1
|
Moreland ZG, Jiang F, Aguilar C, Barzik M, Gong R, Behnammanesh G, Park J, Shams A, Faaborg-Andersen C, Werth JC, Harley R, Sutton DC, Heidings JB, Cole SM, Parker A, Morse S, Wilson E, Takagi Y, Sellers JR, Brown SDM, Friedman TB, Alushin GM, Bowl MR, Bird JE. Myosin-based nucleation of actin filaments contributes to stereocilia development critical for hearing. Nat Commun 2025; 16:947. [PMID: 39843411 PMCID: PMC11754657 DOI: 10.1038/s41467-025-55898-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/03/2025] [Indexed: 01/24/2025] Open
Abstract
Assembly of actin-based stereocilia is critical for cochlear hair cells to detect sound. To tune their mechanosensivity, stereocilia form bundles composed of graded rows of ascending height, necessitating the precise control of actin polymerization. Myosin 15 (MYO15A) drives hair bundle development by delivering critical proteins to growing stereocilia that regulate actin polymerization via an unknown mechanism. Here, we show that MYO15A is itself an actin nucleation-promoting factor. Moreover, a deafness-causing mutation in the MYO15A actin-binding interface inhibits nucleation activity but still preserves some movement on filaments in vitro and partial trafficking on stereocilia in vivo. Stereocilia fail to elongate correctly in this mutant mouse, providing evidence that MYO15A-driven actin nucleation contributes to hair bundle biogenesis. Our work shows that in addition to generating force and motility, the ATPase domain of MYO15A can directly regulate actin polymerization and that disrupting this activity can promote cytoskeletal disease, such as hearing loss.
Collapse
Affiliation(s)
- Zane G Moreland
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
- Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Fangfang Jiang
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Carlos Aguilar
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK
- UCL Ear Institute, University College London, London, UK
| | - Melanie Barzik
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Rui Gong
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Ghazaleh Behnammanesh
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
- Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jinho Park
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Arik Shams
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Christian Faaborg-Andersen
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Jesse C Werth
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Randall Harley
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Daniel C Sutton
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - James B Heidings
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
- Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Stacey M Cole
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Parker
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK
| | - Susan Morse
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK
| | - Elizabeth Wilson
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Yasuharu Takagi
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - James R Sellers
- Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Gregory M Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Michael R Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK.
- UCL Ear Institute, University College London, London, UK.
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.
- Myology Institute, University of Florida, Gainesville, FL, USA.
- Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Shangguan J, Rock RS. Hundreds of myosin 10s are pushed to the tips of filopodia and could cause traffic jams on actin. eLife 2024; 12:RP90603. [PMID: 39480891 PMCID: PMC11527427 DOI: 10.7554/elife.90603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Myosin 10 (Myo10) is a motor protein known for its role in filopodia formation. Although Myo10-driven filopodial dynamics have been characterized, there is no information about the absolute number of Myo10 molecules during the filopodial lifecycle. To better understand molecular stoichiometries and packing restraints in filopodia, we measured Myo10 abundance in these structures. We combined SDS-PAGE densitometry with epifluorescence microscopy to quantitate HaloTag-labeled Myo10 in U2OS cells. About 6% of total intracellular Myo10 localizes to filopodia, where it enriches at opposite cellular ends. Hundreds of Myo10s are in a typical filopodium, and their distribution across filopodia is log-normal. Some filopodial tips even contain more Myo10 than accessible binding sites on the actin filament bundle. Live-cell movies reveal a dense cluster of over a hundred Myo10 molecules that initiates filopodial elongation. Hundreds of Myo10 molecules continue to accumulate during filopodial growth, but accumulation ceases when retraction begins. Rates of filopodial elongation, second-phase elongation, and retraction are inversely related to Myo10 quantities. Our estimates of Myo10 molecules in filopodia provide insight into the physics of packing Myo10, its cargo, and other filopodia-associated proteins in narrow membrane compartments. Our protocol provides a framework for future work analyzing Myo10 abundance and distribution upon perturbation.
Collapse
Affiliation(s)
- Julia Shangguan
- Department of Biochemistry and Molecular Biology, University of ChicagoChicagoUnited States
| | - Ronald S Rock
- Department of Biochemistry and Molecular Biology, The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| |
Collapse
|
3
|
Shangguan J, Rock RS. Hundreds of myosin 10s are pushed to the tips of filopodia and could cause traffic jams on actin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.26.546598. [PMID: 37425746 PMCID: PMC10327019 DOI: 10.1101/2023.06.26.546598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Myosin 10 (Myo10) is a motor protein known for its role in filopodia formation. Although Myo10-driven filopodial dynamics have been characterized, there is no information about the absolute number of Myo10 molecules during the filopodial lifecycle. To better understand molecular stoichiometries and packing restraints in filopodia, we measured Myo10 abundance in these structures. We combined SDS-PAGE densitometry with epifluorescence microscopy to quantitate HaloTag-labeled Myo10 in U2OS cells. About 6% of total intracellular Myo10 localizes to filopodia, where it enriches at opposite cellular ends. Hundreds of Myo10s are in a typical filopodium, and their distribution across filopodia is log-normal. Some filopodial tips even contain more Myo10 than accessible binding sites on the actin filament bundle. Live-cell movies reveal a dense cluster of over a hundred Myo10 molecules that initiates filopodial elongation. Hundreds of Myo10 molecules continue to accumulate during filopodial growth, but accumulation ceases when retraction begins. Rates of filopodial elongation, second-phase elongation, and retraction are inversely related to Myo10 quantities. Our estimates of Myo10 molecules in filopodia provide insight into the physics of packing Myo10, its cargo, and other filopodia-associated proteins in narrow membrane compartments. Our protocol provides a framework for future work analyzing Myo10 abundance and distribution upon perturbation.
Collapse
Affiliation(s)
- Julia Shangguan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
| | - Ronald S Rock
- Department of Biochemistry and Molecular Biology, The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Eddington C, Schwartz JK, Titus MA. filoVision - using deep learning and tip markers to automate filopodia analysis. J Cell Sci 2024; 137:jcs261274. [PMID: 38264939 PMCID: PMC10941656 DOI: 10.1242/jcs.261274] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
Filopodia are slender, actin-filled membrane projections used by various cell types for environment exploration. Analyzing filopodia often involves visualizing them using actin, filopodia tip or membrane markers. Due to the diversity of cell types that extend filopodia, from amoeboid to mammalian, it can be challenging for some to find a reliable filopodia analysis workflow suited for their cell type and preferred visualization method. The lack of an automated workflow capable of analyzing amoeboid filopodia with only a filopodia tip label prompted the development of filoVision. filoVision is an adaptable deep learning platform featuring the tools filoTips and filoSkeleton. filoTips labels filopodia tips and the cytosol using a single tip marker, allowing information extraction without actin or membrane markers. In contrast, filoSkeleton combines tip marker signals with actin labeling for a more comprehensive analysis of filopodia shafts in addition to tip protein analysis. The ZeroCostDL4Mic deep learning framework facilitates accessibility and customization for different datasets and cell types, making filoVision a flexible tool for automated analysis of tip-marked filopodia across various cell types and user data.
Collapse
Affiliation(s)
- Casey Eddington
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jessica K. Schwartz
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Margaret A. Titus
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Niu F, Li L, Wang L, Xiao J, Xu S, Liu Y, Lin L, Yu C, Wei Z. Autoinhibition and activation of myosin VI revealed by its cryo-EM structure. Nat Commun 2024; 15:1187. [PMID: 38331992 PMCID: PMC10853514 DOI: 10.1038/s41467-024-45424-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Myosin VI is the only molecular motor that moves towards the minus end along actin filaments. Numerous cellular processes require myosin VI and tight regulations of the motor's activity. Defects in myosin VI activity are known to cause genetic diseases such as deafness and cardiomyopathy. However, the molecular mechanisms underlying the activity regulation of myosin VI remain elusive. Here, we determined the high-resolution cryo-electron microscopic structure of myosin VI in its autoinhibited state. Our structure reveals that autoinhibited myosin VI adopts a compact, monomeric conformation via extensive interactions between the head and tail domains, orchestrated by an elongated single-α-helix region resembling a "spine". This autoinhibited structure effectively blocks cargo binding sites and represses the motor's ATPase activity. Certain cargo adaptors such as GIPC can release multiple inhibitory interactions and promote motor activity, pointing to a cargo-mediated activation of the processive motor. Moreover, our structural findings allow rationalization of disease-associated mutations in myosin VI. Beyond the activity regulation mechanisms of myosin VI, our study also sheds lights on how activities of other myosin motors such as myosin VII and X might be regulated.
Collapse
Affiliation(s)
- Fengfeng Niu
- Department of Neuroscience and Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, Guangdong, China
| | - Lingxuan Li
- Department of Neuroscience and Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lei Wang
- Department of Neuroscience and Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jinman Xiao
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, China
| | - Shun Xu
- Department of Neuroscience and Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yong Liu
- Department of Neuroscience and Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Leishu Lin
- Department of Neuroscience and Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Cong Yu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Zhiyi Wei
- Department of Neuroscience and Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, Guangdong, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Yim YI, Pedrosa A, Wu X, Chinthalapudi K, Cheney RE, Hammer JA. Mechanisms underlying Myosin 10's contribution to the maintenance of mitotic spindle bipolarity. Mol Biol Cell 2024; 35:ar14. [PMID: 38019611 PMCID: PMC10881153 DOI: 10.1091/mbc.e23-07-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Myosin 10 (Myo10) couples microtubules and integrin-based adhesions to movement along actin filaments via its microtubule-binding MyTH4 domain and integrin-binding FERM domain, respectively. Here we show that Myo10-depleted HeLa cells and mouse embryo fibroblasts (MEFs) both exhibit a pronounced increase in the frequency of multipolar spindles. Staining of unsynchronized metaphase cells showed that the primary driver of spindle multipolarity in Myo10-depleted MEFs and in Myo10-depleted HeLa cells lacking supernumerary centrosomes is pericentriolar material (PCM) fragmentation, which creates y-tubulin-positive acentriolar foci that serve as extra spindle poles. For HeLa cells possessing supernumerary centrosomes, Myo10 depletion further accentuates spindle multipolarity by impairing the clustering of the extra spindle poles. Complementation experiments show that Myo10 must interact with both microtubules and integrins to promote PCM/pole integrity. Conversely, Myo10 only needs interact with integrins to promote supernumerary centrosome clustering. Importantly, images of metaphase Halo-Myo10 knockin cells show that the myosin localizes exclusively to the spindle and the tips of adhesive retraction fibers. We conclude that Myo10 promotes PCM/pole integrity in part by interacting with spindle microtubules, and that it promotes supernumerary centrosome clustering by supporting retraction fiber-based cell adhesion, which likely serves to anchor the microtubule-based forces driving pole focusing.
Collapse
Affiliation(s)
- Yang-In Yim
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Antonio Pedrosa
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xufeng Wu
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Richard E. Cheney
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599
| | - John A. Hammer
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
7
|
Chen X, Arciola JM, Lee YI, Wong PHP, Yin H, Tao Q, Jin Y, Qin X, Sweeney HL, Park H. Myo10 tail is crucial for promoting long filopodia. J Biol Chem 2024; 300:105523. [PMID: 38043799 PMCID: PMC10790087 DOI: 10.1016/j.jbc.2023.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023] Open
Abstract
Filopodia are slender cellular protrusions containing parallel actin bundles involved in environmental sensing and signaling, cell adhesion and migration, and growth cone guidance and extension. Myosin 10 (Myo10), an unconventional actin-based motor protein, was reported to induce filopodial initiation with its motor domain. However, the roles of the multifunctional tail domain of Myo10 in filopodial formation and elongation remain elusive. Herein, we generated several constructs of Myo10-full-length Myo10, Myo10 with a truncated tail (Myo10 HMM), and Myo10 containing four mutations to disrupt its coiled-coil domain (Myo10 CC mutant). We found that the truncation of the tail domain decreased filopodial formation and filopodial length, while four mutations in the coiled-coil domain disrupted the motion of Myo10 toward filopodial tips and the elongation of filopodia. Furthermore, we found that filopodia elongated through multiple elongation cycles, which was supported by the Myo10 tail. These findings suggest that Myo10 tail is crucial for promoting long filopodia.
Collapse
Affiliation(s)
- Xingxiang Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | | | - Young Il Lee
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, USA
| | - Pak Hung Philip Wong
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Haoran Yin
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Quanqing Tao
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Yuqi Jin
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Xianan Qin
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - H Lee Sweeney
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, USA; Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA.
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China; Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.
| |
Collapse
|
8
|
Canon L, Kikuti C, Planelles-Herrero VJ, Lin T, Mayeux F, Sirkia H, Lee YI, Heidsieck L, Velikovsky L, David A, Liu X, Moussaoui D, Forest E, Höök P, Petersen KJ, Morgan TE, Di Cicco A, Sirés-Campos J, Derivery E, Lévy D, Delevoye C, Sweeney HL, Houdusse A. How myosin VI traps its off-state, is activated and dimerizes. Nat Commun 2023; 14:6732. [PMID: 37872146 PMCID: PMC10593786 DOI: 10.1038/s41467-023-42376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
Myosin VI (Myo6) is the only minus-end directed nanomotor on actin, allowing it to uniquely contribute to numerous cellular functions. As for other nanomotors, the proper functioning of Myo6 relies on precise spatiotemporal control of motor activity via a poorly defined off-state and interactions with partners. Our structural, functional, and cellular studies reveal key features of myosin regulation and indicate that not all partners can activate Myo6. TOM1 and Dab2 cannot bind the off-state, while GIPC1 binds Myo6, releases its auto-inhibition and triggers proximal dimerization. Myo6 partners thus differentially recruit Myo6. We solved a crystal structure of the proximal dimerization domain, and show that its disruption compromises endocytosis in HeLa cells, emphasizing the importance of Myo6 dimerization. Finally, we show that the L926Q deafness mutation disrupts Myo6 auto-inhibition and indirectly impairs proximal dimerization. Our study thus demonstrates the importance of partners in the control of Myo6 auto-inhibition, localization, and activation.
Collapse
Affiliation(s)
- Louise Canon
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | - Carlos Kikuti
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | - Vicente J Planelles-Herrero
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | - Tianming Lin
- Department of Pharmacology & Therapeutics and the Myology Institute, University of Florida College of Medicine, PO Box 100267, Gainesville, Florida, 32610-0267, USA
| | - Franck Mayeux
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | - Helena Sirkia
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | - Young Il Lee
- Department of Pharmacology & Therapeutics and the Myology Institute, University of Florida College of Medicine, PO Box 100267, Gainesville, Florida, 32610-0267, USA
| | - Leila Heidsieck
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | - Léonid Velikovsky
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | - Amandine David
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | - Xiaoyan Liu
- Department of Pharmacology & Therapeutics and the Myology Institute, University of Florida College of Medicine, PO Box 100267, Gainesville, Florida, 32610-0267, USA
| | - Dihia Moussaoui
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | - Emma Forest
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
- École Nationale Supérieure de Chimie de Montpellier, 240 Avenue du Professeur Emile Jeanbrau, 34090, Montpellier, France
| | - Peter Höök
- Department of Pharmacology & Therapeutics and the Myology Institute, University of Florida College of Medicine, PO Box 100267, Gainesville, Florida, 32610-0267, USA
| | - Karl J Petersen
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | | | - Aurélie Di Cicco
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Julia Sirés-Campos
- Structure et Compartimentation Membranaire, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | | | - Daniel Lévy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Cédric Delevoye
- Structure et Compartimentation Membranaire, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | - H Lee Sweeney
- Department of Pharmacology & Therapeutics and the Myology Institute, University of Florida College of Medicine, PO Box 100267, Gainesville, Florida, 32610-0267, USA.
| | - Anne Houdusse
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France.
| |
Collapse
|
9
|
Ostrowska-Podhorodecka Z, Ali A, Norouzi M, Ding I, Abbasi S, Arora PD, Wong THF, Magalhaes M, McCulloch CA. Vimentin-mediated myosin 10 aggregation at tips of cell extensions drives MT1-MMP-dependent collagen degradation in colorectal cancer. FASEB J 2023; 37:e23097. [PMID: 37440280 DOI: 10.1096/fj.202300672r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/09/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Colorectal cancer (CRC) is a high prevalence adenocarcinoma with progressive increases in metastasis-related mortality, but the mechanisms governing the extracellular matrix (ECM) degradation important for metastasis in CRC are not well-defined. We investigated a functional relationship between vimentin (Vim) and myosin 10 (Myo10), and whether this relationship is associated with cancer progression. We tested the hypothesis that Vim regulates the aggregation of Myo10 at the tips of cell extensions, which increases membrane-type 1 matrix metalloproteinase (MT1-MMP)-associated local collagen proteolysis and ECM degradation. Analysis of CRC samples revealed colocalization of Vim with Myo10 and MT1-MMP in cell extensions adjacent to sites of collagen degradation, suggesting an association with local cell invasion. We analyzed cultured CRC cells and fibroblasts and found that Vim accelerates aggregation of Myo10 at cell tips, which increases the cell extension rate. Vim stabilizes the interaction of Myo10 with MT1-MMP, which in turn increases collagenolysis. Vim depletion reduced the aggregation of Myo10 at the cell extension tips and MT1-MMP-dependent collagenolysis. We propose that Vim interacts with Myo10, which in turn associates with MT1-MMP to facilitate the transport of these molecules to the termini of cell extensions and there enhance cancer invasion of soft connective tissues.
Collapse
Affiliation(s)
| | - Aiman Ali
- Oral Pathology and Oral Medicine, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Masoud Norouzi
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Isabel Ding
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Sevil Abbasi
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Pamma D Arora
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Timothy H F Wong
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Marco Magalhaes
- Oral Pathology and Oral Medicine, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Cancer Invasion and Metastasis Laboratory, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Dental and Maxillofacial Sciences Department, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | | |
Collapse
|
10
|
Yim YI, Pedrosa A, Wu X, Chinthalapudi K, Cheney RE, Hammer JA. Myosin 10 uses its MyTH4 and FERM domains differentially to support two aspects of spindle pole biology required for mitotic spindle bipolarity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545002. [PMID: 37398378 PMCID: PMC10312724 DOI: 10.1101/2023.06.15.545002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Myosin 10 (Myo10) has the ability to link actin filaments to integrin-based adhesions and to microtubules by virtue of its integrin-binding FERM domain and microtubule-binding MyTH4 domain, respectively. Here we used Myo10 knockout cells to define Myo10's contribution to the maintenance of spindle bipolarity, and complementation to quantitate the relative contributions of its MyTH4 and FERM domains. Myo10 knockout HeLa cells and mouse embryo fibroblasts (MEFs) both exhibit a pronounced increase in the frequency of multipolar spindles. Staining of unsynchronized metaphase cells showed that the primary driver of spindle multipolarity in knockout MEFs and knockout HeLa cells lacking supernumerary centrosomes is pericentriolar material (PCM) fragmentation, which creates γ-tubulin-positive acentriolar foci that serve as additional spindle poles. For HeLa cells possessing supernumerary centrosomes, Myo10 depletion further accentuates spindle multipolarity by impairing the clustering of the extra spindle poles. Complementation experiments show that Myo10 must interact with both integrins and microtubules to promote PCM/pole integrity. Conversely, Myo10's ability to promote the clustering of supernumerary centrosomes only requires that it interact with integrins. Importantly, images of Halo-Myo10 knock-in cells show that the myosin localizes exclusively within adhesive retraction fibers during mitosis. Based on these and other results, we conclude that Myo10 promotes PCM/pole integrity at a distance, and that it facilitates supernumerary centrosome clustering by promoting retraction fiber-based cell adhesion, which likely provides an anchor for the microtubule-based forces driving pole focusing.
Collapse
Affiliation(s)
- Yang-In Yim
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Antonio Pedrosa
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Xufeng Wu
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH
| | - Richard E. Cheney
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC
| | - John A. Hammer
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
11
|
Niu F, Liu Y, Sun K, Xu S, Dong J, Yu C, Yan K, Wei Z. Autoinhibition and activation mechanisms revealed by the triangular-shaped structure of myosin Va. SCIENCE ADVANCES 2022; 8:eadd4187. [PMID: 36490350 PMCID: PMC9733927 DOI: 10.1126/sciadv.add4187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
As the prototype of unconventional myosin motor family, myosin Va (MyoVa) transport cellular cargos along actin filaments in diverse cellular processes. The off-duty MyoVa adopts a closed and autoinhibited state, which can be relieved by cargo binding. The molecular mechanisms governing the autoinhibition and activation of MyoVa remain unclear. Here, we report the cryo-electron microscopy structure of the two full-length, closed MyoVa heavy chains in complex with 12 calmodulin light chains at 4.78-Å resolution. The MyoVa adopts a triangular structure with multiple intra- and interpolypeptide chain interactions in establishing the closed state with cargo binding and adenosine triphosphatase activity inhibited. Structural, biochemical, and cellular analyses uncover an asymmetric autoinhibition mechanism, in which the cargo-binding sites in the two MyoVa heavy chains are differently protected. Thus, specific and efficient MyoVa activation requires coincident binding of multiple cargo adaptors, revealing an intricate and elegant activity regulation of the motor in response to cargos.
Collapse
Affiliation(s)
- Fengfeng Niu
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yong Liu
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- SUSTech-HIT Joint PhD Program, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Kang Sun
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shun Xu
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiayuan Dong
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Cong Yu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, China
| | - Kaige Yan
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhiyi Wei
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Kim SJ, Sun EG, Bae JA, Park S, Hong C, Park Z, Kim H, Kim KK. A peptide interfering with the dimerization of oncogenic KITENIN protein and its stability suppresses colorectal tumour progression. Clin Transl Med 2022; 12:e871. [PMID: 35853101 PMCID: PMC9296036 DOI: 10.1002/ctm2.871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 12/22/2022] Open
Abstract
The stability of a protein, as well as its function and versatility, can be enhanced through oligomerization. KITENIN (KAI1 C-terminal interacting tetraspanin) is known to promote the malignant progression of colorectal cancer (CRC). How KITENIN maintains its structural integrity and stability are largely unknown, however. Here we investigated the mechanisms regulating the stability of KITENIN with the aim of developing therapeutics blocking its oncogenic functions. We found that KITENIN formed a homo-oligomeric complex and that the intracellular C-terminal domain (KITENIN-CTD) was needed for this oligomerization. Expression of the KITENIN-CTD alone interfered with the formation of the KITENIN homodimer, and the amino acid sequence from 463 to 471 within the KITENIN-CTD was the most effective. This sequence coupled with a cell-penetrating peptide was named a KITENIN dimerization-interfering peptide (KDIP). We next studied the mechanisms by which KDIP affected the stability of KITENIN. The KITENIN-interacting protein myosin-X (Myo10), which has oncogenic activity in several cancers, functioned as an effector to stabilize the KITENIN homodimer in the cis formation. Treatment with KDIP resulted in the disintegration of the homodimer via downregulation of Myo10, which led to increased binding of RACK1 to the exposed RACK1-interacting motif (463-471 aa), and subsequent autophagy-dependent degradation of KITENIN and reduced CRC cell invasion. Intravenous injection of KDIP significantly reduced the tumour burden in a syngeneic mouse tumour model and colorectal liver metastasis in an intrasplenic hepatic metastasis model. Collectively, our present results provide a new cancer therapeutic peptide for blocking colorectal liver metastasis, which acts by inducing the downregulation of Myo10 and specifically targeting the stability of the oncogenic KITENIN protein.
Collapse
Affiliation(s)
- Sung Jin Kim
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
- College of PharmacySunchon National UniversitySuncheonRepublic of Korea
| | - Eun Gene Sun
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
| | - Jeong A Bae
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
| | - Sehoon Park
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Chang‐Soo Hong
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
| | - Zee‐Yong Park
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Hangun Kim
- College of PharmacySunchon National UniversitySuncheonRepublic of Korea
| | - Kyung Keun Kim
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
| |
Collapse
|
13
|
Sato O, Sakai T, Choo YY, Ikebe R, Watanabe TM, Ikebe M. Mitochondria-associated myosin 19 processively transports mitochondria on actin tracks in living cells. J Biol Chem 2022; 298:101883. [PMID: 35367209 PMCID: PMC9065997 DOI: 10.1016/j.jbc.2022.101883] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are fundamentally important in cell function, and their malfunction can cause the development of cancer, cardiovascular disease, and neuronal disorders. Myosin 19 (Myo19) shows discrete localization with mitochondria and is thought to play an important role in mitochondrial dynamics and function; however, the function of Myo19 in mitochondrial dynamics at the cellular and molecular levels is poorly understood. Critical missing information is whether Myo19 is a processive motor that is suitable for transportation of mitochondria. Here, we show for the first time that single Myo19 molecules processively move on actin filaments and can transport mitochondria in cells. We demonstrate that Myo19 dimers having a leucine zipper processively moved on cellular actin tracks in demembraned cells with a velocity of 50 to 60 nm/s and a run length of ∼0.4 μm, similar to the movement of isolated mitochondria from Myo19 dimer-transfected cells on actin tracks, suggesting that the Myo19 dimer can transport mitochondria. Furthermore, we show single molecules of Myo19 dimers processively moved on single actin filaments with a large step size of ∼34 nm. Importantly, WT Myo19 single molecules without the leucine zipper processively move in filopodia in living cells similar to Myo19 dimers, whereas deletion of the tail domain abolished such active movement. These results suggest that Myo19 can processively move on actin filaments when two Myo19 monomers form a dimer, presumably as a result of tail-tail association. In conclusion, Myo19 molecules can directly transport mitochondria on actin tracks within living cells.
Collapse
Affiliation(s)
- Osamu Sato
- Department of Cellular and Molecular Biology, University of Texas at Tyler Health Science Center, Tyler, Texas, USA
| | - Tsuyoshi Sakai
- Department of Cellular and Molecular Biology, University of Texas at Tyler Health Science Center, Tyler, Texas, USA
| | - Young-Yeon Choo
- Department of Cellular and Molecular Biology, University of Texas at Tyler Health Science Center, Tyler, Texas, USA
| | - Reiko Ikebe
- Department of Cellular and Molecular Biology, University of Texas at Tyler Health Science Center, Tyler, Texas, USA
| | - Tomonobu M Watanabe
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, University of Texas at Tyler Health Science Center, Tyler, Texas, USA.
| |
Collapse
|
14
|
Hammers DW, Hart CC, Matheny MK, Heimsath EG, Lee YI, Hammer JA, Cheney RE, Sweeney HL. Filopodia powered by class x myosin promote fusion of mammalian myoblasts. eLife 2021; 10:e72419. [PMID: 34519272 PMCID: PMC8500716 DOI: 10.7554/elife.72419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscle fibers are multinucleated cellular giants formed by the fusion of mononuclear myoblasts. Several molecules involved in myoblast fusion have been discovered, and finger-like projections coincident with myoblast fusion have also been implicated in the fusion process. The role of these cellular projections in muscle cell fusion was investigated herein. We demonstrate that these projections are filopodia generated by class X myosin (Myo10), an unconventional myosin motor protein specialized for filopodia. We further show that Myo10 is highly expressed by differentiating myoblasts, and Myo10 ablation inhibits both filopodia formation and myoblast fusion in vitro. In vivo, Myo10 labels regenerating muscle fibers associated with Duchenne muscular dystrophy and acute muscle injury. In mice, conditional loss of Myo10 from muscle-resident stem cells, known as satellite cells, severely impairs postnatal muscle regeneration. Furthermore, the muscle fusion proteins Myomaker and Myomixer are detected in myoblast filopodia. These data demonstrate that Myo10-driven filopodia facilitate multinucleated mammalian muscle formation.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Fusion
- Cell Line
- Cell Proliferation
- Disease Models, Animal
- Humans
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mice, Knockout
- Muscle Development
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Myoblasts, Skeletal/metabolism
- Myoblasts, Skeletal/pathology
- Myosins/genetics
- Myosins/metabolism
- Pseudopodia/genetics
- Pseudopodia/metabolism
- Regeneration
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/pathology
- Time Factors
- Mice
Collapse
Affiliation(s)
- David W Hammers
- Department of Pharmacology & Therapeutics, University of Florida College of MedicineGainesvilleUnited States
- University of Florida Myology InstituteGainesvilleUnited States
| | - Cora C Hart
- Department of Pharmacology & Therapeutics, University of Florida College of MedicineGainesvilleUnited States
- University of Florida Myology InstituteGainesvilleUnited States
| | - Michael K Matheny
- Department of Pharmacology & Therapeutics, University of Florida College of MedicineGainesvilleUnited States
- University of Florida Myology InstituteGainesvilleUnited States
| | - Ernest G Heimsath
- Department of Cell Biology & Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of MedicineChapel HillUnited States
| | - Young il Lee
- Department of Pharmacology & Therapeutics, University of Florida College of MedicineGainesvilleUnited States
- University of Florida Myology InstituteGainesvilleUnited States
| | - John A Hammer
- Cell Biology and Physiology Center, National Heart, Lung and Blood InstituteBethesdaUnited States
| | - Richard E Cheney
- Department of Cell Biology & Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of MedicineChapel HillUnited States
| | - H Lee Sweeney
- Department of Pharmacology & Therapeutics, University of Florida College of MedicineGainesvilleUnited States
- University of Florida Myology InstituteGainesvilleUnited States
| |
Collapse
|
15
|
Telek E, Karádi K, Kardos J, Kengyel A, Fekete Z, Halász H, Nyitrai M, Bugyi B, Lukács A. The C-terminal tail extension of myosin 16 acts as a molten globule, including intrinsically disordered regions, and interacts with the N-terminal ankyrin. J Biol Chem 2021; 297:100716. [PMID: 33930467 PMCID: PMC8253979 DOI: 10.1016/j.jbc.2021.100716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 11/20/2022] Open
Abstract
The lesser-known unconventional myosin 16 protein is essential in proper neuronal functioning and has been implicated in cell cycle regulation. Its longer Myo16b isoform contains a C-terminal tail extension (Myo16Tail), which has been shown to play a role in the neuronal phosphoinositide 3-kinase signaling pathway. Myo16Tail mediates the actin cytoskeleton remodeling, downregulates the actin dynamics at the postsynaptic site of dendritic spines, and is involved in the organization of the presynaptic axon terminals. However, the functional and structural features of this C-terminal tail extension are not well known. Here, we report the purification and biophysical characterization of the Myo16Tail by bioinformatics, fluorescence spectroscopy, and CD. Our results revealed that the Myo16Tail is functionally active and interacts with the N-terminal ankyrin domain of myosin 16, suggesting an intramolecular binding between the C and N termini of Myo16 as an autoregulatory mechanism involving backfolding of the motor domain. In addition, the Myo16Tail possesses high structural flexibility and a solvent-exposed hydrophobic core, indicating the largely unstructured, intrinsically disordered nature of this protein region. Some secondary structure elements were also observed, indicating that the Myo16Tail likely adopts a molten globule-like structure. These structural features imply that the Myo16Tail may function as a flexible display site particularly relevant in post-translational modifications, regulatory functions such as backfolding, and phosphoinositide 3-kinase signaling.
Collapse
Affiliation(s)
- Elek Telek
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary; MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Pécs, Hungary
| | - Kristóf Karádi
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary; Szentágothai Research Center, Pécs, Hungary
| | - József Kardos
- Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - András Kengyel
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary; MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Pécs, Hungary; Szentágothai Research Center, Pécs, Hungary
| | - Zsuzsanna Fekete
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| | - Henriett Halász
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary; MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Pécs, Hungary
| | - Miklós Nyitrai
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary; MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Pécs, Hungary; Szentágothai Research Center, Pécs, Hungary
| | - Beáta Bugyi
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary; Szentágothai Research Center, Pécs, Hungary.
| | - András Lukács
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary; MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Pécs, Hungary; Szentágothai Research Center, Pécs, Hungary.
| |
Collapse
|
16
|
Arthur AL, Crawford A, Houdusse A, Titus MA. VASP-mediated actin dynamics activate and recruit a filopodia myosin. eLife 2021; 10:68082. [PMID: 34042588 PMCID: PMC8352590 DOI: 10.7554/elife.68082] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
Filopodia are thin, actin-based structures that cells use to interact with their environments. Filopodia initiation requires a suite of conserved proteins but the mechanism remains poorly understood. The actin polymerase VASP and a MyTH-FERM (MF) myosin, DdMyo7 in amoeba, are essential for filopodia initiation. DdMyo7 is localized to dynamic regions of the actin-rich cortex. Analysis of VASP mutants and treatment of cells with anti-actin drugs shows that myosin recruitment and activation in Dictyostelium requires localized VASP-dependent actin polymerization. Targeting of DdMyo7 to the cortex alone is not sufficient for filopodia initiation; VASP activity is also required. The actin regulator locally produces a cortical actin network that activates myosin and together they shape the actin network to promote extension of parallel bundles of actin during filopodia formation. This work reveals how filopodia initiation requires close collaboration between an actin-binding protein, the state of the actin cytoskeleton and MF myosin activity.
Collapse
Affiliation(s)
- Ashley L Arthur
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Amy Crawford
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Anne Houdusse
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, Paris, France
| | - Margaret A Titus
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| |
Collapse
|
17
|
Abstract
Filopodia, microvilli and stereocilia represent an important group of plasma membrane protrusions. These specialized projections are supported by parallel bundles of actin filaments and have critical roles in sensing the external environment, increasing cell surface area, and acting as mechanosensors. While actin-associated proteins are essential for actin-filament elongation and bundling in these protrusions, myosin motors have a surprising role in the formation and extension of filopodia and stereocilia and in the organization of microvilli. Actin regulators and specific myosins collaborate in controlling the length of these structures. Myosins can transport cargoes along the length of these protrusions, and, in the case of stereocilia and microvilli, interactions with adaptors and cargoes can also serve to anchor adhesion receptors to the actin-rich core via functionally conserved motor-adaptor complexes. This review highlights recent progress in understanding the diverse roles myosins play in filopodia, microvilli and stereocilia.
Collapse
Affiliation(s)
- Anne Houdusse
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75005 Paris, France.
| | - Margaret A Titus
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
18
|
Spectrum of MYO7A Mutations in an Indigenous South African Population Further Elucidates the Nonsyndromic Autosomal Recessive Phenotype of DFNB2 to Include Both Homozygous and Compound Heterozygous Mutations. Genes (Basel) 2021; 12:genes12020274. [PMID: 33671976 PMCID: PMC7919343 DOI: 10.3390/genes12020274] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022] Open
Abstract
MYO7A gene encodes unconventional myosin VIIA, which, when mutated, causes a phenotypic spectrum ranging from recessive hearing loss DFNB2 to deaf-blindness, Usher Type 1B (USH1B). MYO7A mutations are reported in nine DFNB2 families to date, none from sub-Saharan Africa.In DNA, from a cohort of 94 individuals representing 92 families from the Limpopo province of South Africa, eight MYO7A variations were detected among 10 individuals. Family studies identified homozygous and compound heterozygous mutations in 17 individuals out of 32 available family members. Four mutations were novel, p.Gly329Asp, p.Arg373His, p.Tyr1780Ser, and p.Pro2126Leufs*5. Two variations, p.Ser617Pro and p.Thr381Met, previously listed as of uncertain significance (ClinVar), were confirmed to be pathogenic. The identified mutations are predicted to interfere with the conformational properties of myosin VIIA through interruption or abrogation of multiple interactions between the mutant and neighbouring residues. Specifically, p.Pro2126Leufs*5, is predicted to abolish the critical site for the interactions between the tail and the motor domain essential for the autoregulation, leaving a non-functional, unregulated protein that causes hearing loss. We have identified MYO7A as a possible key deafness gene among indigenous sub-Saharan Africans. The spectrum of MYO7A mutations in this South African population points to DFNB2 as a specific entity that may occur in a homozygous or in a compound heterozygous state.
Collapse
|
19
|
Myosin X Interaction with KIF13B, a Crucial Pathway for Netrin-1-Induced Axonal Development. J Neurosci 2020; 40:9169-9185. [PMID: 33097641 PMCID: PMC7687062 DOI: 10.1523/jneurosci.0929-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/04/2020] [Accepted: 10/17/2020] [Indexed: 11/21/2022] Open
Abstract
Myosin X (Myo X) transports cargos to the tips of filopodia for cell adhesion, migration, and neuronal axon guidance. Deleted in Colorectal Cancer (DCC) is one of the Myo X cargos that is essential for Netrin-1-regulated axon pathfinding. The function of Myo X in axon development in vivo and the underlying mechanisms remain elusive. Here, we provide evidence for the role of Myo X in Netrin-1-DCC-regulated axon development in developing mouse neocortex. The knockout (KO) or knockdown (KD) of Myo X in cortical neurons of embryonic mouse brain impairs axon initiation and contralateral branching/targeting. Similar axon deficits are detected in Netrin-1-KO or DCC-KD cortical neurons. Further proteomic analysis of Myo X binding proteins identifies KIF13B (a kinesin family motor protein). The Myo X interaction with KIF13B is induced by Netrin-1. Netrin-1 promotes anterograde transportation of Myo X into axons in a KIF13B-dependent manner. KIF13B-KD cortical neurons exhibit similar axon deficits. Together, these results reveal Myo X-KIF13B as a critical pathway for Netrin-1-promoted axon initiation and branching/targeting. SIGNIFICANCE STATEMENT Netrin-1 increases Myosin X (Myo X) interaction with KIF13B, and thus promotes axonal delivery of Myo X and axon initiation and contralateral branching in developing cerebral neurons, revealing unrecognized functions and mechanisms underlying Netrin-1 regulation of axon development.
Collapse
|
20
|
Myosin XVI in the Nervous System. Cells 2020; 9:cells9081903. [PMID: 32824179 PMCID: PMC7464383 DOI: 10.3390/cells9081903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
The myosin family is a large inventory of actin-associated motor proteins that participate in a diverse array of cellular functions. Several myosin classes are expressed in neural cells and play important roles in neural functioning. A recently discovered member of the myosin superfamily, the vertebrate-specific myosin XVI (Myo16) class is expressed predominantly in neural tissues and appears to be involved in the development and proper functioning of the nervous system. Accordingly, the alterations of MYO16 has been linked to neurological disorders. Although the role of Myo16 as a generic actin-associated motor is still enigmatic, the N-, and C-terminal extensions that flank the motor domain seem to confer unique structural features and versatile interactions to the protein. Recent biochemical and physiological examinations portray Myo16 as a signal transduction element that integrates cell signaling pathways to actin cytoskeleton reorganization. This review discusses the current knowledge of the structure-function relation of Myo16. In light of its prevalent localization, the emphasis is laid on the neural aspects.
Collapse
|
21
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
22
|
Abstract
Recently an artificial protein named Pizza6 was reported, which possesses six identical tandem repeats and adopts a monomeric β -propeller fold with sixfold structural symmetry. Pizza2, a truncated form that consists of a double tandem repeat, self-assembles into a trimer reconstructing the same propeller architecture as Pizza6. The ability of pizza proteins to self-assemble to form complete propellers makes them interesting building blocks to engineer larger symmetrical protein complexes such as symmetric nanoparticles. Here we have explored the self-assembly of Pizza2 fused to homo-oligomerizing peptides. In total, we engineered five different fusion proteins, of which three appeared to assemble successfully into larger complexes. Further characterization of these proteins showed one monodisperse designer protein with a structure close to the intended design. This protein was further fused to eGFP to investigate functionalization of the nanoparticle. The fusion protein was stable and could be expressed in high yield, showing that Pizza-based nanoparticles may be further decorated with functional domains.
Collapse
|
23
|
He JH, Chen JG, Zhang B, Chen J, You KL, Hu JM, Xu JW, Chen L. Elevated MYO10 Predicts Poor Prognosis and its Deletion Hampers Proliferation and Migration Potentials of Cells Through Rewiring PI3K/Akt Signaling in Cervical Cancer. Technol Cancer Res Treat 2020; 19:1533033820936773. [PMID: 32618228 PMCID: PMC7336823 DOI: 10.1177/1533033820936773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MYO10, recognized as an important regulator of cytoskeleton remodeling, has been
reported to be associated with tumorigenesis. However, its functional
implication in cervical cancer and potential mechanism still remain to be
undetermined currently. MYO10 level in cervical cancer tissues was analyzed by
using data retrieved from The Cancer Genome Atlas and ONCOMINE databases.
Messenger RNA and protein expression levels were determined by quantitative
real-time polymerase chain reaction and Western blotting. Small-interfering RNA
and overexpressing plasmid were used for MYO10 silencing and overexpression, and
cell proliferation was analyzed by CCK-8. Transwell assays were performed to
investigate the ability of cell migration and invasion. MYO10 was upregulated in
cervical cancer tissues and cells when compared to normal controls, and survival
analysis showed patients with high MYO10 expression had worse overall survival.
Moreover, knockdown/overexpression of MYO10 significantly inhibited/enhanced the
proliferation, invasion, and migration capabilities of cervical cells
transfected with siRNAs/overexpressing plasmid. Additionally, MYO10 silencing
inhibited PI3K/Akt signaling pathway by decreasing the phosphorylation status of
PI3K and AKT. Data from the present study indicated that MYO10 were
overexpressed in patients with cervical cancer and positively linked with poor
prognosis. Experimental results suggested that MYO10 induced a significant
encouraging effect in cervical cancer cell proliferation, invasion, and
migration, linked with involvement of PI3K/Akt signaling. Collectively, these
results emphasize a novel role for MYO10 overexpression in cervical cancer and
provide a potent therapeutic strategy against cervical cancer.
Collapse
Affiliation(s)
- Jian-Hui He
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jian-Guo Chen
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Bin Zhang
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jing Chen
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ke-Li You
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jie-Mei Hu
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jia-Wen Xu
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Le Chen
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
|
25
|
Trivedi DV, Nag S, Spudich A, Ruppel KM, Spudich JA. The Myosin Family of Mechanoenzymes: From Mechanisms to Therapeutic Approaches. Annu Rev Biochem 2020; 89:667-693. [PMID: 32169021 DOI: 10.1146/annurev-biochem-011520-105234] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Myosins are among the most fascinating enzymes in biology. As extremely allosteric chemomechanical molecular machines, myosins are involved in myriad pivotal cellular functions and are frequently sites of mutations leading to disease phenotypes. Human β-cardiac myosin has proved to be an excellent target for small-molecule therapeutics for heart muscle diseases, and, as we describe here, other myosin family members are likely to be potentially unique targets for treating other diseases as well. The first part of this review focuses on how myosins convert the chemical energy of ATP hydrolysis into mechanical movement, followed by a description of existing therapeutic approaches to target human β-cardiac myosin. The next section focuses on the possibility of targeting nonmuscle members of the human myosin family for several diseases. We end the review by describing the roles of myosin in parasites and the therapeutic potential of targeting them to block parasitic invasion of their hosts.
Collapse
Affiliation(s)
- Darshan V Trivedi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA; , , .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Suman Nag
- MyoKardia Inc., Brisbane, California 94005, USA;
| | - Annamma Spudich
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560-097, India;
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA; , , .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA; , , .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
26
|
Qin X, Yoo H, Man Cheng HC, Nguyen QQ, Li J, Liu X, Prunetti L, Chen X, Liu T, Sweeney HL, Park H. Simultaneous tracking of two motor domains reveals near simultaneous steps and stutter steps of myosin 10 on actin filament bundles. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30305-3. [PMID: 32081426 PMCID: PMC7429334 DOI: 10.1016/j.bbrc.2020.02.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 11/30/2022]
Abstract
Myosin X (Myo10) has several unique design features including dimerization via an anti-parallel coiled coil and a long lever arm, which allow it to preferentially move on actin bundles. To understand the stepping behavior of single Myo10 on actin bundles, we labeled two heads of Myo10 dimers with different fluorophores. Unlike previously described for myosin V (Myo5) and VI (Myo6), which display alternating hand-over-hand stepping, Myo10 frequently took near simultaneous steps of both heads, and less frequently, 2-3 steps of one head before the other head stepped. We suggest that this behavior results from the unusual kinetic features of Myo10, in conjunction with the structural properties of the motor domain/lever arm, which will favor movement on actin bundles rather than on single filaments.
Collapse
Affiliation(s)
- Xianan Qin
- Department of Physics, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
| | - Hanna Yoo
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
| | - Harry Chun Man Cheng
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
| | - Quang Quan Nguyen
- Department of Physics, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
| | - Jing Li
- Department of Physics, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
| | - Xiaoyan Liu
- Department of Pharmacology and Therapeutics and the Myology Institute, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Laurence Prunetti
- Department of Pharmacology and Therapeutics and the Myology Institute, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Xingxiang Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
| | - Teng Liu
- Department of Physics, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
| | - H Lee Sweeney
- Department of Pharmacology and Therapeutics and the Myology Institute, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| | - Hyokeun Park
- Department of Physics, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong; Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong.
| |
Collapse
|
27
|
Abstract
Myosin XVI (Myo16), a vertebrate-specific motor protein, is a recently discovered member of the myosin superfamily. The detailed functionality regarding myosin XVI requires elucidating or clarification; however, it appears to portray an important role in neural development and in the proper functioning of the nervous system. It is expressed in the largest amount in neural tissues in the late embryonic-early postnatal period, specifically the time in which neuronal cell migration and dendritic elaboration coincide. The impaired expression of myosin XVI has been found lurking in the background of several neuropsychiatric disorders including autism, schizophrenia and/or bipolar disorders.Two principal isoforms of class XVI myosins have been thus far described: Myo16a, the tailless cytoplasmic isoform and Myo16b, the full-length molecule featuring both cytoplasmic and nuclear localization. Both isoforms contain a class-specific N-terminal ankyrin repeat domain that binds to the protein phosphatase catalytic subunit. Myo16b, the predominant isoform, exhibits a diverse function. In the cytoplasm, it participates in the reorganization of the actin cytoskeleton through activation of the PI3K pathway and the WAVE-complex, while in the nucleus it may possess a role in cell cycle regulation. Based on the sequence, myosin XVI may have a compromised ATPase activity, implying a potential stationary role.
Collapse
Affiliation(s)
- Beáta Bugyi
- Department of Biophysics, University of Pécs, Medical School, Pécs, Hungary
| | - András Kengyel
- Department of Biophysics, University of Pécs, Medical School, Pécs, Hungary.
| |
Collapse
|
28
|
|
29
|
Unconventional Myosins: How Regulation Meets Function. Int J Mol Sci 2019; 21:ijms21010067. [PMID: 31861842 PMCID: PMC6981383 DOI: 10.3390/ijms21010067] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 01/24/2023] Open
Abstract
Unconventional myosins are multi-potent molecular motors that are assigned important roles in fundamental cellular processes. Depending on their mechano-enzymatic properties and structural features, myosins fulfil their roles by acting as cargo transporters along the actin cytoskeleton, molecular anchors or tension sensors. In order to perform such a wide range of roles and modes of action, myosins need to be under tight regulation in time and space. This is achieved at multiple levels through diverse regulatory mechanisms: the alternative splicing of various isoforms, the interaction with their binding partners, their phosphorylation, their applied load and the composition of their local environment, such as ions and lipids. This review summarizes our current knowledge of how unconventional myosins are regulated, how these regulatory mechanisms can adapt to the specific features of a myosin and how they can converge with each other in order to ensure the required tight control of their function.
Collapse
|
30
|
Robert-Paganin J, Pylypenko O, Kikuti C, Sweeney HL, Houdusse A. Force Generation by Myosin Motors: A Structural Perspective. Chem Rev 2019; 120:5-35. [PMID: 31689091 DOI: 10.1021/acs.chemrev.9b00264] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Generating force and movement is essential for the functions of cells and organisms. A variety of molecular motors that can move on tracks within cells have evolved to serve this role. How these motors interact with their tracks and how that, in turn, leads to the generation of force and movement is key to understanding the cellular roles that these motor-track systems serve. This review is focused on the best understood of these systems, which is the molecular motor myosin that moves on tracks of filamentous (F-) actin. The review highlights both the progress and the limits of our current understanding of how force generation can be controlled by F-actin-myosin interactions. What has emerged are insights they may serve as a framework for understanding the design principles of a number of types of molecular motors and their interactions with their tracks.
Collapse
Affiliation(s)
- Julien Robert-Paganin
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| | - Olena Pylypenko
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| | - Carlos Kikuti
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| | - H Lee Sweeney
- Department of Pharmacology & Therapeutics and the Myology Institute , University of Florida College of Medicine , PO Box 100267, Gainesville , Florida 32610-0267 , United States
| | - Anne Houdusse
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| |
Collapse
|
31
|
Optimized filopodia formation requires myosin tail domain cooperation. Proc Natl Acad Sci U S A 2019; 116:22196-22204. [PMID: 31611382 DOI: 10.1073/pnas.1901527116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Filopodia are actin-filled protrusions employed by cells to interact with their environment. Filopodia formation in Amoebozoa and Metazoa requires the phylogenetically diverse MyTH4-FERM (MF) myosins DdMyo7 and Myo10, respectively. While Myo10 is known to form antiparallel dimers, DdMyo7 lacks a coiled-coil domain in its proximal tail region, raising the question of how such divergent motors perform the same function. Here, it is shown that the DdMyo7 lever arm plays a role in both autoinhibition and function while the proximal tail region can mediate weak dimerization, and is proposed to be working in cooperation with the C-terminal MF domain to promote partner-mediated dimerization. Additionally, a forced dimer of the DdMyo7 motor is found to weakly rescue filopodia formation, further highlighting the importance of the C-terminal MF domain. Thus, weak dimerization activity of the DdMyo7 proximal tail allows for sensitive regulation of myosin activity to prevent inappropriate activation of filopodia formation. The results reveal that the principles of MF myosin-based filopodia formation are conserved via divergent mechanisms for dimerization.
Collapse
|
32
|
Kwon E, Pathak D, Kim HU, Dahal P, Ha SC, Lee SS, Jeong H, Jeoung D, Chang HW, Jung HS, Kim DY. Structural insights into stressosome assembly. IUCRJ 2019; 6:938-947. [PMID: 31576226 PMCID: PMC6760441 DOI: 10.1107/s205225251900945x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/02/2019] [Indexed: 05/05/2023]
Abstract
The stressosome transduces environmental stress signals to SigB to upregulate SigB-dependent transcription, which is required for bacterial viability. The stressosome core is composed of RsbS and at least one of the RsbR paralogs. A previous cryo-electron microscopy (cryo-EM) structure of the RsbRA-RsbS complex determined under a D2 symmetry restraint showed that the stressosome core forms a pseudo-icosahedron consisting of 60 STAS domains of RsbRA and RsbS. However, it is still unclear how RsbS and one of the RsbR paralogs assemble into the stressosome. Here, an assembly model of the stressosome is presented based on the crystal structure of the RsbS icosahedron and cryo-EM structures of the RsbRA-RsbS complex determined under diverse symmetry restraints (nonsymmetric C1, dihedral D2 and icosahedral I envelopes). 60 monomers of the crystal structure of RsbS fitted well into the I-restrained cryo-EM structure determined at 4.1 Å resolution, even though the STAS domains in the I envelope were averaged. This indicates that RsbS and RsbRA share a highly conserved STAS fold. 22 protrusions observed in the C1 envelope, corresponding to dimers of the RsbRA N-domain, allowed the STAS domains of RsbRA and RsbS to be distinguished in the stressosome core. Based on these, the model of the stressosome core was reconstructed. The mutation of RsbRA residues at the binding interface in the model (R189A/Q191A) significantly reduced the interaction between RsbRA and RsbS. These results suggest that nonconserved residues in the conserved STAS folds between RsbS and RsbR paralogs determine stressosome assembly.
Collapse
Affiliation(s)
- Eunju Kwon
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Deepak Pathak
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Han-ul Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Pawan Dahal
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sung Chul Ha
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seung Sik Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hyeongseop Jeong
- Center for Electron Microscopy Research, Korea Basic Science Institute, Ochang 28119, Republic of Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyeun Wook Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dong Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
33
|
Caporizzo MA, Fishman CE, Sato O, Jamiolkowski RM, Ikebe M, Goldman YE. The Antiparallel Dimerization of Myosin X Imparts Bundle Selectivity for Processive Motility. Biophys J 2019; 114:1400-1410. [PMID: 29590597 DOI: 10.1016/j.bpj.2018.01.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
Myosin X is an unconventional actin-based molecular motor involved in filopodial formation, microtubule-actin filament interaction, and cell migration. Myosin X is an important component of filopodia regulation, localizing to tips of growing filopodia by an unclear targeting mechanism. The native α-helical dimerization domain of myosin X is thought to associate with antiparallel polarity of the two amino acid chains, making myosin X the only myosin that is currently considered to form antiparallel dimers. This study aims to determine if antiparallel dimerization of myosin X imparts selectivity toward actin bundles by comparing the motility of parallel and antiparallel dimers of myosin X on single and fascin-bundled actin filaments. Antiparallel myosin X dimers exhibit selective processivity on fascin-bundled actin and are only weakly processive on single actin filaments below saturating [ATP]. Artificial forced parallel dimers of myosin X are robustly processive on both single and bundled actin, exhibiting no selectivity. To determine the relationship between gating of the reaction steps and observed differences in motility, a mathematical model was developed to correlate the parameters of motility with the biochemical and mechanical kinetics of the dimer. Results from the model, constrained by experimental data, suggest that the probability of binding forward, toward the barbed end of the actin filament, is lower in antiparallel myosin X on single actin filaments compared to fascin-actin bundles and compared to constructs of myosin X with parallel dimerization.
Collapse
Affiliation(s)
- Matthew A Caporizzo
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Claire E Fishman
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Osamu Sato
- Department of Cellular and Molecular Biology, University of Texas Science Center, Tyler, Texas
| | - Ryan M Jamiolkowski
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, University of Texas Science Center, Tyler, Texas
| | - Yale E Goldman
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
34
|
Abstract
Kinesin motor proteins that drive intracellular transport share an overall architecture of two motor domain-containing subunits that dimerize through a coiled-coil stalk. Dimerization allows kinesins to be processive motors, taking many steps along the microtubule track before detaching. However, whether dimerization is required for intracellular transport remains unknown. Here, we address this issue using a combination of in vitro and cellular assays to directly compare dimeric motors across the kinesin-1, -2, and -3 families to their minimal monomeric forms. Surprisingly, we find that monomeric motors are able to work in teams to drive peroxisome dispersion in cells. However, peroxisome transport requires minimal force output, and we find that most monomeric motors are unable to disperse the Golgi complex, a high-load cargo. Strikingly, monomeric versions of the kinesin-2 family motors KIF3A and KIF3B are able to drive Golgi dispersion in cells, and teams of monomeric KIF3B motors can generate over 8 pN of force in an optical trap. We find that intracellular transport and force output by monomeric motors, but not dimeric motors, are significantly decreased by the addition of longer and more flexible motor-to-cargo linkers. Together, these results suggest that dimerization of kinesin motors is not required for intracellular transport; however, it enables motor-to-motor coordination and high force generation regardless of motor-to-cargo distance. Dimerization of kinesin motors is thus critical for cellular events that require an ability to generate or withstand high forces.
Collapse
|
35
|
Bachg AC, Horsthemke M, Skryabin BV, Klasen T, Nagelmann N, Faber C, Woodham E, Machesky LM, Bachg S, Stange R, Jeong HW, Adams RH, Bähler M, Hanley PJ. Phenotypic analysis of Myo10 knockout (Myo10 tm2/tm2) mice lacking full-length (motorized) but not brain-specific headless myosin X. Sci Rep 2019; 9:597. [PMID: 30679680 PMCID: PMC6345916 DOI: 10.1038/s41598-018-37160-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/04/2018] [Indexed: 01/04/2023] Open
Abstract
We investigated the physiological functions of Myo10 (myosin X) using Myo10 reporter knockout (Myo10tm2) mice. Full-length (motorized) Myo10 protein was deleted, but the brain-specific headless (Hdl) isoform (Hdl-Myo10) was still expressed in homozygous mutants. In vitro, we confirmed that Hdl-Myo10 does not induce filopodia, but it strongly localized to the plasma membrane independent of the MyTH4-FERM domain. Filopodia-inducing Myo10 is implicated in axon guidance and mice lacking the Myo10 cargo protein DCC (deleted in colorectal cancer) have severe commissural defects, whereas MRI (magnetic resonance imaging) of isolated brains revealed intact commissures in Myo10tm2/tm2 mice. However, reminiscent of Waardenburg syndrome, a neural crest disorder, Myo10tm2/tm2 mice exhibited pigmentation defects (white belly spots) and simple syndactyly with high penetrance (>95%), and 24% of mutant embryos developed exencephalus, a neural tube closure defect. Furthermore, Myo10tm2/tm2 mice consistently displayed bilateral persistence of the hyaloid vasculature, revealed by MRI and retinal whole-mount preparations. In principle, impaired tissue clearance could contribute to persistence of hyaloid vasculature and syndactyly. However, Myo10-deficient macrophages exhibited no defects in the phagocytosis of apoptotic or IgG-opsonized cells. RNA sequence analysis showed that Myo10 was the most strongly expressed unconventional myosin in retinal vascular endothelial cells and expression levels increased 4-fold between P6 and P15, when vertical sprouting angiogenesis gives rise to deeper layers. Nevertheless, imaging of isolated adult mutant retinas did not reveal vascularization defects. In summary, Myo10 is important for both prenatal (neural tube closure and digit formation) and postnatal development (hyaloid regression, but not retinal vascularization).
Collapse
Affiliation(s)
- Anne C Bachg
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Markus Horsthemke
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Boris V Skryabin
- Department of Medicine, Transgenic Animal and Genetic Engineering Models (TRAM), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Tim Klasen
- Department of Clinical Radiology, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Nina Nagelmann
- Department of Clinical Radiology, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Emma Woodham
- Cancer Research UK Beatson Institute, Glasgow University College of Medical, Veterinary and Life Sciences Garscube Estate, Glasgow, G61 1BD, United Kingdom
| | - Laura M Machesky
- Cancer Research UK Beatson Institute, Glasgow University College of Medical, Veterinary and Life Sciences Garscube Estate, Glasgow, G61 1BD, United Kingdom
| | - Sandra Bachg
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine (IMM), University Hospital Münster, 48149, Münster, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine (IMM), University Hospital Münster, 48149, Münster, Germany
| | - Hyun-Woo Jeong
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, 48149, Münster, Germany
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, 48149, Münster, Germany
| | - Martin Bähler
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Peter J Hanley
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
| |
Collapse
|
36
|
Tokuo H, Bhawan J, Coluccio LM. Myosin X is required for efficient melanoblast migration and melanoma initiation and metastasis. Sci Rep 2018; 8:10449. [PMID: 29993000 PMCID: PMC6041326 DOI: 10.1038/s41598-018-28717-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/15/2018] [Indexed: 12/20/2022] Open
Abstract
Myosin X (Myo10), an actin-associated molecular motor, has a clear role in filopodia induction and cell migration in vitro, but its role in vivo in mammals is not well understood. Here, we investigate the role of Myo10 in melanocyte lineage and melanoma induction. We found that Myo10 knockout (Myo10KO) mice exhibit a white spot on their belly caused by reduced melanoblast migration. Myo10KO mice crossed with available mice that conditionally express in melanocytes the BRAFV600E mutation combined with Pten silencing exhibited reduced melanoma development and metastasis, which extended medial survival time. Knockdown of Myo10 (Myo10kd) in B16F1 mouse melanoma cell lines decreased lung colonization after tail-vein injection. Myo10kd also inhibited long protrusion (LP) formation by reducing the transportation of its cargo molecule vasodilator-stimulated phosphoprotein (VASP) to the leading edge of migrating cells. These findings provide the first genetic evidence for the involvement of Myo10 not only in melanoblast migration, but also in melanoma development and metastasis.
Collapse
Affiliation(s)
- Hiroshi Tokuo
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Jag Bhawan
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Lynne M Coluccio
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
37
|
|
38
|
Abstract
The delivery of intracellular material within cells is crucial for maintaining normal function. Myosins transport a wide variety of cargo, ranging from vesicles to ribonuclear protein particles (RNPs), in plants, fungi, and metazoa. The properties of a given myosin transporter are adapted to move on different actin filament tracks, either on the disordered actin networks at the cell cortex or along highly organized actin bundles to distribute their cargo in a localized manner or move it across long distances in the cell. Transport is controlled by selective recruitment of the myosin to its cargo that also plays a role in activation of the motor.
Collapse
Affiliation(s)
- Margaret A Titus
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
39
|
Interacting-heads motif has been conserved as a mechanism of myosin II inhibition since before the origin of animals. Proc Natl Acad Sci U S A 2018; 115:E1991-E2000. [PMID: 29444861 DOI: 10.1073/pnas.1715247115] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Electron microscope studies have shown that the switched-off state of myosin II in muscle involves intramolecular interaction between the two heads of myosin and between one head and the tail. The interaction, seen in both myosin filaments and isolated molecules, inhibits activity by blocking actin-binding and ATPase sites on myosin. This interacting-heads motif is highly conserved, occurring in invertebrates and vertebrates, in striated, smooth, and nonmuscle myosin IIs, and in myosins regulated by both Ca2+ binding and regulatory light-chain phosphorylation. Our goal was to determine how early this motif arose by studying the structure of inhibited myosin II molecules from primitive animals and from earlier, unicellular species that predate animals. Myosin II from Cnidaria (sea anemones, jellyfish), the most primitive animals with muscles, and Porifera (sponges), the most primitive of all animals (lacking muscle tissue) showed the same interacting-heads structure as myosins from higher animals, confirming the early origin of the motif. The social amoeba Dictyostelium discoideum showed a similar, but modified, version of the motif, while the amoeba Acanthamoeba castellanii and fission yeast (Schizosaccharomyces pombe) showed no head-head interaction, consistent with the different sequences and regulatory mechanisms of these myosins compared with animal myosin IIs. Our results suggest that head-head/head-tail interactions have been conserved, with slight modifications, as a mechanism for regulating myosin II activity from the emergence of the first animals and before. The early origins of these interactions highlight their importance in generating the inhibited (relaxed) state of myosin in muscle and nonmuscle cells.
Collapse
|
40
|
Heimsath EG, Yim YI, Mustapha M, Hammer JA, Cheney RE. Myosin-X knockout is semi-lethal and demonstrates that myosin-X functions in neural tube closure, pigmentation, hyaloid vasculature regression, and filopodia formation. Sci Rep 2017; 7:17354. [PMID: 29229982 PMCID: PMC5725431 DOI: 10.1038/s41598-017-17638-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/28/2017] [Indexed: 01/07/2023] Open
Abstract
Myosin-X (Myo10) is an unconventional myosin best known for its striking localization to the tips of filopodia. Despite the broad expression of Myo10 in vertebrate tissues, its functions at the organismal level remain largely unknown. We report here the generation of KO-first (Myo10tm1a/tm1a), floxed (Myo10tm1c/tm1c), and KO mice (Myo10tm1d/tm1d). Complete knockout of Myo10 is semi-lethal, with over half of homozygous KO embryos exhibiting exencephaly, a severe defect in neural tube closure. All Myo10 KO mice that survive birth exhibit a white belly spot, all have persistent fetal vasculature in the eye, and ~50% have webbed digits. Myo10 KO mice that survive birth can breed and produce litters of KO embryos, demonstrating that Myo10 is not absolutely essential for mitosis, meiosis, adult survival, or fertility. KO-first mice and an independent spontaneous deletion (Myo10m1J/m1J) exhibit the same core phenotypes. During retinal angiogenesis, KO mice exhibit a ~50% decrease in endothelial filopodia, demonstrating that Myo10 is required to form normal numbers of filopodia in vivo. The Myo10 mice generated here demonstrate that Myo10 has important functions in mammalian development and provide key tools for defining the functions of Myo10 in vivo.
Collapse
Affiliation(s)
- Ernest G Heimsath
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yang-In Yim
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mirna Mustapha
- Department of Otolaryngology, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - John A Hammer
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard E Cheney
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
41
|
He K, Sakai T, Tsukasaki Y, Watanabe TM, Ikebe M. Myosin X is recruited to nascent focal adhesions at the leading edge and induces multi-cycle filopodial elongation. Sci Rep 2017; 7:13685. [PMID: 29057977 PMCID: PMC5651867 DOI: 10.1038/s41598-017-06147-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/16/2017] [Indexed: 12/16/2022] Open
Abstract
Filopodia protrude from the leading edge of cells and play important roles in cell motility. Here we report the mechanism of myosin X (encoded by Myo10)-induced multi-cycle filopodia extension. We found that actin, Arp2/3, vinculin and integrin-β first accumulated at the cell's leading edge. Myosin X was then gathered at these sites, gradually clustered by lateral movement, and subsequently initiated filopodia formation. During filopodia extension, we found the translocation of Arp2/3 and integrin-β along filopodia. Arp2/3 and integrin-β then became localized at the tip of filopodia, from where myosin X initiated the second extension of filopodia with a change in extension direction, thus producing long filopodia. Elimination of integrin-β, Arp2/3 and vinculin by siRNA significantly attenuated the myosin-X-induced long filopodia formation. We propose the following mechanism. Myosin X accumulates at nascent focal adhesions at the cell's leading edge, where myosin X promotes actin convergence to create the base of filopodia. Then myosin X moves to the filopodia tip and attracts integrin-β and Arp2/3 for further actin nucleation. The tip-located myosin X then initiates the second cycle of filopodia elongation to produce the long filopodia.
Collapse
Affiliation(s)
- Kangmin He
- Institute of Vascular Medicine, Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.,Graduate School of Frontier Biosciences, Osaka University, Osaka, 5650871, Japan.,Department of Cell Biology, Harvard Medical School, and Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Tsuyoshi Sakai
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX75708, USA
| | - Yoshikazu Tsukasaki
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX75708, USA.,Laboratory for Comprehensive Bioimaging, RIKEN Quantitative Biology Center (QBiC), Osaka, 5650874, Japan.,Department of Pharmacology, University of Illinois Chicago College of Medicine, Boston Children's Hospital, Chicago, Illinois 60612, USA
| | - Tomonobu M Watanabe
- Graduate School of Frontier Biosciences, Osaka University, Osaka, 5650871, Japan. .,Laboratory for Comprehensive Bioimaging, RIKEN Quantitative Biology Center (QBiC), Osaka, 5650874, Japan. .,World Premier International Research Center Initiative, iFReC, Osaka University, Osaka, 5650871, Japan.
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX75708, USA.
| |
Collapse
|
42
|
Sato O, Komatsu S, Sakai T, Tsukasaki Y, Tanaka R, Mizutani T, Watanabe TM, Ikebe R, Ikebe M. Human myosin VIIa is a very slow processive motor protein on various cellular actin structures. J Biol Chem 2017; 292:10950-10960. [PMID: 28507101 DOI: 10.1074/jbc.m116.765966] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 05/11/2017] [Indexed: 11/06/2022] Open
Abstract
Human myosin VIIa (MYO7A) is an actin-linked motor protein associated with human Usher syndrome (USH) type 1B, which causes human congenital hearing and visual loss. Although it has been thought that the role of human myosin VIIa is critical for USH1 protein tethering with actin and transportation along actin bundles in inner-ear hair cells, myosin VIIa's motor function remains unclear. Here, we studied the motor function of the tail-truncated human myosin VIIa dimer (HM7AΔTail/LZ) at the single-molecule level. We found that the HM7AΔTail/LZ moves processively on single actin filaments with a step size of 35 nm. Dwell-time distribution analysis indicated an average waiting time of 3.4 s, yielding ∼0.3 s-1 for the mechanical turnover rate; hence, the velocity of HM7AΔTail/LZ was extremely slow, at 11 nm·s-1 We also examined HM7AΔTail/LZ movement on various actin structures in demembranated cells. HM7AΔTail/LZ showed unidirectional movement on actin structures at cell edges, such as lamellipodia and filopodia. However, HM7AΔTail/LZ frequently missed steps on actin tracks and exhibited bidirectional movement at stress fibers, which was not observed with tail-truncated myosin Va. These results suggest that the movement of the human myosin VIIa motor protein is more efficient on lamellipodial and filopodial actin tracks than on stress fibers, which are composed of actin filaments with different polarity, and that the actin structures influence the characteristics of cargo transportation by human myosin VIIa. In conclusion, myosin VIIa movement appears to be suitable for translocating USH1 proteins on stereocilia actin bundles in inner-ear hair cells.
Collapse
Affiliation(s)
- Osamu Sato
- From the Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Satoshi Komatsu
- From the Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Tsuyoshi Sakai
- From the Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Yoshikazu Tsukasaki
- From the Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708.,Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - Ryosuke Tanaka
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Takeomi Mizutani
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan, and
| | - Tomonobu M Watanabe
- Laboratory for Comprehensive Bioimaging, RIKEN Quantitative Biology Center, Suita, Osaka 565-0874, Japan
| | - Reiko Ikebe
- From the Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Mitsuo Ikebe
- From the Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708,
| |
Collapse
|
43
|
Activated full-length myosin-X moves processively on filopodia with large steps toward diverse two-dimensional directions. Sci Rep 2017; 7:44237. [PMID: 28287133 PMCID: PMC5346999 DOI: 10.1038/srep44237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/06/2017] [Indexed: 12/25/2022] Open
Abstract
Myosin-X, (Myo 10), is an unconventional myosin that transports the specific cargos to filopodial tips, and is associated with the mechanism underlying filopodia formation and extension. To clarify the innate motor characteristic, we studied the single molecule movement of a full-length myosin-X construct with leucine zipper at the C-terminal end of the tail (M10FullLZ) and the tail-truncated myosin-X without artificial dimerization motif (BAP-M101–979HMM). M10FullLZ localizes at the tip of filopodia like myosin-X full-length (M10Full). M10FullLZ moves on actin filaments in the presence of PI(3,4,5)P3, an activator of myosin-X. Single molecule motility analysis revealed that the step sizes of both M10FullLZ and BAP-M101–979HMM are widely distributed on single actin filaments that is consistent with electron microscopy observation. M10FullLZ moves on filopodial actin bundles of cells with a mean step size (~36 nm), similar to the step size on single actin filaments (~38 nm). Cartesian plot analysis revealed that M10FullLZ meandered on filopodial actin bundles to both x- and y- directions. These results suggest that the lever-arm of full-length myosin-X is flexible enough to processively steps on different actin filaments within the actin bundles of filopodia. This characteristic of myosin-X may facilitate actin filament convergence for filopodia production.
Collapse
|
44
|
Pinkoviezky I, Gov NS. Exclusion and Hierarchy of Time Scales Lead to Spatial Segregation of Molecular Motors in Cellular Protrusions. PHYSICAL REVIEW LETTERS 2017; 118:018102. [PMID: 28106430 DOI: 10.1103/physrevlett.118.018102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Indexed: 06/06/2023]
Abstract
Molecular motors that carry cargo along biopolymer filaments within cells play a crucial role in the functioning of the cell. In particular, these motors are essential for the formation and maintenance of the cellular protrusions that play key roles in motility and specific functionalities, such as the stereocilia in hair cells. Typically, there are several species of motors, carrying different cargos, that share the same track. Furthermore, it was observed that in the mature stereocilia, the different motors occupy well-segregated bands as a function of distance from the tip. We use a totally asymmetric exclusion process model with two- and three-motor species, to study the conditions that give rise to such spatial patterns. We find that the well-segregated bands appear for motors with a strong hierarchy of attachment or detachment rates. This is a striking example of pattern formation in nonequilibrium, low-dimensional systems.
Collapse
Affiliation(s)
- I Pinkoviezky
- Department of Chemical Physics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel
| | - N S Gov
- Department of Chemical Physics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel
| |
Collapse
|
45
|
Masters TA, Kendrick-Jones J, Buss F. Myosins: Domain Organisation, Motor Properties, Physiological Roles and Cellular Functions. Handb Exp Pharmacol 2017; 235:77-122. [PMID: 27757761 DOI: 10.1007/164_2016_29] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myosins are cytoskeletal motor proteins that use energy derived from ATP hydrolysis to generate force and movement along actin filaments. Humans express 38 myosin genes belonging to 12 classes that participate in a diverse range of crucial activities, including muscle contraction, intracellular trafficking, cell division, motility, actin cytoskeletal organisation and cell signalling. Myosin malfunction has been implicated a variety of disorders including deafness, hypertrophic cardiomyopathy, Usher syndrome, Griscelli syndrome and cancer. In this chapter, we will first discuss the key structural and kinetic features that are conserved across the myosin family. Thereafter, we summarise for each member in turn its unique functional and structural adaptations, cellular roles and associated pathologies. Finally, we address the broad therapeutic potential for pharmacological interventions that target myosin family members.
Collapse
Affiliation(s)
- Thomas A Masters
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| | | | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| |
Collapse
|
46
|
MyTH4-FERM myosins have an ancient and conserved role in filopod formation. Proc Natl Acad Sci U S A 2016; 113:E8059-E8068. [PMID: 27911821 DOI: 10.1073/pnas.1615392113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The formation of filopodia in Metazoa and Amoebozoa requires the activity of myosin 10 (Myo10) in mammalian cells and of Dictyostelium unconventional myosin 7 (DdMyo7) in the social amoeba Dictyostelium However, the exact roles of these MyTH4-FERM myosins (myosin tail homology 4-band 4.1, ezrin, radixin, moesin; MF) in the initiation and elongation of filopodia are not well defined and may reflect conserved functions among phylogenetically diverse MF myosins. Phylogenetic analysis of MF myosin domains suggests that a single ancestral MF myosin existed with a structure similar to DdMyo7, which has two MF domains, and that subsequent duplications in the metazoan lineage produced its functional homolog Myo10. The essential functional features of the DdMyo7 myosin were identified using quantitative live-cell imaging to characterize the ability of various mutants to rescue filopod formation in myo7-null cells. The two MF domains were found to function redundantly in filopod formation with the C-terminal FERM domain regulating both the number of filopodia and their elongation velocity. DdMyo7 mutants consisting solely of the motor plus a single MyTH4 domain were found to be capable of rescuing the formation of filopodia, establishing the minimal elements necessary for the function of this myosin. Interestingly, a chimeric myosin with the Myo10 MF domain fused to the DdMyo7 motor also was capable of rescuing filopod formation in the myo7-null mutant, supporting fundamental functional conservation between these two distant myosins. Together, these findings reveal that MF myosins have an ancient and conserved role in filopod formation.
Collapse
|
47
|
Weck ML, Grega-Larson NE, Tyska MJ. MyTH4-FERM myosins in the assembly and maintenance of actin-based protrusions. Curr Opin Cell Biol 2016; 44:68-78. [PMID: 27836411 DOI: 10.1016/j.ceb.2016.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/12/2016] [Indexed: 12/13/2022]
Abstract
Unconventional myosins are actin-based molecular motors that serve a multitude of roles within the cell. One group of myosin motors, the MyTH4-FERM myosins, play an integral part in building and maintaining finger-like protrusions, which allow cells to interact with their external environment. Suggested to act primarily as transporters, these motor proteins enrich adhesion molecules, actin-regulatory proteins and other factors at the tips of filopodia, microvilli, and stereocilia. Below we review data from biophysical, biochemical, and cell biological studies, which implicate these myosins as central players in the assembly, maintenance and function of actin-based protrusions.
Collapse
Affiliation(s)
- Meredith L Weck
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 3154 MRB III, PMB 407935, 465 21st Avenue South, Nashville, TN 37240-7935, United States
| | - Nathan E Grega-Larson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 3154 MRB III, PMB 407935, 465 21st Avenue South, Nashville, TN 37240-7935, United States
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 3154 MRB III, PMB 407935, 465 21st Avenue South, Nashville, TN 37240-7935, United States.
| |
Collapse
|
48
|
The myosin X motor is optimized for movement on actin bundles. Nat Commun 2016; 7:12456. [PMID: 27580874 PMCID: PMC5025751 DOI: 10.1038/ncomms12456] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 07/05/2016] [Indexed: 11/09/2022] Open
Abstract
Myosin X has features not found in other myosins. Its structure must underlie its unique ability to generate filopodia, which are essential for neuritogenesis, wound healing, cancer metastasis and some pathogenic infections. By determining high-resolution structures of key components of this motor, and characterizing the in vitro behaviour of the native dimer, we identify the features that explain the myosin X dimer behaviour. Single-molecule studies demonstrate that a native myosin X dimer moves on actin bundles with higher velocities and takes larger steps than on single actin filaments. The largest steps on actin bundles are larger than previously reported for artificially dimerized myosin X constructs or any other myosin. Our model and kinetic data explain why these large steps and high velocities can only occur on bundled filaments. Thus, myosin X functions as an antiparallel dimer in cells with a unique geometry optimized for movement on actin bundles.
Collapse
|
49
|
Baboolal TG, Mashanov GI, Nenasheva TA, Peckham M, Molloy JE. A Combination of Diffusion and Active Translocation Localizes Myosin 10 to the Filopodial Tip. J Biol Chem 2016; 291:22373-22385. [PMID: 27566544 PMCID: PMC5077179 DOI: 10.1074/jbc.m116.730689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/24/2016] [Indexed: 11/06/2022] Open
Abstract
Myosin 10 is an actin-based molecular motor that localizes to the tips of filopodia in mammalian cells. To understand how it is targeted to this distinct region of the cell, we have used total internal reflection fluorescence microscopy to study the movement of individual full-length and truncated GFP-tagged molecules. Truncation mutants lacking the motor region failed to localize to filopodial tips but still bound transiently at the plasma membrane. Deletion of the single α-helical and anti-parallel coiled-coil forming regions, which lie between the motor and pleckstrin homology domains, reduced the instantaneous velocity of intrafilopodial movement but did not affect the number of substrate adherent filopodia. Deletion of the anti-parallel coiled-coil forming region, but not the EKR-rich region of the single α-helical domain, restored intrafilopodial trafficking, suggesting this region is important in determining myosin 10 motility. We propose a model by which myosin 10 rapidly targets to the filopodial tip via a sequential reduction in dimensionality. Molecules first undergo rapid diffusion within the three-dimensional volume of the cell body. They then exhibit periods of slower two-dimensional diffusion in the plane of the plasma membrane. Finally, they move in a unidimensional, highly directed manner along the polarized actin filament bundle within the filopodium becoming confined to a single point at the tip. Here we have observed directly each phase of the trafficking process using single molecule fluorescence imaging of live cells and have quantified our observations using single particle tracking, autocorrelation analysis, and kymographs.
Collapse
Affiliation(s)
- Thomas G Baboolal
- From the Astbury Centre for Structural Molecular Biology and Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT and
| | - Gregory I Mashanov
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Tatiana A Nenasheva
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Michelle Peckham
- From the Astbury Centre for Structural Molecular Biology and Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT and
| | - Justin E Molloy
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| |
Collapse
|
50
|
Myosin MyTH4-FERM structures highlight important principles of convergent evolution. Proc Natl Acad Sci U S A 2016; 113:E2906-15. [PMID: 27166421 DOI: 10.1073/pnas.1600736113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosins containing MyTH4-FERM (myosin tail homology 4-band 4.1, ezrin, radixin, moesin, or MF) domains in their tails are found in a wide range of phylogenetically divergent organisms, such as humans and the social amoeba Dictyostelium (Dd). Interestingly, evolutionarily distant MF myosins have similar roles in the extension of actin-filled membrane protrusions such as filopodia and bind to microtubules (MT), suggesting that the core functions of these MF myosins have been highly conserved over evolution. The structures of two DdMyo7 signature MF domains have been determined and comparison with mammalian MF structures reveals that characteristic features of MF domains are conserved. However, across millions of years of evolution conserved class-specific insertions are seen to alter the surfaces and the orientation of subdomains with respect to each other, likely resulting in new sites for binding partners. The MyTH4 domains of Myo10 and DdMyo7 bind to MT with micromolar affinity but, surprisingly, their MT binding sites are on opposite surfaces of the MyTH4 domain. The structural analysis in combination with comparison of diverse MF myosin sequences provides evidence that myosin tail domain features can be maintained without strict conservation of motifs. The results illustrate how tuning of existing features can give rise to new structures while preserving the general properties necessary for myosin tails. Thus, tinkering with the MF domain enables it to serve as a multifunctional platform for cooperative recruitment of various partners, allowing common properties such as autoinhibition of the motor and microtubule binding to arise through convergent evolution.
Collapse
|