1
|
Harris SE, Hu Y, Bridges K, Cavazos FF, Martyr JG, Guzmán BB, Murn J, Aleman MM, Dominguez D. Dissecting RNA selectivity mediated by tandem RNA-binding domains. J Biol Chem 2025; 301:108435. [PMID: 40120682 DOI: 10.1016/j.jbc.2025.108435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
RNA-protein interactions are pivotal to proper gene regulation. Many RNA-binding proteins possess multiple RNA-binding domains; however, how these domains interplay to select and regulate RNA targets remains poorly understood. Here, we investigate three multidomain proteins, Musashi-1, Musashi-2, and unkempt, which share a high degree of RNA specificity, a common feature across RNA-binding proteins. We used massively parallel in vitro assays with unprecedented depth with random or naturally derived RNA sequences and find that individual domains within a protein can have differing affinities, specificities, and motif spacing preferences. We conducted large scale competition assays between these proteins and determined how individual protein specificities and affinities influence competitive binding. Integration of binding and regulation in cells with in vitro specificities showed that target selection involves a combination of the protein intrinsic specificities described here, but cellular context is critical to drive these proteins to motifs in specific transcript regions. Finally, evolutionarily conserved RNA regions displayed evidence of binding multiple RBPs in cultured cells, and these RNA regions represent the highest affinity targets. This work emphasizes the importance of in vitro and in cultured cells studies to fully profile RNA-binding proteins and highlights the complex modes of RNA-protein interactions and the contributing factors in target selection.
Collapse
Affiliation(s)
- Sarah E Harris
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yue Hu
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kaitlin Bridges
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Francisco F Cavazos
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Justin G Martyr
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Bryan B Guzmán
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jernej Murn
- Department of Biochemistry, University of California, Riverside, California, USA; Division of Biomedical Sciences, Center for RNA Biology and Medicine, Riverside, California, USA
| | - Maria M Aleman
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Daniel Dominguez
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
2
|
Guo Y, Shang X, Ma L, Cao Y. RNA-Binding Protein-Mediated Alternative Splicing Regulates Abiotic Stress Responses in Plants. Int J Mol Sci 2024; 25:10548. [PMID: 39408875 PMCID: PMC11477454 DOI: 10.3390/ijms251910548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The alternative splicing of pre-mRNA generates distinct mRNA variants from a pre-mRNA, thereby modulating a gene's function. The splicing of pre-mRNA depends on splice sites and regulatory elements in pre-mRNA, as well as the snRNA and proteins that recognize these sequences. Among these, RNA-binding proteins (RBPs) are the primary regulators of pre-mRNA splicing and play a critical role in the regulation of alternative splicing by recognizing the elements in pre-mRNA. However, little is known about the function of RBPs in stress response in plants. Here, we summarized the RBPs involved in the alternative splicing of pre-mRNA and their recognizing elements in pre-mRNA, and the recent advance in the role of RBP-mediated alternative splicing in response to abiotic stresses in plants. This review proposes that the regulation of pre-mRNA alternative splicing by RBPs is an important way for plants to adapt to abiotic stresses, and the regulation of alternative splicing by RBPs is a promising direction for crop breeding.
Collapse
Affiliation(s)
| | | | | | - Ying Cao
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (Y.G.); (X.S.); (L.M.)
| |
Collapse
|
3
|
Elshwekh H, Alhudiri IM, Elzagheid A, Enattah N, Abbassi Y, Abou Assali L, Marino I, Stuani C, Buratti E, Romano M. Assessing the Impact of Novel BRCA1 Exon 11 Variants on Pre-mRNA Splicing. Cells 2024; 13:824. [PMID: 38786046 PMCID: PMC11119505 DOI: 10.3390/cells13100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Our study focused on assessing the effects of three newly identified BRCA1 exon 11 variants (c.1019T>C, c.2363T>G, and c.3192T>C) on breast cancer susceptibility. Using computational predictions and experimental splicing assays, we evaluated their potential as pathogenic mutations. Our in silico analyses suggested that the c.2363T>G and c.3192T>C variants could impact both splicing and protein function, resulting in the V340A and V788G mutations, respectively. We further examined their splicing effects using minigene assays in MCF7 and SKBR3 breast cancer cell lines. Interestingly, we found that the c.2363T>G variant significantly altered splicing patterns in MCF7 cells but not in SKBR3 cells. This finding suggests a potential influence of cellular context on the variant's effects. While attempts to correlate in silico predictions with RNA binding factors were inconclusive, this observation underscores the complexity of splicing regulation. Splicing is governed by various factors, including cellular contexts and protein interactions, making it challenging to predict outcomes accurately. Further research is needed to fully understand the functional consequences of the c.2363T>G variant in breast cancer pathogenesis. Integrating computational predictions with experimental data will provide valuable insights into the role of alternative splicing regulation in different breast cancer types and stages.
Collapse
Affiliation(s)
- Halla Elshwekh
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
- Department of Genetic Engineering, Libyan Biotechnology Research Center, Tripoli P.O. Box 30313, Libya; (I.M.A.); (A.E.); (N.E.)
| | - Inas M. Alhudiri
- Department of Genetic Engineering, Libyan Biotechnology Research Center, Tripoli P.O. Box 30313, Libya; (I.M.A.); (A.E.); (N.E.)
| | - Adam Elzagheid
- Department of Genetic Engineering, Libyan Biotechnology Research Center, Tripoli P.O. Box 30313, Libya; (I.M.A.); (A.E.); (N.E.)
| | - Nabil Enattah
- Department of Genetic Engineering, Libyan Biotechnology Research Center, Tripoli P.O. Box 30313, Libya; (I.M.A.); (A.E.); (N.E.)
| | - Yasmine Abbassi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
| | - Lubna Abou Assali
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
| | - Ilenia Marino
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Cristiana Stuani
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio, 28, 34127 Trieste, Italy
| |
Collapse
|
4
|
McCue K, Burge CB. An interpretable model of pre-mRNA splicing for animal and plant genes. SCIENCE ADVANCES 2024; 10:eadn1547. [PMID: 38718117 PMCID: PMC11078188 DOI: 10.1126/sciadv.adn1547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Pre-mRNA splicing is a fundamental step in gene expression, conserved across eukaryotes, in which the spliceosome recognizes motifs at the 3' and 5' splice sites (SSs), excises introns, and ligates exons. SS recognition and pairing is often influenced by protein splicing factors (SFs) that bind to splicing regulatory elements (SREs). Here, we describe SMsplice, a fully interpretable model of pre-mRNA splicing that combines models of core SS motifs, SREs, and exonic and intronic length preferences. We learn models that predict SS locations with 83 to 86% accuracy in fish, insects, and plants and about 70% in mammals. Learned SRE motifs include both known SF binding motifs and unfamiliar motifs, and both motif classes are supported by genetic analyses. Our comparisons across species highlight similarities between non-mammals, increased reliance on intronic SREs in plant splicing, and a greater reliance on SREs in mammalian splicing.
Collapse
Affiliation(s)
- Kayla McCue
- Computational and Systems Biology PhD Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Christopher B. Burge
- Computational and Systems Biology PhD Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
5
|
Guru SA, Saha P, Chen L, Tulshyan A, Ge ZD, Baily J, Simons L, Stefanowicz A, Bilewska A, Mehta V, Mishra R, Sharma S, Ali A, Krishnan S, Kaushal S. HSF-1 enhances cardioprotective potential of stem cells via exosome biogenesis and their miRNA cargo enrichment. Stem Cell Rev Rep 2023; 19:2038-2051. [PMID: 37261668 DOI: 10.1007/s12015-023-10565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Stem cell therapy provides a hope to no option heart disease patient group. Stem cells work via different mechanisms of which paracrine mechanism is reported to justify most of the effects. Therefore, identifying the control arms for paracrine cocktail production is necessary to tailor stem cell functions in disease contextual manner. In this study, we describe a novel paracrine cocktail regulatory axis, in stem cells, to enhance their cardioprotective abilities. We identified that HSF1 knockout resulted in reduced cardiac regenerative abilities of mesenchymal stem cells (MSCs) while its overexpression had opposite effects. Altered exosome biognesis and their miRNA cargo enrichment were found to be underlying these altered regenerative abilities. Decreased production of exosomes by MSCs accompanied their loss of HSF1 and vice versa. Moreover, the exosomes derived from HSF1 depleted MSCs showed significantly reduced candidate miRNA expression (miR-145, miR-146, 199-3p, 199b and miR-590) compared to those obtained from HSF1 overexpressing MSCs. We further discovered that HSF1 mediates miRNAs' enrichment into exosomes via Y binding protein 1 (YBX1) and showed, by loss and gain of function strategies, that miRNAs' enrichment in mesenchymal stem cell derived exosomes is deregulated with altered YBX1 expression. It was finally demonstrated that absence of YBX1 in MSCs, with normal HSF1 expression, resulted in significant accumulation of candidate miRNAs into the cells. Together, our data shows that HSF1 plays a critical role in determining the regenerative potential of stem cells. HSF1 does that by affecting exosome biogenesis and miRNA cargo sorting via regulation of YBX1 gene expression.
Collapse
Affiliation(s)
- Sameer Ahmad Guru
- Deininger Lab, Versiti, Blood Research Institute, Milwaukee, WI, USA
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Progyaparamita Saha
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Ling Chen
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Antariksh Tulshyan
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Zhi-Dong Ge
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Jeanette Baily
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Lydia Simons
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Artur Stefanowicz
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Agata Bilewska
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Vivek Mehta
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Rachana Mishra
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Sudhish Sharma
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Asif Ali
- David Pincus lab, Molecular Genetics and Cell Biology Committee on Cancer Biology, Chicago University, Chicago, IL, USA
| | - Swetha Krishnan
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Sunjay Kaushal
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA.
| |
Collapse
|
6
|
Feng Z, Ke S, Wang C, Lu S, Xu Y, Yu H, Li Z, Yin B, Li X, Hua Y, Qian B, Bai M, Fu Y, Zhang Y, Wu Y, Ma Y. RNF125 attenuates hepatocellular carcinoma progression by downregulating SRSF1-ERK pathway. Oncogene 2023:10.1038/s41388-023-02710-w. [PMID: 37142680 DOI: 10.1038/s41388-023-02710-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly malignant cancers worldwide. Research into the crucial genes responsible for maintaining the aggressive behaviour of cancer cells is important for the clinical treatment of HCC. The purpose of this study was to determine whether the E3 ubiquitin ligase Ring Finger Protein 125 (RNF125) plays a role in the proliferation and metastasis of HCC. RNF125 expression in human HCC samples and cell lines was investigated using TCGA dataset mining, qRT‒PCR, western blot, and immunohistochemistry assays. In addition, 80 patients with HCC were studied for the clinical value of RNF125. Furthermore, the molecular mechanism by which RNF125 contributes to hepatocellular carcinoma progression was determined with mass spectrometry (MS), coimmunoprecipitation (Co-IP), dual-luciferase reporter assays, and ubiquitin ladder assays. We found that RNF125 was markedly downregulated in HCC tumour tissues, which was associated with a poor prognosis for patients with HCC. Moreover, the overexpression of RNF125 inhibited HCC proliferation and metastasis both in vitro and in vivo, whereas the knockdown of RNF125 exerted antithetical effects. Mechanistically, mass spectrometry analysis revealed a protein interaction between RNF125 and SRSF1, and RNF125 accelerated the proteasome-mediated degradation of SRSF1, which impeded HCC progression by inhibiting the ERK signalling pathway. Furthermore, RNF125 was detected to be the downstream target of miR-103a-3p. In this study, we identified that RNF125 is a tumour suppressor in HCC and inhibits HCC progression by inhibiting the SRSF1/ERK pathway. These findings provide a promising treatment target for HCC.
Collapse
Affiliation(s)
- Zhigang Feng
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- The First Department of General Surgery, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Shanjia Ke
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoqun Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Shounan Lu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Xu
- Department of Hepatopancreatobiliary Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongjun Yu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zihao Li
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Yin
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Li
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongliang Hua
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pediatric Surgery, The Six Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baolin Qian
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Miaoyu Bai
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Fu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingmei Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yaohua Wu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Department of Thyroid Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yong Ma
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
7
|
La T, Chen S, Zhao XH, Zhou S, Xu R, Teng L, Zhang YY, Ye K, Xu L, Guo T, Jamaluddin MF, Feng YC, Tang HJ, Wang Y, Xu Q, Gu Y, Cao H, Liu T, Thorne RF, Shao F, Zhang XD, Jin L. LncRNA LIMp27 Regulates the DNA Damage Response through p27 in p53-Defective Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204599. [PMID: 36638271 PMCID: PMC9982580 DOI: 10.1002/advs.202204599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
P53 inactivation occurs in about 50% of human cancers, where p53-driven p21 activity is devoid and p27 becomes essential for the establishment of the G1/S checkpoint upon DNA damage. Here, this work shows that the E2F1-responsive lncRNA LIMp27 selectively represses p27 expression and contributes to proliferation, tumorigenicity, and treatment resistance in p53-defective colon adenocarcinoma (COAD) cells. LIMp27 competes with p27 mRNA for binding to cytoplasmically localized hnRNA0, which otherwise stabilizes p27 mRNA leading to cell cycle arrest at the G0/G1 phase. In response to DNA damage, LIMp27 is upregulated in both wild-type and p53-mutant COAD cells, whereas cytoplasmic hnRNPA0 is only increased in p53-mutant COAD cells due to translocation from the nucleus. Moreover, high LIMp27 expression is associated with poor survival of p53-mutant but not wild-type p53 COAD patients. These results uncover an lncRNA mechanism that promotes p53-defective cancer pathogenesis and suggest that LIMp27 may constitute a target for the treatment of such cancers.
Collapse
Affiliation(s)
- Ting La
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
- National‐Local Joint Engineering Research Center of Biodiagnosis & BiotherapyThe Second Affiliated HospitalXi'an Jiaotong UniversityXi'anShaanxi710004China
| | - Song Chen
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
- Institute of Medicinal BiotechnologyJiangsu College of NursingHuai'anJiangsu223300China
| | - Xiao Hong Zhao
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Shuai Zhou
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
| | - Ran Xu
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Liu Teng
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
| | - Yuan Yuan Zhang
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Kaihong Ye
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
| | - Liang Xu
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Tao Guo
- Institute of Future AgricultureNorthwest A&F UniversityYanglingShaanxi712100China
| | - Muhammad Fairuz Jamaluddin
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Yu Chen Feng
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Medicine and Public HealthThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Hai Jie Tang
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Yanliang Wang
- Department of NephrologyHenan Provincial Key Laboratory of Kidney Disease and ImmunologyHenan Provincial Clinical Research Center for Kidney DiseaseHenan Provincial People's HospitalZhengzhouHenan450053China
| | - Qin Xu
- Department of NephrologyHenan Provincial Key Laboratory of Kidney Disease and ImmunologyHenan Provincial Clinical Research Center for Kidney DiseaseHenan Provincial People's HospitalZhengzhouHenan450053China
| | - Yue Gu
- Department of NephrologyHenan Provincial Key Laboratory of Kidney Disease and ImmunologyHenan Provincial Clinical Research Center for Kidney DiseaseHenan Provincial People's HospitalZhengzhouHenan450053China
| | - Huixia Cao
- Department of NephrologyHenan Provincial Key Laboratory of Kidney Disease and ImmunologyHenan Provincial Clinical Research Center for Kidney DiseaseHenan Provincial People's HospitalZhengzhouHenan450053China
| | - Tao Liu
- Children's Cancer Institute Australia for Medical ResearchUniversity of New South WalesSydneyNew South Wales2750Australia
| | - Rick F. Thorne
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Feng‐Min Shao
- Department of NephrologyHenan Provincial Key Laboratory of Kidney Disease and ImmunologyHenan Provincial Clinical Research Center for Kidney DiseaseHenan Provincial People's HospitalZhengzhouHenan450053China
| | - Xu Dong Zhang
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South Wales2308Australia
| | - Lei Jin
- Translational Research InstituteHenan Provincial and Zhengzhou City Key laboratory of Non‐coding RNA and Cancer MetabolismHenan International Join Laboratory of Non‐coding RNA and Metabolism in CancerHenan Provincial People's HospitalAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450053China
- Noncoding Cancer Biomarkers and Therapeutics GroupCancer Detection & Therapy Research ProgramHunter Medical Research InstituteCallaghanNew South Wales2305Australia
- School of Medicine and Public HealthThe University of NewcastleCallaghanNew South Wales2308Australia
| |
Collapse
|
8
|
Shi W, Yang J, Chen D, Yin C, Zhang H, Xu X, Pan X, Wang R, Fei L, Li M, Qi L, Bhadauria V, Liu J, Peng YL. The rice blast fungus SR protein 1 regulates alternative splicing with unique mechanisms. PLoS Pathog 2022; 18:e1011036. [PMID: 36480554 PMCID: PMC9767378 DOI: 10.1371/journal.ppat.1011036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/20/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Serine/arginine-rich (SR) proteins are well known as splicing factors in humans, model animals and plants. However, they are largely unknown in regulating pre-mRNA splicing of filamentous fungi. Here we report that the SR protein MoSrp1 enhances and suppresses alternative splicing in a model fungal plant pathogen Magnaporthe oryzae. Deletion of MoSRP1 caused multiple defects, including reduced virulence and thousands of aberrant alternative splicing events in mycelia, most of which were suppressed or enhanced intron splicing. A GUAG consensus bound by MoSrp1 was identified in more than 94% of the intron or/and proximate exons having the aberrant splicing. The dual functions of regulating alternative splicing of MoSrp1 were exemplified in enhancing and suppressing the consensus-mediated efficient splicing of the introns in MoATF1 and MoMTP1, respectively, which both were important for mycelial growth, conidiation, and virulence. Interestingly, MoSrp1 had a conserved sumoylation site that was essential to nuclear localization and enhancing GUAG binding. Further, we showed that MoSrp1 interacted with a splicing factor and two components of the exon-joining complex via its N-terminal RNA recognition domain, which was required to regulate mycelial growth, development and virulence. In contrast, the C-terminus was important only for virulence and stress responses but not for mycelial growth and development. In addition, only orthologues from Pezizomycotina species could completely rescue defects of the deletion mutants. This study reveals that the fungal conserved SR protein Srp1 regulates alternative splicing in a unique manner.
Collapse
Affiliation(s)
- Wei Shi
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jun Yang
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Deng Chen
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Changfa Yin
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Huixia Zhang
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaozhou Xu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiao Pan
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ruijin Wang
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Liwang Fei
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Mengfei Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Linlu Qi
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Vijai Bhadauria
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junfeng Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
9
|
Fan X, Yang Y, Chen C, Wang Z. Pervasive translation of circular RNAs driven by short IRES-like elements. Nat Commun 2022; 13:3751. [PMID: 35768398 PMCID: PMC9242994 DOI: 10.1038/s41467-022-31327-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/09/2022] [Indexed: 12/30/2022] Open
Abstract
Some circular RNAs (circRNAs) were found to be translated through IRES-driven mechanism, however the scope and functions of circRNA translation are unclear because endogenous IRESs are rare. To determine the prevalence and mechanism of circRNA translation, we develop a cell-based system to screen random sequences and identify 97 overrepresented hexamers that drive cap-independent circRNA translation. These IRES-like short elements are significantly enriched in endogenous circRNAs and sufficient to drive circRNA translation. We further identify multiple trans-acting factors that bind these IRES-like elements to initiate translation. Using mass-spectrometry data, hundreds of circRNA-coded peptides are identified, most of which have low abundance due to rapid degradation. As judged by mass-spectrometry, 50% of translatable endogenous circRNAs undergo rolling circle translation, several of which are experimentally validated. Consistently, mutations of the IRES-like element in one circRNA reduce its translation. Collectively, our findings suggest a pervasive translation of circRNAs, providing profound implications in translation control. Unbiased screen of random sequences identified many short IRES-like elements to drive circular RNA translation and hundreds of rolling circle translation events, suggesting a pervasive cap-independent translation in human transcriptome.
Collapse
Affiliation(s)
- Xiaojuan Fan
- Bio-med Big Data Center, CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yun Yang
- Bio-med Big Data Center, CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai, China.,CirCode BioMedicine, Pudong, Shanghai, China
| | - Chuyun Chen
- Bio-med Big Data Center, CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Zefeng Wang
- Bio-med Big Data Center, CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai, China. .,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Kumar J, Lackey L, Waldern JM, Dey A, Mustoe AM, Weeks KM, Mathews DH, Laederach A. Quantitative prediction of variant effects on alternative splicing in MAPT using endogenous pre-messenger RNA structure probing. eLife 2022; 11:73888. [PMID: 35695373 PMCID: PMC9236610 DOI: 10.7554/elife.73888] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Splicing is highly regulated and is modulated by numerous factors. Quantitative predictions for how a mutation will affect precursor mRNA (pre-mRNA) structure and downstream function are particularly challenging. Here, we use a novel chemical probing strategy to visualize endogenous precursor and mature MAPT mRNA structures in cells. We used these data to estimate Boltzmann suboptimal structural ensembles, which were then analyzed to predict consequences of mutations on pre-mRNA structure. Further analysis of recent cryo-EM structures of the spliceosome at different stages of the splicing cycle revealed that the footprint of the Bact complex with pre-mRNA best predicted alternative splicing outcomes for exon 10 inclusion of the alternatively spliced MAPT gene, achieving 74% accuracy. We further developed a β-regression weighting framework that incorporates splice site strength, RNA structure, and exonic/intronic splicing regulatory elements capable of predicting, with 90% accuracy, the effects of 47 known and 6 newly discovered mutations on inclusion of exon 10 of MAPT. This combined experimental and computational framework represents a path forward for accurate prediction of splicing-related disease-causing variants.
Collapse
Affiliation(s)
- Jayashree Kumar
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Lela Lackey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University, Greenwood, United States
| | - Justin M Waldern
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Abhishek Dey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Anthony M Mustoe
- Verna and Marrs McClean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center (THINC), and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - David H Mathews
- Department of Biochemistry & Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, United States
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
11
|
CI-SpliceAI—Improving machine learning predictions of disease causing splicing variants using curated alternative splice sites. PLoS One 2022; 17:e0269159. [PMID: 35657932 PMCID: PMC9165884 DOI: 10.1371/journal.pone.0269159] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background It is estimated that up to 50% of all disease causing variants disrupt splicing. Due to its complexity, our ability to predict which variants disrupt splicing is limited, meaning missed diagnoses for patients. The emergence of machine learning for targeted medicine holds great potential to improve prediction of splice disrupting variants. The recently published SpliceAI algorithm utilises deep neural networks and has been reported to have a greater accuracy than other commonly used methods. Methods and findings The original SpliceAI was trained on splice sites included in primary isoforms combined with novel junctions observed in GTEx data, which might introduce noise and de-correlate the machine learning input with its output. Limiting the data to only validated and manual annotated primary and alternatively spliced GENCODE sites in training may improve predictive abilities. All of these gene isoforms were collapsed (aggregated into one pseudo-isoform) and the SpliceAI architecture was retrained (CI-SpliceAI). Predictive performance on a newly curated dataset of 1,316 functionally validated variants from the literature was compared with the original SpliceAI, alongside MMSplice, MaxEntScan, and SQUIRLS. Both SpliceAI algorithms outperformed the other methods, with the original SpliceAI achieving an accuracy of ∼91%, and CI-SpliceAI showing an improvement at ∼92% overall. Predictive accuracy increased in the majority of curated variants. Conclusions We show that including only manually annotated alternatively spliced sites in training data improves prediction of clinically relevant variants, and highlight avenues for further performance improvements.
Collapse
|
12
|
Zhu L, Li W. Roles of Physicochemical and Structural Properties of RNA-Binding Proteins in Predicting the Activities of Trans-Acting Splicing Factors with Machine Learning. Int J Mol Sci 2022; 23:ijms23084426. [PMID: 35457243 PMCID: PMC9030803 DOI: 10.3390/ijms23084426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Trans-acting splicing factors play a pivotal role in modulating alternative splicing by specifically binding to cis-elements in pre-mRNAs. There are approximately 1500 RNA-binding proteins (RBPs) in the human genome, but the activities of these RBPs in alternative splicing are unknown. Since determining RBP activities through experimental methods is expensive and time consuming, the development of an efficient computational method for predicting the activities of RBPs in alternative splicing from their sequences is of great practical importance. Recently, a machine learning model for predicting the activities of splicing factors was built based on features of single and dual amino acid compositions. Here, we explored the role of physicochemical and structural properties in predicting their activities in alternative splicing using machine learning approaches and found that the prediction performance is significantly improved by including these properties. By combining the minimum redundancy–maximum relevance (mRMR) method and forward feature searching strategy, a promising feature subset with 24 features was obtained to predict the activities of RBPs. The feature subset consists of 16 dual amino acid compositions, 5 physicochemical features, and 3 structural features. The physicochemical and structural properties were as important as the sequence composition features for an accurate prediction of the activities of splicing factors. The hydrophobicity and distribution of coil are suggested to be the key physicochemical and structural features, respectively.
Collapse
Affiliation(s)
| | - Wenjin Li
- Correspondence: ; Tel.: +86-0755-26942336
| |
Collapse
|
13
|
Gao Y, Lin KT, Jiang T, Yang Y, Rahman MA, Gong S, Bai J, Wang L, Sun J, Sheng L, Krainer AR, Hua Y. Systematic characterization of short intronic splicing-regulatory elements in SMN2 pre-mRNA. Nucleic Acids Res 2022; 50:731-749. [PMID: 35018432 PMCID: PMC8789036 DOI: 10.1093/nar/gkab1280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
Intronic splicing enhancers and silencers (ISEs and ISSs) are two groups of splicing-regulatory elements (SREs) that play critical roles in determining splice-site selection, particularly for alternatively spliced introns or exons. SREs are often short motifs; their mutation or dysregulation of their cognate proteins frequently causes aberrant splicing and results in disease. To date, however, knowledge about SRE sequences and how they regulate splicing remains limited. Here, using an SMN2 minigene, we generated a complete pentamer-sequence library that comprises all possible combinations of 5 nucleotides in intron 7, at a fixed site downstream of the 5′ splice site. We systematically analyzed the effects of all 1023 mutant pentamers on exon 7 splicing, in comparison to the wild-type minigene, in HEK293 cells. Our data show that the majority of pentamers significantly affect exon 7 splicing: 584 of them are stimulatory and 230 are inhibitory. To identify actual SREs, we utilized a motif set enrichment analysis (MSEA), from which we identified groups of stimulatory and inhibitory SRE motifs. We experimentally validated several strong SREs in SMN1/2 and other minigene settings. Our results provide a valuable resource for understanding how short RNA sequences regulate splicing. Many novel SREs can be explored further to elucidate their mechanism of action.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.,Institute of Neuroscience, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Kuan-Ting Lin
- Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, NY 11724, USA
| | - Tao Jiang
- Institute of Neuroscience, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Yang Yang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.,Institute of Neuroscience, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Mohammad A Rahman
- Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, NY 11724, USA
| | - Shuaishuai Gong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jialin Bai
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Li Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Junjie Sun
- Institute of Neuroscience, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Lei Sheng
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.,Institute of Neuroscience, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, NY 11724, USA
| | - Yimin Hua
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
14
|
Karakulak T, Moch H, von Mering C, Kahraman A. Probing Isoform Switching Events in Various Cancer Types: Lessons From Pan-Cancer Studies. Front Mol Biosci 2021; 8:726902. [PMID: 34888349 PMCID: PMC8650491 DOI: 10.3389/fmolb.2021.726902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/01/2021] [Indexed: 12/03/2022] Open
Abstract
Alternative splicing is an essential regulatory mechanism for gene expression in mammalian cells contributing to protein, cellular, and species diversity. In cancer, alternative splicing is frequently disturbed, leading to changes in the expression of alternatively spliced protein isoforms. Advances in sequencing technologies and analysis methods led to new insights into the extent and functional impact of disturbed alternative splicing events. In this review, we give a brief overview of the molecular mechanisms driving alternative splicing, highlight the function of alternative splicing in healthy tissues and describe how alternative splicing is disrupted in cancer. We summarize current available computational tools for analyzing differential transcript usage, isoform switching events, and the pathogenic impact of cancer-specific splicing events. Finally, the strategies of three recent pan-cancer studies on isoform switching events are compared. Their methodological similarities and discrepancies are highlighted and lessons learned from the comparison are listed. We hope that our assessment will lead to new and more robust methods for cancer-specific transcript detection and help to produce more accurate functional impact predictions of isoform switching events.
Collapse
Affiliation(s)
- Tülay Karakulak
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- Swiss Informatics Institute, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Swiss Informatics Institute, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Abdullah Kahraman
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- Swiss Informatics Institute, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
15
|
Alternative splicing in plant abiotic stress responses. Biochem Soc Trans 2021; 48:2117-2126. [PMID: 32869832 DOI: 10.1042/bst20200281] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Modifications of the cellular proteome pool upon stress allow plants to tolerate environmental changes. Alternative splicing is the most significant mechanism responsible for the production of multiple protein isoforms from a single gene. The spliceosome, a large ribonucleoprotein complex, together with several associated proteins, controls this pre-mRNA processing, adding an additional level of regulation to gene expression. Deep sequencing of transcriptomes revealed that this co- or post-transcriptional mechanism is highly induced by abiotic stress, and concerns vast numbers of stress-related genes. Confirming the importance of splicing in plant stress adaptation, key players of stress signaling have been shown to encode alternative transcripts, whereas mutants lacking splicing factors or associated components show a modified sensitivity and defective responses to abiotic stress. Here, we examine recent literature on alternative splicing and splicing alterations in response to environmental stresses, focusing on its role in stress adaptation and analyzing the future perspectives and directions for research.
Collapse
|
16
|
Methylation of CALCA and CALCB in Pancreatic Ductal Adenocarcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2088345. [PMID: 34394823 PMCID: PMC8357496 DOI: 10.1155/2021/2088345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/06/2021] [Accepted: 07/09/2021] [Indexed: 12/26/2022]
Abstract
Calcitonin gene-related peptide (CGRP) plays a diverse and intricate role in chronic low-grade inflammation and is closely related to specific cancers. It includes two subtypes, CALCA (αCGRP) and CALCB (βCGRP), of which αCGRP expression accounts for more than 90%. Here, we show that methylation of CALCA and CALCB in pancreatic ductal adenocarcinoma was significantly higher than that in paracancer. Western blot and immunohistochemistry showed that CGRP, p-AKT, and p-CREB in the tumor tissues were lower than those in the paracarcinoma tissues. In vivo, the expressions of p-AKT and p-CREB in the pancreatic tissues of CALCA-KO rats were also lower than those of wild type. Methylation of CALCA and CALCB is increased in pancreatic adenocarcinoma, and under that condition, p-AKT and p-CREB levels were decreased.
Collapse
|
17
|
Liu J, Zhang Q, Ma N. LncRNA GASAL1 Interacts with SRSF1 to Regulate Trophoblast Cell Proliferation, Invasion, and Apoptosis Via the mTOR Signaling Pathway. Cell Transplant 2021; 29:963689720965182. [PMID: 33028104 PMCID: PMC7784605 DOI: 10.1177/0963689720965182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are crucial regulatory molecules involved in diverse biological processes and human diseases, including preeclampsia (PE). The lncRNA growth arrest associated lncRNA 1 (GASAL1) has been implicated in multiple malignant solid tumors and other diseases, while it is poorly known as the potential molecular mechanism of GASAL1 in PE. In this study, GASAL1 was significantly downregulated in the placentas' of tissues from primipara with PE and trophoblast cell lines. Then, the upregulation of GASAL1 dramatically decreased proliferation and invasion and enhanced apoptosis in HTR-8/SVneo and JAR cells. Bioinformatics tool predicated that there is a potential interaction between GASAL1 and serine/arginine splicing factor 1 (SRSF1). RNA pull-down assays showed that GASAL1 directly binds with SRSF1 that could promote cell proliferation and invasion and suppress cell apoptosis. Further research showed that promoting effects of trophoblasts proliferation and invasion caused by co-transfecting GASAL1 and SRSF1 into HTR-8/SVneo and JAR cells were impaired by SRSF1 knockdown. Moreover, inhibition of the mammalian target of rapamycin (mTOR) activity by rapamycin influenced the effects of GASAL1 on cell proliferation, invasion, and apoptosis. Taken together, these findings suggest that lncRNA GASAL1 interacts with SRSF1 to regulate the proliferative, invasive, and apoptotic abilities of trophoblast cells via the mTOR signaling pathway.
Collapse
Affiliation(s)
- Jia Liu
- Department of Gynecology and Obstetrics, 569063The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Qing Zhang
- Department of Gynecology and Obstetrics, 569063The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Nan Ma
- Department of Gynecology and Obstetrics, 569063The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
18
|
Du JX, Luo YH, Zhang SJ, Wang B, Chen C, Zhu GQ, Zhu P, Cai CZ, Wan JL, Cai JL, Chen SP, Dai Z, Zhu W. Splicing factor SRSF1 promotes breast cancer progression via oncogenic splice switching of PTPMT1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:171. [PMID: 33992102 PMCID: PMC8122567 DOI: 10.1186/s13046-021-01978-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/09/2021] [Indexed: 02/08/2023]
Abstract
Background Intensive evidence has highlighted the effect of aberrant alternative splicing (AS) events on cancer progression when triggered by dysregulation of the SR protein family. Nonetheless, the underlying mechanism in breast cancer (BRCA) remains elusive. Here we sought to explore the molecular function of SRSF1 and identify the key AS events regulated by SRSF1 in BRCA. Methods We conducted a comprehensive analysis of the expression and clinical correlation of SRSF1 in BRCA based on the TCGA dataset, Metabric database and clinical tissue samples. Functional analysis of SRSF1 in BRCA was conducted in vitro and in vivo. SRSF1-mediated AS events and their binding motifs were identified by RNA-seq, RNA immunoprecipitation-PCR (RIP-PCR) and in vivo crosslinking followed by immunoprecipitation (CLIP), which was further validated by the minigene reporter assay. PTPMT1 exon 3 (E3) AS was identified to partially mediate the oncogenic role of SRSF1 by the P-AKT/C-MYC axis. Finally, the expression and clinical significance of these AS events were validated in clinical samples and using the TCGA database. Results SRSF1 expression was consistently upregulated in BRCA samples, positively associated with tumor grade and the Ki-67 index, and correlated with poor prognosis in a hormone receptor-positive (HR+) cohort, which facilitated proliferation, cell migration and inhibited apoptosis in vitro and in vivo. We identified SRSF1-mediated AS events and discovered the SRSF1 binding motif in the regulation of splice switching of PTPMT1. Furthermore, PTPMT1 splice switching was regulated by SRSF1 by binding directly to its motif in E3 which partially mediated the oncogenic role of SRSF1 by the AKT/C-MYC axis. Additionally, PTPMT1 splice switching was validated in tissue samples of BRCA patients and using the TCGA database. The high-risk group, identified by AS of PTPMT1 and expression of SRSF1, possessed poorer prognosis in the stage I/II TCGA BRCA cohort. Conclusions SRSF1 exerts oncogenic roles in BRCA partially by regulating the AS of PTPMT1, which could be a therapeutic target candidate in BRCA and a prognostic factor in HR+ BRCA patient. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01978-8.
Collapse
Affiliation(s)
- Jun-Xian Du
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yi-Hong Luo
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Si-Jia Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Biao Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Cong Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Gui-Qi Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Ping Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130 Dongan Road, Shanghai, 200032, China
| | - Cheng-Zhe Cai
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jing-Lei Wan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Jia-Liang Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Shi-Ping Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China.
| | - Wei Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
19
|
Chen J, Liu Y, Min J, Wang H, Li F, Xu C, Gong A, Xu M. Alternative splicing of lncRNAs in human diseases. Am J Cancer Res 2021; 11:624-639. [PMID: 33791145 PMCID: PMC7994174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023] Open
Abstract
Alternative splicing (AS), a vital post-transcription process for eukaryote gene expression regulating, can efficiently improve gene utilization and increase the variety of RNA transcripts and proteins. However, AS of non-coding RNAs (ncRNAs) has not been paid enough attention to compared with that of protein-coding RNAs (mRNAs) for a long time. In fact, AS of ncRNAs, especially long noncoding RNAs (lncRNAs), also plays a significant regulatory role in the human disease. Recently, some bifunctional genes transcribed into both mRNA and lncRNA transcripts by AS have been observed. Here, we focus on the AS of lncRNAs and bifunctional genes producing lncRNA transcripts and propose a strategy for the future research of lncRNA AS.
Collapse
Affiliation(s)
- Jiaxi Chen
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Yawen Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Jingyu Min
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Huizhi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Feifan Li
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Chunhui Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| |
Collapse
|
20
|
Sulakhe D, D'Souza M, Wang S, Balasubramanian S, Athri P, Xie B, Canzar S, Agam G, Gilliam TC, Maltsev N. Exploring the functional impact of alternative splicing on human protein isoforms using available annotation sources. Brief Bioinform 2020; 20:1754-1768. [PMID: 29931155 DOI: 10.1093/bib/bby047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/02/2018] [Indexed: 12/30/2022] Open
Abstract
In recent years, the emphasis of scientific inquiry has shifted from whole-genome analyses to an understanding of cellular responses specific to tissue, developmental stage or environmental conditions. One of the central mechanisms underlying the diversity and adaptability of the contextual responses is alternative splicing (AS). It enables a single gene to encode multiple isoforms with distinct biological functions. However, to date, the functions of the vast majority of differentially spliced protein isoforms are not known. Integration of genomic, proteomic, functional, phenotypic and contextual information is essential for supporting isoform-based modeling and analysis. Such integrative proteogenomics approaches promise to provide insights into the functions of the alternatively spliced protein isoforms and provide high-confidence hypotheses to be validated experimentally. This manuscript provides a survey of the public databases supporting isoform-based biology. It also presents an overview of the potential global impact of AS on the human canonical gene functions, molecular interactions and cellular pathways.
Collapse
Affiliation(s)
- Dinanath Sulakhe
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Computation Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, USA
| | - Mark D'Souza
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA
| | - Sheng Wang
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Toyota Technological Institute at Chicago, 6045 S. Kenwood Avenue, Chicago, IL, USA
| | - Sandhya Balasubramanian
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Genentech, Inc. 1 DNA Way, Mail Stop: 35-6J, South San Francisco, CA, USA
| | - Prashanth Athri
- Department of Computer Science and Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, Kasavanahalli, Carmelaram P.O., Bengaluru, Karnataka, India
| | - Bingqing Xie
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
| | - Stefan Canzar
- Toyota Technological Institute at Chicago, 6045 S. Kenwood Avenue, Chicago, IL, USA.,Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gady Agam
- Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
| | - T Conrad Gilliam
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Computation Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, USA
| | - Natalia Maltsev
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, USA.,Computation Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, USA
| |
Collapse
|
21
|
Abrahams L, Hurst LD. A Depletion of Stop Codons in lincRNA is Owing to Transfer of Selective Constraint from Coding Sequences. Mol Biol Evol 2020; 37:1148-1164. [PMID: 31841162 PMCID: PMC7086181 DOI: 10.1093/molbev/msz299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although the constraints on a gene’s sequence are often assumed to reflect the functioning of that gene, here we propose transfer selection, a constraint operating on one class of genes transferred to another, mediated by shared binding factors. We show that such transfer can explain an otherwise paradoxical depletion of stop codons in long intergenic noncoding RNAs (lincRNAs). Serine/arginine-rich proteins direct the splicing machinery by binding exonic splice enhancers (ESEs) in immature mRNA. As coding exons cannot contain stop codons in one reading frame, stop codons should be rare within ESEs. We confirm that the stop codon density (SCD) in ESE motifs is low, even accounting for nucleotide biases. Given that serine/arginine-rich proteins binding ESEs also facilitate lincRNA splicing, a low SCD could transfer to lincRNAs. As predicted, multiexon lincRNA exons are depleted in stop codons, a result not explained by open reading frame (ORF) contamination. Consistent with transfer selection, stop codon depletion in lincRNAs is most acute in exonic regions with the highest ESE density, disappears when ESEs are masked, is consistent with stop codon usage skews in ESEs, and is diminished in both single-exon lincRNAs and introns. Owing to low SCD, the maximum lengths of pseudo-ORFs frequently exceed null expectations. This has implications for ORF annotation and the evolution of de novo protein-coding genes from lincRNAs. We conclude that not all constraints operating on genes need be explained by the functioning of the gene but may instead be transferred owing to shared binding factors.
Collapse
Affiliation(s)
- Liam Abrahams
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Laurence D Hurst
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
22
|
Yang Q, Zhao J, Zhang W, Chen D, Wang Y. Aberrant alternative splicing in breast cancer. J Mol Cell Biol 2019; 11:920-929. [PMID: 31065692 PMCID: PMC6884705 DOI: 10.1093/jmcb/mjz033] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/19/2019] [Accepted: 03/03/2019] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing is critical for human gene expression regulation, which plays a determined role in expanding the diversity of functional proteins. Importantly, alternative splicing is a hallmark of cancer and a potential target for cancer therapeutics. Based on the statistical data, breast cancer is one of the top leading causes of cancer-related deaths in women worldwide. Strikingly, alternative splicing is closely associated with breast cancer development. Here, we seek to provide a general review of the relationship between alternative splicing and breast cancer. We introduce the process of alternative splicing and its regulatory role in cancers. In addition, we highlight the functions of aberrant alternative splicing and mutations of splicing factors in breast cancer progression. Moreover, we discuss the role of alternative splicing in cancer drug resistance and the potential of being targets for cancer therapeutics.
Collapse
Affiliation(s)
- Quan Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Wenjing Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Dan Chen
- Department of Pathology, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Yang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
23
|
Splicing regulatory factors in breast cancer hallmarks and disease progression. Oncotarget 2019; 10:6021-6037. [PMID: 31666932 PMCID: PMC6800274 DOI: 10.18632/oncotarget.27215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022] Open
Abstract
By regulating transcript isoform expression levels, alternative splicing provides an additional layer of protein control. Recent studies show evidence that cancer cells use different splicing events to fulfill their requirements in order to develop, progress and metastasize. However, there has been less attention for the role of the complex catalyzing the complicated multistep splicing reaction: the spliceosome. The spliceosome consists of multiple sub-complexes in total comprising 244 proteins or splice factors and 5 associated RNA molecules. Here we discuss the role of splice factors in the oncogenic processes tumors cells need to fulfill their oncogenic properties (the so-called the hallmarks of cancer). Despite the fact that splice factors have been investigated only recently, they seem to play a prominent role in already five hallmarks of cancer: angiogenesis, resisting cell death, sustaining proliferation, deregulating cellular energetics and invasion and metastasis formation by affecting major signaling pathways such as epithelial-to-mesenchymal transition, the Warburg effect, DNA damage response and hormone receptor dependent proliferation. Moreover, we could relate expression of representative genes of four other hallmarks (enabling replicative mortality, genomic instability, avoiding immune destruction and evading growth suppression) to splice factor levels in human breast cancer tumors, suggesting that also these hallmarks could be regulated by splice factors. Since many splice factors are involved in multiple hallmarks of cancer, inhibiting splice factors might provide a new layer of oncogenic control and a powerful method to combat breast cancer progression.
Collapse
|
24
|
Oncogenic heterogeneous nuclear ribonucleoprotein D-like modulates the growth and imatinib response of human chronic myeloid leukemia CD34 + cells via pre-B-cell leukemia homeobox 1. Oncogene 2019; 39:443-453. [PMID: 31488872 DOI: 10.1038/s41388-019-0998-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Chronic myeloid leukemia (CML) originates from normal hematopoietic stem cells acquiring BCR-ABL fusion gene, specific BCR-ABL inhibitors (e.g., imatinib mesylate, IM) have greatly improved patient management. However, some patients are still suffering from relapse and drug resistance, which urges better understanding of the growth/survival mechanisms of CML stem/progenitor cells. In the present study, the role and its underlying mechanism of heterogeneous nuclear ribonucleoprotein D-like (HNRPDL) in CML cells were investigated. Firstly, overexpression of HNRPDL promoted the growth of murine BaF3 cells in vitro and induced leukemia in vivo, which was enhanced by co-expression of BCR-ABL. Conversely, HNRPDL silencing inhibited colony-forming cell (CFC) production of CML CD34+ cells and attenuated BCR-ABL induced leukemia. In addition, HNRPDL modulated imatinib response of K562 cells and HNRPDL silencing sensitized CML CD34+ cells to imatinib treatment. Mechanistically, we found the stability of pre-B-cell leukemia homeobox 1 (PBX1) mRNA was sustained by HNRPDL through its binding to a specific motif (ACUAGC) in 3'-untranslated region (3'-UTR) of PBX1. The expression of PBX1 was significantly higher in CML CD34+ cells than that in control cells and PBX silencing inhibited the growth of CML cells and sensitized them to imatinib treatment. In contrast, overexpression of PBX1 elevated the CFC production of normal hematopoietic CD34+ cells and "rescued" HNRPDL silencing induced growth inhibition and imatinib sensitization. Taken together, our data have demonstrated that HNRPDL transforms hematopoietic cells and a novel HNRPDL/PBX1 axis plays an important role in human CML CD34+ cells.
Collapse
|
25
|
Fedoriw A, Rajapurkar SR, O'Brien S, Gerhart SV, Mitchell LH, Adams ND, Rioux N, Lingaraj T, Ribich SA, Pappalardi MB, Shah N, Laraio J, Liu Y, Butticello M, Carpenter CL, Creasy C, Korenchuk S, McCabe MT, McHugh CF, Nagarajan R, Wagner C, Zappacosta F, Annan R, Concha NO, Thomas RA, Hart TK, Smith JJ, Copeland RA, Moyer MP, Campbell J, Stickland K, Mills J, Jacques-O'Hagan S, Allain C, Johnston D, Raimondi A, Porter Scott M, Waters N, Swinger K, Boriack-Sjodin A, Riera T, Shapiro G, Chesworth R, Prinjha RK, Kruger RG, Barbash O, Mohammad HP. Anti-tumor Activity of the Type I PRMT Inhibitor, GSK3368715, Synergizes with PRMT5 Inhibition through MTAP Loss. Cancer Cell 2019; 36:100-114.e25. [PMID: 31257072 DOI: 10.1016/j.ccell.2019.05.014] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/05/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022]
Abstract
Type I protein arginine methyltransferases (PRMTs) catalyze asymmetric dimethylation of arginines on proteins. Type I PRMTs and their substrates have been implicated in human cancers, suggesting inhibition of type I PRMTs may offer a therapeutic approach for oncology. The current report describes GSK3368715 (EPZ019997), a potent, reversible type I PRMT inhibitor with anti-tumor effects in human cancer models. Inhibition of PRMT5, the predominant type II PRMT, produces synergistic cancer cell growth inhibition when combined with GSK3368715. Interestingly, deletion of the methylthioadenosine phosphorylase gene (MTAP) results in accumulation of the metabolite 2-methylthioadenosine, an endogenous inhibitor of PRMT5, and correlates with sensitivity to GSK3368715 in cell lines. These data provide rationale to explore MTAP status as a biomarker strategy for patient selection.
Collapse
Affiliation(s)
- Andrew Fedoriw
- Epigenetics Research Unit, GlaxoSmithKline, Collegeville, PA 19426, USA
| | | | - Shane O'Brien
- Epigenetics Research Unit, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Sarah V Gerhart
- Epigenetics Research Unit, GlaxoSmithKline, Collegeville, PA 19426, USA
| | | | - Nicholas D Adams
- Epigenetics Research Unit, GlaxoSmithKline, Collegeville, PA 19426, USA
| | | | | | | | | | - Niyant Shah
- Epigenetics Research Unit, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Jenny Laraio
- Epigenetics Research Unit, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Yan Liu
- Epigenetics Research Unit, GlaxoSmithKline, Collegeville, PA 19426, USA
| | | | - Chris L Carpenter
- Epigenetics Research Unit, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Caretha Creasy
- Epigenetics Research Unit, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Susan Korenchuk
- Epigenetics Research Unit, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Michael T McCabe
- Epigenetics Research Unit, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Charles F McHugh
- Epigenetics Research Unit, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Raman Nagarajan
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Craig Wagner
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, PA 19426, USA
| | | | - Roland Annan
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Nestor O Concha
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Roberta A Thomas
- Nonclinical Safety Assessment, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Timothy K Hart
- Nonclinical Safety Assessment, GlaxoSmithKline, Collegeville, PA 19426, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Tom Riera
- Epizyme, Inc, Cambridge, MA 02139, USA
| | | | | | | | - Ryan G Kruger
- Epigenetics Research Unit, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Olena Barbash
- Epigenetics Research Unit, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Helai P Mohammad
- Epigenetics Research Unit, GlaxoSmithKline, Collegeville, PA 19426, USA.
| |
Collapse
|
26
|
Liu Y, Zhang YM, Ma FB, Pan SR, Liu BZ. Long noncoding RNA HOXA11-AS promotes gastric cancer cell proliferation and invasion via SRSF1 and functions as a biomarker in gastric cancer. World J Gastroenterol 2019; 25:2763-2775. [PMID: 31235999 PMCID: PMC6580350 DOI: 10.3748/wjg.v25.i22.2763] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/15/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is the fourth most frequent malignancy all over the world. The diagnosis of GC is challenging and the prognosis of GC is very unfavorable. Accumulating evidence reveals that serum long noncoding RNAs (lncRNAs) can function as biomarkers in various types of cancers, including GC.
AIM To explore the level and molecular mechanism of the lncRNA HOXA11-AS in GC and the diagnostic and prognostic significance of serum HOXA11-AS in GC.
METHODS HOXA11-AS levels in GC tissue, cell lines, and serum samples were measured. The correlation between HOXA11-AS expression and clinicopathological characteristics was analyzed. The role of HOXA11-AS in the diagnosis and prognosis of GC was evaluated. Cell function assays were performed for exploration of the roles of HOXA11-AS in GC cells. Moreover, Western blot was performed to explore the target regulated by HOXA11-AS in GC cells.
RESULTS Up-regulation of HOXA11-AS was found in GC tissues, cell lines, and serum samples. In GC patients, decreased serum HOXA11-AS levels were negatively related with tumor size, TNM stage, and lymph node metastasis. The area under the receiver operating characteristic curve of serum HOXA11-AS in the diagnosis of GC was 0.924 (95%CI: 0.881-0.967; sensitivity, 0.787; specificity 0.978). Results of the Kaplan-Meier survival curves suggested the GC patients with a lower HOXA11-AS level having a better overall survival rate. HOXA11-AS promoted GC cell proliferation and invasion. SRSF1 may be the target regulated by HOXA11-AS in GC cells.
CONCLUSION HOXA11-AS promotes GC cell proliferation and invasion via SRSF1 and may function as a promising marker in GC.
Collapse
Affiliation(s)
- Yun Liu
- Department of Operating Room, Binzhou People's Hospital, Binzhou 256610, Shandong Province, China
| | - Yu-Mei Zhang
- Department of Return Visit, Binzhou People's Hospital, Binzhou 256610, Shandong Province, China
| | - Feng-Bo Ma
- Department of Gastroenterology, Binzhou People's Hospital, Binzhou 256610, Shandong Province, China
| | - Su-Rong Pan
- Department of Gastroenterology, Binzhou People's Hospital, Binzhou 256610, Shandong Province, China
| | - Bao-Zhen Liu
- Department of Gastroenterology, Binzhou People's Hospital, Binzhou 256610, Shandong Province, China
| |
Collapse
|
27
|
Ptok J, Müller L, Theiss S, Schaal H. Context matters: Regulation of splice donor usage. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194391. [PMID: 31202784 DOI: 10.1016/j.bbagrm.2019.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/07/2019] [Accepted: 06/09/2019] [Indexed: 11/16/2022]
Abstract
Elaborate research on splicing, starting in the late seventies, evolved from the discovery that 5' splice sites are recognized by their complementarity to U1 snRNA towards the realization that RNA duplex formation cannot be the sole basis for 5'ss selection. Rather, their recognition is highly influenced by a number of context factors including transcript architecture as well as splicing regulatory elements (SREs) in the splice site neighborhood. In particular, proximal binding of splicing regulatory proteins highly influences splicing outcome. The importance of SRE integrity especially becomes evident in the light of human pathogenic mutations where single nucleotide changes in SREs can severely affect the resulting transcripts. Bioinformatics tools nowadays greatly assist in the computational evaluation of 5'ss, their neighborhood and the impact of pathogenic mutations. Although predictions are already quite robust, computational evaluation of the splicing regulatory landscape still faces challenges to increase future reliability. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Johannes Ptok
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Stephan Theiss
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany.
| |
Collapse
|
28
|
Xia X. RNA-Seq approach for accurate characterization of splicing efficiency of yeast introns. Methods 2019; 176:25-33. [PMID: 30926533 DOI: 10.1016/j.ymeth.2019.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 01/21/2023] Open
Abstract
Introns in different genes, or even different introns within the same gene, often have different splice sites and differ in splicing efficiency (SE). One expects mass-transcribed genes to have introns with higher SE than weakly transcribed genes. However, such a simple expectation cannot be tested directly because variable SE for these genes is often not measured. Mechanistically, SE should depend on signal strength at key splice sites (SS) such as 5'SS, 3'SS and branchpoint site (BPS), i.e., SE = F(5'SS, 3'SS, BPS). However, without SE, we again cannot model how these splice sites contribute to SE. Here I present an RNA-Seq approach to quantify SE for each of the 304 introns in yeast (Saccharomyces cerevisiae) genes, including 24 in the 5'UTR, by measuring 1) number of reads mapped to exon-exon junctions (NEE) as a proxy for the abundance of spliced form, and 2) number of reads mapped to exon-intron junction (NEI5 and NEI3 at 5' and 3' ends of intron) as a proxy for the abundance of unspliced form. The total mRNA is NTotal = NEE + p * NEI5 + (1-p) * NEI3, with the simplest p = 0.5 but statistical methods were presented to estimate p from data. An estimated p is needed because NEI5 is expected to be smaller than NEI3 due to 1) step 1 splicing occurs before step 2 so EI5 is broken before EI3, 2) enrichment of poly(A) mRNA by oligo-dT, and 3) 5' degradation. SE is defined as the proportion (NEE/NTotal). Application of the method shows that ribosomal protein messages are efficiently and mostly cotranscriptionally spliced. Yeast genes with long introns are also spliced efficiently. HAC1/YFL031W is poorly spliced partly because its splicing involves a nonspliceosome mechanism and partly because Ire1p, which participate in splicing HAC1, is hardly expressed. Many putative yeast genes have low SE, and some splice sites are incorrectly annotated.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa K1N 6N5, Canada; Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
29
|
Coltri PP, Dos Santos MGP, da Silva GHG. Splicing and cancer: Challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1527. [PMID: 30773852 DOI: 10.1002/wrna.1527] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/14/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
Abstract
Cancer arises from alterations in several metabolic processes affecting proliferation, growth, replication and death of cells. A fundamental challenge in the study of cancer biology is to uncover molecular mechanisms that lead to malignant cellular transformation. Recent genomic analyses revealed that many molecular alterations observed in cancers come from modifications in the splicing process, including mutations in pre-mRNA regulatory sequences, mutations in spliceosome components, and altered ratio of specific splicing regulators. While alterations in splice site preferences might generate alternative isoforms enabling different biological functions, these might also be responsible for nonfunctional isoforms that can eventually cause dysregulation in cellular processes. Molecular characteristics of regulatory sequences and proteins might also be important prognostic tools revealing a cancer-specific splicing pattern and linking splicing control to cancer development. The connection between cancer biology and splicing regulation is of primary importance to understand the mechanisms leading to disease and also to improve development of therapeutic approaches. Splicing modulation is being explored in new anti-cancer therapies and further investigation of targeted splicing factors is critical for the success of these strategies. This article is categorized under: RNA Processing > Splicing Mechanisms RNA-Based Catalysis > RNA Catalysis in Splicing and Translation RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Patricia P Coltri
- Department of Cell and Developmental Biology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria G P Dos Santos
- Department of Cell and Developmental Biology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Guilherme H G da Silva
- Department of Cell and Developmental Biology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Sheng J, Zhao Q, Zhao J, Zhang W, Sun Y, Qin P, Lv Y, Bai L, Yang Q, Chen L, Qi Y, Zhang G, Zhang L, Gu C, Deng X, Liu H, Meng S, Gu H, Liu Q, Coulson JM, Li X, Sun B, Wang Y. SRSF1 modulates PTPMT1 alternative splicing to regulate lung cancer cell radioresistance. EBioMedicine 2018; 38:113-126. [PMID: 30429088 PMCID: PMC6306353 DOI: 10.1016/j.ebiom.2018.11.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Radioresistance is the major cause of cancer treatment failure. Additionally, splicing dysregulation plays critical roles in tumorigenesis. However, the involvement of alternative splicing in resistance of cancer cells to radiotherapy remains elusive. We sought to investigate the key role of the splicing factor SRSF1 in the radioresistance in lung cancer. METHODS Lung cancer cell lines, xenograft mice models, and RNA-seq were employed to study the detailed mechanisms of SRSF1 in lung cancer radioresistance. Clinical tumor tissues and TCGA dataset were utilized to determine the expression levels of distinct SRSF1-regulated splicing isoforms. KM-plotter was applied to analyze the survival of cancer patients with various levels of SRSF1-regulated splicing isoforms. FINDINGS Splicing factors were screened to identify their roles in radioresistance, and SRSF1 was found to be involved in radioresistance in cancer cells. The level of SRSF1 is elevated in irradiation treated lung cancer cells, whereas knockdown of SRSF1 sensitizes cancer cells to irradiation. Mechanistically, SRSF1 modulates various cancer-related splicing events, particularly the splicing of PTPMT1, a PTEN-like mitochondrial phosphatase. Reduced SRSF1 favors the production of short isoforms of PTPMT1 upon irradiation, which in turn promotes phosphorylation of AMPK, thereby inducing DNA double-strand break to sensitize cancer cells to irradiation. Additionally, the level of the short isoform of PTPMT1 is decreased in cancer samples, which is correlated to cancer patients' survival. CONCLUSIONS Our study provides mechanistic analyses of aberrant splicing in radioresistance in lung cancer cells, and establishes SRSF1 as a potential therapeutic target for sensitization of patients to radiotherapy.
Collapse
Affiliation(s)
- Junxiu Sheng
- Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Qingzhi Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Wenjing Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China.
| | - Yu Sun
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Pan Qin
- Faculty of electronic information and electrical engineering, Dalian university of Technology, Dalian 116001, China
| | - Yuesheng Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Lu Bai
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Quan Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Lei Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Yangfan Qi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Ge Zhang
- Department of Immunology, Dalian Medical University, Dalian 116044, China
| | - Lin Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Chundong Gu
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xiaoqin Deng
- Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Han Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Songshu Meng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Hong Gu
- Faculty of electronic information and electrical engineering, Dalian university of Technology, Dalian 116001, China
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Judy M Coulson
- Cellular & Molecular Physiology Department, University of Liverpool, UKL69 3BX, UK
| | - Xiaoling Li
- Signal Transduction Laboratory, NIEHS, RTP, NC 27709, USA
| | - Bing Sun
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China.
| | - Yang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
31
|
Mao M, Hu Y, Yang Y, Qian Y, Wei H, Fan W, Yang Y, Li X, Wang Z. Modeling and Predicting the Activities of Trans-Acting Splicing Factors with Machine Learning. Cell Syst 2018; 7:510-520.e4. [PMID: 30414922 DOI: 10.1016/j.cels.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/10/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
Alternative splicing (AS) is generally regulated by trans-splicing factors that specifically bind to cis-elements in pre-mRNAs. The human genome encodes ∼1,500 RNA binding proteins (RBPs) that potentially regulate AS, yet their functions remain largely unknown. To explore their potential activities, we fused the putative functional domains of RBPs to a sequence-specific RNA-binding domain and systemically analyzed how these engineered factors affect splicing. We discovered that ∼80% of low-complexity domains in endogenous RBPs displayed distinct context-dependent activities in regulating splicing, indicating that AS is under more extensive regulation than previously expected. We developed a machine learning approach to classify and predict the activities of RBPs based on their sequence compositions and further validated this model using endogenous RBPs and synthetic polypeptides. These results represent a systematic inspection, modeling, prediction, and validation of how RBP sequences affect their activities in controlling splicing, paving the way for de novo engineering of artificial splicing factors.
Collapse
Affiliation(s)
- Miaowei Mao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yue Hu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun Yang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yajie Qian
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Huanhuan Wei
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Fan
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yi Yang
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
32
|
Attig J, Agostini F, Gooding C, Chakrabarti AM, Singh A, Haberman N, Zagalak JA, Emmett W, Smith CWJ, Luscombe NM, Ule J. Heteromeric RNP Assembly at LINEs Controls Lineage-Specific RNA Processing. Cell 2018; 174:1067-1081.e17. [PMID: 30078707 PMCID: PMC6108849 DOI: 10.1016/j.cell.2018.07.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 04/23/2018] [Accepted: 07/01/2018] [Indexed: 12/30/2022]
Abstract
Long mammalian introns make it challenging for the RNA processing machinery to identify exons accurately. We find that LINE-derived sequences (LINEs) contribute to this selection by recruiting dozens of RNA-binding proteins (RBPs) to introns. This includes MATR3, which promotes binding of PTBP1 to multivalent binding sites within LINEs. Both RBPs repress splicing and 3' end processing within and around LINEs. Notably, repressive RBPs preferentially bind to evolutionarily young LINEs, which are located far from exons. These RBPs insulate the LINEs and the surrounding intronic regions from RNA processing. Upon evolutionary divergence, changes in RNA motifs within LINEs lead to gradual loss of their insulation. Hence, older LINEs are located closer to exons, are a common source of tissue-specific exons, and increasingly bind to RBPs that enhance RNA processing. Thus, LINEs are hubs for the assembly of repressive RBPs and also contribute to the evolution of new, lineage-specific transcripts in mammals. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Jan Attig
- The Francis Crick Institute, Midland Road 1, Kings Cross, London NW1 1AT, UK; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | - Federico Agostini
- The Francis Crick Institute, Midland Road 1, Kings Cross, London NW1 1AT, UK
| | - Clare Gooding
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Anob M Chakrabarti
- The Francis Crick Institute, Midland Road 1, Kings Cross, London NW1 1AT, UK; Department of Genetics, Environment and Evolution, UCL Genetics Institute, Gower Street, London WC1E 6BT, UK
| | - Aarti Singh
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Nejc Haberman
- The Francis Crick Institute, Midland Road 1, Kings Cross, London NW1 1AT, UK; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Julian A Zagalak
- The Francis Crick Institute, Midland Road 1, Kings Cross, London NW1 1AT, UK; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Warren Emmett
- The Francis Crick Institute, Midland Road 1, Kings Cross, London NW1 1AT, UK; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Genetics, Environment and Evolution, UCL Genetics Institute, Gower Street, London WC1E 6BT, UK
| | - Christopher W J Smith
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Nicholas M Luscombe
- The Francis Crick Institute, Midland Road 1, Kings Cross, London NW1 1AT, UK; Department of Genetics, Environment and Evolution, UCL Genetics Institute, Gower Street, London WC1E 6BT, UK; Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Jernej Ule
- The Francis Crick Institute, Midland Road 1, Kings Cross, London NW1 1AT, UK; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
33
|
|
34
|
Dominguez D, Freese P, Alexis MS, Su A, Hochman M, Palden T, Bazile C, Lambert NJ, Van Nostrand EL, Pratt GA, Yeo GW, Graveley BR, Burge CB. Sequence, Structure, and Context Preferences of Human RNA Binding Proteins. Mol Cell 2018; 70:854-867.e9. [PMID: 29883606 PMCID: PMC6062212 DOI: 10.1016/j.molcel.2018.05.001] [Citation(s) in RCA: 337] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/20/2018] [Accepted: 05/01/2018] [Indexed: 01/03/2023]
Abstract
RNA binding proteins (RBPs) orchestrate the production, processing, and function of mRNAs. Here, we present the affinity landscapes of 78 human RBPs using an unbiased assay that determines the sequence, structure, and context preferences of these proteins in vitro by deep sequencing of bound RNAs. These data enable construction of "RNA maps" of RBP activity without requiring crosslinking-based assays. We found an unexpectedly low diversity of RNA motifs, implying frequent convergence of binding specificity toward a relatively small set of RNA motifs, many with low compositional complexity. Offsetting this trend, however, we observed extensive preferences for contextual features distinct from short linear RNA motifs, including spaced "bipartite" motifs, biased flanking nucleotide composition, and bias away from or toward RNA structure. Our results emphasize the importance of contextual features in RNA recognition, which likely enable targeting of distinct subsets of transcripts by different RBPs that recognize the same linear motif.
Collapse
Affiliation(s)
| | - Peter Freese
- Program in Computational and Systems Biology, MIT, Cambridge, MA, USA
| | - Maria S Alexis
- Program in Computational and Systems Biology, MIT, Cambridge, MA, USA
| | - Amanda Su
- Department of Biology, MIT, Cambridge, MA, USA
| | | | | | | | | | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Gabriel A Pratt
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Molecular Engineering Laboratory, A(∗)STAR, Singapore, Singapore
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health, Farmington, CT, USA
| | - Christopher B Burge
- Department of Biology, MIT, Cambridge, MA, USA; Department of Biological Engineering, MIT, Cambridge, MA, USA.
| |
Collapse
|
35
|
Abstract
Epigenetic modifications of DNA and chromatin are long known to control stem cell differentiation and organ function but the role of similar modifications at the level or regulatory RNAs is just beginning to emerge. Over 160 RNA modifications have been identified but their abundance, distribution and functional significance are not known. The few available maps of RNA modifications indicated their dynamic regulation during somatic stem cell differentiation, brain development and function in adulthood suggesting a hitherto unsuspected layer of regulation both at the level of RNA metabolism and post-transcriptional control of gene expression. The advent of programmable, RNA-specific CRISPR-Cas editing platforms together with the identification of RNA modifying enzymes now offers the opportunity to investigate the functional role of these elusive epitranscriptome changes. Here, we discuss recent insights in studying the most abundant modifications in functional mRNAs and lncRNAs, N6-methyladenosine and 5-(hydroxy-)methylcytosine, and their role in regulating somatic stem cell differentiation with particular attention to neural stem cells during mammalian corticogenesis. An outlook on novel CRISPR-Cas based systems that allow stem cell reprogramming by epitranscriptome-editing will also be discussed.
Collapse
Affiliation(s)
- Florian Noack
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies, Dresden, Germany
| | - Federico Calegari
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies, Dresden, Germany
| |
Collapse
|
36
|
Guo W, Sun M. RBM20, a potential target for treatment of cardiomyopathy via titin isoform switching. Biophys Rev 2018; 10:15-25. [PMID: 28577155 PMCID: PMC5803173 DOI: 10.1007/s12551-017-0267-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022] Open
Abstract
Cardiomyopathy, also known as heart muscle disease, is an unfavorable condition leading to alterations in myocardial contraction and/or impaired ability of ventricular filling. The onset and development of cardiomyopathy have not currently been well defined. Titin is a giant multifunctional sarcomeric filament protein that provides passive stiffness to cardiomyocytes and has been implicated to play an important role in the origin and development of cardiomyopathy and heart failure. Titin-based passive stiffness can be mainly adjusted by isoform switching and post-translational modifications in the spring regions. Recently, genetic mutations of TTN have been identified that can also contribute to variable passive stiffness, though the detailed mechanisms remain unclear. In this review, we will discuss titin isoform switching as it relates to alternative splicing during development stages and differences between species and muscle types. We provide an update on the regulatory mechanisms of TTN splicing controlled by RBM20 and cover the roles of TTN splicing in adjusting the diastolic stiffness and systolic compliance of the healthy and the failing heart. Finally, this review attempts to provide future directions for RBM20 as a potential target for pharmacological intervention in cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Wei Guo
- Animal Science, University of Wyoming, Laramie, WY, 82071, USA.
- Center for Cardiovascular Research and Integrative Medicine, University of Wyoming, Laramie, WY, 82071, USA.
| | - Mingming Sun
- Animal Science, University of Wyoming, Laramie, WY, 82071, USA
- Center for Cardiovascular Research and Integrative Medicine, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
37
|
Singh NN, Del Rio-Malewski JB, Luo D, Ottesen EW, Howell MD, Singh RN. Activation of a cryptic 5' splice site reverses the impact of pathogenic splice site mutations in the spinal muscular atrophy gene. Nucleic Acids Res 2017; 45:12214-12240. [PMID: 28981879 PMCID: PMC5716214 DOI: 10.1093/nar/gkx824] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/06/2017] [Indexed: 01/08/2023] Open
Abstract
Spinal muscular atrophy (SMA) is caused by deletions or mutations of the Survival Motor Neuron 1 (SMN1) gene coupled with predominant skipping of SMN2 exon 7. The only approved SMA treatment is an antisense oligonucleotide that targets the intronic splicing silencer N1 (ISS-N1), located downstream of the 5' splice site (5'ss) of exon 7. Here, we describe a novel approach to exon 7 splicing modulation through activation of a cryptic 5'ss (Cr1). We discovered the activation of Cr1 in transcripts derived from SMN1 that carries a pathogenic G-to-C mutation at the first position (G1C) of intron 7. We show that Cr1-activating engineered U1 snRNAs (eU1s) have the unique ability to reprogram pre-mRNA splicing and restore exon 7 inclusion in SMN1 carrying a broad spectrum of pathogenic mutations at both the 3'ss and 5'ss of the exon 7. Employing a splicing-coupled translation reporter, we demonstrate that mRNAs generated by an eU1-induced activation of Cr1 produce full-length SMN. Our findings underscore a wider role for U1 snRNP in splicing regulation and reveal a novel approach for the restoration of SMN exon 7 inclusion for a potential therapy of SMA.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - José Bruno Del Rio-Malewski
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA
| | - Diou Luo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Matthew D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
38
|
Song X, Zeng Z, Wei H, Wang Z. Alternative splicing in cancers: From aberrant regulation to new therapeutics. Semin Cell Dev Biol 2017; 75:13-22. [PMID: 28919308 DOI: 10.1016/j.semcdb.2017.09.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 12/18/2022]
Abstract
Alternative splicing is one of the most common mechanisms for gene regulation in humans, and plays a vital role to increase the complexity of functional proteins. In this article, we seek to provide a general review on the relationships between alternative splicing and tumorigenesis. We briefly introduce the basic rules for regulation of alternative splicing, and discuss recent advances on dynamic regulation of alternative splicing in cancers by highlighting the roles of a variety of RNA splicing factors in tumorigenesis. We further discuss several important questions regarding the splicing of long noncoding RNAs and back-splicing of circular RNAs in cancers. Finally, we discuss the current technologies that can be used to manipulate alternative splicing and serve as potential cancer treatment.
Collapse
Affiliation(s)
- Xiaowei Song
- CAS Key Lab for Computational Biology, CAS Center for Excellence in Molecular Cell Science, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Department of Cardiology, Changhai Hospital, 168 Changhai Road, Shanghai 200433, China.
| | - Zhenyu Zeng
- Department of Cardiology, Changhai Hospital, 168 Changhai Road, Shanghai 200433, China
| | - Huanhuan Wei
- CAS Key Lab for Computational Biology, CAS Center for Excellence in Molecular Cell Science, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zefeng Wang
- CAS Key Lab for Computational Biology, CAS Center for Excellence in Molecular Cell Science, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
39
|
Ramanouskaya TV, Grinev VV. The determinants of alternative RNA splicing in human cells. Mol Genet Genomics 2017; 292:1175-1195. [PMID: 28707092 DOI: 10.1007/s00438-017-1350-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/06/2017] [Indexed: 12/29/2022]
Abstract
Alternative splicing represents an important level of the regulation of gene function in eukaryotic organisms. It plays a critical role in virtually every biological process within an organism, including regulation of cell division and cell death, differentiation of tissues in the embryo and the adult organism, as well as in cellular response to diverse environmental factors. In turn, studies of the last decade have shown that alternative splicing itself is controlled by different mechanisms. Unfortunately, there is no clear understanding of how these diverse mechanisms, or determinants, regulate and constrain the set of alternative RNA species produced from any particular gene in every cell of the human body. Here, we provide a consolidated overview of alternative splicing determinants including RNA-protein interactions, epigenetic regulation via chromatin remodeling, coupling of transcription-to-alternative splicing, effect of secondary structures in pre-RNA, and function of the RNA quality control systems. We also extensively and critically discuss some mechanistic insights on coordinated inclusion/exclusion of exons during the formation of mature RNA molecules. We conclude that the final structure of RNA is pre-determined by a complex interplay between cis- and trans-acting factors. Altogether, currently available empirical data significantly expand our understanding of the functioning of the alternative splicing machinery of cells in normal and pathological conditions. On the other hand, there are still many blind spots that require further deep investigations.
Collapse
|
40
|
RNA splicing in human disease and in the clinic. Clin Sci (Lond) 2017; 131:355-368. [PMID: 28202748 DOI: 10.1042/cs20160211] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/06/2016] [Accepted: 12/15/2016] [Indexed: 01/12/2023]
Abstract
Defects at the level of the pre-mRNA splicing process represent a major cause of human disease. Approximately 15-50% of all human disease mutations have been shown to alter functioning of basic and auxiliary splicing elements. These elements are required to ensure proper processing of pre-mRNA splicing molecules, with their disruption leading to misprocessing of the pre-mRNA molecule and disease. The splicing process is a complex process, with much still to be uncovered before we are able to accurately predict whether a reported genomic sequence variant (GV) represents a splicing-associated disease mutation or a harmless polymorphism. Furthermore, even when a mutation is correctly identified as affecting the splicing process, there still remains the difficulty of providing an exact evaluation of the potential impact on disease onset, severity and duration. In this review, we provide a brief overview of splicing diagnostic methodologies, from in silico bioinformatics approaches to wet lab in vitro and in vivo systems to evaluate splicing efficiencies. In particular, we provide an overview of how the latest developments in high-throughput sequencing can be applied to the clinic, and are already changing clinical approaches.
Collapse
|
41
|
Wei HH, Liu Y, Wang Y, Lu Q, Yang X, Li J, Wang Z. Engineering Artificial Factors to Specifically Manipulate Alternative Splicing in Human Cells. J Vis Exp 2017. [PMID: 28518098 DOI: 10.3791/54967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The processing of most eukaryotic RNAs is mediated by RNA Binding Proteins (RBPs) with modular configurations, including an RNA recognition module, which specifically binds the pre-mRNA target and an effector domain. Previously, we have taken advantage of the unique RNA binding mode of the PUF domain in human Pumilio 1 to generate a programmable RNA binding scaffold, which was used to engineer various artificial RBPs to manipulate RNA metabolism. Here, a detailed protocol is described to construct Engineered Splicing Factors (ESFs) that are specifically designed to modulate the alternative splicing of target genes. The protocol includes how to design and construct a customized PUF scaffold for a specific RNA target, how to construct an ESF expression plasmid by fusing a designer PUF domain and an effector domain, and how to use ESFs to manipulate the splicing of target genes. In the representative results of this method, we have also described the common assays of ESF activities using splicing reporters, the application of ESF in cultured human cells, and the subsequent effect of splicing changes. By following the detailed protocols in this report, it is possible to design and generate ESFs for the regulation of different types of Alternative Splicing (AS), providing a new strategy to study splicing regulation and the function of different splicing isoforms. Moreover, by fusing different functional domains with a designed PUF domain, researchers can engineer artificial factors that target specific RNAs to manipulate various steps of RNA processing.
Collapse
Affiliation(s)
- Huan-Huan Wei
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences (SIBS)
| | - Yuanlong Liu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences (SIBS)
| | - Yang Wang
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Cancer Center, Dalian Medical University
| | - Qianyun Lu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences (SIBS)
| | - Xuerong Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences (SIBS)
| | - Jiefu Li
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences (SIBS)
| | - Zefeng Wang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences (SIBS);
| |
Collapse
|
42
|
Shen Y, Stanislauskas M, Li G, Zheng D, Liu L. Epigenetic and genetic dissections of UV-induced global gene dysregulation in skin cells through multi-omics analyses. Sci Rep 2017; 7:42646. [PMID: 28211524 PMCID: PMC5314319 DOI: 10.1038/srep42646] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022] Open
Abstract
To elucidate the complex molecular mechanisms underlying the adverse effects UV radiation (UVR) on skin homeostasis, we performed multi-omics studies to characterize UV-induced genetic and epigenetic changes. Human keratinocytes from a single donor treated with or without UVR were analyzed by RNA-seq, exome-seq, and H3K27ac ChIP-seq at 4 h and 72 h following UVR. Compared to the relatively moderate mutagenic effects of UVR, acute UV exposure induced substantial epigenomic and transcriptomic alterations, illuminating a previously underappreciated role of epigenomic and transcriptomic instability in skin pathogenesis. Integration of the multi-omics data revealed that UVR-induced transcriptional dysregulation of a subset of genes was attributable to either genetic mutations or global redistribution of H3K27ac. H3K27ac redistribution further led to the formation of distinctive super enhancers in UV-irradiated cells. Our analysis also identified several new UV target genes, including CYP24A1, GJA5, SLAMF7 and ETV1, which were frequently dysregulated in human squamous cell carcinomas, highlighting their potential as new molecular targets for prevention or treatment of UVR-induced skin cancers. Taken together, our concurrent multi-omics analyses provide new mechanistic insights into the complex molecular networks underlying UV photobiological effects, which have important implications in understanding its impact on skin homeostasis and pathogenesis.
Collapse
Affiliation(s)
- Yao Shen
- Department of Systems Biology, Columbia University, New York, NY, USA
| | | | - Gen Li
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
| | - Liang Liu
- Department of Dermatology, Columbia University, New York, NY, USA
| |
Collapse
|
43
|
Abstract
Serine and arginine-rich (SR) proteins are RNA-binding proteins (RBPs) known as constitutive and alternative splicing regulators. As splicing is linked to transcriptional and post-transcriptional steps, SR proteins are implicated in the regulation of multiple aspects of the gene expression program. Recent global analyses of SR-RNA interaction maps have advanced our understanding of SR-regulated gene expression. Diverse SR proteins play partially overlapping but distinct roles in transcription-coupled splicing and mRNA processing in the nucleus. In addition, shuttling SR proteins act as adaptors for mRNA export and as regulators for translation in the cytoplasm. This mini-review will summarize the roles of SR proteins as RNA binders, regulators, and connectors from transcription in the nucleus to translation in the cytoplasm.
Collapse
Affiliation(s)
- Sunjoo Jeong
- Department of Bioconvergent Science and Technology, Dankook University, Yongin 16890,
Korea
| |
Collapse
|
44
|
Mathur M, Xiang JS, Smolke CD. Mammalian synthetic biology for studying the cell. J Cell Biol 2016; 216:73-82. [PMID: 27932576 PMCID: PMC5223614 DOI: 10.1083/jcb.201611002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/25/2022] Open
Abstract
Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology.
Collapse
Affiliation(s)
- Melina Mathur
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Joy S Xiang
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | | |
Collapse
|
45
|
Shurtleff MJ, Temoche-Diaz MM, Karfilis KV, Ri S, Schekman R. Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. eLife 2016; 5. [PMID: 27559612 PMCID: PMC5047747 DOI: 10.7554/elife.19276] [Citation(s) in RCA: 460] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022] Open
Abstract
Exosomes are small vesicles that are secreted from metazoan cells and may convey selected membrane proteins and small RNAs to target cells for the control of cell migration, development and metastasis. To study the mechanisms of RNA packaging into exosomes, we devised a purification scheme based on the membrane marker CD63 to isolate a single exosome species secreted from HEK293T cells. Using immunoisolated CD63-containing exosomes we identified a set of miRNAs that are highly enriched with respect to their cellular levels. To explore the biochemical requirements for exosome biogenesis and RNA packaging, we devised a cell-free reaction that recapitulates the species-selective enclosure of miR-223 in isolated membranes supplemented with cytosol. We found that the RNA-binding protein Y-box protein I (YBX1) binds to and is required for the sorting of miR-223 in the cell-free reaction. Furthermore, YBX1 serves an important role in the secretion of miRNAs in exosomes by HEK293T cells. DOI:http://dx.doi.org/10.7554/eLife.19276.001 Human cells release molecules into their surroundings via membrane-bound packets called exosomes. These molecules can then circulate throughout the body and are protected from degradation. Among the cargos carried by exosomes are small molecules of RNA known as microRNAs, which are involved in regulating gene activity. Only a select subset of the hundreds of microRNAs in a human cell end up packaged into exosomes. This suggests that there might be a specific mechanism that sorts those microRNAs that are destined for export. However, few proteins or other factors that might be involved in this sorting process had been identified to date. Shurtleff et al. set out to identify these factors and started by purifying exosomes from human cells grown in the laboratory and looking for microRNAs that were more abundant in the exosomes than the cells. One exosome-specific microRNA, called miR-223, was further studied via a test-tube based system that uses extracts from cells rather than cells themselves. These experiments confirmed that miR-223 is selectively packed into exosomes that formed in the test tube. Using this system, Shurtleff et al. then isolated a protein called Y-box Protein I (or YBX1 for short) that binds to RNA molecules and found that it was required for this selective packaging. YBX1 is known to be a constituent of exosomes released from intact cells and may therefore be required to sort other RNA molecules into exosomes. Future studies will explore how YBX1 recognizes those RNA molecules to be exported from cells via exosomes. Also, because exosomes have been implicated in some diseases such as cancer, it will be important to explore what role exosome-specific microRNAs play in both health and disease. DOI:http://dx.doi.org/10.7554/eLife.19276.002
Collapse
Affiliation(s)
- Matthew J Shurtleff
- Department of Plant and Microbial Biology, University of California, Berkeley, United States
| | - Morayma M Temoche-Diaz
- Department of Plant and Microbial Biology, University of California, Berkeley, United States
| | - Kate V Karfilis
- Institute of Molecular Biology, University of Oregon, Eugene, United States
| | - Sayaka Ri
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - Randy Schekman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of California, Berkeley, United States
| |
Collapse
|
46
|
Berger A, Maire S, Gaillard MC, Sahel JA, Hantraye P, Bemelmans AP. mRNA trans-splicing in gene therapy for genetic diseases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:487-98. [PMID: 27018401 PMCID: PMC5071737 DOI: 10.1002/wrna.1347] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/27/2016] [Accepted: 02/22/2016] [Indexed: 11/12/2022]
Abstract
Spliceosome-mediated RNA trans-splicing, or SMaRT, is a promising strategy to design innovative gene therapy solutions for currently intractable genetic diseases. SMaRT relies on the correction of mutations at the post-transcriptional level by modifying the mRNA sequence. To achieve this, an exogenous RNA is introduced into the target cell, usually by means of gene transfer, to induce a splice event in trans between the exogenous RNA and the target endogenous pre-mRNA. This produces a chimeric mRNA composed partly of exons of the latter, and partly of exons of the former, encoding a sequence free of mutations. The principal challenge of SMaRT technology is to achieve a reaction as complete as possible, i.e., resulting in 100% repairing of the endogenous mRNA target. The proof of concept of SMaRT feasibility has already been established in several models of genetic diseases caused by recessive mutations. In such cases, in fact, the repair of only a portion of the mutant mRNA pool may be sufficient to obtain a significant therapeutic effect. However in the case of dominant mutations, the target cell must be freed from the majority of mutant mRNA copies, requiring a highly efficient trans-splicing reaction. This likely explains why only a few examples of SMaRT approaches targeting dominant mutations are reported in the literature. In this review, we explain in details the mechanism of trans-splicing, review the different strategies that are under evaluation to lead to efficient trans-splicing, and discuss the advantages and limitations of SMaRT. WIREs RNA 2016, 7:487-498. doi: 10.1002/wrna.1347 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Adeline Berger
- Centre de recherche Institut de la Vision, Sorbonne Universités, Université Pierre et Marie Curie UM80, Paris, France
| | - Séverine Maire
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Marie-Claude Gaillard
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - José-Alain Sahel
- Centre de recherche Institut de la Vision, Sorbonne Universités, Université Pierre et Marie Curie UM80, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS, Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Institute of Ophthalmology, University College of London, London, UK
| | - Philippe Hantraye
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Alexis-Pierre Bemelmans
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| |
Collapse
|
47
|
Emamalizadeh B, Jamshidi J, Movafagh A, Ohadi M, khaniani MS, Kazeminasab S, Biglarian A, Taghavi S, Motallebi M, Fazeli A, Ahmadifard A, Shahidi GA, Petramfar P, Shahmohammadibeni N, Dadkhah T, Khademi E, Tafakhori A, Khaligh A, Safaralizadeh T, Kowsari A, Mirabzadeh A, Zarneh AES, Khorrami M, Shokraeian P, Banavandi MJS, Lima BS, Andarva M, Alehabib E, Atakhorrami M, Darvish H. RIT2 Polymorphisms: Is There a Differential Association? Mol Neurobiol 2016; 54:2234-2240. [DOI: 10.1007/s12035-016-9815-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
|
48
|
Becirovic E, Böhm S, Nguyen ONP, Riedmayr LM, Koch MA, Schulze E, Kohl S, Borsch O, Santos-Ferreira T, Ader M, Michalakis S, Biel M. In Vivo Analysis of Disease-Associated Point Mutations Unveils Profound Differences in mRNA Splicing of Peripherin-2 in Rod and Cone Photoreceptors. PLoS Genet 2016; 12:e1005811. [PMID: 26796962 PMCID: PMC4722987 DOI: 10.1371/journal.pgen.1005811] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/22/2015] [Indexed: 01/24/2023] Open
Abstract
Point mutations in peripherin-2 (PRPH2) are associated with severe retinal degenerative disorders affecting rod and/or cone photoreceptors. Various disease-causing mutations have been identified, but the exact contribution of a given mutation to the clinical phenotype remains unclear. Exonic point mutations are usually assumed to alter single amino acids, thereby influencing specific protein characteristics; however, they can also affect mRNA splicing. To examine the effects of distinct PRPH2 point mutations on mRNA splicing and protein expression in vivo, we designed PRPH2 minigenes containing the three coding exons and relevant intronic regions of human PRPH2. Minigenes carrying wild type PRPH2 or PRPH2 exon 2 mutations associated with rod or cone disorders were expressed in murine photoreceptors using recombinant adeno-associated virus (rAAV) vectors. We detect three PRPH2 splice isoforms in rods and cones: correctly spliced, intron 1 retention, and unspliced. In addition, we show that only the correctly spliced isoform results in detectable protein expression. Surprisingly, compared to rods, differential splicing leads to lower expression of correctly spliced and higher expression of unspliced PRPH2 in cones. These results were confirmed in qRT-PCR experiments from FAC-sorted murine rods and cones. Strikingly, three out of five cone disease-causing PRPH2 mutations profoundly enhanced correct splicing of PRPH2, which correlated with strong upregulation of mutant PRPH2 protein expression in cones. By contrast, four out of six PRPH2 mutants associated with rod disorders gave rise to a reduced PRPH2 protein expression via different mechanisms. These mechanisms include aberrant mRNA splicing, protein mislocalization, and protein degradation. Our data suggest that upregulation of PRPH2 levels in combination with defects in the PRPH2 function caused by the mutation might be an important mechanism leading to cone degeneration. By contrast, the pathology of rod-specific PRPH2 mutations is rather characterized by PRPH2 downregulation and impaired protein localization. Photoreceptors are the light sensing cells of the retina and consist of dim light and night vision mediating rods and daylight and color vision mediating cones. PRPH2 is crucial for the structural and functional integrity of photoreceptors. Some point mutations in PRPH2 lead to degeneration of rods, whereas others only affect cones. We examined the potential effects of 11 disease-linked PRPH2 mutations on mRNA splicing and protein expression in vivo. For this, we expressed six PRPH2 mutants associated with degeneration of rods in murine rods and five additional mutants linked to cone diseases in murine cones. We demonstrate that different splicing efficiencies of PRPH2 lead to its high expression in rods and to its low expression in cones. Furthermore, we show that the majority of PRPH2 mutants associated with cone disorders results in an upregulation of PRPH2 expression in cones by increasing the mRNA splicing efficiency. By contrast, the majority of PRPH2 mutants associated with rod diseases leads to a downregulation of PRPH2 expression in rods via different mechanisms including aberrant mRNA splicing. These results provide novel insights into the pathobiology of mRNA splicing in photoreceptors and might contribute to explain the differential penetrance of PRPH2 mutants in rods and cones.
Collapse
Affiliation(s)
- Elvir Becirovic
- Munich Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, München, Germany
- Department of Pharmacy–Center for Drug Research, Ludwig-Maximilians-Universität München, München, Germany
- * E-mail: (EB); (MB)
| | - Sybille Böhm
- Munich Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, München, Germany
- Department of Pharmacy–Center for Drug Research, Ludwig-Maximilians-Universität München, München, Germany
| | - Ong Nam Phuong Nguyen
- Munich Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, München, Germany
- Department of Pharmacy–Center for Drug Research, Ludwig-Maximilians-Universität München, München, Germany
| | - Lisa Maria Riedmayr
- Munich Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, München, Germany
- Department of Pharmacy–Center for Drug Research, Ludwig-Maximilians-Universität München, München, Germany
| | - Mirja Annika Koch
- Munich Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, München, Germany
- Department of Pharmacy–Center for Drug Research, Ludwig-Maximilians-Universität München, München, Germany
| | - Elisabeth Schulze
- Munich Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, München, Germany
- Department of Pharmacy–Center for Drug Research, Ludwig-Maximilians-Universität München, München, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Oliver Borsch
- Technische Universität Dresden, CRTD/DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Dresden, Germany
| | - Tiago Santos-Ferreira
- Technische Universität Dresden, CRTD/DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Dresden, Germany
| | - Marius Ader
- Technische Universität Dresden, CRTD/DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Dresden, Germany
| | - Stylianos Michalakis
- Munich Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, München, Germany
- Department of Pharmacy–Center for Drug Research, Ludwig-Maximilians-Universität München, München, Germany
| | - Martin Biel
- Munich Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, München, Germany
- Department of Pharmacy–Center for Drug Research, Ludwig-Maximilians-Universität München, München, Germany
- * E-mail: (EB); (MB)
| |
Collapse
|
49
|
Transcriptome-wide identification and study of cancer-specific splicing events across multiple tumors. Oncotarget 2016; 6:6825-39. [PMID: 25749525 PMCID: PMC4466652 DOI: 10.18632/oncotarget.3145] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/12/2015] [Indexed: 11/25/2022] Open
Abstract
Dysregulation of alternative splicing (AS) is one of the molecular hallmarks of cancer, with splicing alteration of numerous genes in cancer patients. However, studying splicing mis-regulation in cancer is complicated by the large noise generated from tissue-specific splicing. To obtain a global picture of cancer-specific splicing, we analyzed transcriptome sequencing data from 1149 patients in The Cancer Genome Atlas project, producing a core set of AS events significantly altered across multiple cancer types. These cancer-specific AS events are highly conserved, are more likely to maintain protein reading frame, and mainly function in cell cycle, cell adhesion/migration, and insulin signaling pathways. Furthermore, these events can serve as new molecular biomarkers to distinguish cancer from normal tissues, to separate cancer subtypes, and to predict patient survival. We also found that most genes whose expression is closely associated with cancer-specific splicing are key regulators of the cell cycle. This study uncovers a common set of cancer-specific AS events altered across multiple cancers, providing mechanistic insight into how splicing is mis-regulated in cancers.
Collapse
|
50
|
Claverie-Martin F, Gonzalez-Paredes FJ, Ramos-Trujillo E. Splicing defects caused by exonic mutations in PKD1 as a new mechanism of pathogenesis in autosomal dominant polycystic kidney disease. RNA Biol 2016; 12:369-74. [PMID: 25757501 DOI: 10.1080/15476286.2015.1014291] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The correct splicing of precursor-mRNA depends on the actual splice sites plus exonic and intronic regulatory elements recognized by the splicing machinery. Surprisingly, an increasing number of examples reveal that exonic mutations disrupt the binding of splicing factors to these sequences or generate new splice sites or regulatory elements, causing disease. This contradicts the general assumption that missense mutations disrupt protein function and that synonymous mutations are merely polymorphisms. Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited disorder caused mainly by mutations in the PKD1 gene. Recently, we analyzed a substantial number of PKD1 missense or synonymous mutations to further characterize their consequences on pre-mRNA splicing. Our results showed that one missense and 2 synonymous mutations induce significant defects in pre-mRNA splicing. Thus, it appears that aberrant splicing as a result of exonic mutations is a previously unrecognized cause of ADPKD.
Collapse
Affiliation(s)
- Felix Claverie-Martin
- a Unidad de Investigacion; Hospital Nuestra Señora de Candelaria ; Santa Cruz de Tenerife , Spain
| | | | | |
Collapse
|