1
|
Glyakina AV, Suvorina MY, Dovidchenko NV, Katina NS, Surin AK, Galzitskaya OV. Exploring Compactness and Dynamics of Apomyoglobin. Proteins 2025; 93:997-1008. [PMID: 39713842 DOI: 10.1002/prot.26786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) approach has become a valuable analytical complement to traditional methods. HDX-MS allows the identification of dynamic surfaces in proteins. We have shown that the introduction of various mutations into the amino acid sequence of whale apomyoglobin (apoMb) leads to a change in the number of exchangeable hydrogen atoms, which is associated with a change in its compactness in the native-like condition. Thus, amino acid substitutions V10A, A15S, P120G, and M131A result in an increase in the number of exchangeable hydrogen atoms at the native-like condition, while the mutant form A144S leads to a decrease in the number of exchangeable hydrogen atoms. This may be due to a decrease and increase in the compactness of apoMb structure compared to the wild-type apoMb, respectively. The L9F and L9E mutations did not affect the compactness of the molecule compared to the wild type. We have demonstrated that V10A and M131A substitutions lead to the maximum and large increase correspondently in the average number of exchangeable hydrogen atoms for deuterium, since these substitutions lead to the loss of contacts between important parts of myoglobin structure: helices A, G, and H, which are structured at the early stage of folding.
Collapse
Affiliation(s)
- Anna V Glyakina
- Institute of Mathematical Problems of Biology, Russian Academy of Sciences, the Branch of Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Mariya Y Suvorina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Nikita V Dovidchenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | - Natalya S Katina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - Alexey K Surin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
- State Research Center for Applied Microbiology and Biotechnology, Russia
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
2
|
Kasberg W, Luong P, Hanna MG, Minushkin K, Tsao A, Shankar R, Block S, Audhya A. The Sar1 GTPase is dispensable for COPII-dependent cargo export from the ER. Cell Rep 2023; 42:112635. [PMID: 37300835 PMCID: PMC10592460 DOI: 10.1016/j.celrep.2023.112635] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Coat protein complex II (COPII) plays an integral role in the packaging of secretory cargoes within membrane-enclosed transport carriers that leave the endoplasmic reticulum (ER) from discrete subdomains. Lipid bilayer remodeling necessary for this process is driven initially by membrane penetration mediated by the Sar1 GTPase and further stabilized by assembly of a multilayered complex of several COPII proteins. However, the relative contributions of these distinct factors to transport carrier formation and protein trafficking remain unclear. Here, we demonstrate that anterograde cargo transport from the ER continues in the absence of Sar1, although the efficiency of this process is dramatically reduced. Specifically, secretory cargoes are retained nearly five times longer at ER subdomains when Sar1 is depleted, but they ultimately remain capable of being translocated to the perinuclear region of cells. Taken together, our findings highlight alternative mechanisms by which COPII promotes transport carrier biogenesis.
Collapse
Affiliation(s)
- William Kasberg
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Peter Luong
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Michael G Hanna
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Kayla Minushkin
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Annabelle Tsao
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Raakhee Shankar
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Samuel Block
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
| |
Collapse
|
3
|
Xie B, Guillem C, Date SS, Cohen CI, Jung C, Kendall AK, Best JT, Graham TR, Jackson LP. An interaction between β'-COP and the ArfGAP, Glo3, maintains post-Golgi cargo recycling. J Cell Biol 2023; 222:e202008061. [PMID: 36811888 PMCID: PMC9960064 DOI: 10.1083/jcb.202008061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 07/14/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
The essential COPI coat mediates retrieval of transmembrane proteins at the Golgi and endosomes following recruitment by the small GTPase, Arf1. ArfGAP proteins regulate COPI coats, but molecular details for COPI recognition by ArfGAPs remain elusive. Biochemical and biophysical data reveal how β'-COP propeller domains directly engage the yeast ArfGAP, Glo3, with a low micromolar binding affinity. Calorimetry data demonstrate that both β'-COP propeller domains are required to bind Glo3. An acidic patch on β'-COP (D437/D450) interacts with Glo3 lysine residues located within the BoCCS (binding of coatomer, cargo, and SNAREs) region. Targeted point mutations in either Glo3 BoCCS or β'-COP abrogate the interaction in vitro, and loss of the β'-COP/Glo3 interaction drives Ste2 missorting to the vacuole and aberrant Golgi morphology in budding yeast. These data suggest that cells require the β'-COP/Glo3 interaction for cargo recycling via endosomes and the TGN, where β'-COP serves as a molecular platform to coordinate binding to multiple proteins, including Glo3, Arf1, and the COPI F-subcomplex.
Collapse
Affiliation(s)
- Boyang Xie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Clara Guillem
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Swapneeta S. Date
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Cameron I. Cohen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Christian Jung
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Amy K. Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Jordan T. Best
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Todd R. Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Lauren P. Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
4
|
Mehrani A, Stagg SM. Probing intracellular vesicle trafficking and membrane remodelling by cryo-EM. J Struct Biol 2022; 214:107836. [PMID: 35101600 PMCID: PMC8923612 DOI: 10.1016/j.jsb.2022.107836] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 11/25/2022]
Abstract
Protein transport between the membranous compartments of the eukaryotic cells is mediated by the constant fission and fusion of the membrane-bounded vesicles from a donor to an acceptor membrane. While there are many membrane remodelling complexes in eukaryotes, COPII, COPI, and clathrin-coated vesicles are the three principal classes of coat protein complexes that participate in vesicle trafficking in the endocytic and secretory pathways. These vesicle-coat proteins perform two key functions: deforming lipid bilayers into vesicles and encasing selective cargoes. The three trafficking complexes share some commonalities in their structural features but differ in their coat structures, mechanisms of cargo sorting, vesicle formation, and scission. While the structures of many of the proteins involved in vesicle formation have been determined in isolation by X-ray crystallography, elucidating the proteins' structures together with the membrane is better suited for cryogenic electron microscopy (cryo-EM). In recent years, advances in cryo-EM have led to solving the structures and mechanisms of several vesicle trafficking complexes and associated proteins.
Collapse
Affiliation(s)
- Atousa Mehrani
- Department of Chemistry and Biochemistry, Florida State University
| | - Scott M. Stagg
- Department of Biological Sciences, Florida State University,Institute of Molecular Biophysics, Florida State University
| |
Collapse
|
5
|
Hutchings J, Stancheva VG, Brown NR, Cheung ACM, Miller EA, Zanetti G. Structure of the complete, membrane-assembled COPII coat reveals a complex interaction network. Nat Commun 2021; 12:2034. [PMID: 33795673 PMCID: PMC8016994 DOI: 10.1038/s41467-021-22110-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/12/2021] [Indexed: 01/02/2023] Open
Abstract
COPII mediates Endoplasmic Reticulum to Golgi trafficking of thousands of cargoes. Five essential proteins assemble into a two-layer architecture, with the inner layer thought to regulate coat assembly and cargo recruitment, and the outer coat forming cages assumed to scaffold membrane curvature. Here we visualise the complete, membrane-assembled COPII coat by cryo-electron tomography and subtomogram averaging, revealing the full network of interactions within and between coat layers. We demonstrate the physiological importance of these interactions using genetic and biochemical approaches. Mutagenesis reveals that the inner coat alone can provide membrane remodelling function, with organisational input from the outer coat. These functional roles for the inner and outer coats significantly move away from the current paradigm, which posits membrane curvature derives primarily from the outer coat. We suggest these interactions collectively contribute to coat organisation and membrane curvature, providing a structural framework to understand regulatory mechanisms of COPII trafficking and secretion.
Collapse
Affiliation(s)
- Joshua Hutchings
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Nick R Brown
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
- The Francis Crick Institute, London, UK
| | - Alan C M Cheung
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
- School of Biochemistry, University of Bristol, Bristol, UK
| | | | - Giulia Zanetti
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK.
| |
Collapse
|
6
|
Gomez-Navarro N, Melero A, Li XH, Boulanger J, Kukulski W, Miller EA. Cargo crowding contributes to sorting stringency in COPII vesicles. J Cell Biol 2021; 219:151777. [PMID: 32406500 PMCID: PMC7300426 DOI: 10.1083/jcb.201806038] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 03/11/2020] [Accepted: 04/24/2020] [Indexed: 02/05/2023] Open
Abstract
Accurate maintenance of organelle identity in the secretory pathway relies on retention and retrieval of resident proteins. In the endoplasmic reticulum (ER), secretory proteins are packaged into COPII vesicles that largely exclude ER residents and misfolded proteins by mechanisms that remain unresolved. Here we combined biochemistry and genetics with correlative light and electron microscopy (CLEM) to explore how selectivity is achieved. Our data suggest that vesicle occupancy contributes to ER retention: in the absence of abundant cargo, nonspecific bulk flow increases. We demonstrate that ER leakage is influenced by vesicle size and cargo occupancy: overexpressing an inert cargo protein or reducing vesicle size restores sorting stringency. We propose that cargo recruitment into vesicles creates a crowded lumen that drives selectivity. Retention of ER residents thus derives in part from the biophysical process of cargo enrichment into a constrained spherical membrane-bound carrier.
Collapse
Affiliation(s)
| | - Alejandro Melero
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Xiao-Han Li
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jérôme Boulanger
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Wanda Kukulski
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
7
|
Stancheva VG, Li XH, Hutchings J, Gomez-Navarro N, Santhanam B, Babu MM, Zanetti G, Miller EA. Combinatorial multivalent interactions drive cooperative assembly of the COPII coat. J Cell Biol 2020; 219:e202007135. [PMID: 32997735 PMCID: PMC7594496 DOI: 10.1083/jcb.202007135] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
Protein secretion is initiated at the endoplasmic reticulum by the COPII coat, which self-assembles to form vesicles. Here, we examine the mechanisms by which a cargo-bound inner coat layer recruits and is organized by an outer scaffolding layer to drive local assembly of a stable structure rigid enough to enforce membrane curvature. An intrinsically disordered region in the outer coat protein, Sec31, drives binding with an inner coat layer via multiple distinct interfaces, including a newly defined charge-based interaction. These interfaces combinatorially reinforce each other, suggesting coat oligomerization is driven by the cumulative effects of multivalent interactions. The Sec31 disordered region could be replaced by evolutionarily distant sequences, suggesting plasticity in the binding interfaces. Such a multimodal assembly platform provides an explanation for how cells build a powerful yet transient scaffold to direct vesicle traffic.
Collapse
Affiliation(s)
| | - Xiao-Han Li
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Joshua Hutchings
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | | | | | | | - Giulia Zanetti
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | | |
Collapse
|
8
|
Dobbs JM, Jenkins ML, Burke JE. Escherichia coli and Sf9 Contaminant Databases to Increase Efficiency of Tandem Mass Spectrometry Peptide Identification in Structural Mass Spectrometry Experiments. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2202-2209. [PMID: 32869988 DOI: 10.1021/jasms.0c00283] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Filtering of nonspecifically binding contaminant proteins from affinity purification mass spectrometry (AP-MS) data is a well-established strategy to improve statistical confidence in identified proteins. The CRAPome (contaminant repository for affinity purification) describes the contaminating background content present in many purification strategies. However, full contaminant lists for nickel-nitrilotriacetic acid (NiNTA) and glutathione S-transferase (GST) affinity matrices are lacking. Similarly, no Spodoptera frugiperda (Sf9) contaminants are available, and only the FLAG-purified contaminants are described for Escherichia coli. For MS experiments that use recombinant protein, such as structural mass spectrometry experiments (hydrogen-deuterium exchange mass spectrometry (HDX-MS), chemical cross-linking, and radical foot-printing), failing to include these contaminants in the search database during the initial tandem MS (MS/MS) identification stage can result in complications in peptide identification. We have created contaminant FASTA databases for Sf9 and E. coli NiNTA or GST purification strategies and show that the use of these databases can effectively improve HDX-MS protein coverage, fragment count, and confidence in peptide identification. This approach provides a robust strategy toward the design of contaminant databases for any purification approach that will expand the complexity of systems able to be interrogated by HDX-MS.
Collapse
Affiliation(s)
- Joseph M Dobbs
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
9
|
Petelski AA, Slavov N. Analyzing Ribosome Remodeling in Health and Disease. Proteomics 2020; 20:e2000039. [PMID: 32820594 PMCID: PMC7501214 DOI: 10.1002/pmic.202000039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/01/2020] [Indexed: 12/24/2022]
Abstract
Increasing evidence suggests that ribosomes actively regulate protein synthesis. However, much of this evidence is indirect, leaving this layer of gene regulation largely unexplored, in part due to methodological limitations. Indeed, evidence is reviewed demonstrating that commonly used methods, such as transcriptomics, are inadequate because the variability in mRNAs coding for ribosomal proteins (RP) does not necessarily correspond to RP variability. Thus protein remodeling of ribosomes should be investigated by methods that allow direct quantification of RPs, ideally of isolated ribosomes. Such methods are reviewed, focusing on mass spectrometry and emphasizing method-specific biases and approaches to control these biases. It is argued that using multiple complementary methods can help reduce the danger of interpreting reproducible systematic biases as evidence for ribosome remodeling.
Collapse
Affiliation(s)
- Aleksandra A Petelski
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
- Barnett Institute, Northeastern University, Boston, MA, 02115, USA
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Nikolai Slavov
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
- Barnett Institute, Northeastern University, Boston, MA, 02115, USA
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
10
|
Peotter J, Kasberg W, Pustova I, Audhya A. COPII-mediated trafficking at the ER/ERGIC interface. Traffic 2019; 20:491-503. [PMID: 31059169 PMCID: PMC6640837 DOI: 10.1111/tra.12654] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 12/16/2022]
Abstract
Coat proteins play multiple roles in the life cycle of a membrane-bound transport intermediate, functioning in lipid bilayer remodeling, cargo selection and targeting to an acceptor compartment. The Coat Protein complex II (COPII) coat is known to act in each of these capacities, but recent work highlights the necessity for numerous accessory factors at all stages of transport carrier existence. Here, we review recent findings that highlight the roles of COPII and its regulators in the biogenesis of tubular COPII-coated carriers in mammalian cells that enable cargo transport between the endoplasmic reticulum and ER-Golgi intermediate compartments, the first step in a series of trafficking events that ultimately allows for the distribution of biosynthetic secretory cargoes throughout the entire endomembrane system.
Collapse
Affiliation(s)
- Jennifer Peotter
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - William Kasberg
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Iryna Pustova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
11
|
Hudgens JW, Gallagher ES, Karageorgos I, Anderson KW, Filliben JJ, Huang RYC, Chen G, Bou-Assaf GM, Espada A, Chalmers MJ, Harguindey E, Zhang HM, Walters BT, Zhang J, Venable J, Steckler C, Park I, Brock A, Lu X, Pandey R, Chandramohan A, Anand GS, Nirudodhi SN, Sperry JB, Rouse JC, Carroll JA, Rand KD, Leurs U, Weis DD, Al-Naqshabandi MA, Hageman TS, Deredge D, Wintrode PL, Papanastasiou M, Lambris JD, Li S, Urata S. Interlaboratory Comparison of Hydrogen-Deuterium Exchange Mass Spectrometry Measurements of the Fab Fragment of NISTmAb. Anal Chem 2019; 91:7336-7345. [PMID: 31045344 PMCID: PMC6745711 DOI: 10.1021/acs.analchem.9b01100] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is an established, powerful tool for investigating protein-ligand interactions, protein folding, and protein dynamics. However, HDX-MS is still an emergent tool for quality control of biopharmaceuticals and for establishing dynamic similarity between a biosimilar and an innovator therapeutic. Because industry will conduct quality control and similarity measurements over a product lifetime and in multiple locations, an understanding of HDX-MS reproducibility is critical. To determine the reproducibility of continuous-labeling, bottom-up HDX-MS measurements, the present interlaboratory comparison project evaluated deuterium uptake data from the Fab fragment of NISTmAb reference material (PDB: 5K8A ) from 15 laboratories. Laboratories reported ∼89 800 centroid measurements for 430 proteolytic peptide sequences of the Fab fragment (∼78 900 centroids), giving ∼100% coverage, and ∼10 900 centroid measurements for 77 peptide sequences of the Fc fragment. Nearly half of peptide sequences are unique to the reporting laboratory, and only two sequences are reported by all laboratories. The majority of the laboratories (87%) exhibited centroid mass laboratory repeatability precisions of ⟨ sLab⟩ ≤ (0.15 ± 0.01) Da (1σx̅). All laboratories achieved ⟨sLab⟩ ≤ 0.4 Da. For immersions of protein at THDX = (3.6 to 25) °C and for D2O exchange times of tHDX = (30 s to 4 h) the reproducibility of back-exchange corrected, deuterium uptake measurements for the 15 laboratories is σreproducibility15 Laboratories( tHDX) = (9.0 ± 0.9) % (1σ). A nine laboratory cohort that immersed samples at THDX = 25 °C exhibited reproducibility of σreproducibility25C cohort( tHDX) = (6.5 ± 0.6) % for back-exchange corrected, deuterium uptake measurements.
Collapse
Affiliation(s)
- Jeffrey W Hudgens
- Bioprocess Measurement Group, Biomolecular Measurements Division , National Institute of Standards and Technology , Rockville , Maryland 20850 , United States
- Institute for Bioscience and Biotechnology Research , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Elyssia S Gallagher
- Bioprocess Measurement Group, Biomolecular Measurements Division , National Institute of Standards and Technology , Rockville , Maryland 20850 , United States
- Institute for Bioscience and Biotechnology Research , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Ioannis Karageorgos
- Bioprocess Measurement Group, Biomolecular Measurements Division , National Institute of Standards and Technology , Rockville , Maryland 20850 , United States
- Institute for Bioscience and Biotechnology Research , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Kyle W Anderson
- Bioprocess Measurement Group, Biomolecular Measurements Division , National Institute of Standards and Technology , Rockville , Maryland 20850 , United States
- Institute for Bioscience and Biotechnology Research , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - James J Filliben
- Statistical Engineering Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| | - Richard Y-C Huang
- Pharmaceutical Candidate Optimization, Research and Development , Bristol-Myers Squibb Company , Princeton , New Jersey 08540 , United States
| | - Guodong Chen
- Pharmaceutical Candidate Optimization, Research and Development , Bristol-Myers Squibb Company , Princeton , New Jersey 08540 , United States
| | - George M Bou-Assaf
- Analytical Development , Biogen Inc. , 225 Binney Street , Cambridge , Massachusetts 02142 , United States
| | - Alfonso Espada
- Centro de Investigación Lilly S.A. , 28108 Alcobendas , Spain
| | - Michael J Chalmers
- Lilly Research Laboratories , Eli Lilly and Company , Indianapolis , Indiana 46285 , United States
| | | | - Hui-Min Zhang
- Protein Analytical Chemistry , Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Benjamin T Walters
- Protein Analytical Chemistry , Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Jennifer Zhang
- Protein Analytical Chemistry , Genentech, Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - John Venable
- Genomics Institute of the Novartis Research Foundation , 10675 John Jay Hopkins Drive , San Diego , California 92121 , United States
| | - Caitlin Steckler
- Genomics Institute of the Novartis Research Foundation , 10675 John Jay Hopkins Drive , San Diego , California 92121 , United States
- Joint Center for Structural Genomics , La Jolla , California 92037 , United States
| | - Inhee Park
- Genomics Institute of the Novartis Research Foundation , 10675 John Jay Hopkins Drive , San Diego , California 92121 , United States
| | - Ansgar Brock
- Genomics Institute of the Novartis Research Foundation , 10675 John Jay Hopkins Drive , San Diego , California 92121 , United States
| | - Xiaojun Lu
- MedImmune LLC , One MedImmune Way , Gaithersburg , Maryland 20878 , United States
| | - Ratnesh Pandey
- MedImmune LLC , One MedImmune Way , Gaithersburg , Maryland 20878 , United States
| | - Arun Chandramohan
- Department of Biological Sciences , National University of Singapore , 14, Science Drive 4 , Singapore 117543
| | - Ganesh Srinivasan Anand
- Department of Biological Sciences , National University of Singapore , 14, Science Drive 4 , Singapore 117543
| | - Sasidhar N Nirudodhi
- Vaccine R&D , Pfizer Inc. , 401 N Middletown Rd , Pearl River, New York 10965 , United States
| | - Justin B Sperry
- Analytical R&D , Pfizer Inc. , 700 Chesterfield Parkway West , Chesterfield , Missouri 63017 , United States
| | - Jason C Rouse
- Analytical R&D , Pfizer Inc. , 1 Burtt Road , Andover , Massachusetts 01810 , United States
| | - James A Carroll
- Analytical R&D , Pfizer Inc. , 700 Chesterfield Parkway West , Chesterfield , Missouri 63017 , United States
| | - Kasper D Rand
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Ulrike Leurs
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - David D Weis
- Department of Chemistry , University of Kansas , 1567 Irving Hill Road , Lawrence , Kansas 66045 , United States
| | - Mohammed A Al-Naqshabandi
- Department of Chemistry , University of Kansas , 1567 Irving Hill Road , Lawrence , Kansas 66045 , United States
- Department of General Science , Soran University , Kawa Street , Soran , Kurdistan Region, Iraq
| | - Tyler S Hageman
- Department of Chemistry , University of Kansas , 1567 Irving Hill Road , Lawrence , Kansas 66045 , United States
| | - Daniel Deredge
- Department of Pharmaceutical Sciences , University of Maryland, Baltimore, School of Pharmacy , 20 North Pine Street , Baltimore , Maryland 21201 , United States
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences , University of Maryland, Baltimore, School of Pharmacy , 20 North Pine Street , Baltimore , Maryland 21201 , United States
| | - Malvina Papanastasiou
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, 402 Stellar-Chance Laboratories , University of Pennsylvania , 422 Curie Boulevard , Philadelphia , Pennsylvania 19104 , United States
| | - John D Lambris
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, 402 Stellar-Chance Laboratories , University of Pennsylvania , 422 Curie Boulevard , Philadelphia , Pennsylvania 19104 , United States
| | - Sheng Li
- Department of Medicine , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Sarah Urata
- Department of Medicine , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| |
Collapse
|
12
|
Abstract
The name “eukaryote” is derived from Greek, meaning “true kernel”, and describes the domain of organisms whose cells have a nucleus. The nucleus is thus the defining feature of eukaryotes and distinguishes them from prokaryotes (Archaea and Bacteria), whose cells lack nuclei. Despite this, we discuss the intriguing possibility that organisms on the path from the first eukaryotic common ancestor to the last common ancestor of all eukaryotes did not possess a nucleus at all—at least not in a form we would recognize today—and that the nucleus in fact arrived relatively late in the evolution of eukaryotes. The clues to this alternative evolutionary path lie, most of all, in recent discoveries concerning the structure of the nuclear pore complex. We discuss the evidence for such a possibility and how this impacts our views of eukaryote origins and how eukaryotes have diversified subsequent to their last common ancestor.
Collapse
Affiliation(s)
- Mark C Field
- School of Life Sciences, University of Dundee, Dundee, UK.,Biology Centre, Institute of Parasitology, Faculty of Sciences, University of South Bohemia, Ceske Budejovice, Czech Republic
| | | |
Collapse
|
13
|
Benhaim M, Lee KK, Guttman M. Tracking Higher Order Protein Structure by Hydrogen-Deuterium Exchange Mass Spectrometry. Protein Pept Lett 2019; 26:16-26. [PMID: 30543159 PMCID: PMC6386625 DOI: 10.2174/0929866526666181212165037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/30/2018] [Accepted: 11/17/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Structural biology has provided a fundamental understanding of protein structure and mechanistic insight into their function. However, high-resolution structures alone are insufficient for a complete understanding of protein behavior. Higher energy conformations, conformational changes, and subtle structural fluctuations that underlie the proper function of proteins are often difficult to probe using traditional structural approaches. Hydrogen/Deuterium Exchange with Mass Spectrometry (HDX-MS) provides a way to probe the accessibility of backbone amide protons under native conditions, which reports on local structural dynamics of solution protein structure that can be used to track complex structural rearrangements that occur in the course of a protein's function. CONCLUSION In the last 20 years the advances in labeling techniques, sample preparation, instrumentation, and data analysis have enabled HDX to gain insights into very complex biological systems. Analysis of challenging targets such as membrane protein complexes is now feasible and the field is paving the way to the analysis of more and more complex systems.
Collapse
Affiliation(s)
- Mark Benhaim
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
14
|
Paraan M, Bhattacharya N, Uversky VN, Stagg SM. Flexibility of the Sec13/31 cage is influenced by the Sec31 C-terminal disordered domain. J Struct Biol 2018; 204:250-260. [PMID: 30172710 PMCID: PMC6188663 DOI: 10.1016/j.jsb.2018.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 01/30/2023]
Abstract
In COPII mediated vesicle formation, Sec13/Sec31 heterotetramers play a role in organizing the membranes into a spherical vesicle. There they oligomerize into a cage that interacts with the other COPII proteins to direct vesicle formation and concentrate cargo into a bud. In this role they must be flexible to accommodate different sizes and shapes of cargo, but also have elements that provide rigidity to help deform the membrane. Here we characterize the influence the C-terminal disordered region of Sec31 has on cage flexibility and rigidity. After deleting this region (residues 820-1220), we characterized Sec13/Sec31ΔC heterotetramers biophysically and structurally through cryo-EM. Our results show that Sec13/31ΔC self-assembles into canonical cuboctahedral cages in vitro at buffer conditions similar to wild type. The distribution of cage sizes indicated that unlike the wild type, Sec13/31ΔC cages have a more homogeneous geometry. However, the structure of cuboctahedrons exhibited more conformational heterogeneity than wild type. Through localized reconstruction of cage vertices and molecular dynamics flexible fitting we found a new hinge for the flexing of Sec31 β-propeller domain and more flexibility of the previously known hinge. Together, these results show that the C-terminal region of Sec31 regulates the flexing of other domains such that flexibility and rigidity are not compromised during transport of large and/or asymmetric cargo.
Collapse
Affiliation(s)
- Mohammadreza Paraan
- Institute of Molecular Biophysics, 91 Chieftan Way, Florida State University, Tallahassee, FL 32306, USA
| | - Nilakshee Bhattacharya
- Institute of Molecular Biophysics, 91 Chieftan Way, Florida State University, Tallahassee, FL 32306, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Scott M Stagg
- Institute of Molecular Biophysics, 91 Chieftan Way, Florida State University, Tallahassee, FL 32306, USA; Department of Chemistry and Biochemistry, 95 Chieftain Way, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
15
|
Shibata H. Adaptor functions of the Ca 2+-binding protein ALG-2 in protein transport from the endoplasmic reticulum. Biosci Biotechnol Biochem 2018; 83:20-32. [PMID: 30259798 DOI: 10.1080/09168451.2018.1525274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apoptosis-linked gene 2 (ALG-2) is a Ca2+-binding protein with five repetitive EF-hand motifs, named penta-EF-hand (PEF) domain. It interacts with various target proteins and functions as a Ca2+-dependent adaptor in diverse cellular activities. In the cytoplasm, ALG-2 is predominantly localized to a specialized region of the endoplasmic reticulum (ER), called the ER exit site (ERES), through its interaction with Sec31A. Sec31A is an outer coat protein of coat protein complex II (COPII) and is recruited from the cytosol to the ERES to form COPII-coated transport vesicles. I will overview current knowledge of the physiological significance of ALG-2 in regulating ERES localization of Sec31A and the following adaptor functions of ALG-2, including bridging Sec31A and annexin A11 to stabilize Sec31A at the ERES, polymerizing the Trk-fused gene (TFG) product, and linking MAPK1-interacting and spindle stabilizing (MISS)-like (MISSL) and microtubule-associated protein 1B (MAP1B) to promote anterograde transport from the ER.
Collapse
Affiliation(s)
- Hideki Shibata
- a Department of Applied Biosciences, Graduate School of Bioagricultural Sciences , Nagoya University , Chikusa-ku , Nagoya , Japan
| |
Collapse
|
16
|
From the resolution revolution to evolution: structural insights into the evolutionary relationships between vesicle coats and the nuclear pore. Curr Opin Struct Biol 2018; 52:32-40. [PMID: 30103204 DOI: 10.1016/j.sbi.2018.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 11/22/2022]
Abstract
Nuclear pores and coated vesicles are elaborate multi-component protein complexes that oligomerize on membranes, and stabilize or induce membrane curvature. Their components, nucleoporins and coat proteins, respectively, share similar structural folds and some principles of how they interact with membranes. The protocoatomer hypothesis postulates that this is due to divergent evolution from a common ancestor. It therefore has been suggested that nucleoporins and coat proteins have similar higher order architectures. Here, we review recent work that relied on technical advances in cryo-electron microscopy and integrative structural biology to take a fresh look on how these proteins form membrane coats in situ. We discuss the relationship between the architectures of nuclear pores and coated vesicles, and their evolutionary origins.
Collapse
|
17
|
McCaughey J, Stephens DJ. COPII-dependent ER export in animal cells: adaptation and control for diverse cargo. Histochem Cell Biol 2018; 150:119-131. [PMID: 29916038 PMCID: PMC6096569 DOI: 10.1007/s00418-018-1689-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2018] [Indexed: 12/31/2022]
Abstract
The export of newly synthesized proteins from the endoplasmic reticulum is fundamental to the ongoing maintenance of cell and tissue structure and function. After co-translational translocation into the ER, proteins destined for downstream intracellular compartments or secretion from the cell are sorted and packaged into transport vesicles by the COPII coat protein complex. The fundamental discovery and characterization of the pathway has now been augmented by a greater understanding of the role of COPII in diverse aspects of cell function. We now have a deep understanding of how COPII contributes to the trafficking of diverse cargoes including extracellular matrix molecules, developmental signalling proteins, and key metabolic factors such as lipoproteins. Structural and functional studies have shown that the COPII coat is both highly flexible and subject to multiple modes of regulation. This has led to new discoveries defining roles of COPII in development, autophagy, and tissue organization. Many of these newly emerging features of the canonical COPII pathway are placed in a context of procollagen secretion because of the fundamental interest in how a coat complex that typically generates 80-nm transport vesicles can package a cargo reported to be over 300 nm. Here we review the current understanding of COPII and assess the current consensus on its role in packaging diverse cargo proteins.
Collapse
Affiliation(s)
- Janine McCaughey
- Cell Biology Laboratories, School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
18
|
Hanna MG, Peotter JL, Frankel EB, Audhya A. Membrane Transport at an Organelle Interface in the Early Secretory Pathway: Take Your Coat Off and Stay a While: Evolution of the metazoan early secretory pathway. Bioessays 2018; 40:e1800004. [PMID: 29741780 PMCID: PMC6166410 DOI: 10.1002/bies.201800004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Indexed: 01/25/2023]
Abstract
Most metazoan organisms have evolved a mildly acidified and calcium diminished sorting hub in the early secretory pathway commonly referred to as the Endoplasmic Reticulum-Golgi intermediate compartment (ERGIC). These membranous vesicular-tubular clusters are found tightly juxtaposed to ER subdomains that are competent for the production of COPII-coated transport carriers. In contrast to many unicellular systems, metazoan COPII carriers largely transit just a few hundred nanometers to the ERGIC, prior to COPI-dependent transport on to the cis-Golgi. The mechanisms underlying formation and maintenance of ERGIC membranes are poorly defined. However, recent evidence suggests an important role for Trk-fused gene (TFG) in regulating the integrity of the ER/ERGIC interface. Moreover, in the absence of cytoskeletal elements to scaffold tracks on which COPII carriers might move, TFG appears to promote anterograde cargo transport by locally tethering COPII carriers adjacent to ERGIC membranes. This action, regulated in part by the intrinsically disordered domain of TFG, provides sufficient time for COPII coat disassembly prior to heterotypic membrane fusion and cargo delivery to the ERGIC.
Collapse
Affiliation(s)
- Michael G. Hanna
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health 440 Henry Mall, Madison, WI 53706, USA,
| | - Jennifer L. Peotter
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health 440 Henry Mall, Madison, WI 53706, USA,
| | - E. B. Frankel
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health 440 Henry Mall, Madison, WI 53706, USA,
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health 440 Henry Mall, Madison, WI 53706, USA,
| |
Collapse
|
19
|
Image processing for cryogenic transmission electron microscopy of symmetry-mismatched complexes. Biosci Rep 2018; 38:BSR20170203. [PMID: 29439140 PMCID: PMC5857907 DOI: 10.1042/bsr20170203] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/23/2022] Open
Abstract
Cryogenic transmission electron microscopy (cryo-TEM) is a high-resolution biological imaging method, whereby biological samples, such as purified proteins, macromolecular complexes, viral particles, organelles and cells, are embedded in vitreous ice preserving their native structures. Due to sensitivity of biological materials to the electron beam of the microscope, only relatively low electron doses can be applied during imaging. As a result, the signal arising from the structure of interest is overpowered by noise in the images. To increase the signal-to-noise ratio, different image processing-based strategies that aim at coherent averaging of signal have been devised. In such strategies, images are generally assumed to arise from multiple identical copies of the structure. Prior to averaging, the images must be grouped according to the view of the structure they represent and images representing the same view must be simultaneously aligned relatively to each other. For computational reconstruction of the 3D structure, images must contain different views of the original structure. Structures with multiple symmetry-related substructures are advantageous in averaging approaches because each image provides multiple views of the substructures. However, the symmetry assumption may be valid for only parts of the structure, leading to incoherent averaging of the other parts. Several image processing approaches have been adapted to tackle symmetry-mismatched substructures with increasing success. Such structures are ubiquitous in nature and further computational method development is needed to understanding their biological functions.
Collapse
|
20
|
|
21
|
Abstract
In eukaryotes, distinct transport vesicles functionally connect various intracellular compartments. These carriers mediate transport of membranes for the biogenesis and maintenance of organelles, secretion of cargo proteins and peptides, and uptake of cargo into the cell. Transport vesicles have distinct protein coats that assemble on a donor membrane where they can select cargo and curve the membrane to form a bud. A multitude of structural elements of coat proteins have been solved by X-ray crystallography. More recently, the architectures of the COPI and COPII coats were elucidated in context with their membrane by cryo-electron tomography. Here, we describe insights gained from the structures of these two coat lattices and discuss the resulting functional implications.
Collapse
Affiliation(s)
- Julien Béthune
- Heidelberg University Biochemistry Centre, 69120 Heidelberg, Germany; ,
| | - Felix T Wieland
- Heidelberg University Biochemistry Centre, 69120 Heidelberg, Germany; ,
| |
Collapse
|
22
|
Masson GR, Jenkins ML, Burke JE. An overview of hydrogen deuterium exchange mass spectrometry (HDX-MS) in drug discovery. Expert Opin Drug Discov 2017; 12:981-994. [PMID: 28770632 DOI: 10.1080/17460441.2017.1363734] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful methodology to study protein dynamics, protein folding, protein-protein interactions, and protein small molecule interactions. The development of novel methodologies and technical advancements in mass spectrometers has greatly expanded the accessibility and acceptance of this technique within both academia and industry. Areas covered: This review examines the theoretical basis of how amide exchange occurs, how different mass spectrometer approaches can be used for HDX-MS experiments, as well as the use of HDX-MS in drug development, specifically focusing on how HDX-MS is used to characterize bio-therapeutics, and its use in examining protein-protein and protein small molecule interactions. Expert opinion: HDX-MS has been widely accepted within the pharmaceutical industry for the characterization of bio-therapeutics as well as in the mapping of antibody drug epitopes. However, there is room for this technique to be more widely used in the drug discovery process. This is particularly true in the use of HDX-MS as a complement to other high-resolution structural approaches, as well as in the development of small molecule therapeutics that can target both active-site and allosteric binding sites.
Collapse
Affiliation(s)
- Glenn R Masson
- a Protein and Nucleic Acid Chemistry Division , MRC Laboratory of Molecular Biology , Cambridge , UK
| | - Meredith L Jenkins
- b Department of Biochemistry and Microbiology , University of Victoria , Victoria , Canada
| | - John E Burke
- b Department of Biochemistry and Microbiology , University of Victoria , Victoria , Canada
| |
Collapse
|
23
|
Tao Y, Fang P, Kim S, Guo M, Young NL, Marshall AG. Mapping the contact surfaces in the Lamin A:AIMP3 complex by hydrogen/deuterium exchange FT-ICR mass spectrometry. PLoS One 2017; 12:e0181869. [PMID: 28797100 PMCID: PMC5552228 DOI: 10.1371/journal.pone.0181869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/07/2017] [Indexed: 11/23/2022] Open
Abstract
Aminoacyl-tRNA synthetases-interacting multifunctional protein3 (AIMP3/p18) is involved in the macromolecular tRNA synthetase complex via its interaction with several aminoacyl-tRNA synthetases. Recent reports reveal a novel function of AIMP3 as a tumor suppressor by accelerating cellular senescence and causing defects in nuclear morphology. AIMP3 specifically mediates degradation of mature Lamin A (LmnA), a major component of the nuclear envelope matrix; however, the mechanism of how AIMP3 interacts with LmnA is unclear. Here we report solution-phase hydrogen/deuterium exchange (HDX) for AIMP3, LmnA, and AIMP3 in association with the LmnA C-terminus. Reversed-phase LC coupled with LTQ 14.5 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) results in high mass accuracy and resolving power for comparing the D-uptake profiles for AIMP3, LmnA, and their complex. The results show that the AIMP3-LmnA interaction involves one of the two putative binding sites and an adjacent novel interface on AIMP3. LmnA binds AIMP3 via its extreme C-terminus. Together these findings provide a structural insight for understanding the interaction between AIMP3 and LmnA in AIMP3 degradation.
Collapse
Affiliation(s)
- Yeqing Tao
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Pengfei Fang
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Min Guo
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Nicolas L. Young
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alan G. Marshall
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
24
|
Gorur A, Yuan L, Kenny SJ, Baba S, Xu K, Schekman R. COPII-coated membranes function as transport carriers of intracellular procollagen I. J Cell Biol 2017; 216:1745-1759. [PMID: 28428367 PMCID: PMC5461032 DOI: 10.1083/jcb.201702135] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 01/03/2023] Open
Abstract
The coat protein complex II (COPII) is essential for the transport of large cargo, such as 300-nm procollagen I (PC1) molecules, from the endoplasmic reticulum (ER) to the Golgi. Previous work has shown that the CUL3-KLHL12 complex increases the size of COPII vesicles at ER exit sites to more than 300 nm in diameter and accelerates the secretion of PC1. However, the role of large COPII vesicles as PC1 transport carriers was not unambiguously demonstrated. In this study, using stochastic optical reconstruction microscopy, correlated light electron microscopy, and live-cell imaging, we demonstrate the existence of mobile COPII-coated vesicles that completely encapsulate the cargo PC1 and are physically separated from ER. We also developed a cell-free COPII vesicle budding reaction that reconstitutes the capture of PC1 into large COPII vesicles. This process requires COPII proteins and the GTPase activity of the COPII subunit SAR1. We conclude that large COPII vesicles are bona fide carriers of PC1.
Collapse
Affiliation(s)
- Amita Gorur
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Lin Yuan
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Samuel J Kenny
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Satoshi Baba
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Randy Schekman
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
25
|
Structural characterization of human aminoacyl-tRNA synthetases for translational and nontranslational functions. Methods 2017; 113:83-90. [DOI: 10.1016/j.ymeth.2016.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 11/18/2022] Open
|
26
|
Abstract
Approximately one third of a cell's proteins are destined to function outside the cell's boundaries or while embedded within cellular membranes. Ensuring these proteins reach their diverse final destinations with temporal and spatial accuracy is essential for cellular physiology. In eukaryotes, a set of interconnected organelles form the secretory pathway, which encompasses the terrain that these proteins must navigate on their journey from their site of synthesis on the ribosome to their final destinations. Traffic of proteins within the secretory pathway is directed by cargo-bearing vesicles that transport proteins from one compartment to another. Key steps in vesicle-mediated trafficking include recruitment of specific cargo proteins, which must collect locally where a vesicle forms, and release of an appropriate cargo-containing vessel from the donor organelle (Figure 1). The newly formed vesicle can passively diffuse across the cytoplasm, or can catch a ride on the cytoskeleton to travel directionally. Once the vesicle arrives at its precise destination, the membrane of the carrier merges with the destination membrane to deliver its cargo.
Collapse
Affiliation(s)
| | - Elizabeth A Miller
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
27
|
Vadas O, Jenkins ML, Dornan GL, Burke JE. Using Hydrogen-Deuterium Exchange Mass Spectrometry to Examine Protein-Membrane Interactions. Methods Enzymol 2016; 583:143-172. [PMID: 28063489 DOI: 10.1016/bs.mie.2016.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many fundamental cellular processes are controlled via assembly of a network of proteins at membrane surfaces. The proper recruitment of proteins to membranes can be controlled by a wide variety of mechanisms, including protein lipidation, protein-protein interactions, posttranslational modifications, and binding to specific lipid species present in membranes. There are, however, only a limited number of analytical techniques that can study the assembly of protein-membrane complexes at the molecular level. A relatively new addition to the set of techniques available to study these protein-membrane systems is the use of hydrogen-deuterium exchange mass spectrometry (HDX-MS). HDX-MS experiments measure protein conformational dynamics in their native state, based on the rate of exchange of amide hydrogens with solvent. This review discusses the use of HDX-MS as a tool to identify the interfaces of proteins with membranes and membrane-associated proteins, as well as define conformational changes elicited by membrane recruitment. Specific examples will focus on the use of HDX-MS to examine how large macromolecular protein complexes are recruited and activated on membranes, and how both posttranslational modifications and cancer-linked oncogenic mutations affect these processes.
Collapse
Affiliation(s)
- O Vadas
- Pharmaceutical Sciences Section, University of Geneva, Geneva, Switzerland
| | | | - G L Dornan
- University of Victoria, Victoria BC, Canada
| | - J E Burke
- University of Victoria, Victoria BC, Canada.
| |
Collapse
|
28
|
TANGO1/cTAGE5 receptor as a polyvalent template for assembly of large COPII coats. Proc Natl Acad Sci U S A 2016; 113:10061-6. [PMID: 27551091 DOI: 10.1073/pnas.1605916113] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The supramolecular cargo procollagen is loaded into coat protein complex II (COPII)-coated carriers at endoplasmic reticulum (ER) exit sites by the receptor molecule TANGO1/cTAGE5. Electron microscopy studies have identified a tubular carrier of suitable dimensions that is molded by a distinctive helical array of the COPII inner coat protein Sec23/24•Sar1; the helical arrangement is absent from canonical COPII-coated small vesicles. In this study, we combined X-ray crystallographic and biochemical analysis to characterize the association of TANGO1/cTAGE5 with COPII proteins. The affinity for Sec23 is concentrated in the proline-rich domains (PRDs) of TANGO1 and cTAGE5, but Sec23 recognizes merely a PPP motif. The PRDs contain repeated PPP motifs separated by proline-rich linkers, so a single TANGO1/cTAGE5 receptor can bind multiple copies of coat protein in a close-packed array. We propose that TANGO1/cTAGE5 promotes the accretion of inner coat proteins to the helical lattice. Furthermore, we show that PPP motifs in the outer coat protein Sec31 also bind to Sec23, suggesting that stepwise COPII coat assembly will ultimately displace TANGO1/cTAGE5 and compartmentalize its operation to the base of the growing COPII tubule.
Collapse
|
29
|
Leitner A. Cross-linking and other structural proteomics techniques: how chemistry is enabling mass spectrometry applications in structural biology. Chem Sci 2016; 7:4792-4803. [PMID: 30155128 PMCID: PMC6016523 DOI: 10.1039/c5sc04196a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/25/2016] [Indexed: 01/05/2023] Open
Abstract
The biological function of proteins is heavily influenced by their structures and their organization into assemblies such as protein complexes and regulatory networks. Mass spectrometry (MS) has been a key enabling technology for high-throughput and comprehensive protein identification and quantification on a proteome-wide scale. Besides these essential contributions, MS can also be used to study higher-order structures of biomacromolecules in a variety of ways. In one approach, intact proteins or protein complexes may be directly probed in the mass spectrometer. Alternatively, various forms of solution-phase chemistry are used to introduce modifications in intact proteins and localizing these modifications by MS analysis at the peptide level is used to derive structural information. Here, I will put a spotlight on the central role of chemistry in such mass spectrometry-based methods that bridge proteomics and structural biology, with a particular emphasis on chemical cross-linking of protein complexes.
Collapse
Affiliation(s)
- Alexander Leitner
- Department of Biology , Institute of Molecular Systems Biology , ETH Zurich , Auguste-Piccard-Hof 1 , 8093 Zurich , Switzerland .
| |
Collapse
|
30
|
Singharoy A, Teo I, McGreevy R, Stone JE, Zhao J, Schulten K. Molecular dynamics-based refinement and validation for sub-5 Å cryo-electron microscopy maps. eLife 2016; 5. [PMID: 27383269 PMCID: PMC4990421 DOI: 10.7554/elife.16105] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/06/2016] [Indexed: 12/12/2022] Open
Abstract
Two structure determination methods, based on the molecular dynamics flexible fitting (MDFF) paradigm, are presented that resolve sub-5 Å cryo-electron microscopy (EM) maps with either single structures or ensembles of such structures. The methods, denoted cascade MDFF and resolution exchange MDFF, sequentially re-refine a search model against a series of maps of progressively higher resolutions, which ends with the original experimental resolution. Application of sequential re-refinement enables MDFF to achieve a radius of convergence of ~25 Å demonstrated with the accurate modeling of β-galactosidase and TRPV1 proteins at 3.2 Å and 3.4 Å resolution, respectively. The MDFF refinements uniquely offer map-model validation and B-factor determination criteria based on the inherent dynamics of the macromolecules studied, captured by means of local root mean square fluctuations. The MDFF tools described are available to researchers through an easy-to-use and cost-effective cloud computing resource on Amazon Web Services. DOI:http://dx.doi.org/10.7554/eLife.16105.001 To understand the roles that proteins and other large molecules play inside cells, it is important to determine their structures. One of the techniques that researchers can use to do this is called cryo-electron microscopy (cryo-EM), which rapidly freezes molecules to fix them in position before imaging them in fine detail. The cryo-EM images are like maps that show the approximate position of atoms. These images must then be processed in order to build a three-dimensional model of the protein that shows how its atoms are arranged relative to each other. One computational approach called Molecular Dynamics Flexible Fitting (MDFF) works by flexibly fitting possible atomic structures into cryo-EM maps. Although this approach works well with relatively undetailed (or ‘low resolution’) cryo-EM images, it struggles to handle the high-resolution cryo-EM maps now being generated. Singharoy, Teo, McGreevy et al. have now developed two MDFF methods – called cascade MDFF and resolution exchange MDFF – that help to resolve atomic models of biological molecules from cryo-EM images. Each method can refine poorly guessed models into ones that are consistent with the high-resolution experimental images. The refinement is achieved by interpreting a range of images that starts with a ‘fuzzy’ image. The contrast of the image is then progressively improved until an image is produced that has a resolution that is good enough to almost distinguish individual atoms. The method works because each cryo-EM image shows not just one, but a collection of atomic structures that the molecule can take on, with the fuzzier parts of the image representing the more flexible parts of the molecule. By taking into account this flexibility, the large-scale features of the protein structure can be determined first from the fuzzier images, and increasing the contrast of the images allows smaller-scale refinements to be made to the structure. The MDFF tools have been designed to be easy to use and are available to researchers at low cost through cloud computing platforms. They can now be used to unravel the structure of many different proteins and protein complexes including those involved in photosynthesis, respiration and protein synthesis. DOI:http://dx.doi.org/10.7554/eLife.16105.002
Collapse
Affiliation(s)
- Abhishek Singharoy
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Ivan Teo
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Ryan McGreevy
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - John E Stone
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Jianhua Zhao
- Department of Biochemistry and Biophysics, University of California San Francisco School of Medicine, San Francisco, United States
| | - Klaus Schulten
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
31
|
Perelis M, Marcheva B, Ramsey KM, Schipma MJ, Hutchison AL, Taguchi A, Peek CB, Hong H, Huang W, Omura C, Allred AL, Bradfield CA, Dinner AR, Barish GD, Bass J. Pancreatic β cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science 2015; 350:aac4250. [PMID: 26542580 PMCID: PMC4669216 DOI: 10.1126/science.aac4250] [Citation(s) in RCA: 288] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mammalian transcription factors CLOCK and BMAL1 are essential components of the molecular clock that coordinate behavior and metabolism with the solar cycle. Genetic or environmental perturbation of circadian cycles contributes to metabolic disorders including type 2 diabetes. To study the impact of the cell-autonomous clock on pancreatic β cell function, we examined pancreatic islets from mice with either intact or disrupted BMAL1 expression both throughout life and limited to adulthood. We found pronounced oscillation of insulin secretion that was synchronized with the expression of genes encoding secretory machinery and signaling factors that regulate insulin release. CLOCK/BMAL1 colocalized with the pancreatic transcription factor PDX1 within active enhancers distinct from those controlling rhythmic metabolic gene networks in liver. We also found that β cell clock ablation in adult mice caused severe glucose intolerance. Thus, cell type-specific enhancers underlie the circadian control of peripheral metabolism throughout life and may help to explain its dysregulation in diabetes.
Collapse
Affiliation(s)
- Mark Perelis
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Biliana Marcheva
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Matthew J Schipma
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alan L Hutchison
- Medical Scientist Training Program, University of Chicago, Chicago, IL 60637, USA. Graduate Program in the Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA. James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Akihiko Taguchi
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Clara Bien Peek
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Heekyung Hong
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wenyu Huang
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chiaki Omura
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Amanda L Allred
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Aaron R Dinner
- Graduate Program in the Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA. James Franck Institute, University of Chicago, Chicago, IL 60637, USA. Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Grant D Barish
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
32
|
Ilca SL, Kotecha A, Sun X, Poranen MM, Stuart DI, Huiskonen JT. Localized reconstruction of subunits from electron cryomicroscopy images of macromolecular complexes. Nat Commun 2015; 6:8843. [PMID: 26534841 PMCID: PMC4667630 DOI: 10.1038/ncomms9843] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/08/2015] [Indexed: 12/12/2022] Open
Abstract
Electron cryomicroscopy can yield near-atomic resolution structures of highly ordered macromolecular complexes. Often however some subunits bind in a flexible manner, have different symmetry from the rest of the complex, or are present in sub-stoichiometric amounts, limiting the attainable resolution. Here we report a general method for the localized three-dimensional reconstruction of such subunits. After determining the particle orientations, local areas corresponding to the subunits can be extracted and treated as single particles. We demonstrate the method using three examples including a flexible assembly and complexes harbouring subunits with either partial occupancy or mismatched symmetry. Most notably, the method allows accurate fitting of the monomeric RNA-dependent RNA polymerase bound at the threefold axis of symmetry inside a viral capsid, revealing for the first time its exact orientation and interactions with the capsid proteins. Localized reconstruction is expected to provide novel biological insights in a range of challenging biological systems. Electron cryomicroscopy can allow the elucidation of macromolecular structures; however, mismatches in symmetry between different components limit the attainable resolution. Here, the authors set out a computational method for extracting and retaining information from such components.
Collapse
|
33
|
Dodonova SO, Diestelkoetter-Bachert P, von Appen A, Hagen WJH, Beck R, Beck M, Wieland F, Briggs JAG. VESICULAR TRANSPORT. A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly. Science 2015; 349:195-8. [PMID: 26160949 DOI: 10.1126/science.aab1121] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transport of material within cells is mediated by trafficking vesicles that bud from one cellular compartment and fuse with another. Formation of a trafficking vesicle is driven by membrane coats that localize cargo and polymerize into cages to bend the membrane. Although extensive structural information is available for components of these coats, the heterogeneity of trafficking vesicles has prevented an understanding of how complete membrane coats assemble on the membrane. We combined cryo-electron tomography, subtomogram averaging, and cross-linking mass spectrometry to derive a complete model of the assembled coat protein complex I (COPI) coat involved in traffic between the Golgi and the endoplasmic reticulum. The highly interconnected COPI coat structure contradicted the current "adaptor-and-cage" understanding of coated vesicle formation.
Collapse
Affiliation(s)
- S O Dodonova
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - P Diestelkoetter-Bachert
- Heidelberg University Biochemistry Center, Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - A von Appen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - W J H Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - R Beck
- Heidelberg University Biochemistry Center, Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - M Beck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - F Wieland
- Heidelberg University Biochemistry Center, Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - J A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany. Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
34
|
Saito K, Katada T. Mechanisms for exporting large-sized cargoes from the endoplasmic reticulum. Cell Mol Life Sci 2015; 72:3709-20. [PMID: 26082182 PMCID: PMC4565863 DOI: 10.1007/s00018-015-1952-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/18/2015] [Accepted: 06/08/2015] [Indexed: 12/14/2022]
Abstract
Cargo proteins exported from the endoplasmic reticulum to the Golgi apparatus are typically transported in coat protein complex II (COPII)-coated vesicles of 60–90 nm diameter. Several cargo molecules including collagens and chylomicrons form structures that are too large to be accommodated by these vesicles, but their secretion still requires COPII proteins. Here, we first review recent progress on large cargo secretions derived especially from animal models and human diseases, which indicate the importance of COPII proteins. We then discuss the recent isolation of specialized factors that modulate the process of COPII-dependent cargo formation to facilitate the exit of large-sized cargoes from the endoplasmic reticulum. Based on these findings, we propose a model that describes the importance of the GTPase cycle for secretion of oversized cargoes. Next, we summarize reports that describe the structures of COPII proteins and how these results provide insight into the mechanism of assembly of the large cargo carriers. Finally, we discuss what issues remain to be solved in the future.
Collapse
Affiliation(s)
- Kota Saito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
35
|
Paczkowski JE, Richardson BC, Fromme JC. Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis. Trends Cell Biol 2015; 25:408-16. [PMID: 25795254 DOI: 10.1016/j.tcb.2015.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/11/2015] [Accepted: 02/19/2015] [Indexed: 12/29/2022]
Abstract
Cargo adaptors sort transmembrane protein cargos into nascent vesicles by binding directly to their cytosolic domains. Recent studies have revealed previously unappreciated roles for cargo adaptors and regulatory mechanisms governing their function. The adaptor protein (AP)-1 and AP-2 clathrin adaptors switch between open and closed conformations that ensure they function at the right place at the right time. The exomer cargo adaptor has a direct role in remodeling the membrane for vesicle fission. Several different cargo adaptors functioning in distinct trafficking pathways at the Golgi are similarly regulated through bivalent binding to the ADP-ribosylation factor 1 (Arf1) GTPase, potentially enabling regulation by a threshold concentration of Arf1. Taken together, these studies highlight that cargo adaptors do more than just adapt cargos.
Collapse
Affiliation(s)
- Jon E Paczkowski
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Brian C Richardson
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
36
|
Structural analysis of the complex between penta-EF-hand ALG-2 protein and Sec31A peptide reveals a novel target recognition mechanism of ALG-2. Int J Mol Sci 2015; 16:3677-99. [PMID: 25667979 PMCID: PMC4346919 DOI: 10.3390/ijms16023677] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/30/2015] [Indexed: 02/07/2023] Open
Abstract
ALG-2, a 22-kDa penta-EF-hand protein, is involved in cell death, signal transduction, membrane trafficking, etc., by interacting with various proteins in mammalian cells in a Ca2+-dependent manner. Most known ALG-2-interacting proteins contain proline-rich regions in which either PPYPXnYP (type 1 motif) or PXPGF (type 2 motif) is commonly found. Previous X-ray crystal structural analysis of the complex between ALG-2 and an ALIX peptide revealed that the peptide binds to the two hydrophobic pockets. In the present study, we resolved the crystal structure of the complex between ALG-2 and a peptide of Sec31A (outer shell component of coat complex II, COPII; containing the type 2 motif) and found that the peptide binds to the third hydrophobic pocket (Pocket 3). While amino acid substitution of Phe85, a Pocket 3 residue, with Ala abrogated the interaction with Sec31A, it did not affect the interaction with ALIX. On the other hand, amino acid substitution of Tyr180, a Pocket 1 residue, with Ala caused loss of binding to ALIX, but maintained binding to Sec31A. We conclude that ALG-2 recognizes two types of motifs at different hydrophobic surfaces. Furthermore, based on the results of serial mutational analysis of the ALG-2-binding sites in Sec31A, the type 2 motif was newly defined.
Collapse
|
37
|
Affiliation(s)
- Gregory
F. Pirrone
- Department of Chemistry and
Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 United States
| | - Roxana E. Iacob
- Department of Chemistry and
Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 United States
| | - John R. Engen
- Department of Chemistry and
Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 United States
| |
Collapse
|
38
|
Insights into the mechanisms of membrane curvature and vesicle scission by the small GTPase Sar1 in the early secretory pathway. J Mol Biol 2014; 426:3811-3826. [PMID: 25193674 DOI: 10.1016/j.jmb.2014.08.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/15/2014] [Accepted: 08/23/2014] [Indexed: 12/18/2022]
Abstract
The small GTPase protein Sar1 is known to be involved in both the initiation of COPII-coated vesicle formation and scission of the nascent vesicle from the endoplasmic reticulum. The molecular details for the mechanism of membrane remodeling by Sar1 remain unresolved. Here, we show that Sar1 transforms synthetic liposomes into structures of different morphologies including tubules and detached vesicles. We demonstrate that Sar1 alone is competent for vesicle scission in a manner that depends on the concentration of Sar1 molecules occupying the membrane. Sar1 molecules align on low-curvature membranes to form an extended lattice. The continuity of this lattice breaks down as the curvature locally increases. The smallest repeating unit constituting the ordered lattice is a Sar1 dimer. The three-dimensional structure of the Sar1 lattice was reconstructed by substituting spherical liposomes with galactoceramide lipid tubules of homogeneous diameter. These data suggest that Sar1 dimerization is responsible for the formation of constrictive membrane curvature. We propose a model whereby Sar1 dimers assemble into ordered arrays to promote membrane constriction and COPII-directed vesicle scission.
Collapse
|
39
|
Marciano DP, Dharmarajan V, Griffin PR. HDX-MS guided drug discovery: small molecules and biopharmaceuticals. Curr Opin Struct Biol 2014; 28:105-11. [PMID: 25179005 DOI: 10.1016/j.sbi.2014.08.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/24/2014] [Accepted: 08/13/2014] [Indexed: 12/24/2022]
Abstract
Hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS or DXMS) has emerged as an important tool for the development of small molecule therapeutics and biopharmaceuticals. Central to these advances have been improvements to automated HDX-MS platforms and software that allow for the rapid acquisition and processing of experimental data. Correlating the HDX-MS profile of large numbers of ligands with their functional outputs has enabled the development of structure activity relationships (SAR) and delineation of ligand classes based on functional selectivity. HDX-MS has also been applied to address many of the unique challenges posed by the continued emergence of biopharmaceuticals. Here we review the latest applications of HDX-MS to drug discovery, recent advances in technology and software, and provide perspective on future outlook.
Collapse
Affiliation(s)
- David P Marciano
- Molecular Therapeutics Department, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | | | - Patrick R Griffin
- Molecular Therapeutics Department, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States.
| |
Collapse
|
40
|
Zhang Y, Majumder ELW, Yue H, Blankenship RE, Gross ML. Structural analysis of diheme cytochrome c by hydrogen-deuterium exchange mass spectrometry and homology modeling. Biochemistry 2014; 53:5619-30. [PMID: 25138816 PMCID: PMC4159202 DOI: 10.1021/bi500420y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
A lack
of X-ray or nuclear magnetic resonance structures of proteins
inhibits their further study and characterization, motivating the
development of new ways of analyzing structural information without
crystal structures. The combination of hydrogen–deuterium exchange
mass spectrometry (HDX-MS) data in conjunction with homology modeling
can provide improved structure and mechanistic predictions. Here a
unique diheme cytochrome c (DHCC) protein from Heliobacterium modesticaldum is studied with both HDX and homology modeling to bring some definition of the structure of the
protein and its role. Specifically, HDX data were used to guide the
homology modeling to yield a more functionally relevant structural
model of DHCC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | | | | | | | | |
Collapse
|
41
|
Thalassinos K, Pandurangan AP, Xu M, Alber F, Topf M. Conformational States of macromolecular assemblies explored by integrative structure calculation. Structure 2014; 21:1500-8. [PMID: 24010709 PMCID: PMC3988990 DOI: 10.1016/j.str.2013.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 08/10/2013] [Accepted: 08/12/2013] [Indexed: 12/22/2022]
Abstract
A detailed description of macromolecular assemblies in multiple conformational states can be very valuable for understanding cellular processes. At present, structural determination of most assemblies in different biologically relevant conformations cannot be achieved by a single technique and thus requires an integrative approach that combines information from multiple sources. Different techniques require different computational methods to allow efficient and accurate data processing and analysis. Here, we summarize the latest advances and future challenges in computational methods that help the interpretation of data from two techniques—mass spectrometry and three-dimensional cryo-electron microscopy (with focus on alignment and classification of heterogeneous subtomograms from cryo-electron tomography). We evaluate how new developments in these two broad fields will lead to further integration with atomic structures to broaden our picture of the dynamic behavior of assemblies in their native environment.
Collapse
Affiliation(s)
- Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
42
|
Molecular determinants of PI3Kγ-mediated activation downstream of G-protein-coupled receptors (GPCRs). Proc Natl Acad Sci U S A 2013; 110:18862-7. [PMID: 24190998 DOI: 10.1073/pnas.1304801110] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Phosphoinositide 3-kinase gamma (PI3Kγ) has profound roles downstream of G-protein-coupled receptors in inflammation, cardiac function, and tumor progression. To gain insight into how the enzyme's activity is shaped by association with its p101 adaptor subunit, lipid membranes, and Gβγ heterodimers, we mapped these regulatory interactions using hydrogen-deuterium exchange mass spectrometry. We identify residues in both the p110γ and p101 subunits that contribute critical interactions with Gβγ heterodimers, leading to PI3Kγ activation. Mutating Gβγ-interaction sites of either p110γ or p101 ablates G-protein-coupled receptor-mediated signaling to p110γ/p101 in cells and severely affects chemotaxis and cell transformation induced by PI3Kγ overexpression. Hydrogen-deuterium exchange mass spectrometry shows that association with the p101 regulatory subunit causes substantial protection of the RBD-C2 linker as well as the helical domain of p110γ. Lipid interaction massively exposes that same helical site, which is then stabilized by Gβγ. Membrane-elicited conformational change of the helical domain could help prepare the enzyme for Gβγ binding. Our studies and others identify the helical domain of the class I PI3Ks as a hub for diverse regulatory interactions that include the p101, p87 (also known as p84), and p85 adaptor subunits; Rab5 and Gβγ heterodimers; and the β-adrenergic receptor kinase.
Collapse
|
43
|
Han HM, Bouchet-Marquis C, Huebinger J, Grabenbauer M. Golgi apparatus analyzed by cryo-electron microscopy. Histochem Cell Biol 2013; 140:369-81. [PMID: 23954988 PMCID: PMC3787787 DOI: 10.1007/s00418-013-1136-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2013] [Indexed: 11/28/2022]
Abstract
In 1898, the Golgi apparatus was discovered by light microscopy, and since the 1950s, the ultrastructure composition is known by electron microscopic investigation. The complex three-dimensional morphology fascinated researchers and was sometimes even the driving force to develop novel visualization techniques. However, the highly dynamic membrane systems of Golgi apparatus are delicate and prone to fixation artifacts. Therefore, the understanding of Golgi morphology and its function has been improved significantly with the development of better preparation methods. Nowadays, cryo-fixation is the method of choice to arrest instantly all dynamic and physiological processes inside cells, tissues, and small organisms. Embedded in amorphous ice, such samples can be further processed by freeze substitution or directly analyzed in their fully hydrated state by cryo-electron microscopy and tomography. Even though the overall morphology of vitrified Golgi stacks is comparable to well-prepared and resin-embedded samples, previously unknown structural details can be observed solely based on their native density. At this point, any further improvement of sample preparation would gain novel insights, perhaps not in terms of general morphology, but on fine structural details of this dynamic organelle.
Collapse
Affiliation(s)
- Hong-Mei Han
- Department of Systemic Cell Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Cedric Bouchet-Marquis
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO USA
- FEI Company, 5350 NE Dawson Creek Drive, Hillsboro, OR 97124 USA
| | - Jan Huebinger
- Department of Systemic Cell Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Markus Grabenbauer
- Institute of Anatomy and Cell Biology, Heidelberg University, INF 307, 69120 Heidelberg, Germany
| |
Collapse
|
44
|
Venditti R, Wilson C, De Matteis MA. Exiting the ER: what we know and what we don't. Trends Cell Biol 2013; 24:9-18. [PMID: 24076263 DOI: 10.1016/j.tcb.2013.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/07/2013] [Accepted: 08/13/2013] [Indexed: 01/17/2023]
Abstract
The vast majority of proteins that are transported to different cellular compartments and secreted from the cell require coat protein complex II (COPII) for export from the endoplasmic reticulum (ER). Many of the molecular mechanisms underlying COPII assembly are understood in great detail, but it is becoming increasingly evident that this basic machinery is insufficient to account for diverse aspects of protein export from the ER that are observed in vivo. Here we review recent data that have furthered our mechanistic understanding of COPII assembly and, in particular, how genetic diseases associated with the early secretory pathway have added fundamental insights into the regulation of ER-derived carrier formation. We also highlight some unresolved issues that future work should address to better understand the physiology of COPII-mediated transport.
Collapse
Affiliation(s)
- Rossella Venditti
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, Naples 80131, Italy
| | - Cathal Wilson
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, Naples 80131, Italy
| | | |
Collapse
|
45
|
Zanetti G, Prinz S, Daum S, Meister A, Schekman R, Bacia K, Briggs JAG. The structure of the COPII transport-vesicle coat assembled on membranes. eLife 2013; 2:e00951. [PMID: 24062940 PMCID: PMC3778437 DOI: 10.7554/elife.00951] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/06/2013] [Indexed: 01/08/2023] Open
Abstract
Coat protein complex II (COPII) mediates formation of the membrane vesicles that export newly synthesised proteins from the endoplasmic reticulum. The inner COPII proteins bind to cargo and membrane, linking them to the outer COPII components that form a cage around the vesicle. Regulated flexibility in coat architecture is essential for transport of a variety of differently sized cargoes, but structural data on the assembled coat has not been available. We have used cryo-electron tomography and subtomogram averaging to determine the structure of the complete, membrane-assembled COPII coat. We describe a novel arrangement of the outer coat and find that the inner coat can assemble into regular lattices. The data reveal how coat subunits interact with one another and with the membrane, suggesting how coordinated assembly of inner and outer coats can mediate and regulate packaging of vesicles ranging from small spheres to large tubular carriers. DOI:http://dx.doi.org/10.7554/eLife.00951.001.
Collapse
Affiliation(s)
- Giulia Zanetti
- Department of Molecular and Cell Biology , University of California, Berkeley , Berkeley , United States
| | | | | | | | | | | | | |
Collapse
|
46
|
Miller EA, Schekman R. COPII - a flexible vesicle formation system. Curr Opin Cell Biol 2013; 25:420-7. [PMID: 23702145 PMCID: PMC3736695 DOI: 10.1016/j.ceb.2013.04.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/24/2013] [Indexed: 12/31/2022]
Abstract
Long known as a coat system that generates small transport vesicles from the endoplasmic reticulum (ER), the COPII coat also drives ER export of cargo proteins that are too large to be contained within these canonical carriers. With crystal and cryo-EM structures giving an atomic level view of coat architecture, current advances in the field have focused on understanding how the coat adapts to the different geometries of the underlying cargo. Combined with a growing appreciation for the specific roles of individual COPII paralogs in diverse aspects of mammalian physiology, the field is poised to understand how coat assembly and post-translational modification permits structural rigidity but geometric flexibility to handle the diverse cargoes that exit the ER.
Collapse
Affiliation(s)
- Elizabeth A Miller
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | | |
Collapse
|
47
|
Zhang Q, Noble KA, Mao Y, Young NL, Sathe SK, Roux KH, Marshall AG. Rapid screening for potential epitopes reactive with a polycolonal antibody by solution-phase H/D exchange monitored by FT-ICR mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1016-1025. [PMID: 23681851 DOI: 10.1007/s13361-013-0644-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 04/03/2013] [Accepted: 04/03/2013] [Indexed: 06/02/2023]
Abstract
The potential epitopes of a recombinant food allergen protein, cashew Ana o 2, reactive to polyclonal antibodies, were mapped by solution-phase amide backbone H/D exchange (HDX) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Ana o 2 polyclonal antibodies were purified in the serum from a goat immunized with cashew nut extract. Antibodies were incubated with recombinant Ana o 2 (rAna o 2) to form antigen:polyclonal antibody (Ag:pAb) complexes. Complexed and uncomplexed (free) rAna o 2 were then subjected to HDX-MS analysis. Four regions protected from H/D exchange upon pAb binding are identified as potential epitopes and mapped onto a homologous model.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
D'Arcangelo JG, Stahmer KR, Miller EA. Vesicle-mediated export from the ER: COPII coat function and regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2464-72. [PMID: 23419775 DOI: 10.1016/j.bbamcr.2013.02.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 11/26/2022]
Abstract
Vesicle trafficking from the endoplasmic reticulum (ER) is a vital cellular process in all eukaryotes responsible for moving secretory cargoes from the ER to the Golgi apparatus. To accomplish this feat, the cell employs a set of conserved cytoplasmic coat proteins - the coat protein II (COPII) complex - that recruit cargo into nascent buds and deform the ER membrane to drive vesicle formation. While our understanding of COPII coat mechanics has developed substantially since its discovery, we have only recently begun to appreciate the factors that regulate this complex and, in turn, ER-to-Golgi trafficking. Here, we describe these factors and their influences on COPII vesicle formation. Properties intrinsic to the GTP cycle of the coat, as well as coat structure, have critical implications for COPII vesicle trafficking. Extrinsic factors in the cytosol can modulate COPII activity through direct interaction with the coat or with scaffolding components, or by changing composition of the ER membrane. Further, lumenal and membrane-bound cargoes and cargo receptors can influence COPII-mediated trafficking in equally profound ways. Together, these factors work in concert to ensure proper cargo movement in this first step of the secretory pathway. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
|
49
|
|