1
|
Zhang F, Tang Y, Zhou H, Li K, West JA, Griffin JL, Lilley KS, Zhang N. The Yeast Gsk-3 Kinase Mck1 Is Necessary for Cell Wall Remodeling in Glucose-Starved and Cell Wall-Stressed Cells. Int J Mol Sci 2025; 26:3534. [PMID: 40332024 PMCID: PMC12027387 DOI: 10.3390/ijms26083534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
The cell wall integrity (CWI) pathway is responsible for transcriptional regulation of cell wall remodeling in response to cell wall stress. How cell wall remodeling mediated by the CWI pathway is effected by inputs from other signaling pathways is not well understood. Here, we demonstrate that the Mck1 kinase cooperates with Slt2, the MAP kinase of the CWI pathway, to promote cell wall thickening in glucose-starved cells. Integrative analyses of the transcriptome, proteome and metabolic profiling indicate that Mck1 is required for the accumulation of UDP-glucose (UDPG), the substrate for β-glucan synthesis, through the activation of two regulons: the Msn2/4-dependent stress response and the Cat8-/Adr1-mediated metabolic reprogram dependent on the SNF1 complex. Analysis of the phosphoproteome suggests that similar to mammalian Gsk-3 kinases, Mck1 is involved in the regulation of cytoskeleton-dependent cellular processes, metabolism, signaling and transcription. Specifically, Mck1 may be implicated in the Snf1-dependent metabolic reprogram through PKA inhibition and SAGA (Spt-Ada-Gcn5 acetyltransferase)-mediated transcription activation, a hypothesis further underscored by the significant overlap between the Mck1- and Gcn5-activated transcriptomes. Phenotypic analysis also supports the roles of Mck1 in actin cytoskeleton-mediated exocytosis to ensure plasma membrane homeostasis and cell wall remodeling in cell wall-stressed cells. Together, these findings not only reveal the novel functions of Mck1 in metabolic reprogramming and polarized growth but also provide valuable omics resources for future studies to uncover the underlying mechanisms of Mck1 and other Gsk-3 kinases in cell growth and stress response.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingzhi Tang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Houjiang Zhou
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kaiqiang Li
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - James A. West
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Julian L. Griffin
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Nianshu Zhang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| |
Collapse
|
2
|
Dörig C, Marulli C, Peskett T, Volkmar N, Pantolini L, Studer G, Paleari C, Frommelt F, Schwede T, de Souza N, Barral Y, Picotti P. Global profiling of protein complex dynamics with an experimental library of protein interaction markers. Nat Biotechnol 2024:10.1038/s41587-024-02432-8. [PMID: 39415059 DOI: 10.1038/s41587-024-02432-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
Methods to systematically monitor protein complex dynamics are needed. We introduce serial ultrafiltration combined with limited proteolysis-coupled mass spectrometry (FLiP-MS), a structural proteomics workflow that generates a library of peptide markers specific to changes in PPIs by probing differences in protease susceptibility between complex-bound and monomeric forms of proteins. The library includes markers mapping to protein-binding interfaces and markers reporting on structural changes that accompany PPI changes. Integrating the marker library with LiP-MS data allows for global profiling of protein-protein interactions (PPIs) from unfractionated lysates. We apply FLiP-MS to Saccharomyces cerevisiae and probe changes in protein complex dynamics after DNA replication stress, identifying links between Spt-Ada-Gcn5 acetyltransferase activity and the assembly state of several complexes. FLiP-MS enables protein complex dynamics to be probed on any perturbation, proteome-wide, at high throughput, with peptide-level structural resolution and informing on occupancy of binding interfaces, thus providing both global and molecular views of a system under study.
Collapse
Affiliation(s)
- Christian Dörig
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Cathy Marulli
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Thomas Peskett
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Norbert Volkmar
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Lorenzo Pantolini
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| | - Gabriel Studer
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| | - Camilla Paleari
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Fabian Frommelt
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Torsten Schwede
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| | - Natalie de Souza
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Yves Barral
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Zhang T, Au WC, Ohkuni K, Shrestha RL, Kaiser P, Basrai MA. Mck1-mediated proteolysis of CENP-A prevents mislocalization of CENP-A for chromosomal stability in Saccharomyces cerevisiae. Genetics 2024; 228:iyae108. [PMID: 38984710 PMCID: PMC11373516 DOI: 10.1093/genetics/iyae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/09/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Centromeric localization of evolutionarily conserved CENP-A (Cse4 in Saccharomyces cerevisiae) is essential for chromosomal stability. Mislocalization of overexpressed CENP-A to noncentromeric regions contributes to chromosomal instability in yeasts, flies, and humans. Overexpression and mislocalization of CENP-A observed in many cancers are associated with poor prognosis. Previous studies have shown that F-box proteins, Cdc4 and Met30 of the Skp, Cullin, F-box ubiquitin ligase cooperatively regulate proteolysis of Cse4 to prevent Cse4 mislocalization and chromosomal instability under normal physiological conditions. Mck1-mediated phosphorylation of Skp, Cullin, F-box-Cdc4 substrates such as Cdc6 and Rcn1 enhances the interaction of the substrates with Cdc4. Here, we report that Mck1 interacts with Cse4, and Mck1-mediated proteolysis of Cse4 prevents Cse4 mislocalization for chromosomal stability. Our results showed that mck1Δ strain overexpressing CSE4 (GAL-CSE4) exhibits lethality, defects in ubiquitin-mediated proteolysis of Cse4, mislocalization of Cse4, and reduced Cse4-Cdc4 interaction. Strain expressing GAL-cse4-3A with mutations in three potential Mck1 phosphorylation consensus sites (S10, S16, and T166) also exhibits growth defects, increased stability with mislocalization of Cse4-3A, chromosomal instability, and reduced interaction with Cdc4. Constitutive expression of histone H3 (Δ16H3) suppresses the chromosomal instability phenotype of GAL-cse4-3A strain, suggesting that the chromosomal instability phenotype is linked to Cse4-3A mislocalization. We conclude that Mck1 and its three potential phosphorylation sites on Cse4 promote Cse4-Cdc4 interaction and this contributes to ubiquitin-mediated proteolysis of Cse4 preventing its mislocalization and chromosomal instability. These studies advance our understanding of pathways that regulate cellular levels of CENP-A to prevent mislocalization of CENP-A in human cancers.
Collapse
Affiliation(s)
- Tianyi Zhang
- Genetics Branch, Center for Cancer Research, National Cancer Institute. National Institute of Health, Bethesda, MD 20892, USA
| | - Wei-Chun Au
- Genetics Branch, Center for Cancer Research, National Cancer Institute. National Institute of Health, Bethesda, MD 20892, USA
| | - Kentaro Ohkuni
- Genetics Branch, Center for Cancer Research, National Cancer Institute. National Institute of Health, Bethesda, MD 20892, USA
| | - Roshan L Shrestha
- Genetics Branch, Center for Cancer Research, National Cancer Institute. National Institute of Health, Bethesda, MD 20892, USA
| | - Peter Kaiser
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute. National Institute of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Galanti L, Peritore M, Gnügge R, Cannavo E, Heipke J, Palumbieri MD, Steigenberger B, Symington LS, Cejka P, Pfander B. Dbf4-dependent kinase promotes cell cycle controlled resection of DNA double-strand breaks and repair by homologous recombination. Nat Commun 2024; 15:2890. [PMID: 38570537 PMCID: PMC10991553 DOI: 10.1038/s41467-024-46951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
DNA double-strand breaks (DSBs) can be repaired by several pathways. In eukaryotes, DSB repair pathway choice occurs at the level of DNA end resection and is controlled by the cell cycle. Upon cell cycle-dependent activation, cyclin-dependent kinases (CDKs) phosphorylate resection proteins and thereby stimulate end resection and repair by homologous recombination (HR). However, inability of CDK phospho-mimetic mutants to bypass this cell cycle regulation, suggests that additional cell cycle regulators may be important. Here, we identify Dbf4-dependent kinase (DDK) as a second major cell cycle regulator of DNA end resection. Using inducible genetic and chemical inhibition of DDK in budding yeast and human cells, we show that end resection and HR require activation by DDK. Mechanistically, DDK phosphorylates at least two resection nucleases in budding yeast: the Mre11 activator Sae2, which promotes resection initiation, as well as the Dna2 nuclease, which promotes resection elongation. Notably, synthetic activation of DDK allows limited resection and HR in G1 cells, suggesting that DDK is a key component of DSB repair pathway selection.
Collapse
Affiliation(s)
- Lorenzo Galanti
- Cell Biology, Dortmund Life Science Center (DOLCE), TU Dortmund University, Faculty of Chemistry and Chemical Biology, Dortmund, Germany
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
- Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute for Genome Stability in Aging and Disease, University of Cologne, Medical Faculty, CECAD Research Center, Cologne, Germany
| | - Martina Peritore
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
- Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute for Genome Stability in Aging and Disease, University of Cologne, Medical Faculty, CECAD Research Center, Cologne, Germany
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Robert Gnügge
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Elda Cannavo
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Johannes Heipke
- Cell Biology, Dortmund Life Science Center (DOLCE), TU Dortmund University, Faculty of Chemistry and Chemical Biology, Dortmund, Germany
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute for Genome Stability in Aging and Disease, University of Cologne, Medical Faculty, CECAD Research Center, Cologne, Germany
| | - Maria Dilia Palumbieri
- Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute for Genome Stability in Aging and Disease, University of Cologne, Medical Faculty, CECAD Research Center, Cologne, Germany
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Barbara Steigenberger
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Boris Pfander
- Cell Biology, Dortmund Life Science Center (DOLCE), TU Dortmund University, Faculty of Chemistry and Chemical Biology, Dortmund, Germany.
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.
- Institute for Genome Stability in Aging and Disease, University of Cologne, Medical Faculty, CECAD Research Center, Cologne, Germany.
| |
Collapse
|
5
|
Hori K, Yamazaki S, Ohtaka-Maruyama C, Ono T, Iguchi T, Masai H. Cdc7 kinase is required for postnatal brain development. Genes Cells 2023; 28:679-693. [PMID: 37584256 DOI: 10.1111/gtc.13059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/20/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
The evolutionally conserved Cdc7 kinase plays crucial roles in initiation of DNA replication as well as in other chromosomal events. To examine the roles of Cdc7 in brain development, we have generated mice carrying Cdc7 knockout in neural stem cells by using Nestin-Cre. The Cdc7Fl/Fl NestinCre mice were born, but exhibited severe growth retardation and impaired postnatal brain development. These mice exhibited motor dysfunction within 9 days after birth and did not survive for more than 19 days. The cerebral cortical layer formation was impaired, although the cortical cell numbers were not altered in the mutant. In the cerebellum undergoing hypoplasia, granule cells (CGC) decreased in number in Cdc7Fl/F l NestinCre mice compared to the control at E15-18, suggesting that Cdc7 is required for DNA replication and cell proliferation of CGC at mid embryonic stage (before embryonic day 15). On the other hand, the Purkinje cell numbers were not altered but its layer formation was impaired in the mutant. These results indicate differential roles of Cdc7 in DNA replication/cell proliferation in brain. Furthermore, the defects of layer formation suggest a possibility that Cdc7 may play an additional role in cell migration during neural development.
Collapse
Affiliation(s)
- Karin Hori
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Satoshi Yamazaki
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chiaki Ohtaka-Maruyama
- Developmental Neuroscience Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tomio Ono
- Laboratory for Transgenic Technology, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tomohiro Iguchi
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hisao Masai
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| |
Collapse
|
6
|
Zhang J, Li L, Miao Y, Liu X, Sun H, Jiang M, Li X, Li Z, Liu C, Liu B, Xu X, Cao Q, Hou W, Chen C, Lou H. Symmetric control of sister chromatid cohesion establishment. Nucleic Acids Res 2023; 51:4760-4773. [PMID: 36912084 PMCID: PMC10250241 DOI: 10.1093/nar/gkad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 03/14/2023] Open
Abstract
Besides entrapping sister chromatids, cohesin drives other high-order chromosomal structural dynamics like looping, compartmentalization and condensation. ESCO2 acetylates a subset of cohesin so that cohesion must be established and only be established between nascent sister chromatids. How this process is precisely achieved remains unknown. Here, we report that GSK3 family kinases provide higher hierarchical control through an ESCO2 regulator, CRL4MMS22L. GSK3s phosphorylate Thr105 in MMS22L, resulting in homo-dimerization of CRL4MMS22L and ESCO2 during S phase as evidenced by single-molecule spectroscopy and several biochemical approaches. A single phospho-mimicking mutation on MMS22L (T105D) is sufficient to mediate their dimerization and rescue the cohesion defects caused by GSK3 or MMS22L depletion, whereas non-phosphorylable T105A exerts dominant-negative effects even in wildtype cells. Through cell fractionation and time-course measurements, we show that GSK3s facilitate the timely chromatin association of MMS22L and ESCO2 and subsequently SMC3 acetylation. The necessity of ESCO2 dimerization implicates symmetric control of cohesion establishment in eukaryotes.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lili Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Miao
- School of Life Sciences; Beijing Advanced Innovation Center for Structural Biology; Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China
| | - Xiaojing Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haitao Sun
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meiqian Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoli Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Cong Liu
- Department of Paediatrics, SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, 610041 Chengdu, China
| | - Baohua Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qinhong Cao
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenya Hou
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Shenzhen University General Hospital and School of Medicine, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Chunlai Chen
- School of Life Sciences; Beijing Advanced Innovation Center for Structural Biology; Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China
| | - Huiqiang Lou
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Mfarej MG, Hyland CA, Sanchez AC, Falk MM, Iovine MK, Skibbens RV. Cohesin: an emerging master regulator at the heart of cardiac development. Mol Biol Cell 2023; 34:rs2. [PMID: 36947206 PMCID: PMC10162415 DOI: 10.1091/mbc.e22-12-0557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
Cohesins are ATPase complexes that play central roles in cellular processes such as chromosome division, DNA repair, and gene expression. Cohesinopathies arise from mutations in cohesin proteins or cohesin complex regulators and encompass a family of related developmental disorders that present with a range of severe birth defects, affect many different physiological systems, and often lead to embryonic fatality. Treatments for cohesinopathies are limited, in large part due to the lack of understanding of cohesin biology. Thus, characterizing the signaling networks that lie upstream and downstream of cohesin-dependent pathways remains clinically relevant. Here, we highlight alterations in cohesins and cohesin regulators that result in cohesinopathies, with a focus on cardiac defects. In addition, we suggest a novel and more unifying view regarding the mechanisms through which cohesinopathy-based heart defects may arise.
Collapse
Affiliation(s)
- Michael G. Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Caitlin A. Hyland
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Annie C. Sanchez
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Matthias M. Falk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - M. Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| |
Collapse
|
8
|
Minamino M, Bouchoux C, Canal B, Diffley JFX, Uhlmann F. A replication fork determinant for the establishment of sister chromatid cohesion. Cell 2023; 186:837-849.e11. [PMID: 36693376 DOI: 10.1016/j.cell.2022.12.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/08/2022] [Accepted: 12/22/2022] [Indexed: 01/24/2023]
Abstract
Concomitant with DNA replication, the chromosomal cohesin complex establishes cohesion between newly replicated sister chromatids. Cohesion establishment requires acetylation of conserved cohesin lysine residues by Eco1 acetyltransferase. Here, we explore how cohesin acetylation is linked to DNA replication. Biochemical reconstitution of replication-coupled cohesin acetylation reveals that transient DNA structures, which form during DNA replication, control the acetylation reaction. As polymerases complete lagging strand replication, strand displacement synthesis produces DNA flaps that are trimmed to result in nicked double-stranded DNA. Both flaps and nicks stimulate cohesin acetylation, while subsequent nick ligation to complete Okazaki fragment maturation terminates the acetylation reaction. A flapped or nicked DNA substrate constitutes a transient molecular clue that directs cohesin acetylation to a window behind the replication fork, next to where cohesin likely entraps both sister chromatids. Our results provide an explanation for how DNA replication is linked to sister chromatid cohesion establishment.
Collapse
Affiliation(s)
- Masashi Minamino
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Céline Bouchoux
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Berta Canal
- Chromosome Replication Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
9
|
Choudhary K, Kupiec M. The cohesin complex of yeasts: sister chromatid cohesion and beyond. FEMS Microbiol Rev 2023; 47:6825453. [PMID: 36370456 DOI: 10.1093/femsre/fuac045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Each time a cell divides, it needs to duplicate the genome and then separate the two copies. In eukaryotes, which usually have more than one linear chromosome, this entails tethering the two newly replicated DNA molecules, a phenomenon known as sister chromatid cohesion (SCC). Cohesion ensures proper chromosome segregation to separate poles during mitosis. SCC is achieved by the presence of the cohesin complex. Besides its canonical function, cohesin is essential for chromosome organization and DNA damage repair. Surprisingly, yeast cohesin is loaded in G1 before DNA replication starts but only acquires its binding activity during DNA replication. Work in microorganisms, such as Saccharomyces cerevisiae and Schizosaccharomyces pombe has greatly contributed to the understanding of cohesin composition and functions. In the last few years, much progress has been made in elucidating the role of cohesin in chromosome organization and compaction. Here, we discuss the different functions of cohesin to ensure faithful chromosome segregation and genome stability during the mitotic cell division in yeast. We describe what is known about its composition and how DNA replication is coupled with SCC establishment. We also discuss current models for the role of cohesin in chromatin loop extrusion and delineate unanswered questions about the activity of this important, conserved complex.
Collapse
Affiliation(s)
- Karan Choudhary
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
10
|
Karahoda B, Pardeshi L, Ulas M, Dong Z, Shirgaonkar N, Guo S, Wang F, Tan K, Sarikaya-Bayram Ö, Bauer I, Dowling P, Fleming AB, Pfannenstiel B, Luciano-Rosario D, Berger H, Graessle S, Alhussain MM, Strauss J, Keller NP, Wong KH, Bayram Ö. The KdmB-EcoA-RpdA-SntB chromatin complex binds regulatory genes and coordinates fungal development with mycotoxin synthesis. Nucleic Acids Res 2022; 50:9797-9813. [PMID: 36095118 PMCID: PMC9508808 DOI: 10.1093/nar/gkac744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Chromatin complexes control a vast number of epigenetic developmental processes. Filamentous fungi present an important clade of microbes with poor understanding of underlying epigenetic mechanisms. Here, we describe a chromatin binding complex in the fungus Aspergillus nidulans composing of a H3K4 histone demethylase KdmB, a cohesin acetyltransferase (EcoA), a histone deacetylase (RpdA) and a histone reader/E3 ligase protein (SntB). In vitro and in vivo evidence demonstrate that this KERS complex is assembled from the EcoA-KdmB and SntB-RpdA heterodimers. KdmB and SntB play opposing roles in regulating the cellular levels and stability of EcoA, as KdmB prevents SntB-mediated degradation of EcoA. The KERS complex is recruited to transcription initiation start sites at active core promoters exerting promoter-specific transcriptional effects. Interestingly, deletion of any one of the KERS subunits results in a common negative effect on morphogenesis and production of secondary metabolites, molecules important for niche securement in filamentous fungi. Consequently, the entire mycotoxin sterigmatocystin gene cluster is downregulated and asexual development is reduced in the four KERS mutants. The elucidation of the recruitment of epigenetic regulators to chromatin via the KERS complex provides the first mechanistic, chromatin-based understanding of how development is connected with small molecule synthesis in fungi.
Collapse
Affiliation(s)
- Betim Karahoda
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Lakhansing Pardeshi
- Faculty of Health Sciences, University of Macau, Macau, China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Mevlut Ulas
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Zhiqiang Dong
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Niranjan Shirgaonkar
- Faculty of Health Sciences, University of Macau, Macau, China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Shuhui Guo
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Fang Wang
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Kaeling Tan
- Faculty of Health Sciences, University of Macau, Macau, China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau, China
| | | | - Ingo Bauer
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Dowling
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Alastair B Fleming
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Brandon T Pfannenstiel
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA
| | | | - Harald Berger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Stefan Graessle
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Mohamed M Alhussain
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Özgür Bayram
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
11
|
Faustova I, Örd M, Kiselev V, Fedorenko D, Borovko I, Macs D, Pääbo K, Lõoke M, Loog M. A synthetic biology approach reveals diverse and dynamic CDK response profiles via multisite phosphorylation of NLS-NES modules. SCIENCE ADVANCES 2022; 8:eabp8992. [PMID: 35977012 PMCID: PMC9385143 DOI: 10.1126/sciadv.abp8992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The complexity of multisite phosphorylation mechanisms in regulating nuclear localization signals (NLSs) and nuclear export signals (NESs) is not understood, and its potential has not been used in synthetic biology. The nucleocytoplasmic shuttling of many proteins is regulated by cyclin-dependent kinases (CDKs) that rely on multisite phosphorylation patterns and short linear motifs (SLiMs) to dynamically control proteins in the cell cycle. We studied the role of motif patterns in nucleocytoplasmic shuttling using sensors based on the CDK targets Dna2, Psy4, and Mcm2/3 of Saccharomyces cerevisiae. We designed multisite phosphorylation modules by rearranging phosphorylation sites, cyclin-specific SLiMs, phospho-priming, phosphatase specificity, and NLS/NES phospho-regulation and obtained very different substrate localization dynamics. These included ultrasensitive responses with and without a delay, graded responses, and different homeostatic plateaus. Thus, CDK can do much more than trigger sequential switches during the cell cycle as it can drive complex patterns of protein localization and activity by using multisite phosphorylation networks.
Collapse
|
12
|
JENKINSON F, ZEGERMAN P. Roles of phosphatases in eukaryotic DNA replication initiation control. DNA Repair (Amst) 2022; 118:103384. [DOI: 10.1016/j.dnarep.2022.103384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/03/2022]
|
13
|
Buskirk S, Skibbens RV. G1-Cyclin2 (Cln2) promotes chromosome hypercondensation in eco1/ctf7 rad61 null cells during hyperthermic stress in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2022; 12:6613937. [PMID: 35736360 PMCID: PMC9339302 DOI: 10.1093/g3journal/jkac157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Eco1/Ctf7 is a highly conserved acetyltransferase that activates cohesin complexes and is critical for sister chromatid cohesion, chromosome condensation, DNA damage repair, nucleolar integrity, and gene transcription. Mutations in the human homolog of ECO1 (ESCO2/EFO2), or in genes that encode cohesin subunits, result in severe developmental abnormalities and intellectual disabilities referred to as Roberts syndrome and Cornelia de Lange syndrome, respectively. In yeast, deletion of ECO1 results in cell inviability. Codeletion of RAD61 (WAPL in humans), however, produces viable yeast cells. These eco1 rad61 double mutants, however, exhibit a severe temperature-sensitive growth defect, suggesting that Eco1 or cohesins respond to hyperthermic stress through a mechanism that occurs independent of Rad61. Here, we report that deletion of the G1 cyclin CLN2 rescues the temperature-sensitive lethality otherwise exhibited by eco1 rad61 mutant cells, such that the triple mutant cells exhibit robust growth over a broad range of temperatures. While Cln1, Cln2, and Cln3 are functionally redundant G1 cyclins, neither CLN1 nor CLN3 deletions rescue the temperature-sensitive growth defects otherwise exhibited by eco1 rad61 double mutants. We further provide evidence that CLN2 deletion rescues hyperthermic growth defects independent of START and impacts the state of chromosome condensation. These findings reveal novel roles for Cln2 that are unique among the G1 cyclin family and appear critical for cohesin regulation during hyperthermic stress.
Collapse
Affiliation(s)
- Sean Buskirk
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
14
|
Hou W, Li Y, Zhang J, Xia Y, Wang X, Chen H, Lou H. Cohesin in DNA damage response and double-strand break repair. Crit Rev Biochem Mol Biol 2022; 57:333-350. [PMID: 35112600 DOI: 10.1080/10409238.2022.2027336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 11/03/2022]
Abstract
Cohesin, a four-subunit ring comprising SMC1, SMC3, RAD21 and SA1/2, tethers sister chromatids by DNA replication-coupled cohesion (RC-cohesion) to guarantee correct chromosome segregation during cell proliferation. Postreplicative cohesion, also called damage-induced cohesion (DI-cohesion), is an emerging critical player in DNA damage response (DDR). In this review, we sum up recent progress on how cohesin regulates the DNA damage checkpoint activation and repair pathway choice, emphasizing postreplicative cohesin loading and DI-cohesion establishment in yeasts and mammals. DI-cohesion and RC-cohesion show distinct features in many aspects. DI-cohesion near or far from the break sites might undergo different regulations and execute different tasks in DDR and DSB repair. Furthermore, some open questions in this field and the significance of this new scenario to our understanding of genome stability maintenance and cohesinopathies are discussed.
Collapse
Affiliation(s)
- Wenya Hou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yan Li
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jiaxin Zhang
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yisui Xia
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Xueting Wang
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Union Shenzhen Hospital, Department of Dermatology, Huazhong University of Science and Technology (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Hongxiang Chen
- Union Shenzhen Hospital, Department of Dermatology, Huazhong University of Science and Technology (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Huiqiang Lou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Zuilkoski CM, Skibbens RV. Integrating Sister Chromatid Cohesion Establishment to DNA Replication. Genes (Basel) 2022; 13:genes13040625. [PMID: 35456431 PMCID: PMC9032331 DOI: 10.3390/genes13040625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
The intersection through which two fundamental processes meet provides a unique vantage point from which to view cellular regulation. On the one hand, DNA replication is at the heart of cell division, generating duplicate chromosomes that allow each daughter cell to inherit a complete copy of the parental genome. Among other factors, the PCNA (proliferating cell nuclear antigen) sliding clamp ensures processive DNA replication during S phase and is essential for cell viability. On the other hand, the process of chromosome segregation during M phase—an act that occurs long after DNA replication—is equally fundamental to a successful cell division. Eco1/Ctf7 ensures that chromosomes faithfully segregate during mitosis, but functions during DNA replication to activate cohesins and thereby establish cohesion between sister chromatids. To achieve this, Eco1 binds PCNA and numerous other DNA replication fork factors that include MCM helicase, Chl1 helicase, and the Rtt101-Mms1-Mms22 E3 ubiquitin ligase. Here, we review the multi-faceted coordination between cohesion establishment and DNA replication. SUMMARY STATEMENT: New findings provide important insights into the mechanisms through which DNA replication and the establishment of sister chromatid cohesion are coupled.
Collapse
Affiliation(s)
- Caitlin M. Zuilkoski
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA;
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47401, USA
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA;
- Correspondence: ; Tel.: +610-758-6162
| |
Collapse
|
16
|
Mfarej MG, Skibbens RV. Genetically induced redox stress occurs in a yeast model for Roberts syndrome. G3 (BETHESDA, MD.) 2022; 12:jkab426. [PMID: 34897432 PMCID: PMC9210317 DOI: 10.1093/g3journal/jkab426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 12/31/2022]
Abstract
Roberts syndrome (RBS) is a multispectrum developmental disorder characterized by severe limb, craniofacial, and organ abnormalities and often intellectual disabilities. The genetic basis of RBS is rooted in loss-of-function mutations in the essential N-acetyltransferase ESCO2 which is conserved from yeast (Eco1/Ctf7) to humans. ESCO2/Eco1 regulate many cellular processes that impact chromatin structure, chromosome transmission, gene expression, and repair of the genome. The etiology of RBS remains contentious with current models that include transcriptional dysregulation or mitotic failure. Here, we report evidence that supports an emerging model rooted in defective DNA damage responses. First, the results reveal that redox stress is elevated in both eco1 and cohesion factor Saccharomyces cerevisiae mutant cells. Second, we provide evidence that Eco1 and cohesion factors are required for the repair of oxidative DNA damage such that ECO1 and cohesin gene mutations result in reduced cell viability and hyperactivation of DNA damage checkpoints that occur in response to oxidative stress. Moreover, we show that mutation of ECO1 is solely sufficient to induce endogenous redox stress and sensitizes mutant cells to exogenous genotoxic challenges. Remarkably, antioxidant treatment desensitizes eco1 mutant cells to a range of DNA damaging agents, raising the possibility that modulating the cellular redox state may represent an important avenue of treatment for RBS and tumors that bear ESCO2 mutations.
Collapse
Affiliation(s)
- Michael G Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
17
|
Barton RE, Massari LF, Robertson D, Marston AL. Eco1-dependent cohesin acetylation anchors chromatin loops and cohesion to define functional meiotic chromosome domains. eLife 2022; 11:e74447. [PMID: 35103590 PMCID: PMC8856730 DOI: 10.7554/elife.74447] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cohesin organizes the genome by forming intra-chromosomal loops and inter-sister chromatid linkages. During gamete formation by meiosis, chromosomes are reshaped to support crossover recombination and two consecutive rounds of chromosome segregation. Here we show that meiotic chromosomes are organised into functional domains by Eco1 acetyltransferase-dependent positioning of both chromatin loops and sister chromatid cohesion in budding yeast. Eco1 acetylates the Smc3 cohesin subunit in meiotic S phase to establish chromatin boundaries, independently of DNA replication. Boundary formation by Eco1 is critical for prophase exit and for the maintenance of cohesion until meiosis II, but is independent of the ability of Eco1 to antagonize the cohesin-release factor, Wpl1. Conversely, prevention of cohesin release by Wpl1 is essential for centromeric cohesion, kinetochore monoorientation and co-segregation of sister chromatids in meiosis I. Our findings establish Eco1 as a key determinant of chromatin boundaries and cohesion positioning, revealing how local chromosome structuring directs genome transmission into gametes.
Collapse
Affiliation(s)
- Rachael E Barton
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, Michael Swann Building, Max Born CrescentEdinburghUnited Kingdom
| | - Lucia F Massari
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, Michael Swann Building, Max Born CrescentEdinburghUnited Kingdom
| | - Daniel Robertson
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, Michael Swann Building, Max Born CrescentEdinburghUnited Kingdom
| | - Adèle L Marston
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, Michael Swann Building, Max Born CrescentEdinburghUnited Kingdom
| |
Collapse
|
18
|
Multisite phosphorylation by Cdk1 initiates delayed negative feedback to control mitotic transcription. Curr Biol 2022; 32:256-263.e4. [PMID: 34818519 PMCID: PMC8752490 DOI: 10.1016/j.cub.2021.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 01/12/2023]
Abstract
Cell-cycle progression is driven by the phosphorylation of cyclin-dependent kinase (Cdk) substrates.1-3 The order of substrate phosphorylation depends in part on the general rise in Cdk activity during the cell cycle,4-7 together with variations in substrate docking to sites on associated cyclin and Cks subunits.3,6,8-10 Many substrates are modified at multiple sites to provide more complex regulation.10-14 Here, we describe an elegant regulatory circuit based on multisite phosphorylation of Ndd1, a transcriptional co-activator of budding yeast genes required for mitotic progression.11,12 As cells enter mitosis, Ndd1 phosphorylation by Cdk1 is known to promote mitotic cyclin (CLB2) gene transcription, resulting in positive feedback.13-16 Consistent with these findings, we show that low Cdk1 activity promotes CLB2 expression at mitotic entry. We also find, however, that when high Cdk1 activity accumulates in a mitotic arrest, CLB2 expression is inhibited. Inhibition is accompanied by Ndd1 degradation, and we present evidence that degradation is triggered by multisite Ndd1 phosphorylation by high mitotic Cdk1-Clb2 activity. Complete Ndd1 phosphorylation by Clb2-Cdk1-Cks1 requires the phosphothreonine-binding site of Cks1, as well as a recently identified phosphate-binding pocket on the cyclin Clb2.17 We therefore propose that initial phosphorylation by Cdk1 primes Ndd1 for delayed secondary phosphorylation at suboptimal sites that promote degradation. Together, our results suggest that rising levels of mitotic Cdk1 activity act at multiple phosphorylation sites on Ndd1, first triggering rapid positive feedback and then promoting delayed negative feedback, resulting in a pulse of mitotic gene expression.
Collapse
|
19
|
van Schie JJM, de Lange J. The Interplay of Cohesin and the Replisome at Processive and Stressed DNA Replication Forks. Cells 2021; 10:3455. [PMID: 34943967 PMCID: PMC8700348 DOI: 10.3390/cells10123455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex facilitates faithful chromosome segregation by pairing the sister chromatids after DNA replication until mitosis. In addition, cohesin contributes to proficient and error-free DNA replication. Replisome progression and establishment of sister chromatid cohesion are intimately intertwined processes. Here, we review how the key factors in DNA replication and cohesion establishment cooperate in unperturbed conditions and during DNA replication stress. We discuss the detailed molecular mechanisms of cohesin recruitment and the entrapment of replicated sister chromatids at the replisome, the subsequent stabilization of sister chromatid cohesion via SMC3 acetylation, as well as the role and regulation of cohesin in the response to DNA replication stress.
Collapse
Affiliation(s)
- Janne J. M. van Schie
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Job de Lange
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
20
|
Wu PS, Grosser J, Cameron DP, Baranello L, Ström L. Deficiency of Polη in Saccharomyces cerevisiae reveals the impact of transcription on damage-induced cohesion. PLoS Genet 2021; 17:e1009763. [PMID: 34499654 PMCID: PMC8454932 DOI: 10.1371/journal.pgen.1009763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/21/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
The structural maintenance of chromosome (SMC) complex cohesin mediates sister chromatid cohesion established during replication, and damage-induced cohesion formed in response to DSBs post-replication. The translesion synthesis polymerase Polη is required for damage-induced cohesion through a hitherto unknown mechanism. Since Polη is functionally associated with transcription, and transcription triggers de novo cohesion in Schizosaccharomyces pombe, we hypothesized that transcription facilitates damage-induced cohesion in Saccharomyces cerevisiae. Here, we show dysregulated transcriptional profiles in the Polη null mutant (rad30Δ), where genes involved in chromatin assembly and positive transcription regulation were downregulated. In addition, chromatin association of RNA polymerase II was reduced at promoters and coding regions in rad30Δ compared to WT cells, while occupancy of the H2A.Z variant (Htz1) at promoters was increased in rad30Δ cells. Perturbing histone exchange at promoters inactivated damage-induced cohesion, similarly to deletion of the RAD30 gene. Conversely, altering regulation of transcription elongation suppressed the deficient damage-induced cohesion in rad30Δ cells. Furthermore, transcription inhibition negatively affected formation of damage-induced cohesion. These results indicate that the transcriptional deregulation of the Polη null mutant is connected with its reduced capacity to establish damage-induced cohesion. This also suggests a linkage between regulation of transcription and formation of damage-induced cohesion after replication.
Collapse
Affiliation(s)
- Pei-Shang Wu
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Jan Grosser
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Donald P. Cameron
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Laura Baranello
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Lena Ström
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| |
Collapse
|
21
|
Böhm M, Killinger K, Dudziak A, Pant P, Jänen K, Hohoff S, Mechtler K, Örd M, Loog M, Sanchez-Garcia E, Westermann S. Cdc4 phospho-degrons allow differential regulation of Ame1 CENP-U protein stability across the cell cycle. eLife 2021; 10:67390. [PMID: 34308839 PMCID: PMC8341979 DOI: 10.7554/elife.67390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/24/2021] [Indexed: 02/05/2023] Open
Abstract
Kinetochores are multi-subunit protein assemblies that link chromosomes to microtubules of the mitotic and meiotic spindle. It is still poorly understood how efficient, centromere-dependent kinetochore assembly is accomplished from hundreds of individual protein building blocks in a cell cycle-dependent manner. Here, by combining comprehensive phosphorylation analysis of native Ctf19CCAN subunits with biochemical and functional assays in the model system budding yeast, we demonstrate that Cdk1 phosphorylation activates phospho-degrons on the essential subunit Ame1CENP-U, which are recognized by the E3 ubiquitin ligase complex SCF-Cdc4. Gradual phosphorylation of degron motifs culminates in M-phase and targets the protein for degradation. Binding of the Mtw1Mis12 complex shields the proximal phospho-degron, protecting kinetochore-bound Ame1 from the degradation machinery. Artificially increasing degron strength partially suppresses the temperature sensitivity of a cdc4 mutant, while overexpression of Ame1-Okp1 is toxic in SCF mutants, demonstrating the physiological importance of this mechanism. We propose that phospho-regulated clearance of excess CCAN subunits facilitates efficient centromere-dependent kinetochore assembly. Our results suggest a novel strategy for how phospho-degrons can be used to regulate the assembly of multi-subunit complexes.
Collapse
Affiliation(s)
- Miriam Böhm
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Kerstin Killinger
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Alexander Dudziak
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Pradeep Pant
- Department of Computational Biochemistry, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Karolin Jänen
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Simone Hohoff
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Karl Mechtler
- IMP - Research Institute of Molecular Pathology, Vienna, Austria.,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria.,Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Mihkel Örd
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mart Loog
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Elsa Sanchez-Garcia
- Department of Computational Biochemistry, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Stefan Westermann
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
22
|
Ramesh V, Krishnan J. Symmetry breaking meets multisite modification. eLife 2021; 10:65358. [PMID: 34018920 PMCID: PMC8439660 DOI: 10.7554/elife.65358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/20/2021] [Indexed: 12/19/2022] Open
Abstract
Multisite modification is a basic way of conferring functionality to proteins and a key component of post-translational modification networks. Additional interest in multisite modification stems from its capability of acting as complex information processors. In this paper, we connect two seemingly disparate themes: symmetry and multisite modification. We examine different classes of random modification networks of substrates involving separate or common enzymes. We demonstrate that under different instances of symmetry of the modification network (invoked explicitly or implicitly and discussed in the literature), the biochemistry of multisite modification can lead to the symmetry being broken. This is shown computationally and consolidated analytically, revealing parameter regions where this can (and in fact does) happen, and characteristics of the symmetry-broken state. We discuss the relevance of these results in situations where exact symmetry is not present. Overall, through our study we show how symmetry breaking (i) can confer new capabilities to protein networks, including concentration robustness of different combinations of species (in conjunction with multiple steady states); (ii) could have been the basis for ordering of multisite modification, which is widely observed in cells; (iii) can significantly impact information processing in multisite modification and in cell signalling networks/pathways where multisite modification is present; and (iv) can be a fruitful new angle for engineering in synthetic biology and chemistry. All in all, the emerging conceptual synthesis provides a new vantage point for the elucidation and the engineering of molecular systems at the junction of chemical and biological systems. Proteins help our cells perform the chemical reactions necessary for life. Once proteins are made, they can also be modified in different ways. This can simply change their activity, or otherwise make them better suited for their specific jobs within the cell. Biological ‘catalysts’ called enzymes carry out protein modifications by reversibly adding (or removing) chemical groups, such as phosphate groups. ‘Multisite modifications’ occur when a protein has two or more modifications in different areas, which can be added randomly or in a specific sequence. The combination of all the modifications attached to a protein acts like a chemical barcode and confers a specific function to the protein. Modification networks add levels of complexity above individual proteins. These encompass not only the proteins in a cell or tissue, but also the different enzymes that can modify them, and how they all interact with each other. Although our knowledge of these networks is substantial, basic aspects, such as how the ordering of multisite modification systems emerges, is still not well understood. Using a simple set of multisite modifications, Ramesh and Krishnan set out to study the potential mechanisms allowing the creation of order in this context. Symmetry is a pervasive theme across the sciences. In biology, symmetry and how it may be broken, is important to understand, for example, how organism develop. Ramesh and Krishnan used the perspective of symmetry in protein networks to uncover the origins of ordering. First, mathematical models of simple modification networks were created based on their basic descriptions. This system centred on proteins that could have phosphate modifications at two possible sites. The network was ‘symmetric’, meaning that the rate of different sets of chemical reactions was identical, as were the amounts of all the enzymes involved. Dissecting the simulated network using a variety of mathematical approaches showed that its initial symmetry could break, giving rise to sets of ordered multisite modifications. Breaking symmetry did not require any additional features or factors; the basic chemical ‘ingredients’ of protein modification were all that was needed. The prism of symmetry also revealed other aspects of these multisite modification networks, such as robustness and oscillations. This study sheds new light on the mechanism behind ordering of protein modifications. In the future, Ramesh and Krishnan hope that this approach can be applied to the study of not just proteins but also a wider range of biochemical networks.
Collapse
Affiliation(s)
- Vaidhiswaran Ramesh
- Department of Chemical Engineerng, Centre for Process Systems Engineering, Imperial College London, London, United Kingdom
| | - J Krishnan
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
Mfarej MG, Skibbens RV. DNA damage induces Yap5-dependent transcription of ECO1/CTF7 in Saccharomyces cerevisiae. PLoS One 2020; 15:e0242968. [PMID: 33373396 PMCID: PMC7771704 DOI: 10.1371/journal.pone.0242968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Yeast Eco1 (ESCO2 in humans) acetyltransferase converts chromatin-bound cohesins to a DNA tethering state, thereby establishing sister chromatid cohesion. Eco1 establishes cohesion during DNA replication, after which Eco1 is targeted for degradation by SCF E3 ubiquitin ligase. SCF E3 ligase, and sequential phosphorylations that promote Eco1 ubiquitination and degradation, remain active throughout the M phase. In this way, Eco1 protein levels are high during S phase, but remain low throughout the remaining cell cycle. In response to DNA damage during M phase, however, Eco1 activity increases-providing for a new wave of cohesion establishment (termed Damage-Induced Cohesion, or DIC) which is critical for efficient DNA repair. To date, little evidence exists as to the mechanism through which Eco1 activity increases during M phase in response to DNA damage. Possibilities include that either the kinases or E3 ligase, that target Eco1 for degradation, are inhibited in response to DNA damage. Our results reveal instead that the degradation machinery remains fully active during M phase, despite the presence of DNA damage. In testing alternate models through which Eco1 activity increases in response to DNA damage, the results reveal that DNA damage induces new transcription of ECO1 and at a rate that exceeds the rate of Eco1 turnover, providing for rapid accumulation of Eco1 protein. We further show that DNA damage induction of ECO1 transcription is in part regulated by Yap5-a stress-induced transcription factor. Given the role for mutated ESCO2 (homolog of ECO1) in human birth defects, this study highlights the complex nature through which mutation of ESCO2, and defects in ESCO2 regulation, may promote developmental abnormalities and contribute to various diseases including cancer.
Collapse
Affiliation(s)
- Michael G. Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
24
|
Wu PS, Enervald E, Joelsson A, Palmberg C, Rutishauser D, Hällberg BM, Ström L. Post-translational Regulation of DNA Polymerase η, a Connection to Damage-Induced Cohesion in Saccharomyces cerevisiae. Genetics 2020; 216:1009-1022. [PMID: 33033113 PMCID: PMC7768261 DOI: 10.1534/genetics.120.303494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Double-strand breaks that are induced postreplication trigger establishment of damage-induced cohesion in Saccharomyces cerevisiae, locally at the break site and genome-wide on undamaged chromosomes. The translesion synthesis polymerase, polymerase η, is required for generation of damage-induced cohesion genome-wide. However, its precise role and regulation in this process is unclear. Here, we investigated the possibility that the cyclin-dependent kinase Cdc28 and the acetyltransferase Eco1 modulate polymerase η activity. Through in vitro phosphorylation and structure modeling, we showed that polymerase η is an attractive substrate for Cdc28 Mutation of the putative Cdc28-phosphorylation site Ser14 to Ala not only affected polymerase η protein level, but also prevented generation of damage-induced cohesion in vivo We also demonstrated that Eco1 acetylated polymerase η in vitro Certain nonacetylatable polymerase η mutants showed reduced protein level, deficient nuclear accumulation, and increased ultraviolet irradiation sensitivity. In addition, we found that both Eco1 and subunits of the cohesin network are required for cell survival after ultraviolet irradiation. Our findings support functionally important Cdc28-mediated phosphorylation, as well as post-translational modifications of multiple lysine residues that modulate polymerase η activity, and provide new insights into understanding the regulation of polymerase η for damage-induced cohesion.
Collapse
Affiliation(s)
- Pei-Shang Wu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Elin Enervald
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Angelica Joelsson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Carina Palmberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Dorothea Rutishauser
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Lena Ström
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| |
Collapse
|
25
|
Alme EB, Toczyski DP. Redundant targeting of Isr1 by two CDKs in mitotic cells. Curr Genet 2020; 67:79-83. [PMID: 33063175 DOI: 10.1007/s00294-020-01110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 11/28/2022]
Abstract
Protein phosphorylation is an essential regulatory mechanism that controls most cellular processes, integrating a variety of environmental signals to drive cellular growth. Isr1 is a negative regulator of the hexosamine biosynthesis pathway (HBP), which produces UDP-GlcNAc, an essential carbohydrate that is the building block of N-glycosylation, GPI anchors and chitin. Isr1 was recently shown to be regulated by phosphorylation by the nutrient-responsive CDK kinase Pho85, allowing it to be targeted for degradation by the SCFCDC4. Here, we show that while deletion of PHO85 stabilizes Isr1 in asynchronous cells, Isr1 is still unstable in mitotically arrested cells in a pho85∆ strain. We provide evidence to suggest that this is through phosphorylation by CDK1. Redundant targeting of Isr1 by two distinct kinases may allow for tight regulation of the HBP in response to different cellular signals.
Collapse
Affiliation(s)
- Emma B Alme
- Department of Biochemistry, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - David P Toczyski
- Department of Biochemistry, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
| |
Collapse
|
26
|
Suwanmajo T, Ramesh V, Krishnan J. Exploring cyclic networks of multisite modification reveals origins of information processing characteristics. Sci Rep 2020; 10:16542. [PMID: 33024185 PMCID: PMC7539153 DOI: 10.1038/s41598-020-73045-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Multisite phosphorylation (and generally multisite modification) is a basic way of encoding substrate function and circuits/networks of post-translational modifications (PTM) are ubiquitous in cell signalling. The information processing characteristics of PTM systems are a focal point of broad interest. The ordering of modifications is a key aspect of multisite modification, and a broad synthesis of the impact of ordering of modifications is still missing. We focus on a basic class of multisite modification circuits: the cyclic mechanism, which corresponds to the same ordering of phosphorylation and dephosphorylation, and examine multiple variants involving common/separate kinases and common/separate phosphatases. This is of interest both because it is encountered in concrete cellular contexts, and because it serves as a bridge between ordered (sequential) mechanisms (representing one type of ordering) and random mechanisms (which have no ordering). We show that bistability and biphasic dose response curves of the maximally modified phosphoform are ruled out for basic structural reasons independent of parameters, while oscillations can result with even just one shared enzyme. We then examine the effect of relaxing some basic assumptions about the ordering of modification. We show computationally and analytically how bistability, biphasic responses and oscillations can be generated by minimal augmentations to the cyclic mechanism even when these augmentations involved reactions operating in the unsaturated limit. All in all, using this approach we demonstrate (1) how the cyclic mechanism (with single augmentations) represents a modification circuit using minimal ingredients (in terms of shared enzymes and sequestration of enzymes) to generate bistability and oscillations, when compared to other mechanisms, (2) new design principles for rationally designing PTM systems for a variety of behaviour, (3) a basis and a necessary step for understanding the origins and robustness of behaviour observed in basic multisite modification systems.
Collapse
Affiliation(s)
- Thapanar Suwanmajo
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Vaidhiswaran Ramesh
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London, SW7 2AZ, UK
| | - J Krishnan
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London, SW7 2AZ, UK.
- Institute for Systems and Synthetic Biology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
27
|
Wang H, Li X, Tu Y, Zhang J. Catalytic Enantiodivergent Michael Addition by Subtle Adjustment of Achiral Amino Moiety of Dipeptide Phosphines. iScience 2020; 23:101138. [PMID: 32450512 PMCID: PMC7251764 DOI: 10.1016/j.isci.2020.101138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/03/2020] [Accepted: 05/01/2020] [Indexed: 11/29/2022] Open
Abstract
Over the past decades, asymmetric catalysis has been intensely investigated as a powerful tool for the preparation of numerous chiral biologically active compounds. However, developing general and practical strategies for preparation of both enantiomers of a chiral molecule via asymmetric catalysis is still a challenge, particularly when the two enantiomers of a chiral catalyst are not easily prepared from natural chiral sources. Inspired by the biologic system, we report herein an unprecedented catalytic enantiodivergent Michael addition of pyridazinones to enones by subtle adjustment of achiral amino moiety of dipeptide phosphine catalysts. These two dipeptide phosphine catalysts, P5 and P8, could deliver both enantiomers of a series of N2-alkylpyridazinones in good yields (up to 99%) with high enantioselectivities (up to 99% ee) via the catalyst-controlled enantiodivergent addition of pyridazinones to enones.
Collapse
Affiliation(s)
- Huamin Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Xiuzheng Li
- School of Pharmacy, Anhui Medical University, 81 N. Meishan Road, Hefei 230032, P. R.China
| | - Youshao Tu
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 N. Yan'an Avenue, Changchun 130012, P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China.
| |
Collapse
|
28
|
Alme EB, Stevenson E, Krogan NJ, Swaney DL, Toczyski DP. The kinase Isr1 negatively regulates hexosamine biosynthesis in S. cerevisiae. PLoS Genet 2020; 16:e1008840. [PMID: 32579556 PMCID: PMC7340321 DOI: 10.1371/journal.pgen.1008840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/07/2020] [Accepted: 05/08/2020] [Indexed: 11/18/2022] Open
Abstract
The S. cerevisiae ISR1 gene encodes a putative kinase with no ascribed function. Here, we show that Isr1 acts as a negative regulator of the highly-conserved hexosamine biosynthesis pathway (HBP), which converts glucose into uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the carbohydrate precursor to protein glycosylation, GPI-anchor formation, and chitin biosynthesis. Overexpression of ISR1 is lethal and, at lower levels, causes sensitivity to tunicamycin and resistance to calcofluor white, implying impaired protein glycosylation and reduced chitin deposition. Gfa1 is the first enzyme in the HBP and is conserved from bacteria and yeast to humans. The lethality caused by ISR1 overexpression is rescued by co-overexpression of GFA1 or exogenous glucosamine, which bypasses GFA1's essential function. Gfa1 is phosphorylated in an Isr1-dependent fashion and mutation of Isr1-dependent sites ameliorates the lethality associated with ISR1 overexpression. Isr1 contains a phosphodegron that is phosphorylated by Pho85 and subsequently ubiquitinated by the SCF-Cdc4 complex, largely confining Isr1 protein levels to the time of bud emergence. Mutation of this phosphodegron stabilizes Isr1 and recapitulates the overexpression phenotypes. As Pho85 is a cell cycle and nutrient responsive kinase, this tight regulation of Isr1 may serve to dynamically regulate flux through the HBP and modulate how the cell's energy resources are converted into structural carbohydrates in response to changing cellular needs.
Collapse
Affiliation(s)
- Emma B. Alme
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| | - Erica Stevenson
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Danielle L. Swaney
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - David P. Toczyski
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
29
|
Butler VJ, Salazar DA, Soriano-Castell D, Alves-Ferreira M, Dennissen FJA, Vohra M, Oses-Prieto JA, Li KH, Wang AL, Jing B, Li B, Groisman A, Gutierrez E, Mooney S, Burlingame AL, Ashrafi K, Mandelkow EM, Encalada SE, Kao AW. Tau/MAPT disease-associated variant A152T alters tau function and toxicity via impaired retrograde axonal transport. Hum Mol Genet 2020; 28:1498-1514. [PMID: 30590647 PMCID: PMC6489414 DOI: 10.1093/hmg/ddy442] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/19/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022] Open
Abstract
Mutations in the microtubule-associated protein tau (MAPT) underlie multiple neurodegenerative disorders, yet the pathophysiological mechanisms are unclear. A novel variant in MAPT resulting in an alanine to threonine substitution at position 152 (A152T tau) has recently been described as a significant risk factor for both frontotemporal lobar degeneration and Alzheimer’s disease. Here we use complementary computational, biochemical, molecular, genetic and imaging approaches in Caenorhabditis elegans and mouse models to interrogate the effects of the A152T variant on tau function. In silico analysis suggests that a threonine at position 152 of tau confers a new phosphorylation site. This finding is borne out by mass spectrometric survey of A152T tau phosphorylation in C. elegans and mouse. Optical pulse-chase experiments of Dendra2-tau demonstrate that A152T tau and phosphomimetic A152E tau exhibit increased diffusion kinetics and the ability to traverse across the axon initial segment more efficiently than wild-type (WT) tau. A C. elegans model of tauopathy reveals that A152T and A152E tau confer patterns of developmental toxicity distinct from WT tau, likely due to differential effects on retrograde axonal transport. These data support a role for phosphorylation of the variant threonine in A152T tau toxicity and suggest a mechanism involving impaired retrograde axonal transport contributing to human neurodegenerative disease.
Collapse
Affiliation(s)
- Victoria J Butler
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Dominique A Salazar
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - David Soriano-Castell
- Departments of Molecular Medicine and Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Miguel Alves-Ferreira
- Departments of Molecular Medicine and Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Frank J A Dennissen
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, Bonn, Germany.,MPI for Neurological Research, Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestrasse 85, Hamburg, Germany.,The Center of Advanced European Studies and Research, Ludwig-Erhard-Allee 2, Bonn, Germany
| | - Mihir Vohra
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Kathy H Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Austin L Wang
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Beibei Jing
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Biao Li
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Alex Groisman
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - Edgar Gutierrez
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - Sean Mooney
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Kaveh Ashrafi
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Eva-Maria Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, Bonn, Germany.,MPI for Neurological Research, Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestrasse 85, Hamburg, Germany.,The Center of Advanced European Studies and Research, Ludwig-Erhard-Allee 2, Bonn, Germany
| | - Sandra E Encalada
- Departments of Molecular Medicine and Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Aimee W Kao
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
30
|
Au WC, Zhang T, Mishra PK, Eisenstatt JR, Walker RL, Ocampo J, Dawson A, Warren J, Costanzo M, Baryshnikova A, Flick K, Clark DJ, Meltzer PS, Baker RE, Myers C, Boone C, Kaiser P, Basrai MA. Skp, Cullin, F-box (SCF)-Met30 and SCF-Cdc4-Mediated Proteolysis of CENP-A Prevents Mislocalization of CENP-A for Chromosomal Stability in Budding Yeast. PLoS Genet 2020; 16:e1008597. [PMID: 32032354 PMCID: PMC7032732 DOI: 10.1371/journal.pgen.1008597] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 02/20/2020] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
Restricting the localization of the histone H3 variant CENP-A (Cse4 in yeast, CID in flies) to centromeres is essential for faithful chromosome segregation. Mislocalization of CENP-A leads to chromosomal instability (CIN) in yeast, fly and human cells. Overexpression and mislocalization of CENP-A has been observed in many cancers and this correlates with increased invasiveness and poor prognosis. Yet genes that regulate CENP-A levels and localization under physiological conditions have not been defined. In this study we used a genome-wide genetic screen to identify essential genes required for Cse4 homeostasis to prevent its mislocalization for chromosomal stability. We show that two Skp, Cullin, F-box (SCF) ubiquitin ligases with the evolutionarily conserved F-box proteins Met30 and Cdc4 interact and cooperatively regulate proteolysis of endogenous Cse4 and prevent its mislocalization for faithful chromosome segregation under physiological conditions. The interaction of Met30 with Cdc4 is independent of the D domain, which is essential for their homodimerization and ubiquitination of other substrates. The requirement for both Cdc4 and Met30 for ubiquitination is specifc for Cse4; and a common substrate for Cdc4 and Met30 has not previously been described. Met30 is necessary for the interaction between Cdc4 and Cse4, and defects in this interaction lead to stabilization and mislocalization of Cse4, which in turn contributes to CIN. We provide the first direct link between Cse4 mislocalization to defects in kinetochore structure and show that SCF-mediated proteolysis of Cse4 is a major mechanism that prevents stable maintenance of Cse4 at non-centromeric regions, thus ensuring faithful chromosome segregation. In summary, we have identified essential pathways that regulate cellular levels of endogenous Cse4 and shown that proteolysis of Cse4 by SCF-Met30/Cdc4 prevents mislocalization and CIN in unperturbed cells. Genetic material on each chromosome must be faithfully transmitted to the daughter cell during cell division and chromosomal instability (CIN) results in aneuploidy, a hallmark of cancers. The kinetochore (centromeric DNA and associated proteins) regulates faithful chromosome segregation. Restricting the localization of CENP-A (Cse4 in yeast) to kinetochores is essential for chromosomal stability. Mislocalization of CENP-A contributes to CIN in yeast, fly and human cells and is observed in cancers where it correlates with increased invasiveness and poor prognosis. Hence, identification of pathways that regulate CENP-A levels will help us understand the correlation between CENP-A mislocalization and aneuploidy in cancers. We used a genetic screen to identify essential genes for Cse4 homeostasis and identified a major ubiquitin-dependent pathway where both nuclear F-box proteins, Met30 and Cdc4 of the SCF complex, cooperatively regulate proteolysis of Cse4 to prevent its mislocalization and CIN under physiological conditions. Our studies define a role for SCF-mediated proteolysis of Cse4 as a critical mechanism to ensure faithful chromosome segregation. These studies are significant because mutations in human homologs of Met30 (β-TrCP) and Cdc4 (Fbxw7) have been implicated in cancers, and future studies will determine if SCF-mediated proteolysis of CENP-A prevents its mislocalization for chromosomal stability in human cells.
Collapse
Affiliation(s)
- Wei-Chun Au
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Tianyi Zhang
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Prashant K. Mishra
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Jessica R. Eisenstatt
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Robert L. Walker
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Josefina Ocampo
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Anthony Dawson
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Jack Warren
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | | | - Karin Flick
- Department of Biological Chemistry, College of Medicine, University of California, Irvine, CA, United States of America
| | - David J. Clark
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Paul S. Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Richard E. Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Chad Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, United States of America
| | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Peter Kaiser
- Department of Biological Chemistry, College of Medicine, University of California, Irvine, CA, United States of America
| | - Munira A. Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
31
|
Phillips AH, Kriwacki RW. Intrinsic protein disorder and protein modifications in the processing of biological signals. Curr Opin Struct Biol 2020; 60:1-6. [DOI: 10.1016/j.sbi.2019.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
|
32
|
Hameed A, Hussain SA, Ijaz MU, Umer M. Deletions of the Idh1, Eco1, Rom2, and Taf10 Genes Differently Control the Hyphal Growth, Drug Tolerance, and Virulence of Candida albicans. Folia Biol (Praha) 2020; 66:91-103. [PMID: 33069188 DOI: 10.14712/fb2020066030091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The most recent genome-editing system called CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat system with associated protein 9-nuclease) was employed to delete four non-essential genes (i.e., Caeco1, Caidh1, Carom2, and Cataf10) individually to establish their gene functionality annotations in pathogen Candida albicans. The biological roles of these genes were investigated with respect to the cell wall integrity and biogenesis, calcium/calcineurin pathways, susceptibility of mutants towards temperature, drugs and salts. All the mutants showed increased vulnerability compared to the wild-type background strain towards the cell wall-perturbing agents, (antifungal) drugs and salts. All the mutants also exhibited repressed and defective hyphal growth and smaller colony size than control CA14. The cell cycle of all the mutants decreased enormously except for those with Carom2 deletion. The budding index and budding size also increased for all mutants with altered bud shape. The disposition of the mutants towards cell wall-perturbing enzymes disclosed lower survival and more rapid cell wall lysis events than in wild types. The pathogenicity and virulence of the mutants was checked by adhesion assay, and strains lacking rom2 and eco1 were found to possess the least adhesion capacity, which is synonymous to their decreased pathogenicity and virulence.
Collapse
Affiliation(s)
- A Hameed
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, P. R. China
- Clinical Research Center, Medical University of Bialystok, Białystok, Poland
| | - S A Hussain
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, P. R. China
- Department of Biology, South Texas Center of Emerging Infectious Diseases (STCEID), University of Texas, San Antonio, USA
| | - M U Ijaz
- Key Laboratory of Meat Processing & Quality Control, College of Food Sciences, Nanjing Agriculture University, Jiangsu, P. R. China
| | - M Umer
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road, Islamabad, Pakistan
| |
Collapse
|
33
|
Li X, Jin X, Sharma S, Liu X, Zhang J, Niu Y, Li J, Li Z, Zhang J, Cao Q, Hou W, Du LL, Liu B, Lou H. Mck1 defines a key S-phase checkpoint effector in response to various degrees of replication threats. PLoS Genet 2019; 15:e1008136. [PMID: 31381575 PMCID: PMC6695201 DOI: 10.1371/journal.pgen.1008136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/15/2019] [Accepted: 07/19/2019] [Indexed: 01/23/2023] Open
Abstract
The S-phase checkpoint plays an essential role in regulation of the ribonucleotide reductase (RNR) activity to maintain the dNTP pools. How eukaryotic cells respond appropriately to different levels of replication threats remains elusive. Here, we have identified that a conserved GSK-3 kinase Mck1 cooperates with Dun1 in regulating this process. Deleting MCK1 sensitizes dun1Δ to hydroxyurea (HU) reminiscent of mec1Δ or rad53Δ. While Mck1 is downstream of Rad53, it does not participate in the post-translational regulation of RNR as Dun1 does. Mck1 phosphorylates and releases the Crt1 repressor from the promoters of DNA damage-inducible genes as RNR2-4 and HUG1. Hug1, an Rnr2 inhibitor normally silenced, is induced as a counterweight to excessive RNR. When cells suffer a more severe threat, Mck1 inhibits HUG1 transcription. Consistently, only a combined deletion of HUG1 and CRT1, confers a dramatic boost of dNTP levels and the survival of mck1Δdun1Δ or mec1Δ cells assaulted by a lethal dose of HU. These findings reveal the division-of-labor between Mck1 and Dun1 at the S-phase checkpoint pathway to fine-tune dNTP homeostasis.
Collapse
Affiliation(s)
- Xiaoli Li
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan, Gothenburg, Sweden
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Xiaojing Liu
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Jiaxin Zhang
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Yanling Niu
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Jiani Li
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Zhen Li
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Jingjing Zhang
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Qinhong Cao
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Wenya Hou
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan, Gothenburg, Sweden
- * E-mail: (BL); (HL)
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
- * E-mail: (BL); (HL)
| |
Collapse
|
34
|
Abstract
The quantitative model of cyclin-dependent kinase (CDK) function states that cyclins temporally order cell cycle events at different CDK activity levels, or thresholds. The model lacks a mechanistic explanation, as it is not understood how different thresholds are encoded into substrates. We show that a multisite phosphorylation code governs the phosphorylation of CDK targets and that phosphorylation clusters act as timing tags that trigger specific events at different CDK thresholds. Using phospho-degradable CDK threshold sensors with rationally encoded phosphorylation patterns, we were able to predictably program thresholds over the entire range of the Saccharomyces cerevisiae cell cycle. We defined three levels of CDK multisite phosphorylation encoding: (i) Ser-Thr swapping in phosphorylation sites, (ii) patterning of phosphorylation sites, and (iii) cyclin-specific docking combined with modulation of CDK activity. Thus, CDK can signal via hundreds of differentially encoded targets at precise times to provide a temporally ordered phosphorylation pattern required for cell division.
Collapse
|
35
|
Ivanov MP, Ladurner R, Poser I, Beveridge R, Rampler E, Hudecz O, Novatchkova M, Hériché JK, Wutz G, van der Lelij P, Kreidl E, Hutchins JR, Axelsson-Ekker H, Ellenberg J, Hyman AA, Mechtler K, Peters JM. The replicative helicase MCM recruits cohesin acetyltransferase ESCO2 to mediate centromeric sister chromatid cohesion. EMBO J 2018; 37:e97150. [PMID: 29930102 PMCID: PMC6068434 DOI: 10.15252/embj.201797150] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 02/27/2018] [Accepted: 04/09/2018] [Indexed: 11/09/2022] Open
Abstract
Chromosome segregation depends on sister chromatid cohesion which is established by cohesin during DNA replication. Cohesive cohesin complexes become acetylated to prevent their precocious release by WAPL before cells have reached mitosis. To obtain insight into how DNA replication, cohesion establishment and cohesin acetylation are coordinated, we analysed the interaction partners of 55 human proteins implicated in these processes by mass spectrometry. This proteomic screen revealed that on chromatin the cohesin acetyltransferase ESCO2 associates with the MCM2-7 subcomplex of the replicative Cdc45-MCM-GINS helicase. The analysis of ESCO2 mutants defective in MCM binding indicates that these interactions are required for proper recruitment of ESCO2 to chromatin, cohesin acetylation during DNA replication, and centromeric cohesion. We propose that MCM binding enables ESCO2 to travel with replisomes to acetylate cohesive cohesin complexes in the vicinity of replication forks so that these complexes can be protected from precocious release by WAPL Our results also indicate that ESCO1 and ESCO2 have distinct functions in maintaining cohesion between chromosome arms and centromeres, respectively.
Collapse
Affiliation(s)
| | - Rene Ladurner
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Evelyn Rampler
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Otto Hudecz
- Institute of Molecular Biotechnology, Vienna, Austria
| | | | | | - Gordana Wutz
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | - Emanuel Kreidl
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | | | - Jan Ellenberg
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Vienna, Austria
- Institute of Molecular Biotechnology, Vienna, Austria
| | | |
Collapse
|
36
|
Minamino M, Tei S, Negishi L, Kanemaki MT, Yoshimura A, Sutani T, Bando M, Shirahige K. Temporal Regulation of ESCO2 Degradation by the MCM Complex, the CUL4-DDB1-VPRBP Complex, and the Anaphase-Promoting Complex. Curr Biol 2018; 28:2665-2672.e5. [DOI: 10.1016/j.cub.2018.06.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 04/02/2018] [Accepted: 06/18/2018] [Indexed: 01/03/2023]
|
37
|
Calcium-Binding Proteins with Disordered Structure and Their Role in Secretion, Storage, and Cellular Signaling. Biomolecules 2018; 8:biom8020042. [PMID: 29921816 PMCID: PMC6022996 DOI: 10.3390/biom8020042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
Calcium is one of the most important second messengers and its intracellular signaling regulates many aspects of cell physiology. Calcium ions, like phosphate ions, are highly charged and thus are able to alter protein conformation upon binding; thereby they constitute key factors in signal transduction. One of the most common calcium-binding structural motifs is the EF-hand, a well-defined helix-loop-helix structural domain, present in many calcium-binding proteins (CBPs). Nonetheless, some CBPs contain non-canonical, disordered motifs, which usually bind calcium with high capacity and low affinity, and which represent a subset of proteins with specific functions, but these functions rarely involve signaling. When compared with phosphorylation-mediated signal transduction, the role of intrinsic disorder in calcium signaling is significantly less prominent and not direct. The list of known examples of intrinsically disordered CBPs is relatively short and the disorder in these examples seems to be linked to secretion and storage. Calcium-sensitive phosphatase calcineurin is an exception, but it represents an example of transient disorder, which is, nevertheless, vital to the functioning of this protein. The underlying reason for the different role of disordered proteins in the two main cellular signaling systems appears to be linked to the gradient of calcium concentration, present in all living cells.
Collapse
|
38
|
Seoane AI, Morgan DO. Firing of Replication Origins Frees Dbf4-Cdc7 to Target Eco1 for Destruction. Curr Biol 2017; 27:2849-2855.e2. [PMID: 28918948 DOI: 10.1016/j.cub.2017.07.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/12/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Robust progression through the cell-division cycle depends on the precisely ordered phosphorylation of hundreds of different proteins by cyclin-dependent kinases (CDKs) and other kinases. The order of CDK substrate phosphorylation depends on rising CDK activity, coupled with variations in substrate affinities for different CDK-cyclin complexes and the opposing phosphatases [1-4]. Here, we address the ordering of substrate phosphorylation by a second major cell-cycle kinase, Cdc7-Dbf4 or Dbf4-dependent kinase (DDK). The primary function of DDK is to initiate DNA replication by phosphorylating the Mcm2-7 replicative helicase [5-7]. DDK also phosphorylates the cohesin acetyltransferase Eco1 [8]. Sequential phosphorylations of Eco1 by CDK, DDK, and Mck1 create a phosphodegron that is recognized by the ubiquitin ligase SCFCdc4. DDK, despite being activated in early S phase, does not phosphorylate Eco1 to trigger its degradation until late S phase [8]. DDK associates with docking sites on loaded Mcm double hexamers at unfired replication origins [9, 10]. We hypothesized that these docking interactions sequester limiting amounts of DDK, delaying Eco1 phosphorylation by DDK until replication is complete. Consistent with this hypothesis, we find that overproduction of DDK leads to premature Eco1 degradation. Eco1 degradation also occurs prematurely if Mcm complex loading at origins is prevented by depletion of Cdc6, and Eco1 is stabilized if loaded Mcm complexes are prevented from firing by a Cdc45 mutant. We propose that the timing of Eco1 phosphorylation, and potentially that of other DDK substrates, is determined in part by sequestration of DDK at unfired replication origins during S phase.
Collapse
Affiliation(s)
- Agustin I Seoane
- Departments of Physiology and Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David O Morgan
- Departments of Physiology and Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
39
|
Venerando A, Cesaro L, Pinna LA. From phosphoproteins to phosphoproteomes: a historical account. FEBS J 2017; 284:1936-1951. [PMID: 28079298 DOI: 10.1111/febs.14014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/20/2016] [Accepted: 01/10/2017] [Indexed: 12/17/2022]
Abstract
The first phosphoprotein (casein) was discovered in 1883, yet the enzyme responsible for its phosphorylation was identified only 130 years later, in 2012. In the intervening time, especially in the last decades of the 1900s, it became evident that, far from being an oddity, phosphorylation affects the majority of eukaryotic proteins during their lifespan, and that this reaction is catalysed by the members of a large family of protein kinases, susceptible to a variety of stimuli controlling nearly every aspect of life and death. The aim of this review is to present a historical account of the main steps of this spectacular revolution, which transformed our conception of a biochemical reaction originally held as a sporadic curiosity into the master mechanism governing cell regulation, and, if it is perturbed, causing cell dysregulation.
Collapse
Affiliation(s)
| | - Luca Cesaro
- Department of Biomedical Sciences, University of Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Italy.,CNR Neuroscience Institute, Padova, Italy
| |
Collapse
|
40
|
Princz LN, Wild P, Bittmann J, Aguado FJ, Blanco MG, Matos J, Pfander B. Dbf4-dependent kinase and the Rtt107 scaffold promote Mus81-Mms4 resolvase activation during mitosis. EMBO J 2017; 36:664-678. [PMID: 28096179 PMCID: PMC5331752 DOI: 10.15252/embj.201694831] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 11/29/2022] Open
Abstract
DNA repair by homologous recombination is under stringent cell cycle control. This includes the last step of the reaction, disentanglement of DNA joint molecules (JMs). Previous work has established that JM resolving nucleases are activated specifically at the onset of mitosis. In case of budding yeast Mus81‐Mms4, this cell cycle stage‐specific activation is known to depend on phosphorylation by CDK and Cdc5 kinases. Here, we show that a third cell cycle kinase, Cdc7‐Dbf4 (DDK), targets Mus81‐Mms4 in conjunction with Cdc5—both kinases bind to as well as phosphorylate Mus81‐Mms4 in an interdependent manner. Moreover, DDK‐mediated phosphorylation of Mms4 is strictly required for Mus81 activation in mitosis, establishing DDK as a novel regulator of homologous recombination. The scaffold protein Rtt107, which binds the Mus81‐Mms4 complex, interacts with Cdc7 and thereby targets DDK and Cdc5 to the complex enabling full Mus81 activation. Therefore, Mus81 activation in mitosis involves at least three cell cycle kinases, CDK, Cdc5 and DDK. Furthermore, tethering of the kinases in a stable complex with Mus81 is critical for efficient JM resolution.
Collapse
Affiliation(s)
- Lissa N Princz
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
| | - Philipp Wild
- Institute of Biochemistry, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | - Julia Bittmann
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
| | - F Javier Aguado
- Department of Biochemistry and Molecular Biology, Center for Research in Molecular Medicine and Chronic Diseases, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel G Blanco
- Department of Biochemistry and Molecular Biology, Center for Research in Molecular Medicine and Chronic Diseases, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Joao Matos
- Institute of Biochemistry, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | - Boris Pfander
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
| |
Collapse
|
41
|
Attenuation of transcriptional and signaling responses limits viability of ρ(0)Saccharomyces cerevisiae during periods of glucose deprivation. Biochim Biophys Acta Gen Subj 2016; 1860:2563-2575. [PMID: 27478089 DOI: 10.1016/j.bbagen.2016.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/09/2016] [Accepted: 07/27/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND The maintenance of viability during periods when a glycolytic carbon source is limited (or absent) is a major obstacle for cells whose mitochondrial DNA (mtDNA) has been damaged or lost. METHODS We utilized genome wide transcriptional profiling and in gel mobility analyses to examine the transcriptional response and characterize defects in the phosphorylation dependent signaling events that occur during acute glucose starvation in ρ(0) cells that lack mtDNA. Genetic and pharmacological interventions were employed to clarify the contribution of nutrient responsive kinases to regulation of the transcription factors that displayed abnormal phosphoregulation in ρ(0) cells. RESULTS The transcriptional response to glucose deprivation is dampened but not blocked in ρ(0) cells. Genes regulated by the transcription factors Mig1, Msn2, Gat1, and Ume6 were noticeably affected and phosphorylation of these factors in response to nutrient depletion is abnormal in ρ(0) cells. Regulation of the nutrient responsive kinases PKA and Snf1 remains normal in ρ(0) cells. The phosphorylation defect results from ATP depletion and loss of the activity of kinases including GSK3β, Rim15, and Yak1. Interventions which rescue phosphoregulation of transcription factors bolster maintenance of viability in ρ(0) cells during subsequent glucose deprivation. CONCLUSIONS A subset of nutrient responsive kinases is especially sensitive to ATP levels and their misregulation may underlie regulatory defects presented by ρ(0) cells. GENERAL SIGNIFICANCE Abnormal regulation of mitochondrial function is implicated in numerous human disorders. This work illustrates that some signaling pathways are more sensitive than others to metabolic defects caused by mitochondrial dysfunction.
Collapse
|
42
|
Gordley RM, Bugaj LJ, Lim WA. Modular engineering of cellular signaling proteins and networks. Curr Opin Struct Biol 2016; 39:106-114. [PMID: 27423114 DOI: 10.1016/j.sbi.2016.06.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/16/2016] [Accepted: 06/15/2016] [Indexed: 12/31/2022]
Abstract
Living cells respond to their environment using networks of signaling molecules that act as sensors, information processors, and actuators. These signaling systems are highly modular at both the molecular and network scales, and much evidence suggests that evolution has harnessed this modularity to rewire and generate new physiological behaviors. Conversely, we are now finding that, following nature's example, signaling modules can be recombined to form synthetic tools for monitoring, interrogating, and controlling the behavior of cells. Here we highlight recent progress in the modular design of synthetic receptors, optogenetic switches, and phospho-regulated proteins and circuits, and discuss the expanding role of combinatorial design in the engineering of cellular signaling proteins and networks.
Collapse
Affiliation(s)
- Russell M Gordley
- Howard Hughes Medical Institute, United States; Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States
| | - Lukasz J Bugaj
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States
| | - Wendell A Lim
- Howard Hughes Medical Institute, United States; Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States.
| |
Collapse
|
43
|
Cesaro L, Pinna LA. The generation of phosphoserine stretches in phosphoproteins: mechanism and significance. MOLECULAR BIOSYSTEMS 2016. [PMID: 26211804 DOI: 10.1039/c5mb00337g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In the infancy of studies on protein phosphorylation the occurrence of clusters of three or more consecutive phosphoseryl residues in secreted and in cellular phosphoproteins was reported. Later however, while the reversible phosphorylation of Ser, Thr and Tyr residues was recognized to be the most frequent and general mechanism of cell regulation and signal transduction, the phenomenon of multi-phosphorylation of adjacent residues was entirely neglected. Nowadays, in the post-genomic era, the availability of large phosphoproteomics database makes possible a comprehensive re-visitation of this intriguing aspect of protein phosphorylation, aimed at shedding light on both its mechanistic occurrence and its functional meaning. Here we describe an analysis of the human phosphoproteome disclosing the existence of more than 800 rows of 3 to >10 consecutive phosphoamino acids, composed almost exclusively of phosphoserine, while clustered phosphothreonines and phosphotyrosines are almost absent. A scrutiny of these phosphorylated rows supports the conclusion that they are generated through the major contribution of a few hierarchical protein kinases, with special reference to CK2. Also well documented is the combined intervention of CK1 and GSK3, the former acting as priming and primed, the latter as primed kinase. The by far largest proportion of proteins containing (pS)n clusters display a nuclear localization where they play a prominent role in the regulation of transcription. Consistently the molecular function of the by far largest majority of these proteins is the ability to bind other macromolecules and/or nucleotides and metal ions. A "String" analysis performed under stringent conditions reveals that >80% of them are connected to each other by physical and/or functional links, and that this network of interactions mostly take place at the nuclear level.
Collapse
Affiliation(s)
- Luca Cesaro
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58B, 35131 Padova, Italy.
| | | |
Collapse
|
44
|
Davey NE, Cyert MS, Moses AM. Short linear motifs - ex nihilo evolution of protein regulation. Cell Commun Signal 2015; 13:43. [PMID: 26589632 PMCID: PMC4654906 DOI: 10.1186/s12964-015-0120-z] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/13/2015] [Indexed: 12/12/2022] Open
Abstract
Short sequence motifs are ubiquitous across the three major types of biomolecules: hundreds of classes and thousands of instances of DNA regulatory elements, RNA motifs and protein short linear motifs (SLiMs) have been characterised. The increase in complexity of transcriptional, post-transcriptional and post-translational regulation in higher Eukaryotes has coincided with a significant expansion of motif use. But how did the eukaryotic cell acquire such a vast repertoire of motifs? In this review, we curate the available literature on protein motif evolution and discuss the evidence that suggests SLiMs can be acquired by mutations, insertions and deletions in disordered regions. We propose a mechanism of ex nihilo SLiM evolution – the evolution of a novel SLiM from “nothing” – adding a functional module to a previously non-functional region of protein sequence. In our model, hundreds of motif-binding domains in higher eukaryotic proteins connect simple motif specificities with useful functions to create a large functional motif space. Accessible peptides that match the specificity of these motif-binding domains are continuously created and destroyed by mutations in rapidly evolving disordered regions, creating a dynamic supply of new interactions that may have advantageous phenotypic novelty. This provides a reservoir of diversity to modify existing interaction networks. Evolutionary pressures will act on these motifs to retain beneficial instances. However, most will be lost on an evolutionary timescale as negative selection and genetic drift act on deleterious and neutral motifs respectively. In light of the parallels between the presented model and the evolution of motifs in the regulatory segments of genes and (pre-)mRNAs, we suggest our understanding of regulatory networks would benefit from the creation of a shared model describing the evolution of transcriptional, post-transcriptional and post-translational regulation.
Collapse
Affiliation(s)
- Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland.
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| | - Alan M Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada. .,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada.
| |
Collapse
|
45
|
Al-Zain A, Schroeder L, Sheglov A, Ikui AE. Cdc6 degradation requires phosphodegron created by GSK-3 and Cdk1 for SCFCdc4 recognition in Saccharomyces cerevisiae. Mol Biol Cell 2015. [PMID: 25995377 DOI: 10.1091/mbc.e14-07-1213/asset/images/large/mbc-26-2609-g005.jpeg] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To ensure genome integrity, DNA replication takes place only once per cell cycle and is tightly controlled by cyclin-dependent kinase (Cdk1). Cdc6p is part of the prereplicative complex, which is essential for DNA replication. Cdc6 is phosphorylated by cyclin-Cdk1 to promote its degradation after origin firing to prevent DNA rereplication. We previously showed that a yeast GSK-3 homologue, Mck1 kinase, promotes Cdc6 degradation in a SCF(Cdc4)-dependent manner, therefore preventing rereplication. Here we present evidence that Mck1 directly phosphorylates a GSK-3 consensus site in the C-terminus of Cdc6. The Mck1-dependent Cdc6 phosphorylation required priming by cyclin/Cdk1 at an adjacent CDK consensus site. The sequential phosphorylation by Mck1 and Clb2/Cdk1 generated a Cdc4 E3 ubiquitin ligase-binding motif to promote Cdc6 degradation during mitosis. We further revealed that Cdc6 degradation triggered by Mck1 kinase was enhanced upon DNA damage caused by the alkylating agent methyl methanesulfonate and that the resulting degradation was mediated through Cdc4. Thus, Mck1 kinase ensures proper DNA replication, prevents DNA damage, and maintains genome integrity by inhibiting Cdc6.
Collapse
Affiliation(s)
- Amr Al-Zain
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Lea Schroeder
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Alina Sheglov
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Amy E Ikui
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| |
Collapse
|
46
|
Valk E, Venta R, Ord M, Faustova I, Kõivomägi M, Loog M. Multistep phosphorylation systems: tunable components of biological signaling circuits. Mol Biol Cell 2015; 25:3456-60. [PMID: 25368420 PMCID: PMC4230602 DOI: 10.1091/mbc.e14-02-0774] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multisite phosphorylation of proteins is a powerful signal processing mechanism that plays crucial roles in cell division and differentiation as well as in disease. We recently demonstrated a novel phenomenon in cell cycle regulation by showing that cyclin-dependent kinase–dependent multisite phosphorylation of a crucial substrate is performed sequentially in the N-to-C terminal direction along the disordered protein. The process is controlled by key parameters, including the distance between phosphorylation sites, the distribution of serines and threonines in sites, and the position of docking motifs. According to our model, linear patterns of phosphorylation along disordered protein segments determine the signal-response function of a multisite phosphorylation switch. Here we discuss the general advantages and engineering principles of multisite phosphorylation networks as processors of kinase signals. We also address the idea of using the mechanistic logic of linear multisite phosphorylation networks to design circuits for synthetic biology applications.
Collapse
Affiliation(s)
- Evin Valk
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Rainis Venta
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Mihkel Ord
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Ilona Faustova
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Mardo Kõivomägi
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Mart Loog
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
47
|
Al-Zain A, Schroeder L, Sheglov A, Ikui AE. Cdc6 degradation requires phosphodegron created by GSK-3 and Cdk1 for SCFCdc4 recognition in Saccharomyces cerevisiae. Mol Biol Cell 2015; 26:2609-19. [PMID: 25995377 PMCID: PMC4501359 DOI: 10.1091/mbc.e14-07-1213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 05/12/2015] [Indexed: 11/11/2022] Open
Abstract
DNA replication has to be tightly regulated to ensure genome integrity such that DNA replication takes place only once per cell cycle. The Cdc6 sequential phosphorylation by GSK-3 and Cdk1 creates a binding site for Cdc4 ubiquitin ligase to promote Cdc6 degradation. To ensure genome integrity, DNA replication takes place only once per cell cycle and is tightly controlled by cyclin-dependent kinase (Cdk1). Cdc6p is part of the prereplicative complex, which is essential for DNA replication. Cdc6 is phosphorylated by cyclin-Cdk1 to promote its degradation after origin firing to prevent DNA rereplication. We previously showed that a yeast GSK-3 homologue, Mck1 kinase, promotes Cdc6 degradation in a SCFCdc4-dependent manner, therefore preventing rereplication. Here we present evidence that Mck1 directly phosphorylates a GSK-3 consensus site in the C-terminus of Cdc6. The Mck1-dependent Cdc6 phosphorylation required priming by cyclin/Cdk1 at an adjacent CDK consensus site. The sequential phosphorylation by Mck1 and Clb2/Cdk1 generated a Cdc4 E3 ubiquitin ligase–binding motif to promote Cdc6 degradation during mitosis. We further revealed that Cdc6 degradation triggered by Mck1 kinase was enhanced upon DNA damage caused by the alkylating agent methyl methanesulfonate and that the resulting degradation was mediated through Cdc4. Thus, Mck1 kinase ensures proper DNA replication, prevents DNA damage, and maintains genome integrity by inhibiting Cdc6.
Collapse
Affiliation(s)
- Amr Al-Zain
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Lea Schroeder
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Alina Sheglov
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Amy E Ikui
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| |
Collapse
|
48
|
Abstract
Intrinsically disordered proteins (IDPs) are important components of the cellular signalling machinery, allowing the same polypeptide to undertake different interactions with different consequences. IDPs are subject to combinatorial post-translational modifications and alternative splicing, adding complexity to regulatory networks and providing a mechanism for tissue-specific signalling. These proteins participate in the assembly of signalling complexes and in the dynamic self-assembly of membrane-less nuclear and cytoplasmic organelles. Experimental, computational and bioinformatic analyses combine to identify and characterize disordered regions of proteins, leading to a greater appreciation of their widespread roles in biological processes.
Collapse
|
49
|
Olson DK, Fröhlich F, Christiano R, Hannibal-Bach HK, Ejsing CS, Walther TC. Rom2-dependent phosphorylation of Elo2 controls the abundance of very long-chain fatty acids. J Biol Chem 2014; 290:4238-47. [PMID: 25519905 DOI: 10.1074/jbc.m114.629279] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Sphingolipids are essential components of eukaryotic membranes, where they serve to maintain membrane integrity. They are important components of membrane trafficking and function in signaling as messenger molecules. Sphingolipids are synthesized de novo from very long-chain fatty acids (VLCFA) and sphingoid long-chain bases, which are amide linked to form ceramide and further processed by addition of various headgroups. Little is known concerning the regulation of VLCFA levels and how cells coordinate their synthesis with the availability of long-chain bases for sphingolipid synthesis. Here we show that Elo2, a key enzyme of VLCFA synthesis, is controlled by signaling of the guanine nucleotide exchange factor Rom2, initiating at the plasma membrane. This pathway controls Elo2 phosphorylation state and VLCFA synthesis. Our data identify a regulatory mechanism for coordinating VLCFA synthesis with sphingolipid metabolism and link signal transduction pathways from the plasma membrane to the regulation of lipids for membrane homeostasis.
Collapse
Affiliation(s)
- Daniel K Olson
- From the Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, the Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06150
| | - Florian Fröhlich
- From the Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Romain Christiano
- From the Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Hans K Hannibal-Bach
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, 0230 Odense, Denmark
| | - Christer S Ejsing
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, 0230 Odense, Denmark
| | - Tobias C Walther
- From the Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, and the Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| |
Collapse
|
50
|
Minguez P, Letunic I, Parca L, Garcia-Alonso L, Dopazo J, Huerta-Cepas J, Bork P. PTMcode v2: a resource for functional associations of post-translational modifications within and between proteins. Nucleic Acids Res 2014; 43:D494-502. [PMID: 25361965 PMCID: PMC4383916 DOI: 10.1093/nar/gku1081] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The post-translational regulation of proteins is mainly driven by two molecular events, their modification by several types of moieties and their interaction with other proteins. These two processes are interdependent and together are responsible for the function of the protein in a particular cell state. Several databases focus on the prediction and compilation of protein–protein interactions (PPIs) and no less on the collection and analysis of protein post-translational modifications (PTMs), however, there are no resources that concentrate on describing the regulatory role of PTMs in PPIs. We developed several methods based on residue co-evolution and proximity to predict the functional associations of pairs of PTMs that we apply to modifications in the same protein and between two interacting proteins. In order to make data available for understudied organisms, PTMcode v2 (http://ptmcode.embl.de) includes a new strategy to propagate PTMs from validated modified sites through orthologous proteins. The second release of PTMcode covers 19 eukaryotic species from which we collected more than 300 000 experimentally verified PTMs (>1 300 000 propagated) of 69 types extracting the post-translational regulation of >100 000 proteins and >100 000 interactions. In total, we report 8 million associations of PTMs regulating single proteins and over 9.4 million interplays tuning PPIs.
Collapse
Affiliation(s)
- Pablo Minguez
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Ivica Letunic
- Biobyte solutions GmbH, Bothestr 142, 69117 Heidelberg, Germany
| | - Luca Parca
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Luz Garcia-Alonso
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Joaquin Dopazo
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Jaime Huerta-Cepas
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany Max-Delbruck-Centre for Molecular Medicine, Berlin-Buch, Germany
| |
Collapse
|