1
|
Vu QV, Sitarik I, Li MS, O'Brien EP. Noncovalent Lasso Entanglements are Common in Experimentally Derived Intrinsically Disordered Protein Ensembles and Strongly Influenced by Protein Length and Charge. J Phys Chem B 2025; 129:4682-4691. [PMID: 40317235 DOI: 10.1021/acs.jpcb.5c01260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Noncovalent lasso entanglements are conformations in which a protein backbone segment forms a loop closed by noncovalent interactions and that loop is threaded one or more times by either the N- or C-terminal segment of the backbone or both. While these entanglements are common in globular proteins, their presence in intrinsically disordered proteins or regions (IDPs/IDRs) remains largely unexplored. Here, we examine whether IDPs/IDRs in their monomeric form populate these conformations and how sequence length and charge composition influence entanglement prevalence. Using experimentally derived IDP/IDR ensembles from the Protein Ensemble Database, we find that 48% (199 of 416) of its entries contain subpopulations with entangled conformations, with 25% of entries having conformational ensembles in which 50% or more are entangled. This includes IDPs such as nuclear pore complex protein Nup153, nonstructural protein V of Hendra virus, and Eukaryotic initiation factor 4F subunit p150. Using molecular simulations, we find that (i) entanglements are most prevalent in weak polyampholytes and polyelectrolytes, and strong polyampholytes but rare in strong polyelectrolytes; (ii) entanglement populations increase with IDP length; (iii) entanglement probability positively correlates with chain compaction; and (iv) most IDPs/IDRs in the human proteome exhibit entangled conformations. A GO enrichment analysis reveals that the entanglement probability correlates with IDP/IDR function and subcellular localization. Thus, these findings indicate that noncovalent lasso entanglements are a widespread structural feature of IDPs/IDRs and have the potential to be biologically relevant.
Collapse
Affiliation(s)
- Quyen V Vu
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ian Sitarik
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
- Institute for Computational Sciences and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 510000, Vietnam
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Bauer JR, Robinson TL, Strich R, Cooper KF. Quitting Your Day Job in Response to Stress: Cell Survival and Cell Death Require Secondary Cytoplasmic Roles of Cyclin C and Med13. Cells 2025; 14:636. [PMID: 40358161 PMCID: PMC12071894 DOI: 10.3390/cells14090636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Following unfavorable environmental cues, cells reprogram pathways that govern transcription, translation, and protein degradation systems. This reprogramming is essential to restore homeostasis or commit to cell death. This review focuses on the secondary roles of two nuclear transcriptional regulators, cyclin C and Med13, which play key roles in this decision process. Both proteins are members of the Mediator kinase module (MKM) of the Mediator complex, which, under normal physiological conditions, positively and negatively regulates a subset of stress response genes. However, cyclin C and Med13 translocate to the cytoplasm following cell death or cell survival cues, interacting with a host of cell death and cell survival proteins, respectively. In the cytoplasm, cyclin C is required for stress-induced mitochondrial hyperfission and promotes regulated cell death pathways. Cytoplasmic Med13 stimulates the stress-induced assembly of processing bodies (P-bodies) and is required for the autophagic degradation of a subset of P-body assembly factors by cargo hitchhiking autophagy. This review focuses on these secondary, a.k.a. "night jobs" of cyclin C and Med13, outlining the importance of these secondary functions in maintaining cellular homeostasis following stress.
Collapse
Affiliation(s)
| | | | | | - Katrina F. Cooper
- Department of Cell and Molecular Biology, School of Osteopathic Medicine, Rowan-Virtua College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084, USA; (J.R.B.); (T.L.R.); (R.S.)
| |
Collapse
|
3
|
Schnepper AP, Kubo AMS, Pinto CM, Gomes RHM, Fioretto MN, Justulin LA, Braz AMM, Golim MDA, Grotto RMT, Valente GT. Long Noncoding RNAs Responding to Ethanol Stress in Yeast Seem Associated with Protein Synthesis and Membrane Integrity. Genes (Basel) 2025; 16:170. [PMID: 40004499 PMCID: PMC11854924 DOI: 10.3390/genes16020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Translation and the formation of membraneless organelles are linked mechanisms to promote cell stress surveillance. LncRNAs responsive to ethanol stress transcr_9136 of the SEY6210 strain and transcr_10027 of the BY4742 strain appear to act on tolerance to ethanol in these strains. Here, we investigate whether the ethanol responsiveness of transcr_9136 and transcr_10027 and their role in ethanol stress are associated with protein biogenesis and membraneless organelle assembly. Methods: SEY6210 transcr_9136∆ and BY4742 transcr_10027∆ and their wild-type counterparts were subjected to their maximum ethanol-tolerant stress. The expression of the transcr_9136, transcr_10027, ILT1, RRP1, 27S, 25S, TIR3, and FAA3 genes was accessed by qPCR. The level of DCP1a, PABP, and eIF4E proteins was evaluated by Western blotting. Bioinformatics analyses allowed us to check whether transcr_9136 may regulate the expression of RRP1 and predict the interaction between transcr_10027 and Tel1p. The cell death rate of SEY6210 strains under control and ethanol stress conditions was assessed by flow cytometry. Finally, we evaluated the total protein yield of all strains analyzed. Results: The results demonstrated that transcr_9136 of SEY6210 seems to control the expression of RRP1 and 27S rRNA and reduce the general translation. Furthermore, transcr_9136 seems to act on cell membrane integrity. Transcr_10027 of BY4742 appears to inhibit processing body formation and induce a general translation level. Conclusions: This is the first report on the effect of lncRNAs on yeast protein synthesis and new mechanisms of stress-responsive lncRNAs in yeast, with potential industrial applications such as ethanol production.
Collapse
Affiliation(s)
- Amanda Piveta Schnepper
- Department of Bioprocess and Biotechnology, School of Agriculture, Sao Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil
| | - Agatha M. S. Kubo
- Laboratory of Applied Biotechnology, School of Medicine, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Camila Moreira Pinto
- Department of Bioprocess and Biotechnology, School of Agriculture, Sao Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil
| | - Ramon Hernany Martins Gomes
- Department of Bioprocess and Biotechnology, School of Agriculture, Sao Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Luís Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Aline M. M. Braz
- Laboratory of Applied Biotechnology, School of Medicine, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Marjorie de Assis Golim
- Laboratory of Applied Biotechnology, School of Medicine, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Rejane M. T. Grotto
- Laboratory of Applied Biotechnology, School of Medicine, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Guilherme Targino Valente
- Laboratory of Applied Biotechnology, School of Medicine, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| |
Collapse
|
4
|
Kundu D, Martoliya Y, Sharma A, Partap Sasan S, Wasi M, Prasad R, Mondal AK. Overexpression of CBK1 or deletion of SSD1 confers fludioxonil resistance in yeast by suppressing Hog1 activation. Gene 2025; 933:148905. [PMID: 39218413 DOI: 10.1016/j.gene.2024.148905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Group III hybrid histidine kinases (HHK3) are known molecular targets of the widely used fungicidal agent fludioxonil which indirectly converts these kinases to a phosphatase form that causes constitutive activation of Hog1 MAPK. To better understand the fungicidal effect of fludioxonil we have screened S. cerevisiae haploid deletion collection for fludioxonil resistant mutant and identified Ssd1 as a critical factor for this. Deletion of SSD1 not only promoted resistance to fludioxonil but also abrogated Hog1 activation and other cellular damages caused by fludioxonil. Our results showed that fludioxonil perturbed the localization of Cbk1 kinase, an essential protein in yeast, at the bud neck triggering the accumulation of Ssd1 in P-bodies. As a result, localized synthesis of Ssd1 bound mRNA encoding cell wall proteins at the polarized growth site was impaired which created a sustained cell wall stress causing constitutive activation of Hog1. Our data, for the first time, clearly indicated the role of Cbk1 upstream of Hog1 and provided a novel paradigm in the mechanism of action of fludioxonil.
Collapse
Affiliation(s)
- Debasree Kundu
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India; School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Yogita Martoliya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anupam Sharma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Soorya Partap Sasan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mohd Wasi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajendra Prasad
- Amity Institute of Integrative Sciences and Health, Amity University Gurgaon 122413, India
| | - Alok K Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Pradhan UK, Naha S, Das R, Gupta A, Parsad R, Meher PK. RBProkCNN: Deep learning on appropriate contextual evolutionary information for RNA binding protein discovery in prokaryotes. Comput Struct Biotechnol J 2024; 23:1631-1640. [PMID: 38660008 PMCID: PMC11039349 DOI: 10.1016/j.csbj.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
RNA-binding proteins (RBPs) are central to key functions such as post-transcriptional regulation, mRNA stability, and adaptation to varied environmental conditions in prokaryotes. While the majority of research has concentrated on eukaryotic RBPs, recent developments underscore the crucial involvement of prokaryotic RBPs. Although computational methods have emerged in recent years to identify RBPs, they have fallen short in accurately identifying prokaryotic RBPs due to their generic nature. To bridge this gap, we introduce RBProkCNN, a novel machine learning-driven computational model meticulously designed for the accurate prediction of prokaryotic RBPs. The prediction process involves the utilization of eight shallow learning algorithms and four deep learning models, incorporating PSSM-based evolutionary features. By leveraging a convolutional neural network (CNN) and evolutionarily significant features selected through extreme gradient boosting variable importance measure, RBProkCNN achieved the highest accuracy in five-fold cross-validation, yielding 98.04% auROC and 98.19% auPRC. Furthermore, RBProkCNN demonstrated robust performance with an independent dataset, showcasing a commendable 95.77% auROC and 95.78% auPRC. Noteworthy is its superior predictive accuracy when compared to several state-of-the-art existing models. RBProkCNN is available as an online prediction tool (https://iasri-sg.icar.gov.in/rbprokcnn/), offering free access to interested users. This tool represents a substantial contribution, enriching the array of resources available for the accurate and efficient prediction of prokaryotic RBPs.
Collapse
Affiliation(s)
- Upendra Kumar Pradhan
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Sanchita Naha
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Ritwika Das
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Ajit Gupta
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Rajender Parsad
- ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Prabina Kumar Meher
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| |
Collapse
|
6
|
Xiang JS, Schafer DM, Rothamel KL, Yeo GW. Decoding protein-RNA interactions using CLIP-based methodologies. Nat Rev Genet 2024; 25:879-895. [PMID: 38982239 DOI: 10.1038/s41576-024-00749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 07/11/2024]
Abstract
Protein-RNA interactions are central to all RNA processing events, with pivotal roles in the regulation of gene expression and cellular functions. Dysregulation of these interactions has been increasingly linked to the pathogenesis of human diseases. High-throughput approaches to identify RNA-binding proteins and their binding sites on RNA - in particular, ultraviolet crosslinking followed by immunoprecipitation (CLIP) - have helped to map the RNA interactome, yielding transcriptome-wide protein-RNA atlases that have contributed to key mechanistic insights into gene expression and gene-regulatory networks. Here, we review these recent advances, explore the effects of cellular context on RNA binding, and discuss how these insights are shaping our understanding of cellular biology. We also review the potential therapeutic applications arising from new knowledge of protein-RNA interactions.
Collapse
Affiliation(s)
- Joy S Xiang
- Division of Biomedical Sciences, UC Riverside, Riverside, CA, USA
| | - Danielle M Schafer
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA
| | - Katherine L Rothamel
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA.
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA.
- Sanford Laboratories for Innovative Medicines, La Jolla, CA, USA.
| |
Collapse
|
7
|
Hanley SE, Willis SD, Friedson B, Cooper KF. Med13 is required for efficient P-body recruitment and autophagic degradation of Edc3 following nitrogen starvation. Mol Biol Cell 2024; 35:ar142. [PMID: 39320938 PMCID: PMC11617093 DOI: 10.1091/mbc.e23-12-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
The Cdk8 kinase module (CKM), a conserved, detachable unit of the Mediator complex, plays a vital role in regulating transcription and communicating stress signals from the nucleus to other organelles. Here, we describe a new transcription-independent role for Med13, a CKM scaffold protein, following nitrogen starvation. In Saccharomyces cerevisiae, nitrogen starvation triggers Med13 to translocate to the cytoplasm. This stress also induces the assembly of conserved membraneless condensates called processing bodies (P-bodies) that dynamically sequester translationally inactive messenger ribonucleoprotein particles. Cytosolic Med13 colocalizes with P-bodies, where it helps recruit Edc3, a highly conserved decapping activator and P-body assembly factor, into these conserved ribonucleoprotein granules. Moreover, Med13 orchestrates the autophagic degradation of Edc3 through a selective cargo-hitchhiking autophagy pathway that utilizes Ksp1 as its autophagic receptor protein. In contrast, the autophagic degradation of Xrn1, another conserved P-body assembly factor, is Med13 independent. These results place Med13 as a new player in P-body assembly and regulation following nitrogen starvation. They support a model in which Med13 acts as a conduit between P-bodies and phagophores, two condensates that use liquid-liquid phase separation in their assembly.
Collapse
Affiliation(s)
- Sara E. Hanley
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Stephen D. Willis
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Brittany Friedson
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Katrina F. Cooper
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| |
Collapse
|
8
|
Shand EL, Sweeney K, Sundling KE, McClean MN, Brow DA. Live-cell analysis of IMPDH protein levels during yeast colony growth provides insights into the regulation of GTP synthesis. mBio 2024; 15:e0102124. [PMID: 38940616 PMCID: PMC11323793 DOI: 10.1128/mbio.01021-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
The purine nucleotides ATP and GTP are made from the common precursor inosine monophosphate (IMP). Maintaining the correct balance of these nucleotides for optimal cell growth is controlled in part by the enzyme IMP dehydrogenase (IMPDH), which catalyzes the first dedicated step of GTP biosynthesis. The regulation of IMPDH mRNA and protein levels in the yeast S. cerevisiae grown in liquid culture has been studied in some detail, but regulation of IMPDH protein under conditions of cellular crowding on a solid substrate has not been examined. Here, we report real-time, live-cell analysis of the accumulation of the Imd2 isoform of IMPDH in yeast cells forming a monolayer colony in a microfluidic device over a 50-hour time course. We observe two distinct phases of increased Imd2 accumulation: a guanine-insensitive phase early in outgrowth and a guanine-sensitive phase later, when cells become crowded. We show that the IMPDH inhibitor mycophenolic acid enhances both phases of increase. Deletion of a transcription attenuator upstream of the mRNA start site that decreases Imd2 mRNA synthesis in the presence of high GTP increases the baseline level of Imd2 protein 10-fold and abolishes guanine-sensitive but not guanine-insensitive induction. Our results suggest that at least two mechanisms of yeast Imd2 regulation exist, the known GTP-dependent attenuation of RNA polymerase II elongation and a GTP concentration-independent pathway that may be controlled by cell growth state. Live-cell analysis of IMPDH protein levels in a growing yeast colony confirms a known mechanism of regulation and provides evidence for an additional mode of regulation. IMPORTANCE This study used live-cell microscopy to track changes in the level of a key enzyme in GTP nucleotide biosynthesis, inosine monophosphate dehydrogenase (IMPDH), during growth of a brewers yeast colony over 2 days in a microfluidic device. The results show that feedback regulation via transcription attenuation allows cells to adapt to nutrient limitation in the crowded environs of a yeast colony. They also identify a novel mode of regulation of IMPDH level that is not driven by guanine nucleotide availability.
Collapse
Affiliation(s)
- Erica L. Shand
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kieran Sweeney
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kaitlin E. Sundling
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Megan N. McClean
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - David A. Brow
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Chen YR, Harel I, Singh PP, Ziv I, Moses E, Goshtchevsky U, Machado BE, Brunet A, Jarosz DF. Tissue-specific landscape of protein aggregation and quality control in an aging vertebrate. Dev Cell 2024; 59:1892-1911.e13. [PMID: 38810654 PMCID: PMC11265985 DOI: 10.1016/j.devcel.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/13/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024]
Abstract
Protein aggregation is a hallmark of age-related neurodegeneration. Yet, aggregation during normal aging and in tissues other than the brain is poorly understood. Here, we leverage the African turquoise killifish to systematically profile protein aggregates in seven tissues of an aging vertebrate. Age-dependent aggregation is strikingly tissue specific and not simply driven by protein expression differences. Experimental interrogation in killifish and yeast, combined with machine learning, indicates that this specificity is linked to protein-autonomous biophysical features and tissue-selective alterations in protein quality control. Co-aggregation of protein quality control machinery during aging may further reduce proteostasis capacity, exacerbating aggregate burden. A segmental progeria model with accelerated aging in specific tissues exhibits selectively increased aggregation in these same tissues. Intriguingly, many age-related protein aggregates arise in wild-type proteins that, when mutated, drive human diseases. Our data chart a comprehensive landscape of protein aggregation during vertebrate aging and identify strong, tissue-specific associations with dysfunction and disease.
Collapse
Affiliation(s)
- Yiwen R Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Itamar Harel
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Param Priya Singh
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Inbal Ziv
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Eitan Moses
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Uri Goshtchevsky
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Ben E Machado
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Glenn Center for the Biology of Aging, Stanford University, Stanford, CA 94305, USA.
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Reichel M, Schmidt O, Rettel M, Stein F, Köster T, Butter F, Staiger D. Revealing the Arabidopsis AtGRP7 mRNA binding proteome by specific enhanced RNA interactome capture. BMC PLANT BIOLOGY 2024; 24:552. [PMID: 38877390 PMCID: PMC11177498 DOI: 10.1186/s12870-024-05249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND The interaction of proteins with RNA in the cell is crucial to orchestrate all steps of RNA processing. RNA interactome capture (RIC) techniques have been implemented to catalogue RNA- binding proteins in the cell. In RIC, RNA-protein complexes are stabilized by UV crosslinking in vivo. Polyadenylated RNAs and associated proteins are pulled down from cell lysates using oligo(dT) beads and the RNA-binding proteome is identified by quantitative mass spectrometry. However, insights into the RNA-binding proteome of a single RNA that would yield mechanistic information on how RNA expression patterns are orchestrated, are scarce. RESULTS Here, we explored RIC in Arabidopsis to identify proteins interacting with a single mRNA, using the circadian clock-regulated Arabidopsis thaliana GLYCINE-RICH RNA-BINDING PROTEIN 7 (AtGRP7) transcript, one of the most abundant transcripts in Arabidopsis, as a showcase. Seedlings were treated with UV light to covalently crosslink RNA and proteins. The AtGRP7 transcript was captured from cell lysates with antisense oligonucleotides directed against the 5'untranslated region (UTR). The efficiency of RNA capture was greatly improved by using locked nucleic acid (LNA)/DNA oligonucleotides, as done in the enhanced RIC protocol. Furthermore, performing a tandem capture with two rounds of pulldown with the 5'UTR oligonucleotide increased the yield. In total, we identified 356 proteins enriched relative to a pulldown from atgrp7 mutant plants. These were benchmarked against proteins pulled down from nuclear lysates by AtGRP7 in vitro transcripts immobilized on beads. Among the proteins validated by in vitro interaction we found the family of Acetylation Lowers Binding Affinity (ALBA) proteins. Interaction of ALBA4 with the AtGRP7 RNA was independently validated via individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP). The expression of the AtGRP7 transcript in an alba loss-of-function mutant was slightly changed compared to wild-type, demonstrating the functional relevance of the interaction. CONCLUSION We adapted specific RNA interactome capture with LNA/DNA oligonucleotides for use in plants using AtGRP7 as a showcase. We anticipate that with further optimization and up scaling the protocol should be applicable for less abundant transcripts.
Collapse
Affiliation(s)
- Marlene Reichel
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.
- Department of Biology, University of Copenhagen, København N, 2200, Denmark.
| | - Olga Schmidt
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Mandy Rettel
- Proteomics Core Facility, EMBL, 69117, Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL, 69117, Heidelberg, Germany
| | - Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
11
|
Ripin N, Macedo de Vasconcelos L, Ugay DA, Parker R. DDX6 modulates P-body and stress granule assembly, composition, and docking. J Cell Biol 2024; 223:e202306022. [PMID: 38536035 PMCID: PMC10978804 DOI: 10.1083/jcb.202306022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/20/2023] [Accepted: 03/04/2024] [Indexed: 04/01/2024] Open
Abstract
Stress granules and P-bodies are ribonucleoprotein (RNP) granules that accumulate during the stress response due to the condensation of untranslating mRNPs. Stress granules form in part by intermolecular RNA-RNA interactions and can be limited by components of the RNA chaperone network, which inhibits RNA-driven aggregation. Herein, we demonstrate that the DEAD-box helicase DDX6, a P-body component, can also limit the formation of stress granules, independent of the formation of P-bodies. In an ATPase, RNA-binding dependent manner, DDX6 limits the partitioning of itself and other RNPs into stress granules. When P-bodies are limited, proteins that normally partition between stress granules and P-bodies show increased accumulation within stress granules. Moreover, we show that loss of DDX6, 4E-T, and DCP1A increases P-body docking with stress granules, which depends on CNOT1 and PAT1B. Taken together, these observations identify a new role for DDX6 in limiting stress granules and demonstrate that P-body components can influence stress granule composition and docking with P-bodies.
Collapse
Affiliation(s)
- Nina Ripin
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Daniella A. Ugay
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
12
|
Koster CC, Kleefeldt AA, van den Broek M, Luttik M, Daran JM, Daran-Lapujade P. Long-read direct RNA sequencing of the mitochondrial transcriptome of Saccharomyces cerevisiae reveals condition-dependent intron abundance. Yeast 2024; 41:256-278. [PMID: 37642136 DOI: 10.1002/yea.3893] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023] Open
Abstract
Mitochondria fulfil many essential roles and have their own genome, which is expressed as polycistronic transcripts that undergo co- or posttranscriptional processing and splicing. Due to the inherent complexity and limited technical accessibility of the mitochondrial transcriptome, fundamental questions regarding mitochondrial gene expression and splicing remain unresolved, even in the model eukaryote Saccharomyces cerevisiae. Long-read sequencing could address these fundamental questions. Therefore, a method for the enrichment of mitochondrial RNA and sequencing using Nanopore technology was developed, enabling the resolution of splicing of polycistronic genes and the quantification of spliced RNA. This method successfully captured the full mitochondrial transcriptome and resolved RNA splicing patterns with single-base resolution and was applied to explore the transcriptome of S. cerevisiae grown with glucose or ethanol as the sole carbon source, revealing the impact of growth conditions on mitochondrial RNA expression and splicing. This study uncovered a remarkable difference in the turnover of Group II introns between yeast grown in either mostly fermentative or fully respiratory conditions. Whether this accumulation of introns in glucose medium has an impact on mitochondrial functions remains to be explored. Combined with the high tractability of the model yeast S. cerevisiae, the developed method enables to monitor mitochondrial transcriptome responses in a broad range of relevant contexts, including oxidative stress, apoptosis and mitochondrial diseases.
Collapse
Affiliation(s)
- Charlotte C Koster
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Askar A Kleefeldt
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Marijke Luttik
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
13
|
Galello F, Bermúdez-Moretti M, Martínez MCO, Rossi S, Portela P. The cAMP-PKA signalling crosstalks with CWI and HOG-MAPK pathways in yeast cell response to osmotic and thermal stress. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:90-105. [PMID: 38495453 PMCID: PMC10941952 DOI: 10.15698/mic2024.03.818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
The yeast Saccharomyces cerevisiae is widely used in food and non-food industries. During industrial fermentation yeast strains are exposed to fluctuations in oxygen concentration, osmotic pressure, pH, ethanol concentration, nutrient availability and temperature. Fermentation performance depends on the ability of the yeast strains to adapt to these changes. Suboptimal conditions trigger responses to the external stimuli to allow homeostasis to be maintained. Stress-specific signalling pathways are activated to coordinate changes in transcription, translation, protein function, and metabolic fluxes while a transient arrest of growth and cell cycle progression occur. cAMP-PKA, HOG-MAPK and CWI signalling pathways are turned on during stress response. Comprehension of the mechanisms involved in the responses and in the adaptation to these stresses during fermentation is key to improving this industrial process. The scope of this review is to outline the advancement of knowledge about the cAMP-PKA signalling and the crosstalk of this pathway with the CWI and HOG-MAPK cascades in response to the environmental challenges heat and hyperosmotic stress.
Collapse
Affiliation(s)
- Fiorella Galello
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Mariana Bermúdez-Moretti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - María Clara Ortolá Martínez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Silvia Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Paula Portela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| |
Collapse
|
14
|
Hanley SE, Willis SD, Doyle SJ, Strich R, Cooper KF. Ksp1 is an autophagic receptor protein for the Snx4-assisted autophagy of Ssn2/Med13. Autophagy 2024; 20:397-415. [PMID: 37733395 PMCID: PMC10813586 DOI: 10.1080/15548627.2023.2259708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Ksp1 is a casein II-like kinase whose activity prevents aberrant macroautophagy/autophagy induction in nutrient-rich conditions in yeast. Here, we describe a kinase-independent role of Ksp1 as a novel autophagic receptor protein for Ssn2/Med13, a known cargo of Snx4-assisted autophagy of transcription factors. In this pathway, a subset of conserved transcriptional regulators, Ssn2/Med13, Rim15, and Msn2, are selectively targeted for vacuolar proteolysis following nitrogen starvation, assisted by the sorting nexin heterodimer Snx4-Atg20. Here we show that phagophores also engulf Ksp1 alongside its cargo for vacuolar proteolysis. Ksp1 directly associates with Atg8 following nitrogen starvation at the interface of an Atg8-family interacting motif (AIM)/LC3-interacting region (LIR) in Ksp1 and the LIR/AIM docking site (LDS) in Atg8. Mutating the LDS site prevents the autophagic degradation of Ksp1. However, deletion of the C terminal canonical AIM still permitted Ssn2/Med13 proteolysis, suggesting that additional non-canonical AIMs may mediate the Ksp1-Atg8 interaction. Ksp1 is recruited to the perivacuolar phagophore assembly site by Atg29, a member of the trimeric scaffold complex. This interaction is independent of Atg8 and Snx4, suggesting that Ksp1 is recruited early to phagophores, with Snx4 delivering Ssn2/Med13 thereafter. Finally, normal cell survival following prolonged nitrogen starvation requires Ksp1. Together, these studies define a kinase-independent role for Ksp1 as an autophagic receptor protein mediating Ssn2/Med13 degradation. They also suggest that phagophores built by the trimeric scaffold complex are capable of receptor-mediated autophagy. These results demonstrate the dual functionality of Ksp1, whose kinase activity prevents autophagy while it plays a scaffolding role supporting autophagic degradation.Abbreviations: 3-AT: 3-aminotriazole; 17C: Atg17-Atg31-Atg29 trimeric scaffold complex; AIM: Atg8-family interacting motif; ATG: autophagy related; CKM: CDK8 kinase module; Cvt: cytoplasm-to-vacuole targeting; IDR: intrinsically disordered region; LIR: LC3-interacting region; LDS: LIR/AIM docking site; MoRF: molecular recognition feature; NPC: nuclear pore complex; PAS: phagophore assembly site; PKA: protein kinase A; RBP: RNA-binding protein; UPS: ubiquitin-proteasome system. SAA-TF: Snx4-assisted autophagy of transcription factors; Y2H: yeast two-hybrid.
Collapse
Affiliation(s)
- Sara E. Hanley
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Stratford, NJ, USA
| | - Stephen D. Willis
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Stratford, NJ, USA
| | - Steven J. Doyle
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Stratford, NJ, USA
- School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
| | - Randy Strich
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Stratford, NJ, USA
| | - Katrina F. Cooper
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Stratford, NJ, USA
| |
Collapse
|
15
|
Ren J, Chen X, Zhang Z, Shi H, Wu S. DPred_3S: identifying dihydrouridine (D) modification on three species epitranscriptome based on multiple sequence-derived features. Front Genet 2023; 14:1334132. [PMID: 38169665 PMCID: PMC10758487 DOI: 10.3389/fgene.2023.1334132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction: Dihydrouridine (D) is a conserved modification of tRNA among all three life domains. D modification enhances the flexibility of a single nucleotide base in the spatial structure and is disease- and evolution-associated. Recent studies have also suggested the presence of dihydrouridine on mRNA. Methods: To identify D in epitranscriptome, we provided a prediction framework named "DPred_3S" based on the machine learning approach for three species D epitranscriptome, which used epitranscriptome sequencing data as training data for the first time. Results: The optimal features were evaluated by the F-score and integration of different features; our model achieved area under the receiver operating characteristic curve (AUROC) scores 0.955, 0.946, and 0.905 for Saccharomyces cerevisiae, Escherichia coli, and Schizosaccharomyces pombe, respectively. The performances of different machine learning algorithms were also compared in this study. Discussion: The high performances of our model suggest the D sites can be distinguished based on their surrounding sequence, but the lower performance of cross-species prediction may be limited by technique preferences.
Collapse
Affiliation(s)
- Jinjin Ren
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaozhen Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhengqian Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Haoran Shi
- Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
| | - Shuxiang Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
16
|
Blank HM, Griffith WP, Polymenis M. Targeting APEX2 to the mRNA encoding fatty acid synthase β in yeast identifies interacting proteins that control its abundance in the cell cycle. Mol Biol Cell 2023; 34:br20. [PMID: 37792491 PMCID: PMC10848943 DOI: 10.1091/mbc.e23-05-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023] Open
Abstract
Profiling the repertoire of proteins associated with a given mRNA during the cell cycle is unstudied. Furthermore, it is easier to ask and answer what mRNAs a specific protein might bind to than the other way around. Here, we implemented an RNA-centric proximity labeling technology at different points in the cell cycle in highly synchronous yeast cultures. To understand how the abundance of FAS1, encoding fatty acid synthase, peaks late in the cell cycle, we identified proteins that interact with the FAS1 transcript in a cell cycle-dependent manner. We used dCas13d-APEX2 fusions to target FAS1 and label nearby proteins, which were then identified by mass spectrometry. The glycolytic enzyme Tdh3p, a known RNA-binding protein, interacted with the FAS1 mRNA, and it was necessary for the periodic abundance of Fas1p in the cell cycle. These results point to unexpected connections between major metabolic pathways. They also underscore the role of mRNA-protein interactions for gene expression during cell division.
Collapse
Affiliation(s)
- Heidi M. Blank
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Wendell P. Griffith
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| |
Collapse
|
17
|
Asada R, Dominguez A, Montpetit B. Single-molecule quantitation of RNA-binding protein occupancy and stoichiometry defines a role for Yra1 (Aly/REF) in nuclear mRNP organization. Cell Rep 2023; 42:113415. [PMID: 37963019 PMCID: PMC10841842 DOI: 10.1016/j.celrep.2023.113415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
RNA-binding proteins (RBPs) interact with mRNA to form supramolecular complexes called messenger ribonucleoprotein (mRNP) particles. These dynamic assemblies direct and regulate individual steps of gene expression; however, their composition and functional importance remain largely unknown. Here, we develop a total internal reflection fluorescence-based single-molecule imaging assay to investigate stoichiometry and co-occupancy of 15 RBPs within mRNPs from Saccharomyces cerevisiae. We show compositional heterogeneity of single mRNPs and plasticity across different growth conditions, with major co-occupants of mRNPs containing the nuclear cap-binding complex identified as Yra1 (1-10 copies), Nab2 (1-6 copies), and Npl3 (1-6 copies). Multicopy Yra1-bound mRNPs are specifically co-occupied by the THO complex and assembled on mRNAs biased by transcript length and RNA secondary structure. Yra1 depletion results in decreased compaction of nuclear mRNPs demonstrating a packaging function. Together, we provide a quantitative framework for gene- and condition-dependent RBP occupancy and stoichiometry in individual nuclear mRNPs.
Collapse
Affiliation(s)
- Ryuta Asada
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
| | - Andrew Dominguez
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA; Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Ben Montpetit
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA; Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
18
|
Joshua IM, Lin M, Mardjuki A, Mazzola A, Höfken T. A Protein-Protein Interaction Analysis Suggests a Wide Range of New Functions for the p21-Activated Kinase (PAK) Ste20. Int J Mol Sci 2023; 24:15916. [PMID: 37958899 PMCID: PMC10647699 DOI: 10.3390/ijms242115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The p21-activated kinases (PAKs) are important signaling proteins. They contribute to a surprisingly wide range of cellular processes and play critical roles in a number of human diseases including cancer, neurological disorders and cardiac diseases. To get a better understanding of PAK functions, mechanisms and integration of various cellular activities, we screened for proteins that bind to the budding yeast PAK Ste20 as an example, using the split-ubiquitin technique. We identified 56 proteins, most of them not described previously as Ste20 interactors. The proteins fall into a small number of functional categories such as vesicle transport and translation. We analyzed the roles of Ste20 in glucose metabolism and gene expression further. Ste20 has a well-established role in the adaptation to changing environmental conditions through the stimulation of mitogen-activated protein kinase (MAPK) pathways which eventually leads to transcription factor activation. This includes filamentous growth, an adaptation to nutrient depletion. Here we show that Ste20 also induces filamentous growth through interaction with nuclear proteins such as Sac3, Ctk1 and Hmt1, key regulators of gene expression. Combining our observations and the data published by others, we suggest that Ste20 has several new and unexpected functions.
Collapse
Affiliation(s)
| | - Meng Lin
- Institute of Biochemistry, Kiel University, 24118 Kiel, Germany
| | - Ariestia Mardjuki
- Division of Biosciences, Brunel University London, Uxbridge UB8 3PH, UK; (I.M.J.)
| | - Alessandra Mazzola
- Division of Biosciences, Brunel University London, Uxbridge UB8 3PH, UK; (I.M.J.)
- Department of Biopathology and Medical and Forensic Biotechnologies, University of Palermo, 90133 Palermo, Italy
| | - Thomas Höfken
- Division of Biosciences, Brunel University London, Uxbridge UB8 3PH, UK; (I.M.J.)
- Institute of Biochemistry, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
19
|
Caraba B, Stirpe M, Palermo V, Vaccher U, Bianchi MM, Falcone C, Mazzoni C. Yeast Lsm Pro-Apoptotic Mutants Show Defects in Autophagy. Int J Mol Sci 2023; 24:13708. [PMID: 37762007 PMCID: PMC10530990 DOI: 10.3390/ijms241813708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
LSM4 is an essential yeast gene encoding a component of different LSM complexes involved in the regulation of mRNA splicing, stability, and translation. In previous papers, we reported that the expression in S. cerevisiae of the K. lactis LSM4 gene lacking the C-terminal Q/N-rich domain in an Lsm4 null strain S. cerevisiae (Sclsm4Δ1) restored cell viability. Nevertheless, in this transformed strain, we observed some phenotypes that are typical markers of regulated cell death, reactive oxygen species (ROS), and oxidated RNA accumulation. In this paper, we report that a similar truncation operated in the S. cerevisiae LSM4 gene confers on cells the same phenotypes observed with the K. lactis lsm4Δ1 gene. Up until now, there was no evidence of the direct involvement of LSM4 in autophagy. Here we found that the Sclsm4Δ1 mutant showed a block in the autophagic process and was very sensitive to nitrogen starvation or treatment with low doses of rapamycin, an inducer of autophagy. Moreover, both during nitrogen starvation and aging, the Sclsm4Δ1 mutant accumulated cytoplasmic autophagy-related structures, suggesting a role of Lsm4 in a later step of the autophagy process.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cristina Mazzoni
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy; (B.C.); (M.S.); (V.P.); (U.V.); (M.M.B.); (C.F.)
| |
Collapse
|
20
|
Kejiou NS, Ilan L, Aigner S, Luo E, Tonn T, Ozadam H, Lee M, Cole G, Rabano I, Rajakulendran N, Yee BA, Najafabadi H, Moraes T, Angers S, Yeo G, Cenik C, Palazzo A. Pyruvate Kinase M (PKM) binds ribosomes in a poly-ADP ribosylation dependent manner to induce translational stalling. Nucleic Acids Res 2023; 51:6461-6478. [PMID: 37224531 PMCID: PMC10325899 DOI: 10.1093/nar/gkad440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023] Open
Abstract
In light of the numerous studies identifying post-transcriptional regulators on the surface of the endoplasmic reticulum (ER), we asked whether there are factors that regulate compartment specific mRNA translation in human cells. Using a proteomic survey of spatially regulated polysome interacting proteins, we identified the glycolytic enzyme Pyruvate Kinase M (PKM) as a cytosolic (i.e. ER-excluded) polysome interactor and investigated how it influences mRNA translation. We discovered that the PKM-polysome interaction is directly regulated by ADP levels-providing a link between carbohydrate metabolism and mRNA translation. By performing enhanced crosslinking immunoprecipitation-sequencing (eCLIP-seq), we found that PKM crosslinks to mRNA sequences that are immediately downstream of regions that encode lysine- and glutamate-enriched tracts. Using ribosome footprint protection sequencing, we found that PKM binding to ribosomes causes translational stalling near lysine and glutamate encoding sequences. Lastly, we observed that PKM recruitment to polysomes is dependent on poly-ADP ribosylation activity (PARylation)-and may depend on co-translational PARylation of lysine and glutamate residues of nascent polypeptide chains. Overall, our study uncovers a novel role for PKM in post-transcriptional gene regulation, linking cellular metabolism and mRNA translation.
Collapse
Affiliation(s)
- Nevraj S Kejiou
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lena Ilan
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Enching Luo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tori Tonn
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Hakan Ozadam
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Muyoung Lee
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Gregory B Cole
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Ines Rabano
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Stephane Angers
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
21
|
Fradera-Sola A, Nischwitz E, Bayer ME, Luck K, Butter F. RNA-dependent interactome allows network-based assignment of RNA-binding protein function. Nucleic Acids Res 2023; 51:5162-5176. [PMID: 37070168 PMCID: PMC10250244 DOI: 10.1093/nar/gkad245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/19/2023] Open
Abstract
RNA-binding proteins (RBPs) form highly diverse and dynamic ribonucleoprotein complexes, whose functions determine the molecular fate of the bound RNA. In the model organism Sacchromyces cerevisiae, the number of proteins identified as RBPs has greatly increased over the last decade. However, the cellular function of most of these novel RBPs remains largely unexplored. We used mass spectrometry-based quantitative proteomics to systematically identify protein-protein interactions (PPIs) and RNA-dependent interactions (RDIs) to create a novel dataset for 40 RBPs that are associated with the mRNA life cycle. Domain, functional and pathway enrichment analyses revealed an over-representation of RNA functionalities among the enriched interactors. Using our extensive PPI and RDI networks, we revealed putative new members of RNA-associated pathways, and highlighted potential new roles for several RBPs. Our RBP interactome resource is available through an online interactive platform as a community tool to guide further in-depth functional studies and RBP network analysis (https://www.butterlab.org/RINE).
Collapse
Affiliation(s)
- Albert Fradera-Sola
- Quantitative Proteomics, Institute of Molecular Biology, D-55128 Mainz, Germany
| | - Emily Nischwitz
- Quantitative Proteomics, Institute of Molecular Biology, D-55128 Mainz, Germany
| | | | - Katja Luck
- Integrative Systems Biology, Institute of Molecular Biology, D-55128 Mainz, Germany
| | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology, D-55128 Mainz, Germany
| |
Collapse
|
22
|
Reynaud K, McGeachy AM, Noble D, Meacham ZA, Ingolia NT. Surveying the global landscape of post-transcriptional regulators. Nat Struct Mol Biol 2023; 30:740-752. [PMID: 37231154 PMCID: PMC10279529 DOI: 10.1038/s41594-023-00999-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
Numerous proteins regulate gene expression by modulating mRNA translation and decay. To uncover the full scope of these post-transcriptional regulators, we conducted an unbiased survey that quantifies regulatory activity across the budding yeast proteome and delineates the protein domains responsible for these effects. Our approach couples a tethered function assay with quantitative single-cell fluorescence measurements to analyze ~50,000 protein fragments and determine their effects on a tethered mRNA. We characterize hundreds of strong regulators, which are enriched for canonical and unconventional mRNA-binding proteins. Regulatory activity typically maps outside the RNA-binding domains themselves, highlighting a modular architecture that separates mRNA targeting from post-transcriptional regulation. Activity often aligns with intrinsically disordered regions that can interact with other proteins, even in core mRNA translation and degradation factors. Our results thus reveal networks of interacting proteins that control mRNA fate and illuminate the molecular basis for post-transcriptional gene regulation.
Collapse
Affiliation(s)
- Kendra Reynaud
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Anna M McGeachy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - David Noble
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Zuriah A Meacham
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Nicholas T Ingolia
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
23
|
Stenum TS, Kumar AD, Sandbaumhüter FA, Kjellin J, Jerlström-Hultqvist J, Andrén PE, Koskiniemi S, Jansson E, Holmqvist E. RNA interactome capture in Escherichia coli globally identifies RNA-binding proteins. Nucleic Acids Res 2023; 51:4572-4587. [PMID: 36987847 PMCID: PMC10201417 DOI: 10.1093/nar/gkad216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
RNA-binding proteins (RPBs) are deeply involved in fundamental cellular processes in bacteria and are vital for their survival. Despite this, few studies have so far been dedicated to direct and global identification of bacterial RBPs. We have adapted the RNA interactome capture (RIC) technique, originally developed for eukaryotic systems, to globally identify RBPs in bacteria. RIC takes advantage of the base pairing potential of poly(A) tails to pull-down RNA-protein complexes. Overexpressing poly(A) polymerase I in Escherichia coli drastically increased transcriptome-wide RNA polyadenylation, enabling pull-down of crosslinked RNA-protein complexes using immobilized oligo(dT) as bait. With this approach, we identified 169 putative RBPs, roughly half of which are already annotated as RNA-binding. We experimentally verified the RNA-binding ability of a number of uncharacterized RBPs, including YhgF, which is exceptionally well conserved not only in bacteria, but also in archaea and eukaryotes. We identified YhgF RNA targets in vivo using CLIP-seq, verified specific binding in vitro, and reveal a putative role for YhgF in regulation of gene expression. Our findings present a simple and robust strategy for RBP identification in bacteria, provide a resource of new bacterial RBPs, and lay the foundation for further studies of the highly conserved RBP YhgF.
Collapse
Affiliation(s)
- Thomas Søndergaard Stenum
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Ankith D Kumar
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Friederike A Sandbaumhüter
- Medical Mass Spectrometry, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Box 591, 75124 Uppsala, Sweden
| | - Jonas Kjellin
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Jon Jerlström-Hultqvist
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Per E Andrén
- Medical Mass Spectrometry, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Box 591, 75124 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Biomedical Centre, Uppsala University, Box 591, 75124 Uppsala, Sweden
| | - Sanna Koskiniemi
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Erik T Jansson
- Medical Mass Spectrometry, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Box 591, 75124 Uppsala, Sweden
| | - Erik Holmqvist
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| |
Collapse
|
24
|
Piao W, Li C, Sun P, Yang M, Ding Y, Song W, Jia Y, Yu L, Lu Y, Jin H. Identification of RNA-Binding Protein Targets with HyperTRIBE in Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:ijms24109033. [PMID: 37240377 DOI: 10.3390/ijms24109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
As a master regulator in cells, RNA-binding protein (RBP) plays critical roles in organismal development, metabolism and various diseases. It regulates gene expression at various levels mostly by specific recognition of target RNA. The traditional CLIP-seq method to detect transcriptome-wide RNA targets of RBP is less efficient in yeast due to the low UV transmissivity of their cell walls. Here, we established an efficient HyperTRIBE (Targets of RNA-binding proteins Identified By Editing) in yeast, by fusing an RBP to the hyper-active catalytic domain of human RNA editing enzyme ADAR2 and expressing the fusion protein in yeast cells. The target transcripts of RBP were marked with new RNA editing events and identified by high-throughput sequencing. We successfully applied HyperTRIBE to identifying the RNA targets of two yeast RBPs, KHD1 and BFR1. The antibody-free HyperTRIBE has competitive advantages including a low background, high sensitivity and reproducibility, as well as a simple library preparation procedure, providing a reliable strategy for RBP target identification in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Weilan Piao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Chong Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Pengkun Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Miaomiao Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Yansong Ding
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Wei Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Yunxiao Jia
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Liqun Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Yanming Lu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Hua Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China
| |
Collapse
|
25
|
Asencio C, Schwarzl T, Sahadevan S, Hentze MW. Small noncoding RNA interactome capture reveals pervasive, carbon source-dependent tRNA engagement of yeast glycolytic enzymes. RNA (NEW YORK, N.Y.) 2023; 29:330-345. [PMID: 36574981 PMCID: PMC9945440 DOI: 10.1261/rna.079408.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Small noncoding RNAs fulfill key functions in cellular and organismal biology, typically working in concert with RNA-binding proteins (RBPs). While proteome-wide methodologies have enormously expanded the repertoire of known RBPs, these methods do not distinguish RBPs binding to small noncoding RNAs from the rest. To specifically identify this relevant subclass of RBPs, we developed small noncoding RNA interactome capture (snRIC2C) based on the differential RNA-binding capacity of silica matrices (2C). We define the S. cerevisiae proteome of nearly 300 proteins that specifically binds to RNAs smaller than 200 nt in length (snRBPs), identifying informative distinctions from the total RNA-binding proteome determined in parallel. Strikingly, the snRBPs include most glycolytic enzymes from yeast. With further methodological developments using silica matrices, 12 tRNAs were identified as specific binders of the glycolytic enzyme GAPDH. We show that tRNA engagement of GAPDH is carbon source-dependent and regulated by the RNA polymerase III repressor Maf1, suggesting a regulatory interaction between glycolysis and RNA polymerase III activity. We conclude that snRIC2C and other 2C-derived methods greatly facilitate the study of RBPs, revealing previously unrecognized interactions.
Collapse
Affiliation(s)
- Claudio Asencio
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Thomas Schwarzl
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Sudeep Sahadevan
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | |
Collapse
|
26
|
Chadwick BJ, Ross BE, Lin X. Molecular Dissection of Crz1 and Its Dynamic Subcellular Localization in Cryptococcus neoformans. J Fungi (Basel) 2023; 9:jof9020252. [PMID: 36836365 PMCID: PMC9963361 DOI: 10.3390/jof9020252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Across lower eukaryotes, the transcription factor Crz1 is dephosphorylated by calcineurin, which facilitates Crz1 translocation to the nucleus to regulate gene expression. In the fungal pathogen Cryptococcus neoformans, calcineurin-Crz1 signaling maintains calcium homeostasis, thermotolerance, cell wall integrity, and morphogenesis. How Crz1 distinguishes different stressors and differentially regulates cellular responses is poorly understood. Through monitoring Crz1 subcellular localization over time, we found that Crz1 transiently localizes to granules after exposure to high temperature or calcium. These granules also host the phosphatase calcineurin and Pub1, a ribonucleoprotein stress granule marker, suggesting a role of stress granules in modulating calcineurin-Crz1 signaling. Additionally, we constructed and analyzed an array of Crz1 truncation mutants. We identified the intrinsically disordered regions in Crz1 contribute to proper stress granule localization, nuclear localization, and function. Our results provide the groundwork for further determination of the mechanisms behind the complex regulation of Crz1.
Collapse
Affiliation(s)
| | | | - Xiaorong Lin
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
27
|
Inhibiting androgen receptor splice variants with cysteine-selective irreversible covalent inhibitors to treat prostate cancer. Proc Natl Acad Sci U S A 2023; 120:e2211832120. [PMID: 36577061 PMCID: PMC9910435 DOI: 10.1073/pnas.2211832120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Androgen receptor (AR) and its splice variants (AR-SVs) promote prostate cancer (PCa) growth by orchestrating transcriptional reprogramming. Mechanisms by which the low complexity and intrinsically disordered primary transactivation domain (AF-1) of AR and AR-SVs regulate transcriptional programming in PCa remains poorly defined. Using omics, live and fixed fluorescent microscopy of cells, and purified AF-1 and AR-V7 recombinant proteins we show here that AF-1 and the AR-V7 splice variant form molecular condensates by liquid-liquid phase separation (LLPS) that exhibit disorder characteristics such as rapid intracellular mobility, coactivator interaction, and euchromatin induction. The LLPS and other disorder characteristics were reversed by a class of small-molecule-selective AR-irreversible covalent antagonists (SARICA) represented herein by UT-143 that covalently and selectively bind to C406 and C327 in the AF-1 region. Interfering with LLPS formation with UT-143 or mutagenesis resulted in chromatin condensation and dissociation of AR-V7 interactome, all culminating in a transcriptionally incompetent complex. Biochemical studies suggest that C327 and C406 in the AF-1 region are critical for condensate formation, AR-V7 function, and UT-143's irreversible AR inhibition. Therapeutically, UT-143 possesses drug-like pharmacokinetics and metabolism properties and inhibits PCa cell proliferation and tumor growth. Our work provides critical information suggesting that clinically important AR-V7 forms transcriptionally competent molecular condensates and covalently engaging C327 and C406 in AF-1, dissolves the condensates, and inhibits its function. The work also identifies a library of AF-1-binding AR and AR-SV-selective covalent inhibitors for the treatment of PCa.
Collapse
|
28
|
Keil P, Wulf A, Kachariya N, Reuscher S, Hühn K, Silbern I, Altmüller J, Keller M, Stehle R, Zarnack K, Sattler M, Urlaub H, Sträßer K. Npl3 functions in mRNP assembly by recruitment of mRNP components to the transcription site and their transfer onto the mRNA. Nucleic Acids Res 2022; 51:831-851. [PMID: 36583366 PMCID: PMC9881175 DOI: 10.1093/nar/gkac1206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022] Open
Abstract
RNA-binding proteins (RBPs) control every RNA metabolic process by multiple protein-RNA and protein-protein interactions. Their roles have largely been analyzed by crude mutations, which abrogate multiple functions at once and likely impact the structural integrity of the large ribonucleoprotein particles (RNPs) these proteins function in. Using UV-induced RNA-protein crosslinking of entire cells, protein complex purification and mass spectrometric analysis, we identified >100 in vivo RNA crosslinks in 16 nuclear mRNP components in Saccharomyces cerevisiae. For functional analysis, we chose Npl3, which displayed crosslinks in its two RNA recognition motifs (RRMs) and in the connecting flexible linker region. Both RRM domains and the linker uniquely contribute to RNA recognition as revealed by NMR and structural analyses. Interestingly, mutations in these regions cause different phenotypes, indicating distinct functions of the different RNA-binding domains. Notably, an npl3-Linker mutation strongly impairs recruitment of several mRNP components to chromatin and incorporation of other mRNP components into nuclear mRNPs, establishing a so far unknown function of Npl3 in nuclear mRNP assembly. Taken together, our integrative analysis uncovers a specific function of the RNA-binding activity of the nuclear mRNP component Npl3. This approach can be readily applied to RBPs in any RNA metabolic process.
Collapse
Affiliation(s)
| | | | | | - Samira Reuscher
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt a.M., Germany
| | - Kristin Hühn
- Institute of Biochemistry, FB08, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Ivan Silbern
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Goettingen, University Medical Center Goettingen, Institute of Clinical Chemistry, Robert-Koch-Strasse 40, 37075 Goettingen, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, 50931 Cologne, Germany,Technology platform genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mario Keller
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt a.M., Germany
| | - Ralf Stehle
- Bavarian NMR Center (BNMRZ), Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany,Institute of Structural Biology, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt a.M., Germany,Cardio-Pulmonary Institute (CPI), EXC 2026, 35392 Giessen, Germany
| | | | | | - Katja Sträßer
- To whom correspondence should be addressed. Tel: +49 641 99 35400; Fax: +49 641 99 35409;
| |
Collapse
|
29
|
Dhaliwal JS, Panozzo C, Benard L, Zerges W. An RNA granule for translation quality control in Saccharomyces cerevisiae. J Cell Sci 2022; 135:285862. [PMID: 36373798 DOI: 10.1242/jcs.260388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Cytoplasmic RNA granules compartmentalize phases of the translation cycle in eukaryotes. We previously reported the localization of oxidized RNA to cytoplasmic foci called oxidized RNA bodies (ORBs) in human cells. We show here that ORBs are RNA granules in Saccharomyces cerevisiae. Several lines of evidence support a role for ORBs in the compartmentalization of no-go decay and ribosome quality control, the translation quality control pathways that recognize and clear aberrant mRNAs, including those with oxidized bases. Translation is required by these pathways and ORBs. Translation quality control factors localize to ORBs. A substrate of translation quality control, a stalled mRNA-ribosome-nascent-chain complex, localizes to ORBs. Translation quality control mutants have altered ORB numbers, sizes or both. In addition, we identify 68 ORB proteins by immunofluorescence staining directed by proteomics, which further support their role in translation quality control and reveal candidate new factors for these pathways.
Collapse
Affiliation(s)
- James S Dhaliwal
- Department of Biology, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada, H4B 1R6
| | - Cristina Panozzo
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Lionel Benard
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - William Zerges
- Department of Biology, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada, H4B 1R6
| |
Collapse
|
30
|
Hall RA, Wallace EW. Post-transcriptional control of fungal cell wall synthesis. Cell Surf 2022; 8:100074. [PMID: 35097244 PMCID: PMC8783092 DOI: 10.1016/j.tcsw.2022.100074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/21/2022] Open
Abstract
Pathogenic fungi hide from their hosts by camouflage, obscuring immunogenic cell wall components such as beta-glucan with innocuous coverings such as mannoproteins and alpha-glucan that are less readily recognised by the host. Attempts to understand how such processes are regulated have met with varying success. Typically studies focus on understanding the transcriptional response of fungi to either their reservoir environment or the host. However, such approaches do not fully address this research question, due to the layers of post-transcriptional and post-translational regulation that occur within a cell. Although in animals the impact of post-transcriptional and post-translational regulation has been well characterised, our knowledge of these processes in the fungal kingdom is more limited. Mutations in RNA-binding proteins, like Ssd1 and Candida albicans Slr1, affect cell wall composition and fungal virulence indicating that post-transcriptional regulation plays a key role in these processes. Here, we review the current state of knowledge of fungal post-transcriptional regulation, and link this to potential mechanisms of immune evasion by drawing on studies from model yeast and plant pathogenic fungi. We highlight several RNA-binding proteins that regulate cell wall synthesis and could be involved in local translation of cell wall components. Expanding our knowledge on post-transcriptional regulation in human fungal pathogens is essential to fully comprehend fungal virulence strategies and for the design of novel antifungal therapies.
Collapse
Affiliation(s)
- Rebecca A. Hall
- Kent Fungal Group, Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Edward W.J. Wallace
- Institute for Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, EH9 3FF, United Kingdom
| |
Collapse
|
31
|
Garg M, Roy D, Rajyaguru PI. Low complexity RGG-motif containing proteins Scd6 and Psp2 act as suppressors of clathrin heavy chain deficiency. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119327. [PMID: 35901970 DOI: 10.1016/j.bbamcr.2022.119327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Clathrin, made up of the heavy- and light-chains, constitutes one of the most abundant proteins involved in intracellular protein trafficking and endocytosis. YPR129W, which encodes RGG-motif containing translation repressor was identified as a part of the multi-gene construct (SCD6) that suppressed clathrin deficiency. However, the contribution of YPR129W alone in suppressing clathrin deficiency has not been documented. This study identifies YPR129W as a necessary and sufficient gene in a multi-gene construct SCD6 that suppresses clathrin deficiency. Importantly, we also identify cytoplasmic RGG-motif protein encoding gene PSP2 as another novel suppressor of clathrin deficiency. Detailed domain analysis of the two suppressors reveals that the RGG-motif of both Scd6 and Psp2 is important for suppressing clathrin deficiency. Interestingly, the endocytosis function of clathrin heavy chain assayed by internalization of GFP-Snc1 and α-factor secretion activity are not complemented by either Scd6 or Psp2. We further observe that inhibition of TORC1 compromises the suppression activity of both SCD6 and PSP2 to different extent, suggesting that two suppressors are differentially regulated. Scd6 granules increased based on its RGG-motif upon Chc1 depletion. Strikingly, Psp2 overexpression increased the abundance of ubiquitin-conjugated proteins in Chc1 depleted cells in its RGG-motif dependent manner and also decreased the accumulation of GFP-Atg8 foci. Overall based on our results using SCD6 and PSP2, we identify a novel role of RGG-motif containing proteins in suppressing clathrin deficiency. Since both the suppressors are RNA-binding proteins, this study opens an exciting avenue for exploring the connection between clathrin function and post-transcriptional gene control processes.
Collapse
Affiliation(s)
- Mani Garg
- Department of Biochemistry, Indian Institute of Science, C V Raman road, Bangalore 560012, India
| | - Debadrita Roy
- Department of Biochemistry, Indian Institute of Science, C V Raman road, Bangalore 560012, India
| | - Purusharth I Rajyaguru
- Department of Biochemistry, Indian Institute of Science, C V Raman road, Bangalore 560012, India.
| |
Collapse
|
32
|
Bheemireddy S, Sandhya S, Srinivasan N, Sowdhamini R. Computational tools to study RNA-protein complexes. Front Mol Biosci 2022; 9:954926. [PMID: 36275618 PMCID: PMC9585174 DOI: 10.3389/fmolb.2022.954926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
RNA is the key player in many cellular processes such as signal transduction, replication, transport, cell division, transcription, and translation. These diverse functions are accomplished through interactions of RNA with proteins. However, protein–RNA interactions are still poorly derstood in contrast to protein–protein and protein–DNA interactions. This knowledge gap can be attributed to the limited availability of protein-RNA structures along with the experimental difficulties in studying these complexes. Recent progress in computational resources has expanded the number of tools available for studying protein-RNA interactions at various molecular levels. These include tools for predicting interacting residues from primary sequences, modelling of protein-RNA complexes, predicting hotspots in these complexes and insights into derstanding in the dynamics of their interactions. Each of these tools has its strengths and limitations, which makes it significant to select an optimal approach for the question of interest. Here we present a mini review of computational tools to study different aspects of protein-RNA interactions, with focus on overall application, development of the field and the future perspectives.
Collapse
Affiliation(s)
- Sneha Bheemireddy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Sankaran Sandhya
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
- *Correspondence: Sankaran Sandhya, ; Ramanathan Sowdhamini,
| | | | - Ramanathan Sowdhamini
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
- *Correspondence: Sankaran Sandhya, ; Ramanathan Sowdhamini,
| |
Collapse
|
33
|
Roy R, Rajyaguru PI. Assay to Study the Phase-transition Behavior of Edc3, a Conserved Processing Body (P-body) Marker Protein. Bio Protoc 2022; 12:e4487. [PMID: 36199703 PMCID: PMC9486690 DOI: 10.21769/bioprotoc.4487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022] Open
Abstract
RNA granules are conserved, non-membranous, biphasic structures predominantly composed of RNA and RNA-binding proteins. RNA granules often assemble as a result of cellular responses to a variety of stresses, including infection. Two types of RNA granules are best characterized: stress granules (SGs) and processing bodies (P-bodies). The mechanism of RNA granule assembly and disassembly is still understudied because of its complex composition and dynamic behavior. The assembly of RNA granules is driven by a process known as phase separation of granule components. Edc3 is a conserved decapping activator and an essential P-body component in Saccharomyces cerevisiae. Phase separation of P-body proteins has been poorly explored. This protocol will enable the visualization of the phase transition behavior of Edc3, since it is tagged to mCherry. It further describes using small molecules and other proteins to study P-body dynamics. In addition to the assembly of Edc3, this assay also lays the foundation to study disassembly of phase-separated assemblies in vitro , which was not explored earlier. We have devised the assay to describe the use of one such protein that acts as a disassembly factor. Overall, this protocol is simple to perform and can potentially be combined with analyzing these assemblies using other approaches. Graphical abstract.
Collapse
Affiliation(s)
- Raju Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Purusharth I. Rajyaguru
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
,
*For correspondence:
| |
Collapse
|
34
|
Polymenis M. mRNA-binding proteins and cell cycle progression. Trends Genet 2022; 38:797-800. [PMID: 35618506 PMCID: PMC9933138 DOI: 10.1016/j.tig.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/10/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
Abstract
Proteins that bind to each mRNA may affect the latter's abundance and location in the cell and how well ribosomes will translate that mRNA into a protein. Hence, mRNA-binding proteins (mRBPs) represent obvious control points in gene expression. Surprisingly, little is known about mRBPs and cell-cycle progression.
Collapse
Affiliation(s)
- Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
35
|
Shen H, Yanas A, Owens MC, Zhang C, Fritsch C, Fare CM, Copley KE, Shorter J, Goldman YE, Liu KF. Sexually dimorphic RNA helicases DDX3X and DDX3Y differentially regulate RNA metabolism through phase separation. Mol Cell 2022; 82:2588-2603.e9. [PMID: 35588748 PMCID: PMC9308757 DOI: 10.1016/j.molcel.2022.04.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/09/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023]
Abstract
Sex differences are pervasive in human health and disease. One major key to sex-biased differences lies in the sex chromosomes. Although the functions of the X chromosome proteins are well appreciated, how they compare with their Y chromosome homologs remains elusive. Herein, using ensemble and single-molecule techniques, we report that the sex chromosome-encoded RNA helicases DDX3X and DDX3Y are distinct in their propensities for liquid-liquid phase separation (LLPS), dissolution, and translation repression. We demonstrate that the N-terminal intrinsically disordered region of DDX3Y more strongly promotes LLPS than the corresponding region of DDX3X and that the weaker ATPase activity of DDX3Y, compared with DDX3X, contributes to the slower disassembly dynamics of DDX3Y-positive condensates. Interestingly, DDX3Y-dependent LLPS represses mRNA translation and enhances aggregation of FUS more strongly than DDX3X-dependent LLPS. Our study provides a platform for future comparisons of sex chromosome-encoded protein homologs, providing insights into sex differences in RNA metabolism and human disease.
Collapse
Affiliation(s)
- Hui Shen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amber Yanas
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael C Owens
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Celia Zhang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Clark Fritsch
- Graduate Group in Cellular and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charlotte M Fare
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katie E Copley
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Cellular and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yale E Goldman
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Lsm7 phase-separated condensates trigger stress granule formation. Nat Commun 2022; 13:3701. [PMID: 35764627 PMCID: PMC9240020 DOI: 10.1038/s41467-022-31282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/02/2022] [Indexed: 11/09/2022] Open
Abstract
Stress granules (SGs) are non-membranous organelles facilitating stress responses and linking the pathology of age-related diseases. In a genome-wide imaging-based phenomic screen, we identify Pab1 co-localizing proteins under 2-deoxy-D-glucose (2-DG) induced stress in Saccharomyces cerevisiae. We find that deletion of one of the Pab1 co-localizing proteins, Lsm7, leads to a significant decrease in SG formation. Under 2-DG stress, Lsm7 rapidly forms foci that assist in SG formation. The Lsm7 foci form via liquid-liquid phase separation, and the intrinsically disordered region and the hydrophobic clusters within the Lsm7 sequence are the internal driving forces in promoting Lsm7 phase separation. The dynamic Lsm7 phase-separated condensates appear to work as seeding scaffolds, promoting Pab1 demixing and subsequent SG initiation, seemingly mediated by RNA interactions. The SG initiation mechanism, via Lsm7 phase separation, identified in this work provides valuable clues for understanding the mechanisms underlying SG formation and SG-associated human diseases.
Collapse
|
37
|
Finet O, Yague-Sanz C, Marchand F, Hermand D. The Dihydrouridine landscape from tRNA to mRNA: a perspective on synthesis, structural impact and function. RNA Biol 2022; 19:735-750. [PMID: 35638108 PMCID: PMC9176250 DOI: 10.1080/15476286.2022.2078094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The universal dihydrouridine (D) epitranscriptomic mark results from a reduction of uridine by the Dus family of NADPH-dependent reductases and is typically found within the eponym D-loop of tRNAs. Despite its apparent simplicity, D is structurally unique, with the potential to deeply affect the RNA backbone and many, if not all, RNA-connected processes. The first landscape of its occupancy within the tRNAome was reported 20 years ago. Its potential biological significance was highlighted by observations ranging from a strong bias in its ecological distribution to the predictive nature of Dus enzymes overexpression for worse cancer patient outcomes. The exquisite specificity of the Dus enzymes revealed by a structure-function analyses and accumulating clues that the D distribution may expand beyond tRNAs recently led to the development of new high-resolution mapping methods, including Rho-seq that established the presence of D within mRNAs and led to the demonstration of its critical physiological relevance.
Collapse
Affiliation(s)
- Olivier Finet
- URPHYM-GEMO, The University of Namur, Namur, Belgium
| | | | | | | |
Collapse
|
38
|
Crawford RA, Ashe MP, Hubbard SJ, Pavitt GD. Cytosolic aspartate aminotransferase moonlights as a ribosome-binding modulator of Gcn2 activity during oxidative stress. eLife 2022; 11:73466. [PMID: 35621265 PMCID: PMC9191892 DOI: 10.7554/elife.73466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of translation is a fundamental facet of the cellular response to rapidly changing external conditions. Specific RNA-binding proteins (RBPs) co-ordinate the translational regulation of distinct mRNA cohorts during stress. To identify RBPs with previously under-appreciated roles in translational control, we used polysome profiling and mass spectrometry to identify and quantify proteins associated with translating ribosomes in unstressed yeast cells and during oxidative stress and amino acid starvation, which both induce the integrated stress response (ISR). Over 800 proteins were identified across polysome gradient fractions, including ribosomal proteins, translation factors, and many others without previously described translation-related roles, including numerous metabolic enzymes. We identified variations in patterns of PE in both unstressed and stressed cells and identified proteins enriched in heavy polysomes during stress. Genetic screening of polysome-enriched RBPs identified the cytosolic aspartate aminotransferase, Aat2, as a ribosome-associated protein whose deletion conferred growth sensitivity to oxidative stress. Loss of Aat2 caused aberrantly high activation of the ISR via enhanced eIF2α phosphorylation and GCN4 activation. Importantly, non-catalytic AAT2 mutants retained polysome association and did not show heightened stress sensitivity. Aat2 therefore has a separate ribosome-associated translational regulatory or 'moonlighting' function that modulates the ISR independent of its aspartate aminotransferase activity.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Mark P Ashe
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Simon J Hubbard
- Division of Evolution, Infection and Genomics, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
39
|
Draycott AS, Schaening-Burgos C, Rojas-Duran MF, Wilson L, Schärfen L, Neugebauer KM, Nachtergaele S, Gilbert WV. Transcriptome-wide mapping reveals a diverse dihydrouridine landscape including mRNA. PLoS Biol 2022; 20:e3001622. [PMID: 35609439 PMCID: PMC9129914 DOI: 10.1371/journal.pbio.3001622] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 04/07/2022] [Indexed: 11/19/2022] Open
Abstract
Dihydrouridine is a modified nucleotide universally present in tRNAs, but the complete dihydrouridine landscape is unknown in any organism. We introduce dihydrouridine sequencing (D-seq) for transcriptome-wide mapping of D with single-nucleotide resolution and use it to uncover novel classes of dihydrouridine-containing RNA in yeast which include mRNA and small nucleolar RNA (snoRNA). The novel D sites are concentrated in conserved stem-loop regions consistent with a role for D in folding many functional RNA structures. We demonstrate dihydrouridine synthase (DUS)-dependent changes in splicing of a D-containing pre-mRNA in cells and show that D-modified mRNAs can be efficiently translated by eukaryotic ribosomes in vitro. This work establishes D as a new functional component of the mRNA epitranscriptome and paves the way for identifying the RNA targets of multiple DUS enzymes that are dysregulated in human disease.
Collapse
Affiliation(s)
- Austin S. Draycott
- Yale School of Medicine, Department of Molecular Biophysics & Biochemistry, New Haven, Connecticut, United States of America
| | - Cassandra Schaening-Burgos
- Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts, United States of America
| | - Maria F. Rojas-Duran
- Yale School of Medicine, Department of Molecular Biophysics & Biochemistry, New Haven, Connecticut, United States of America
| | - Loren Wilson
- Yale University, Department of Molecular, Cellular, and Developmental Biology, New Haven, Connecticut, United States of America
| | - Leonard Schärfen
- Yale School of Medicine, Department of Molecular Biophysics & Biochemistry, New Haven, Connecticut, United States of America
| | - Karla M. Neugebauer
- Yale School of Medicine, Department of Molecular Biophysics & Biochemistry, New Haven, Connecticut, United States of America
| | - Sigrid Nachtergaele
- Yale University, Department of Molecular, Cellular, and Developmental Biology, New Haven, Connecticut, United States of America
| | - Wendy V. Gilbert
- Yale School of Medicine, Department of Molecular Biophysics & Biochemistry, New Haven, Connecticut, United States of America
| |
Collapse
|
40
|
Kuechler ER, Jacobson M, Mayor T, Gsponer J. GraPES: The Granule Protein Enrichment Server for prediction of biological condensate constituents. Nucleic Acids Res 2022; 50:W384-W391. [PMID: 35474477 PMCID: PMC9252806 DOI: 10.1093/nar/gkac279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/27/2022] [Accepted: 04/09/2022] [Indexed: 01/30/2023] Open
Abstract
Phase separation-based condensate formation is a novel working paradigm in biology, helping to rationalize many important cellular phenomena including the assembly of membraneless organelles. Uncovering the functional impact of cellular condensates requires a better knowledge of these condensates’ constituents. Herein, we introduce the webserver GraPES (Granule Protein Enrichment Server), a user-friendly online interface containing the MaGS and MaGSeq predictors, which provide propensity scores for proteins’ localization into cellular condensates. Our webpage contains models trained on human (Homo sapiens) and yeast (Saccharomyces cerevisiae) stress granule proteins. MaGS utilizes experimentally-based protein features for prediction, whereas MaGSeq is an entirely protein sequence-based implementation. GraPES is implemented in HTML/CSS and Javascript and is freely available for public use at https://grapes.msl.ubc.ca/. Documentation for using the provided webtools, descriptions of their methodology, and implementation notes can be found on the webpage.
Collapse
Affiliation(s)
- Erich R Kuechler
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Matthew Jacobson
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Jörg Gsponer
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Yang H, Sibilla C, Liu R, Yun J, Hay BA, Blackstone C, Chan DC, Harvey RJ, Guo M. Clueless/CLUH regulates mitochondrial fission by promoting recruitment of Drp1 to mitochondria. Nat Commun 2022; 13:1582. [PMID: 35332133 PMCID: PMC8948191 DOI: 10.1038/s41467-022-29071-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/04/2022] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial fission is critically important for controlling mitochondrial morphology, function, quality and transport. Drp1 is the master regulator driving mitochondrial fission, but exactly how Drp1 is regulated remains unclear. Here, we identified Drosophila Clueless and its mammalian orthologue CLUH as key regulators of Drp1. As with loss of drp1, depletion of clueless or CLUH results in mitochondrial elongation, while as with drp1 overexpression, clueless or CLUH overexpression leads to mitochondrial fragmentation. Importantly, drp1 overexpression rescues adult lethality, tissue disintegration and mitochondrial defects of clueless null mutants in Drosophila. Mechanistically, Clueless and CLUH promote recruitment of Drp1 to mitochondria from the cytosol. This involves CLUH binding to mRNAs encoding Drp1 receptors MiD49 and Mff, and regulation of their translation. Our findings identify a crucial role of Clueless and CLUH in controlling mitochondrial fission through regulation of Drp1. Drp1 is the master regulator of mitochondrial fission, which has important impact on cellular functions. Here, Yang et al identified evolutionarily conserved proteins Clueless and its homolog CLUH as key regulators of Drp1 that function via translation of Drp1 receptors MiD49 and Mff.
Collapse
Affiliation(s)
- Huan Yang
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Caroline Sibilla
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.,Department of Pharmacology, University College London School of Pharmacy, London, UK.,AstraZeneca PLC, Cambridge Biomedical Campus, Cambridge, UK
| | - Raymond Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
| | - Jina Yun
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.,Genentech, Inc., South San Francisco, CA, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robert J Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Ming Guo
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA. .,Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA. .,California NanoSystems Institute at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Huiting W, Dekker SL, van der Lienden JCJ, Mergener R, Musskopf MK, Furtado GV, Gerrits E, Coit D, Oghbaie M, Di Stefano LH, Schepers H, van Waarde-Verhagen MAWH, Couzijn S, Barazzuol L, LaCava J, Kampinga HH, Bergink S. Targeting DNA topoisomerases or checkpoint kinases results in an overload of chaperone systems, triggering aggregation of a metastable subproteome. eLife 2022; 11:e70726. [PMID: 35200138 PMCID: PMC8871389 DOI: 10.7554/elife.70726] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
A loss of the checkpoint kinase ataxia telangiectasia mutated (ATM) leads to impairments in the DNA damage response, and in humans causes cerebellar neurodegeneration, and an increased risk of cancer. A loss of ATM is also associated with increased protein aggregation. The relevance and characteristics of this aggregation are still incompletely understood. Moreover, it is unclear to what extent other genotoxic conditions can trigger protein aggregation as well. Here, we show that targeting ATM, but also ATR or DNA topoisomerases, results in the widespread aggregation of a metastable, disease-associated subfraction of the proteome. Aggregation-prone model substrates, including Huntingtin exon 1 containing an expanded polyglutamine repeat, aggregate faster under these conditions. This increased aggregation results from an overload of chaperone systems, which lowers the cell-intrinsic threshold for proteins to aggregate. In line with this, we find that inhibition of the HSP70 chaperone system further exacerbates the increased protein aggregation. Moreover, we identify the molecular chaperone HSPB5 as a cell-specific suppressor of it. Our findings reveal that various genotoxic conditions trigger widespread protein aggregation in a manner that is highly reminiscent of the aggregation occurring in situations of proteotoxic stress and in proteinopathies.
Collapse
Affiliation(s)
- Wouter Huiting
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Suzanne L Dekker
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Joris CJ van der Lienden
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Rafaella Mergener
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Maiara K Musskopf
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Gabriel V Furtado
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Emma Gerrits
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - David Coit
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| | - Mehrnoosh Oghbaie
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Luciano H Di Stefano
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Hein Schepers
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Maria AWH van Waarde-Verhagen
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Suzanne Couzijn
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of GroningenGroningenNetherlands
- Department of Radiation Oncology, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Harm H Kampinga
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Steven Bergink
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of GroningenGroningenNetherlands
| |
Collapse
|
43
|
Bremer A, Farag M, Borcherds WM, Peran I, Martin EW, Pappu RV, Mittag T. Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat Chem 2022; 14:196-207. [PMID: 34931046 PMCID: PMC8818026 DOI: 10.1038/s41557-021-00840-w] [Citation(s) in RCA: 256] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022]
Abstract
Prion-like low-complexity domains (PLCDs) have distinctive sequence grammars that determine their driving forces for phase separation. Here we uncover the physicochemical underpinnings of how evolutionarily conserved compositional biases influence the phase behaviour of PLCDs. We interpret our results in the context of the stickers-and-spacers model for the phase separation of associative polymers. We find that tyrosine is a stronger sticker than phenylalanine, whereas arginine is a context-dependent auxiliary sticker. In contrast, lysine weakens sticker-sticker interactions. Increasing the net charge per residue destabilizes phase separation while also weakening the strong coupling between single-chain contraction in dilute phases and multichain interactions that give rise to phase separation. Finally, glycine and serine residues act as non-equivalent spacers, and thus make the glycine versus serine contents an important determinant of the driving forces for phase separation. The totality of our results leads to a set of rules that enable comparative estimates of composition-specific driving forces for PLCD phase separation.
Collapse
Affiliation(s)
- Anne Bremer
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mina Farag
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St Louis, St Louis, MO, USA
| | - Wade M Borcherds
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ivan Peran
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Erik W Martin
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St Louis, St Louis, MO, USA.
| | - Tanja Mittag
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
44
|
Bremer A, Farag M, Borcherds WM, Peran I, Martin EW, Pappu RV, Mittag T. Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat Chem 2022; 14:196-207. [PMID: 34931046 DOI: 10.1101/2021.01.01.425046] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 10/19/2021] [Indexed: 05/25/2023]
Abstract
Prion-like low-complexity domains (PLCDs) have distinctive sequence grammars that determine their driving forces for phase separation. Here we uncover the physicochemical underpinnings of how evolutionarily conserved compositional biases influence the phase behaviour of PLCDs. We interpret our results in the context of the stickers-and-spacers model for the phase separation of associative polymers. We find that tyrosine is a stronger sticker than phenylalanine, whereas arginine is a context-dependent auxiliary sticker. In contrast, lysine weakens sticker-sticker interactions. Increasing the net charge per residue destabilizes phase separation while also weakening the strong coupling between single-chain contraction in dilute phases and multichain interactions that give rise to phase separation. Finally, glycine and serine residues act as non-equivalent spacers, and thus make the glycine versus serine contents an important determinant of the driving forces for phase separation. The totality of our results leads to a set of rules that enable comparative estimates of composition-specific driving forces for PLCD phase separation.
Collapse
Affiliation(s)
- Anne Bremer
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mina Farag
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St Louis, St Louis, MO, USA
| | - Wade M Borcherds
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ivan Peran
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Erik W Martin
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St Louis, St Louis, MO, USA.
| | - Tanja Mittag
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
45
|
Westrip CAE, Zhuang Q, Hall C, Eaton CD, Coleman ML. Developmentally regulated GTPases: structure, function and roles in disease. Cell Mol Life Sci 2021; 78:7219-7235. [PMID: 34664086 PMCID: PMC8629797 DOI: 10.1007/s00018-021-03961-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/13/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023]
Abstract
GTPases are a large superfamily of evolutionarily conserved proteins involved in a variety of fundamental cellular processes. The developmentally regulated GTP-binding protein (DRG) subfamily of GTPases consists of two highly conserved paralogs, DRG1 and DRG2, both of which have been implicated in the regulation of cell proliferation, translation and microtubules. Furthermore, DRG1 and 2 proteins both have a conserved binding partner, DRG family regulatory protein 1 and 2 (DFRP1 and DFRP2), respectively, that prevents them from being degraded. Similar to DRGs, the DFRP proteins have also been studied in the context of cell growth control and translation. Despite these proteins having been implicated in several fundamental cellular processes they remain relatively poorly characterized, however. In this review, we provide an overview of the structural biology and biochemistry of DRG GTPases and discuss current understanding of DRGs and DFRPs in normal physiology, as well as their emerging roles in diseases such as cancer.
Collapse
Affiliation(s)
- Christian A E Westrip
- Tumour Oxygenase Group, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Qinqin Zhuang
- Tumour Oxygenase Group, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Charlotte Hall
- Tumour Oxygenase Group, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Charlotte D Eaton
- Tumour Oxygenase Group, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Neurological Surgery, School of Medicine, University of California, 1450 Third St, San Francisco, CA, 94158, USA
| | - Mathew L Coleman
- Tumour Oxygenase Group, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
46
|
Grousl T, Vojtova J, Hasek J, Vomastek T. Yeast stress granules at a glance. Yeast 2021; 39:247-261. [PMID: 34791685 DOI: 10.1002/yea.3681] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/15/2021] [Accepted: 11/12/2021] [Indexed: 11/10/2022] Open
Abstract
The formation of stress granules (SGs), membrane-less organelles that are composed of mainly messenger ribonucleoprotein assemblies, is the result of a conserved evolutionary strategy to cellular stress. During their formation, which is triggered by robust environmental stress, SGs sequester translationally inactive mRNA molecules, which are either forwarded for further processing elsewhere or stored during a period of stress within SGs. Removal of mRNA molecules from active translation and their sequestration in SGs allows preferential translation of stress response transcripts. By affecting the specificity of mRNA translation, mRNA localization and stability, SGs are involved in the overall cellular reprogramming during periods of environmental stress and viral infection. Over the past two decades, we have learned which processes drive SGs assembly, how their composition varies under stress, and how they co-exist with other subcellular organelles. Yeast as a model has been instrumental in our understanding of SG biology. Despite the specific differences between the SGs of yeast and mammals, yeast have been shown to be a valuable tool to the study of SGs in translation-related stress response. This review summarizes the data surrounding SGs that are formed under different stress conditions in Saccharomyces cerevisiae and other yeast species. It offers a comprehensive and up-to-date view on these still somewhat mysterious entities.
Collapse
Affiliation(s)
- Tomas Grousl
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Vojtova
- Laboratory of Cell Reproduction, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Hasek
- Laboratory of Cell Reproduction, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Vomastek
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
47
|
Kershaw CJ, Nelson MG, Lui J, Bates CP, Jennings MD, Hubbard SJ, Ashe MP, Grant CM. Integrated multi-omics reveals common properties underlying stress granule and P-body formation. RNA Biol 2021; 18:655-673. [PMID: 34672913 PMCID: PMC8782181 DOI: 10.1080/15476286.2021.1976986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Non-membrane-bound compartments such as P-bodies (PBs) and stress granules (SGs) play important roles in the regulation of gene expression following environmental stresses. We have systematically and quantitatively determined the protein and mRNA composition of PBs and SGs formed before and after nutrient stress. We find that high molecular weight (HMW) complexes exist prior to glucose depletion that we propose may act as seeds for further condensation of proteins forming mature PBs and SGs. We identify an enrichment of proteins with low complexity and RNA binding domains, as well as long, structured mRNAs that are poorly translated following nutrient stress. Many proteins and mRNAs are shared between PBs and SGs including several multivalent RNA binding proteins that promote condensate interactions during liquid-liquid phase separation. We uncover numerous common protein and RNA components across PBs and SGs that support a complex interaction profile during the maturation of these biological condensates. These interaction networks represent a tuneable response to stress, highlighting previously unrecognized condensate heterogeneity. These studies therefore provide an integrated and quantitative understanding of the dynamic nature of key biological condensates.
Collapse
Affiliation(s)
- Christopher J Kershaw
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | - Michael G Nelson
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | - Jennifer Lui
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | - Christian P Bates
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | - Martin D Jennings
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | - Simon J Hubbard
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | - Mark P Ashe
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | - Chris M Grant
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| |
Collapse
|
48
|
Bhatter N, Iyyappan R, Mohanan G, Rajyaguru PI. Exploring the role of RRM domains and conserved aromatic residues in RGG motif of eIF4G-binding translation repressor protein Sbp1. Wellcome Open Res 2021; 3:102. [PMID: 32175478 PMCID: PMC7059846 DOI: 10.12688/wellcomeopenres.14709.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 11/20/2022] Open
Abstract
Background: RNA binding proteins play crucial role in determining if a given mRNA will be translated, stored, or degraded. Sbp1 is an RGG-motif containing protein that is implicated in affecting mRNA decapping and translation. Sbp1 represses translation by binding eIF4G1 through its RGG-motif and activates decapping when overexpressed. In this report, we have assessed the genetic interaction of Sbp1 with decapping activators such as Dhh1, Pat1, and Scd6. We have further analyzed the importance of different domains and specific conserved residues of Sbp1 in its ability to cause over-expression mediated growth defect. Method: Sequence alignment was performed to identify conserved aromatic residues to be mutated. Using site-directed mutagenesis several point mutations and domain deletions were created in Sbp1 expressed under a galactose-inducible promoter. The mutants were tested for their ability to cause growth defect upon over-expression. The ability of Sbp1 to affect over-expression mediated growth defect of other decapping activators was tested using growth assay. Live cell imaging was done to study localization of Sbp1 and its RRM-deletion mutants to RNA granules upon glucose starvation. Results: Mutation of several aromatic residues in the RGG-motif and that of the phosphorylation sites in the RRM domain of Sbp1 did not affect the growth defect phenotype. Deletion of another eIF4G1-binding RGG-motif protein Scd6 does not affect the ability of Sbp1 to cause growth defect. Moreover, absence of Sbp1 did not affect the growth defect phenotypes observed upon overexpression of decapping activators Dhh1 and Pat1. Strikingly deletion of both the RRM domains (RRM1 and RRM2) and not the RNP motifs within them compromised the growth defect phenotype. Sbp1 mutant lacking both RRM1 and RRM2 was highly defective in localizing to RNA granules. Conclusion: This study identifies an important role of RRM domains independent of the RNP motif in Sbp1 function.
Collapse
Affiliation(s)
- Nupur Bhatter
- Department of Biochemistry, Indian Institute of Science, CV Raman Road, Bangalore, 560012, India
| | - Rajan Iyyappan
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Gayatri Mohanan
- Department of Biochemistry, Indian Institute of Science, CV Raman Road, Bangalore, 560012, India
| | - Purusharth I Rajyaguru
- Department of Biochemistry, Indian Institute of Science, CV Raman Road, Bangalore, 560012, India
| |
Collapse
|
49
|
Vaishali, Dimitrova-Paternoga L, Haubrich K, Sun M, Ephrussi A, Hennig J. Validation and classification of RNA binding proteins identified by mRNA interactome capture. RNA (NEW YORK, N.Y.) 2021; 27:1173-1185. [PMID: 34215685 PMCID: PMC8456996 DOI: 10.1261/rna.078700.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
RNA binding proteins (RBPs) take part in all steps of the RNA life cycle and are often essential for cell viability. Most RBPs have a modular organization and comprise a set of canonical RNA binding domains. However, in recent years a number of high-throughput mRNA interactome studies on yeast, mammalian cell lines, and whole organisms have uncovered a multitude of novel mRNA interacting proteins that lack classical RNA binding domains. Whereas a few have been confirmed to be direct and functionally relevant RNA binders, biochemical and functional validation of RNA binding of most others is lacking. In this study, we used a combination of NMR spectroscopy and biochemical studies to test the RNA binding properties of six putative RBPs. Half of the analyzed proteins showed no interaction, whereas the other half displayed weak chemical shift perturbations upon titration with RNA. One of the candidates we found to interact weakly with RNA in vitro is Drosophila melanogaster end binding protein 1 (EB1), a master regulator of microtubule plus-end dynamics. Further analysis showed that EB1's RNA binding occurs on the same surface as that with which EB1 interacts with microtubules. RNA immunoprecipitation and colocalization experiments suggest that EB1 is a rather nonspecific, opportunistic RNA binder. Our data suggest that care should be taken when embarking on an RNA binding study involving these unconventional, novel RBPs, and we recommend initial and simple in vitro RNA binding experiments.
Collapse
Affiliation(s)
- Vaishali
- Developmental Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg 69120, Germany
| | - Lyudmila Dimitrova-Paternoga
- Developmental Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
- Structural and Computational Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Kevin Haubrich
- Structural and Computational Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Mai Sun
- Genome Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
- Biochemistry IV, Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
50
|
Seeking a Role for Translational Control by Alternative Polyadenylation in Saccharomyces cerevisiae. Microorganisms 2021; 9:microorganisms9091885. [PMID: 34576779 PMCID: PMC8464734 DOI: 10.3390/microorganisms9091885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Alternative polyadenylation (APA) represents an important mechanism for regulating isoform-specific translation efficiency, stability, and localisation. Though some progress has been made in understanding its consequences in metazoans, the role of APA in the model organism Saccharomyces cerevisiae remains a relative mystery because, despite abundant studies on the translational state of mRNA, none differentiate mRNA isoforms’ alternative 3′-end. This review discusses the implications of alternative polyadenylation in S. cerevisiae using other organisms to draw inferences. Given the foundational role that research in this yeast has played in the discovery of the mechanisms of cleavage and polyadenylation and in the drivers of APA, it is surprising that such an inference is required. However, because advances in ribosome profiling are insensitive to APA, how it impacts translation is still unclear. To bridge the gap between widespread observed APA and the discovery of any functional consequence, we also provide a review of the experimental techniques used to uncover the functional importance of 3′ UTR isoforms on translation.
Collapse
|