is important for intein engineering and the betterment of intein database.
Collapse
Affiliation(s)
- Abolfazl Bahrami
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Islamic Republic of Iran
| | - Ali Najafi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hashemi
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Islamic Republic of Iran
| | - Seyed Reza Miraie-Ashtiani
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Islamic Republic of Iran
| |
Collapse
|
18
|
Zhao J, Du Z, Wang C, Mills KV. Methods to Study the Structure and Catalytic Activity of cis-Splicing Inteins. Methods Mol Biol 2020; 2133:55-73. [PMID: 32144663 PMCID: PMC7325523 DOI: 10.1007/978-1-0716-0434-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The autocatalytic process of protein splicing is facilitated by an intein, which interrupts flanking polypeptides called exteins. The mechanism of protein splicing has been studied by overexpression in E. coli of intein fusion proteins with nonnative exteins. Inteins can be used to generate reactive α-thioesters, as well as proteins with N-terminal Cys residues, to facilitate expressed protein ligation. As such, a more detailed understanding of the function of inteins can have significant impact for biotechnology applications. Here, we provide biochemical methods to study splicing activity and NMR methods to study intein structure and the catalytic mechanism.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Zhenming Du
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, Worcester, MA, USA.
| |
Collapse
|
19
|
A mesophilic cysteine-less split intein for protein trans-splicing applications under oxidizing conditions. Proc Natl Acad Sci U S A 2019; 116:22164-22172. [PMID: 31611397 DOI: 10.1073/pnas.1909825116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Split intein-mediated protein trans-splicing has found extensive applications in chemical biology, protein chemistry, and biotechnology. However, an enduring limitation of all well-established split inteins has been the requirement to carry out the reaction in a reducing environment due to the presence of 1 or 2 catalytic cysteines that need to be in a reduced state for splicing to occur. The concomitant exposure of the fused proteins to reducing agents severely limits the scope of protein trans-splicing by excluding proteins sensitive to reducing conditions, such as those containing critical disulfide bonds. Here we report the discovery, characterization, and engineering of a completely cysteine-less split intein (CL intein) that is capable of efficient trans-splicing at ambient temperatures, without a denaturation step, and in the absence of reducing agents. We demonstrate its utility for the site-specific chemical modification of nanobodies and an antibody Fc fragment by N- and C-terminal trans-splicing with short peptide tags (CysTag) that consist of only a few amino acids and have been prelabeled on a single cysteine using classical cysteine bioconjugation. We also synthesized the short N-terminal fragment of the atypically split CL intein by solid-phase peptide synthesis. Furthermore, using the CL intein in combination with a nanobody-epitope pair as a high-affinity mediator, we showed chemical labeling of the extracellular domain of a cell surface receptor on living mammalian cells with a short CysTag containing a synthetic fluorophore. The CL intein thus greatly expands the scope of applications for protein trans-splicing.
Collapse
|
20
|
Green CM, Li Z, Smith AD, Novikova O, Bacot-Davis VR, Gao F, Hu S, Banavali NK, Thiele DJ, Li H, Belfort M. Spliceosomal Prp8 intein at the crossroads of protein and RNA splicing. PLoS Biol 2019; 17:e3000104. [PMID: 31600193 PMCID: PMC6805012 DOI: 10.1371/journal.pbio.3000104] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 10/22/2019] [Accepted: 09/13/2019] [Indexed: 01/07/2023] Open
Abstract
The spliceosome is a large ribonucleoprotein complex that removes introns from pre-mRNAs. At its functional core lies the essential pre-mRNA processing factor 8 (Prp8) protein. Across diverse eukaryotes, this protein cofactor of RNA catalysis harbors a self-splicing element called an intein. Inteins in Prp8 are extremely pervasive and are found at 7 different sites in various species. Here, we focus on the Prp8 intein from Cryptococcus neoformans (Cne), a human fungal pathogen. We solved the crystal structure of this intein, revealing structural homology among protein splicing sequences in eukaryotes, including the Hedgehog C terminus. Working with the Cne Prp8 intein in a reporter assay, we find that the biologically relevant divalent metals copper and zinc inhibit intein splicing, albeit by 2 different mechanisms. Copper likely stimulates reversible modifications on a catalytically important cysteine, whereas zinc binds at the terminal asparagine and the same critical cysteine. Importantly, we also show that copper treatment inhibits Prp8 protein splicing in Cne. Lastly, an intein-containing Prp8 precursor model is presented, suggesting that metal-induced protein splicing inhibition would disturb function of both Prp8 and the spliceosome. These results indicate that Prp8 protein splicing can be modulated, with potential functional implications for the spliceosome.
Collapse
Affiliation(s)
- Cathleen M. Green
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, United States of America
| | - Zhong Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Aaron D. Smith
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, United States of America
| | - Valjean R. Bacot-Davis
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, United States of America
| | - Fengshan Gao
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Saiyang Hu
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Nilesh K. Banavali
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America,Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, United States of America
| | - Dennis J. Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America,Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Hongmin Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America,Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, United States of America,* E-mail: (MB); (HL)
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, United States of America,Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, United States of America,* E-mail: (MB); (HL)
| |
Collapse
|
21
|
Lennon CW, Stanger MJ, Belfort M. Mechanism of Single-Stranded DNA Activation of Recombinase Intein Splicing. Biochemistry 2019; 58:3335-3339. [PMID: 31318538 DOI: 10.1021/acs.biochem.9b00506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inteins, or intervening proteins, are mobile genetic elements translated within host polypeptides and removed through protein splicing. This self-catalyzed process breaks two peptide bonds and rejoins the flanking sequences, called N- and C-exteins, with the intein scarlessly escaping the host protein. As these elements have traditionally been viewed as purely selfish genetic elements, recent work has demonstrated that the conditional protein splicing (CPS) of several naturally occurring inteins can be regulated by a variety of environmental cues relevant to the survival of the host organism or crucial to the invading protein function. The RadA recombinase from the archaeon Pyrococcus horikoshii represents an intriguing example of CPS, whereby protein splicing is inhibited by interactions between the intein and host protein C-extein. Single-stranded DNA (ssDNA), a natural substrate of RadA as well as signal that recombinase activity is needed by the cell, dramatically improves the splicing rate and accuracy. Here, we investigate the mechanism by which ssDNA exhibits this influence and find that ssDNA strongly promotes a specific step of the splicing reaction, cyclization of the terminal asparagine of the intein. Interestingly, inhibitory interactions between the host protein and intein that block splicing localize to this asparagine, suggesting that ssDNA binding alleviates this inhibition to promote splicing. We also find that ssDNA directly influences the position of catalytic nucleophiles required for protein splicing, implying that ssDNA promotes assembly of the intein active site. This work advances our understanding of how ssDNA accelerates RadA splicing, providing important insights into this intriguing example of CPS.
Collapse
Affiliation(s)
- Christopher W Lennon
- Department of Biological Sciences and RNA Institute and Department of Biomedical Sciences, School of Public Health , University at Albany , Albany , New York 12222 , United States
| | - Matthew J Stanger
- Department of Biological Sciences and RNA Institute and Department of Biomedical Sciences, School of Public Health , University at Albany , Albany , New York 12222 , United States
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute and Department of Biomedical Sciences, School of Public Health , University at Albany , Albany , New York 12222 , United States
| |
Collapse
|
22
|
Engineered toxin–intein antimicrobials can selectively target and kill antibiotic-resistant bacteria in mixed populations. Nat Biotechnol 2019; 37:755-760. [DOI: 10.1038/s41587-019-0105-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/13/2019] [Indexed: 01/21/2023]
|
23
|
Sarmiento C, Camarero JA. Biotechnological Applications of Protein Splicing. Curr Protein Pept Sci 2019; 20:408-424. [PMID: 30734675 PMCID: PMC7135711 DOI: 10.2174/1389203720666190208110416] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 12/12/2022]
Abstract
Protein splicing domains, also called inteins, have become a powerful biotechnological tool for applications involving molecular biology and protein engineering. Early applications of inteins focused on self-cleaving affinity tags, generation of recombinant polypeptide α-thioesters for the production of semisynthetic proteins and backbone cyclized polypeptides. The discovery of naturallyoccurring split-inteins has allowed the development of novel approaches for the selective modification of proteins both in vitro and in vivo. This review gives a general introduction to protein splicing with a focus on their role in expanding the applications of intein-based technologies in protein engineering and chemical biology.
Collapse
Affiliation(s)
- Corina Sarmiento
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA9033 USA
| | - Julio A. Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA9033 USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA9033 USA
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-9121, USA
| |
Collapse
|
24
|
Pearson CS, Nemati R, Liu B, Zhang J, Scalabrin M, Li Z, Li H, Fabris D, Belfort M, Belfort G. Structure of an engineered intein reveals thiazoline ring and provides mechanistic insight. Biotechnol Bioeng 2018; 116:709-721. [PMID: 30450538 DOI: 10.1002/bit.26875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/18/2018] [Accepted: 10/26/2018] [Indexed: 11/08/2022]
Abstract
We have engineered an intein which spontaneously and reversibly forms a thiazoline ring at the native N-terminal Lys-Cys splice junction. We identified conditions to stablize the thiazoline ring and provided the first crystallographic evidence, at 1.54 Å resolution, for its existence at an intein active site. The finding bolsters evidence for a tetrahedral oxythiazolidine splicing intermediate. In addition, the pivotal mutation maps to a highly conserved B-block threonine, which is now seen to play a causative role not only in ground-state destabilization of the scissile N-terminal peptide bond, but also in steering the tetrahedral intermediate toward thioester formation, giving new insight into the splicing mechanism. We demonstrated the stability of the thiazoline ring at neutral pH as well as sensitivity to hydrolytic ring opening under acidic conditions. A pH cycling strategy to control N-terminal cleavage is proposed, which may be of interest for biotechnological applications requiring a splicing activity switch, such as for protein recovery in bioprocessing.
Collapse
Affiliation(s)
- C Seth Pearson
- Howard P Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Reza Nemati
- Department of Chemistry, State University of New York, Albany, New York
| | - Binbin Liu
- Laboratory of Computational & Structural Biology, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Jing Zhang
- Laboratory of Computational & Structural Biology, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Matteo Scalabrin
- Department of Chemistry, State University of New York, Albany, New York
| | - Zhong Li
- Laboratory of Computational & Structural Biology, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Hongmin Li
- Laboratory of Computational & Structural Biology, Wadsworth Center, New York State Department of Health, Albany, New York.,Department of Biomedical Sciences, School of Public Health, Albany, State University of New York, Albany, New York
| | - Dan Fabris
- Department of Chemistry, State University of New York, Albany, New York
| | - Marlene Belfort
- Department of Biomedical Sciences, School of Public Health, Albany, State University of New York, Albany, New York.,Department of Biological Sciences, Albany, State University of New York, Albany, New York
| | - Georges Belfort
- Howard P Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
25
|
Kelley DS, Lennon CW, Li Z, Miller MR, Banavali NK, Li H, Belfort M. Mycobacterial DnaB helicase intein as oxidative stress sensor. Nat Commun 2018; 9:4363. [PMID: 30341292 PMCID: PMC6195587 DOI: 10.1038/s41467-018-06554-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 09/10/2018] [Indexed: 11/09/2022] Open
Abstract
Inteins are widespread self-splicing protein elements emerging as potential post-translational environmental sensors. Here, we describe two inteins within one protein, the Mycobacterium smegmatis replicative helicase DnaB. These inteins, DnaBi1 and DnaBi2, have homology to inteins in pathogens, splice with vastly varied rates, and are differentially responsive to environmental stressors. Whereas DnaBi1 splicing is reversibly inhibited by oxidative and nitrosative insults, DnaBi2 is not. Using a reporter that measures splicing in a native intein-containing organism and western blotting, we show that H2O2 inhibits DnaBi1 splicing in M. smegmatis. Intriguingly, upon oxidation, the catalytic cysteine of DnaBi1 forms an intramolecular disulfide bond. We report a crystal structure of the class 3 DnaBi1 intein at 1.95 Å, supporting our findings and providing insight into this splicing mechanism. We propose that this cysteine toggle allows DnaBi1 to sense stress, pausing replication to maintain genome integrity, and then allowing splicing immediately when permissive conditions return.
Collapse
Affiliation(s)
- Danielle S Kelley
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, 12222, USA
| | - Christopher W Lennon
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, NY, 12222, USA
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY, 12208, USA
| | - Michael R Miller
- Department of Chemistry, University at Albany, Albany, NY, 12222, USA
| | - Nilesh K Banavali
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, 12222, USA
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY, 12208, USA
| | - Hongmin Li
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, 12222, USA.
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY, 12208, USA.
| | - Marlene Belfort
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, 12222, USA.
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, NY, 12222, USA.
| |
Collapse
|
26
|
Xu Y, Zhang L, Ma B, Hu L, Lu H, Dou T, Chen J, Zhu J. Intermolecular disulfide bonds between unpaired cysteines retard the C-terminal trans-cleavage of Npu DnaE. Enzyme Microb Technol 2018; 118:6-12. [PMID: 30143201 DOI: 10.1016/j.enzmictec.2018.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 06/15/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
Npu DnaE is a naturally occurred split intein possessing robust trans-splicing activity and could be engineered to perform rapid C-terminal cleavage module by a single mutation D118G. Unfortunately, however, for this modified selfcleaving module, reducing agents were needed to trigger the rapid cleavage, which prevents the utilization in purification of disulfide bonds containing recombinant proteins. In this study, we demonstrated that the unpaired cysteine residues in Npu DnaE tend to form disulfide bonds, and contributed to the reduction of the cleavage under non-reducing conditions. This redox trap can be disrupted by site-directed mutation of these unpaired cysteines. The results further indicated that the position 28 and 59 may play certain roles in the correct folding of the active conformation.
Collapse
Affiliation(s)
- Yanran Xu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA
| | - Lifu Hu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tonglu Dou
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junsheng Chen
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Jecho Laboratories, Inc., Frederick, MD, USA.
| |
Collapse
|
27
|
Abstract
Inteins are intervening proteins that undergo an autocatalytic splicing reaction that ligates flanking host protein sequences termed exteins. Some intein-containing proteins have evolved to couple splicing to environmental signals; this represents a new form of posttranslational regulation. Of particular interest is RadA from the archaeon Pyrococcus horikoshii, for which long-range intein-extein interactions block splicing, requiring temperature and single-stranded DNA (ssDNA) substrate to splice rapidly and accurately. Here, we report that splicing of the intein-containing RadA from another archaeon, Thermococcus sibericus, is activated by significantly lower temperatures than is P. horikoshii RadA, consistent with differences in their growth environments. Investigation into variations between T. sibericus and P. horikoshii RadA inteins led to the discovery that a nonconserved region (NCR) of the intein, a flexible loop where a homing endonuclease previously resided, is critical to splicing. Deletion of the NCR leads to a substantial loss in the rate and accuracy of P. horikoshii RadA splicing only within native exteins. The influence of the NCR deletion can be largely overcome by ssDNA, demonstrating that the splicing-competent conformation can be achieved. We present a model whereby the NCR is a flexible hinge which acts as a switch by controlling distant intein-extein interactions that inhibit active site assembly. These results speak to the repurposing of the vestigial endonuclease loop to control an intein-extein partnership, which ultimately allows exquisite adaptation of protein splicing upon changes in the environment. Inteins are mobile genetic elements that interrupt coding sequences (exteins) and are removed by protein splicing. They are abundant elements in microbes, and recent work has demonstrated that protein splicing can be controlled by environmental cues, including the substrate of the intein-containing protein. Here, we describe an intein-extein collaboration that controls temperature-induced splicing of RadA from two archaea and how variation in this intein-extein partnership results in fine-tuning of splicing to closely match the environment. Specifically, we found that a small sequence difference between the two inteins, a flexible loop that likely once housed a homing endonuclease used for intein mobility, acts as a switch to control intein-extein interactions that block splicing. Our results argue strongly that some inteins have evolved away from a purely parasitic lifestyle to control the activity of host proteins, representing a new form of posttranslational regulation that is potentially widespread in the microbial world.
Collapse
|
28
|
Green CM, Novikova O, Belfort M. The dynamic intein landscape of eukaryotes. Mob DNA 2018; 9:4. [PMID: 29416568 PMCID: PMC5784728 DOI: 10.1186/s13100-018-0111-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/18/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Inteins are mobile, self-splicing sequences that interrupt proteins and occur across all three domains of life. Scrutiny of the intein landscape in prokaryotes led to the hypothesis that some inteins are functionally important. Our focus shifts to eukaryotic inteins to assess their diversity, distribution, and dissemination, with the aim to comprehensively evaluate the eukaryotic intein landscape, understand intein maintenance, and dissect evolutionary relationships. RESULTS This bioinformatics study reveals that eukaryotic inteins are scarce, but present in nuclear genomes of fungi, chloroplast genomes of algae, and within some eukaryotic viruses. There is a preponderance of inteins in several fungal pathogens of humans and plants. Inteins are pervasive in certain proteins, including the nuclear RNA splicing factor, Prp8, and the chloroplast DNA helicase, DnaB. We find that eukaryotic inteins frequently localize to unstructured loops of the host protein, often at highly conserved sites. More broadly, a sequence similarity network analysis of all eukaryotic inteins uncovered several routes of intein mobility. Some eukaryotic inteins appear to have been acquired through horizontal transfer with dsDNA viruses, yet other inteins are spread through intragenomic transfer. Remarkably, endosymbiosis can explain patterns of DnaB intein inheritance across several algal phyla, a novel mechanism for intein acquisition and distribution. CONCLUSIONS Overall, an intriguing picture emerges for how the eukaryotic intein landscape arose, with many evolutionary forces having contributed to its current state. Our collective results provide a framework for exploring inteins as novel regulatory elements and innovative drug targets.
Collapse
Affiliation(s)
- Cathleen M. Green
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| | - Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| |
Collapse
|
29
|
Iwaï H, Mikula KM, Oeemig JS, Zhou D, Li M, Wlodawer A. Structural Basis for the Persistence of Homing Endonucleases in Transcription Factor IIB Inteins. J Mol Biol 2017; 429:3942-3956. [PMID: 29055778 PMCID: PMC6309676 DOI: 10.1016/j.jmb.2017.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/29/2017] [Accepted: 10/12/2017] [Indexed: 11/19/2022]
Abstract
Inteins are mobile genetic elements that are spliced out of proteins after translation. Some inteins contain a homing endonuclease (HEN) responsible for their propagation. Hedgehog/INTein (HINT) domains catalyzing protein splicing and their nested HEN domains are thought to be functionally independent because of the existence of functional mini-inteins without HEN domains. Despite the lack of obvious mutualism between HEN and HINT domains, HEN domains are persistently found at one specific site in inteins, indicating their potential functional role in protein splicing. Here we report crystal structures of inactive and active mini-inteins derived from inteins residing in the transcription factor IIB of Methanococcus jannaschii and Methanocaldococcus vulcanius, revealing a novel modified HINT fold that might provide new insights into the mutualism between the HEN and HINT domains. We propose an evolutionary model of inteins and a functional role of HEN domains in inteins.
Collapse
Affiliation(s)
- Hideo Iwaï
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland.
| | - Kornelia M Mikula
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland
| | - Jesper S Oeemig
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland
| | - Dongwen Zhou
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Mi Li
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
30
|
Belfort M. Mobile self-splicing introns and inteins as environmental sensors. Curr Opin Microbiol 2017; 38:51-58. [PMID: 28482231 DOI: 10.1016/j.mib.2017.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/12/2017] [Indexed: 12/31/2022]
Abstract
Self-splicing introns and inteins are often mobile at the level of the genome. Although these RNA and protein elements, respectively, are generally considered to be selfish parasites, group I and group II introns and inteins can be triggered by environmental cues to splice and/or to mobilize. These cues include stressors such as oxidizing agents, reactive oxygen and nitrogen species, starvation, temperature, osmolarity and DNA damage. Their sensitivity to these stimuli leads to a carefully choreographed dance between the mobile element and its host that is in tune with the cellular environment. This responsiveness to a changing milieu provides strong evidence that these diverse, self-splicing mobile elements have adapted to react to prevailing conditions, to the potential advantage of both the element and its host.
Collapse
Affiliation(s)
- Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, Life Sciences Research Building 2061, 1400 Washington Avenue, Albany, NY 12222, USA.
| |
Collapse
|
31
|
|
32
|
Minteer CJ, Siegart NM, Colelli KM, Liu X, Linhardt RJ, Wang C, Gomez AV, Reitter JN, Mills KV. Intein-Promoted Cyclization of Aspartic Acid Flanking the Intein Leads to Atypical N-Terminal Cleavage. Biochemistry 2017; 56:1042-1050. [PMID: 28165720 DOI: 10.1021/acs.biochem.6b00894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein splicing is a post-translational reaction facilitated by an intein, or intervening protein, which involves the removal of the intein and the ligation of the flanking polypeptides, or exteins. A DNA polymerase II intein from Pyrococcus abyssi (Pab PolII intein) can promote protein splicing in vitro on incubation at high temperature. Mutation of active site residues Cys1, Gln185, and Cys+1 to Ala results in an inactive intein precursor, which cannot promote the steps of splicing, including cleavage of the peptide bond linking the N-extein and intein (N-terminal cleavage). Surprisingly, coupling the inactivating mutations to a change of the residue at the C-terminus of the N-extein (N-1 residue) from the native Asn to Asp reactivates N-terminal cleavage at pH 5. Similar "aspartic acid effects" have been observed in other proteins and peptides but usually only occur at lower pH values. In this case, however, the unusual N-terminal cleavage is abolished by mutations to catalytic active site residues and unfolding of the intein, indicating that this cleavage effect is mediated by the intein active site and the intein fold. We show via mass spectrometry that the reaction proceeds through cyclization of Asp resulting in anhydride formation coupled to peptide bond cleavage. Our results add to the richness of the understanding of the mechanism of protein splicing and provide insight into the stability of proteins at moderately low pH. The results also explain, and may help practitioners avoid, a side reaction that may complicate intein applications in biotechnology.
Collapse
Affiliation(s)
- Christopher J Minteer
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | - Nicolle M Siegart
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | - Kathryn M Colelli
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | | | | | | | - Alvin V Gomez
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | - Julie N Reitter
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| |
Collapse
|
33
|
Lennon CW, Stanger M, Belfort M. Protein splicing of a recombinase intein induced by ssDNA and DNA damage. Genes Dev 2016; 30:2663-2668. [PMID: 28031248 PMCID: PMC5238726 DOI: 10.1101/gad.289280.116] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022]
Abstract
In this study, Lennon et al. provide new insights into the role of inteins (or protein introns), which are known to autocatalytically excise themselves through protein splicing. They show that intein splicing can be stimulated by a substrate of the invaded host protein, suggesting a new form of post-translational control. Inteins (or protein introns) autocatalytically excise themselves through protein splicing. We challenge the long-considered notion that inteins are merely molecular parasites and posit that some inteins evolved to regulate host protein function. Here we show substrate-induced and DNA damage-induced splicing, in which an archaeal recombinase RadA intein splices dramatically faster and more accurately when provided with ssDNA. This unprecedented example of intein splicing stimulation by the substrate of the invaded host protein provides compelling support in favor of inteins acting as pause buttons to arrest protein function until needed; then, an immediate activity switch is triggered, representing a new form of post-translational control.
Collapse
Affiliation(s)
- Christopher W Lennon
- Department of Biological Sciences, RNA Institute, University at Albany, Albany, New York 12222, USA
| | - Matthew Stanger
- Department of Biological Sciences, RNA Institute, University at Albany, Albany, New York 12222, USA
| | - Marlene Belfort
- Department of Biological Sciences, RNA Institute, University at Albany, Albany, New York 12222, USA.,Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York 12201, USA
| |
Collapse
|
34
|
Ciragan A, Aranko AS, Tascon I, Iwaï H. Salt-inducible Protein Splicing in cis and trans by Inteins from Extremely Halophilic Archaea as a Novel Protein-Engineering Tool. J Mol Biol 2016; 428:4573-4588. [PMID: 27720988 DOI: 10.1016/j.jmb.2016.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 10/20/2022]
Abstract
Intervening protein sequences (inteins) from extremely halophilic haloarchaea can be inactive under low salinity but could be activated by increasing the salt content to a specific concentration for each intein. The halo-obligatory inteins confer high solubility under both low and high salinity conditions. We showed the broad utility of salt-dependent protein splicing in cis and trans by demonstrating backbone cyclization, self-cleavage for purification, and scarless protein ligation for segmental isotopic labeling. Artificially split MCM2 intein derived from Halorhabdus utahensis remained highly soluble and was capable of protein trans-splicing with excellent ligation kinetics by reassembly under high salinity conditions. Importantly, the MCM2 intein has the active site residue of Ser at the +1 position, which remains in the ligated product, instead of Cys as found in many other efficient split inteins. Since Ser is more abundant than Cys in proteins, the novel split intein could widen the applications of segmental labeling in protein NMR spectroscopy and traceless protein ligation by exploiting a Ser residue in the native sequences as the +1 position of the MCM2 intein. The split halo-obligatory intein was successfully used to demonstrate the utility in NMR investigation of intact proteins by producing segmentally isotope-labeled intact TonB protein from Helicobacter pylori.
Collapse
Affiliation(s)
- Annika Ciragan
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki, FI-00014, Finland
| | - A Sesilja Aranko
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki, FI-00014, Finland
| | - Igor Tascon
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki, FI-00014, Finland
| | - Hideo Iwaï
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki, FI-00014, Finland.
| |
Collapse
|
35
|
Abstract
Inteins are self-splicing protein elements that are mobile at the DNA level and are sporadically distributed across microbial genomes. Inteins appear to be horizontally transferred, and it has been speculated that phages may play a role in intein distribution. Our attention turns to mycobacteriophages, which infect mycobacteria, where both phage and host harbor inteins. Using bioinformatics, mycobacteriophage genomes were mined for inteins. This study reveals that these mobile elements are present across multiple mycobacteriophage clusters and are pervasive in certain genes, like the large terminase subunit TerL and a RecB-like nuclease, with the majority of intein-containing genes being phage specific. Strikingly, despite this phage specificity, inteins localize to functional motifs shared with bacteria, such that intein-containing genes have similar roles, like hydrolase activity and nucleic acid binding, indicating a global commonality among intein-hosting proteins. Additionally, there are multiple insertion points within active centers, implying independent invasion events, with regulatory implications. Several phage inteins were shown to be splicing competent and to encode functional homing endonucleases, important for mobility. Further, bioinformatic analysis supports the potential for phages as facilitators of intein movement among mycobacteria and related genera. Analysis of catalytic intein residues finds the highly conserved penultimate histidine inconsistently maintained among mycobacteriophages. Biochemical characterization of a noncanonical phage intein shows that this residue influences precursor accumulation, suggesting that splicing has been tuned in phages to modulate generation of important proteins. Together, this work expands our understanding of phage-based intein dissemination and evolution and implies that phages provide a context for evolution of splicing-based regulation. Inteins are mobile protein splicing elements found in critical genes across all domains of life. Mycobacterial inteins are of particular interest because of their occurrence in pathogenic species, such as Mycobacterium tuberculosis and Mycobacterium leprae, which harbor inteins in important proteins. We have discovered a similarity in activities of intein-containing proteins among mycobacteriophages and their intein-rich actinobacterial hosts, with implications for both posttranslational regulation by inteins and phages participating in horizontal intein transfer. Our demonstration of multiple insertion points within active centers of phage proteins implies independent invasion events, indicating the importance of intein maintenance at specific functional sites. The variable conservation of a catalytic splicing residue, leading to profoundly altered splicing rates, points to the regulatory potential of inteins and to mycobacteriophages playing a role in intein evolution. Collectively, these results suggest inteins as posttranslational regulators and mycobacteriophages as both vehicles for intein distribution and incubators for intein evolution.
Collapse
|
36
|
Impact of a homing intein on recombination frequency and organismal fitness. Proc Natl Acad Sci U S A 2016; 113:E4654-61. [PMID: 27462108 DOI: 10.1073/pnas.1606416113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inteins are parasitic genetic elements that excise themselves at the protein level by self-splicing, allowing the formation of functional, nondisrupted proteins. Many inteins contain a homing endonuclease (HEN) domain and rely on its activity for horizontal propagation. However, successful invasion of an entire population will make this activity redundant, and the HEN domain is expected to degenerate quickly under these conditions. Several theories have been proposed for the continued existence of the both active HEN and noninvaded alleles within a population. However, to date, these models were not directly tested experimentally. Using the natural cell fusion ability of the halophilic archaeon Haloferax volcanii we were able to examine this question in vivo, by mating polB intein-positive [insertion site c in the gene encoding DNA polymerase B (polB-c)] and intein-negative cells and examining the dispersal efficiency of this intein in a natural, polyploid population. Through competition between otherwise isogenic intein-positive and intein-negative strains we determined a surprisingly high fitness cost of over 7% for the polB-c intein. Our laboratory culture experiments and samples taken from Israel's Mediterranean coastline show that the polB-c inteins do not efficiently take over an inteinless population through mating, even under ideal conditions. The presence of the HEN/intein promoted recombination when intein-positive and intein-negative cells were mated. Increased recombination due to HEN activity contributes not only to intein dissemination but also to variation at the population level because recombination tracts during repair extend substantially from the homing site.
Collapse
|
37
|
Reitter JN, Cousin CE, Nicastri MC, Jaramillo MV, Mills KV. Salt-Dependent Conditional Protein Splicing of an Intein from Halobacterium salinarum. Biochemistry 2016; 55:1279-82. [PMID: 26913597 DOI: 10.1021/acs.biochem.6b00128] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An intein from Halobacterium salinarum can be isolated as an unspliced precursor protein with exogenous exteins after Escherichia coli overexpression. The intein promotes protein splicing and uncoupled N-terminal cleavage in vitro, conditional on incubation with NaCl or KCl at concentrations of >1.5 M. The protein splicing reaction also is conditional on reduction of a disulfide bond between two active site cysteines. Conditional protein splicing under these relatively mild conditions may lead to advances in intein-based biotechnology applications and hints at the possibility that this H. salinarum intein could serve as a switch to control extein activity under physiologically relevant conditions.
Collapse
Affiliation(s)
- Julie N Reitter
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | - Christopher E Cousin
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | - Michael C Nicastri
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | - Mario V Jaramillo
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| |
Collapse
|
38
|
Arkhipova IR, Rice PA. Mobile genetic elements: in silico, in vitro, in vivo. Mol Ecol 2016; 25:1027-31. [PMID: 26822117 DOI: 10.1111/mec.13543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/15/2016] [Indexed: 11/27/2022]
Abstract
Mobile genetic elements (MGEs), also called transposable elements (TEs), represent universal components of most genomes and are intimately involved in nearly all aspects of genome organization, function and evolution. However, there is currently a gap between the fast pace of TE discovery in silico, driven by the exponential growth of comparative genomic studies, and a limited number of experimental models amenable to more traditional in vitro and in vivo studies of structural, mechanistic and regulatory properties of diverse MGEs. Experimental and computational scientists came together to bridge this gap at a recent conference, 'Mobile Genetic Elements: in silico, in vitro, in vivo', held at the Marine Biological Laboratory (MBL) in Woods Hole, MA, USA.
Collapse
Affiliation(s)
- Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E. 57th Street, Chicago, IL, 60637, USA
| |
Collapse
|
39
|
Novikova O, Jayachandran P, Kelley DS, Morton Z, Merwin S, Topilina NI, Belfort M. Intein Clustering Suggests Functional Importance in Different Domains of Life. Mol Biol Evol 2015; 33:783-99. [PMID: 26609079 PMCID: PMC4760082 DOI: 10.1093/molbev/msv271] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inteins, also called protein introns, are self-splicing mobile elements found in all domains of life. A bioinformatic survey of genomic data highlights a biased distribution of inteins among functional categories of proteins in both bacteria and archaea, with a strong preference for a single network of functions containing replisome proteins. Many nonorthologous, functionally equivalent replicative proteins in bacteria and archaea carry inteins, suggesting a selective retention of inteins in proteins of particular functions across domains of life. Inteins cluster not only in proteins with related roles but also in specific functional units of those proteins, like ATPase domains. This peculiar bias does not fully fit the models describing inteins exclusively as parasitic elements. In such models, evolutionary dynamics of inteins is viewed primarily through their mobility with the intein homing endonuclease (HEN) as the major factor of intein acquisition and loss. Although the HEN is essential for intein invasion and spread in populations, HEN dynamics does not explain the observed biased distribution of inteins among proteins in specific functional categories. We propose that the protein splicing domain of the intein can act as an environmental sensor that adapts to a particular niche and could increase the chance of the intein becoming fixed in a population. We argue that selective retention of some inteins might be beneficial under certain environmental stresses, to act as panic buttons that reversibly inhibit specific networks, consistent with the observed intein distribution.
Collapse
Affiliation(s)
- Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany
| | | | - Danielle S Kelley
- Department of Biomedical Sciences, School of Public Health, University at Albany
| | - Zachary Morton
- Department of Biological Sciences and RNA Institute, University at Albany
| | | | - Natalya I Topilina
- Department of Biological Sciences and RNA Institute, University at Albany
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany Department of Biomedical Sciences, School of Public Health, University at Albany
| |
Collapse
|
40
|
Callahan BP, Wang C. Hedgehog Cholesterolysis: Specialized Gatekeeper to Oncogenic Signaling. Cancers (Basel) 2015; 7:2037-53. [PMID: 26473928 PMCID: PMC4695875 DOI: 10.3390/cancers7040875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022] Open
Abstract
Discussions of therapeutic suppression of hedgehog (Hh) signaling almost exclusively focus on receptor antagonism; however, hedgehog's biosynthesis represents a unique and potentially targetable aspect of this oncogenic signaling pathway. Here, we review a key biosynthetic step called cholesterolysis from the perspectives of structure/function and small molecule inhibition. Cholesterolysis, also called cholesteroylation, generates cholesterol-modified Hh ligand via autoprocessing of a hedgehog precursor protein. Post-translational modification by cholesterol appears to be restricted to proteins in the hedgehog family. The transformation is essential for Hh biological activity and upstream of signaling events. Despite its decisive role in generating ligand, cholesterolysis remains conspicuously unexplored as a therapeutic target.
Collapse
Affiliation(s)
- Brian P Callahan
- Chemistry Department, Binghamton University 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
| | - Chunyu Wang
- Biology Department, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
| |
Collapse
|
41
|
Tobin PH, Richards DH, Callender RA, Wilson CJ. Protein engineering: a new frontier for biological therapeutics. Curr Drug Metab 2015; 15:743-56. [PMID: 25495737 DOI: 10.2174/1389200216666141208151524] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/27/2014] [Accepted: 12/07/2014] [Indexed: 12/14/2022]
Abstract
Protein engineering holds the potential to transform the metabolic drug landscape through the development of smart, stimulusresponsive drug systems. Protein therapeutics are a rapidly expanding segment of Food and Drug Administration approved drugs that will improve clinical outcomes over the long run. Engineering of protein therapeutics is still in its infancy, but recent general advances in protein engineering capabilities are being leveraged to yield improved control over both pharmacokinetics and pharmacodynamics. Stimulus- responsive protein therapeutics are drugs which have been designed to be metabolized under targeted conditions. Protein engineering is being utilized to develop tailored smart therapeutics with biochemical logic. This review focuses on applications of targeted drug neutralization, stimulus-responsive engineered protein prodrugs, and emerging multicomponent smart drug systems (e.g., antibody-drug conjugates, responsive engineered zymogens, prospective biochemical logic smart drug systems, drug buffers, and network medicine applications).
Collapse
Affiliation(s)
| | | | | | - Corey J Wilson
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA.
| |
Collapse
|
42
|
Pearson CS, Belfort G, Belfort M, Shekhtman A. Backbone assignments of mini-RecA intein with short native exteins and an active N-terminal catalytic cysteine. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:235-238. [PMID: 25281002 PMCID: PMC4385508 DOI: 10.1007/s12104-014-9581-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/26/2014] [Indexed: 06/03/2023]
Abstract
The backbone resonance assignments of an engineered splicing-inactive mini-RecA intein based on triple resonance experiments with [(13)C,(15)N]-labeled protein are reported. The construct contains inactivating mutations specifically designed to retain most catalytic residues, especially those that are potentially metal-coordinating. The assignments are essential for protein structure determination of a precursor with an active N-terminal catalytic cysteine and for investigation of the atomic details of splicing.
Collapse
Affiliation(s)
- C Seth Pearson
- Howard P. Isermann Department of Chemical and Biological Engineering and The Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering and The Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Marlene Belfort
- Department of Biological Sciences and The RNA Institute, University at Albany, Albany, NY, 12222, USA.
| | | |
Collapse
|
43
|
Wong S, Mosabbir AA, Truong K. An Engineered Split Intein for Photoactivated Protein Trans-Splicing. PLoS One 2015; 10:e0135965. [PMID: 26317656 PMCID: PMC4552755 DOI: 10.1371/journal.pone.0135965] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/28/2015] [Indexed: 11/18/2022] Open
Abstract
Protein splicing is mediated by inteins that auto-catalytically join two separated protein fragments with a peptide bond. Here we engineered a genetically encoded synthetic photoactivatable intein (named LOVInC), by using the light-sensitive LOV2 domain from Avena sativa as a switch to modulate the splicing activity of the split DnaE intein from Nostoc punctiforme. Periodic blue light illumination of LOVInC induced protein splicing activity in mammalian cells. To demonstrate the broad applicability of LOVInC, synthetic protein systems were engineered for the light-induced reassembly of several target proteins such as fluorescent protein markers, a dominant positive mutant of RhoA, caspase-7, and the genetically encoded Ca2+ indicator GCaMP2. Spatial precision of LOVInC was demonstrated by targeting activity to specific mammalian cells. Thus, LOVInC can serve as a general platform for engineering light-based control for modulating the activity of many different proteins.
Collapse
Affiliation(s)
- Stanley Wong
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Abdullah A. Mosabbir
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Kevin Truong
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Circle, Toronto, Ontario, M5S 3G4, Canada
- * E-mail:
| |
Collapse
|
44
|
SufB intein of Mycobacterium tuberculosis as a sensor for oxidative and nitrosative stresses. Proc Natl Acad Sci U S A 2015; 112:10348-53. [PMID: 26240361 DOI: 10.1073/pnas.1512777112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inteins are mobile genetic elements that self-splice at the protein level. Mycobacteria have inteins inserted into several important genes, including those corresponding to the iron-sulfur cluster assembly protein SufB. Curiously, the SufB inteins are found primarily in mycobacterial species that are potential human pathogens. Here we discovered an exceptional sensitivity of Mycobacterium tuberculosis SufB intein splicing to oxidative and nitrosative stresses when expressed in Escherichia coli. This effect results from predisposition of the intein's catalytic cysteine residues to oxidative and nitrosative modifications. Experiments with a fluorescent reporter system revealed that reactive oxygen species and reactive nitrogen species inhibit SufB extein ligation by forcing either precursor accumulation or N-terminal cleavage. We propose that splicing inhibition is an immediate, posttranslational regulatory response that can be either reversible, by inducing precursor accumulation, or irreversible, by inducing N-terminal cleavage, which may potentially channel mycobacteria into dormancy under extreme oxidative and nitrosative stresses.
Collapse
|
45
|
Topilina NI, Novikova O, Stanger M, Banavali NK, Belfort M. Post-translational environmental switch of RadA activity by extein-intein interactions in protein splicing. Nucleic Acids Res 2015; 43:6631-48. [PMID: 26101259 PMCID: PMC4513877 DOI: 10.1093/nar/gkv612] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/29/2015] [Indexed: 11/14/2022] Open
Abstract
Post-translational control based on an environmentally sensitive intervening intein sequence is described. Inteins are invasive genetic elements that self-splice at the protein level from the flanking host protein, the exteins. Here we show in Escherichia coli and in vitro that splicing of the RadA intein located in the ATPase domain of the hyperthermophilic archaeon Pyrococcus horikoshii is strongly regulated by the native exteins, which lock the intein in an inactive state. High temperature or solution conditions can unlock the intein for full activity, as can remote extein point mutations. Notably, this splicing trap occurs through interactions between distant residues in the native exteins and the intein, in three-dimensional space. The exteins might thereby serve as an environmental sensor, releasing the intein for full activity only at optimal growth conditions for the native organism, while sparing ATP consumption under conditions of cold-shock. This partnership between the intein and its exteins, which implies coevolution of the parasitic intein and its host protein may provide a novel means of post-translational control.
Collapse
Affiliation(s)
- Natalya I Topilina
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Matthew Stanger
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Nilesh K Banavali
- Laboratory of Computational and Structural Biology, Division of Genetics, Wadsworth Center, NYS Department of Health and Department of Biomedical Sciences, University at Albany, CMS 2008, Biggs Lab, Empire State Plaza, PO Box 509, Albany, NY 12201-2002, USA
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
46
|
Böcker JK, Friedel K, Matern JCJ, Bachmann AL, Mootz HD. Generation of a Genetically Encoded, Photoactivatable Intein for the Controlled Production of Cyclic Peptides. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409848] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Böcker JK, Friedel K, Matern JCJ, Bachmann AL, Mootz HD. Generation of a Genetically Encoded, Photoactivatable Intein for the Controlled Production of Cyclic Peptides. Angew Chem Int Ed Engl 2014; 54:2116-20. [DOI: 10.1002/anie.201409848] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/04/2014] [Indexed: 01/19/2023]
|
48
|
Groitl B, Jakob U. Thiol-based redox switches. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:1335-43. [PMID: 24657586 PMCID: PMC4059413 DOI: 10.1016/j.bbapap.2014.03.007] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/04/2014] [Accepted: 03/11/2014] [Indexed: 11/30/2022]
Abstract
Regulation of protein function through thiol-based redox switches plays an important role in the response and adaptation to local and global changes in the cellular levels of reactive oxygen species (ROS). Redox regulation is used by first responder proteins, such as ROS-specific transcriptional regulators, chaperones or metabolic enzymes to protect cells against mounting levels of oxidants, repair the damage and restore redox homeostasis. Redox regulation of phosphatases and kinases is used to control the activity of select eukaryotic signaling pathways, making reactive oxygen species important second messengers that regulate growth, development and differentiation. In this review we will compare different types of reversible protein thiol modifications, elaborate on their structural and functional consequences and discuss their role in oxidative stress response and ROS adaptation. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.
Collapse
Affiliation(s)
- Bastian Groitl
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
49
|
Branching out of the intein active site in protein splicing. Proc Natl Acad Sci U S A 2014; 111:8323-4. [PMID: 24872446 DOI: 10.1073/pnas.1407116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
50
|
Eryilmaz E, Shah NH, Muir TW, Cowburn D. Structural and dynamical features of inteins and implications on protein splicing. J Biol Chem 2014; 289:14506-11. [PMID: 24695731 DOI: 10.1074/jbc.r113.540302] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein splicing is a posttranslational modification where intervening proteins (inteins) cleave themselves from larger precursor proteins and ligate their flanking polypeptides (exteins) through a multistep chemical reaction. First thought to be an anomaly found in only a few organisms, protein splicing by inteins has since been observed in microorganisms from all domains of life. Despite this broad phylogenetic distribution, all inteins share common structural features such as a horseshoe-like pseudo two-fold symmetric fold, several canonical sequence motifs, and similar splicing mechanisms. Intriguingly, the splicing efficiencies and substrate specificity of different inteins vary considerably, reflecting subtle changes in the chemical mechanism of splicing, linked to their local structure and dynamics. As intein chemistry has widespread use in protein chemistry, understanding the structural and dynamical aspects of inteins is crucial for intein engineering and the improvement of intein-based technologies.
Collapse
Affiliation(s)
- Ertan Eryilmaz
- From the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461 and
| | - Neel H Shah
- the Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544
| | - Tom W Muir
- the Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544
| | - David Cowburn
- From the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461 and
| |
Collapse
|