1
|
Prabaharan C, Figiel M, Szczepanowski RH, Skowronek K, Zajko W, Thangaraj V, Chamera S, Nowak E, Nowotny M. Structural and biochemical characterization of cauliflower mosaic virus reverse transcriptase. J Biol Chem 2024; 300:107555. [PMID: 39002684 PMCID: PMC11363490 DOI: 10.1016/j.jbc.2024.107555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024] Open
Abstract
Reverse transcriptases (RTs) are enzymes with DNA polymerase and RNase H activities. They convert ssRNA into dsDNA and are key enzymes for the replication of retroviruses and retroelements. Caulimoviridae is a major family of plant-infecting viruses. Caulimoviruses have a circular dsDNA genome that is replicated by reverse transcription, but in contrast to retroviruses, they lack integrase. Caulimoviruses are related to Ty3 retroelements. Ty3 RT has been extensively studied structurally and biochemically, but corresponding information for caulimoviral RTs is unavailable. In the present study, we report the first crystal structure of cauliflower mosaic virus (CaMV) RT in complex with a duplex made of RNA and DNA strands (RNA/DNA hybrid). CaMV RT forms a monomeric complex with the hybrid, unlike Ty3 RT, which does so as a dimer. Results of the RNA-dependent DNA polymerase and DNA-dependent DNA polymerase activity assays showed that individual CaMV RT molecules are able to perform full polymerase functions. However, our analyses showed that an additional CaMV RT molecule needs to transiently associate with a polymerase-competent RT molecule to execute RNase H cuts of the RNA strand. Collectively, our results provide details into the structure and function of CaMV RT and describe how the enzyme compares to other related RTs.
Collapse
Affiliation(s)
- Chandrasekaran Prabaharan
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Małgorzata Figiel
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Roman H Szczepanowski
- Biophysics and Bioanalytics Facility, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Krzysztof Skowronek
- Biophysics and Bioanalytics Facility, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Weronika Zajko
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Vinuchakkaravarthy Thangaraj
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Sebastian Chamera
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
2
|
Zhu XD, Corona A, Maloccu S, Tramontano E, Wang S, Pannecouque C, De Clercq E, Meng G, Chen FE. Structure-Based Design of Novel Thiazolone[3,2- a]pyrimidine Derivatives as Potent RNase H Inhibitors for HIV Therapy. Molecules 2024; 29:2120. [PMID: 38731613 PMCID: PMC11085872 DOI: 10.3390/molecules29092120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Ribonuclease H (RNase H) was identified as an important target for HIV therapy. Currently, no RNase H inhibitors have reached clinical status. Herein, a series of novel thiazolone[3,2-a]pyrimidine-containing RNase H inhibitors were developed, based on the hit compound 10i, identified from screening our in-house compound library. Some of these derivatives exhibited low micromolar inhibitory activity. Among them, compound 12b was identified as the most potent inhibitor of RNase H (IC50 = 2.98 μM). The experiment of magnesium ion coordination was performed to verify that this ligand could coordinate with magnesium ions, indicating its binding ability to the catalytic site of RNase H. Docking studies revealed the main interactions of this ligand with RNase H. A quantitative structure activity relationship (QSAR) was also conducted to disclose several predictive mathematic models. A molecular dynamics simulation was also conducted to determine the stability of the complex. Taken together, thiazolone[3,2-a]pyrimidine can be regarded as a potential scaffold for the further development of RNase H inhibitors.
Collapse
Affiliation(s)
- Xuan-De Zhu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (X.-D.Z.); (S.W.)
| | - Angela Corona
- Department of Life and Environmental Sciences, Department of Applied Science Biosyst, University of Cagliari, 09042 Cagliari, Italy; (A.C.); (S.M.); (E.T.)
| | - Stefania Maloccu
- Department of Life and Environmental Sciences, Department of Applied Science Biosyst, University of Cagliari, 09042 Cagliari, Italy; (A.C.); (S.M.); (E.T.)
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, Department of Applied Science Biosyst, University of Cagliari, 09042 Cagliari, Italy; (A.C.); (S.M.); (E.T.)
| | - Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (X.-D.Z.); (S.W.)
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium; (C.P.); (E.D.C.)
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium; (C.P.); (E.D.C.)
| | - Ge Meng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (X.-D.Z.); (S.W.)
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (X.-D.Z.); (S.W.)
| |
Collapse
|
3
|
Biryukov M, Ustyantsev K. Origin and Evolution of Plant Long Terminal Repeat Retrotransposons with Additional Ribonuclease H. Genome Biol Evol 2023; 15:evad161. [PMID: 37697050 PMCID: PMC10508981 DOI: 10.1093/gbe/evad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/08/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023] Open
Abstract
Retroviruses originated from long terminal repeat retrotransposons (LTR-RTs) through several structural adaptations. One such modification was the arrangement of an additional ribonuclease H (aRH) domain next to native RH, followed by degradation and subfunctionalization of the latter. We previously showed that this retrovirus-like structure independently evolved in Tat LTR-RTs in flowering plants, proposing its origin from sequential rearrangements of ancestral Tat structures identified in lycophytes and conifers. However, most nonflowering plant genome assemblies were not available at that time, therefore masking the history of aRH acquisition by Tat and challenging our hypothesis. Here, we revisited Tat's evolution scenario upon the aRH acquisition by covering most of the extant plant phyla. We show that Tat evolved and obtained aRH in an ancestor of land plants. Importantly, we found the retrovirus-like structure in clubmosses, hornworts, ferns, and gymnosperms, suggesting its ancient origin, broad propagation, and yet-to-be-understood benefit for the LTR-RTs' adaptation.
Collapse
Affiliation(s)
- Mikhail Biryukov
- Sector of Molecular and Genetic Mechanisms of Regeneration, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Kirill Ustyantsev
- Sector of Molecular and Genetic Mechanisms of Regeneration, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| |
Collapse
|
4
|
Me-Better Drug Design Based on Nevirapine and Mechanism of Molecular Interactions with Y188C Mutant HIV-1 Reverse Transcriptase. Molecules 2022; 27:molecules27217348. [DOI: 10.3390/molecules27217348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, the Y188C mutant HIV-1 reverse transcriptase (Y188CM-RT) target protein was constructed by homology modeling, and new ligands based on nevirapine (NVP) skeleton were designed by means of fragment growth. The binding activity of new ligands to Y188CM-RT was evaluated by structural analysis, ADMET prediction, molecular docking, energy calculation and molecular dynamics. Results show that 10 new ligands had good absorbability, and their binding energies to Y188CM-RT were significantly higher than those of wild-type HIV-1 reverse transcriptase(wt). The binding mode explained that fragment growth contributed to larger ligands, leading to improved suitability at the docking pocket. In the way of fragment growth, the larger side chain with extensive contact at terminal is obviously better than substituted benzene ring. The enhancement of docking activity is mainly due to the new fragments such as alkyl chains and rings with amino groups at NVP terminal, resulting in a large increase in hydrophobic bonding and the new addition of hydrogen bonding or salt bonding. This study is expected to provide reference for the research on non-nucleoside reverse transcriptase inhibitors resistance and AIDS treatment.
Collapse
|
5
|
Cryo-EM structures of wild-type and E138K/M184I mutant HIV-1 RT/DNA complexed with inhibitors doravirine and rilpivirine. Proc Natl Acad Sci U S A 2022; 119:e2203660119. [PMID: 35858448 PMCID: PMC9335299 DOI: 10.1073/pnas.2203660119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The enzyme reverse transcriptase (RT) is a key antiviral target, and nonnucleoside RT inhibitors (NNRTIs) are among the frequently used components of antiretroviral therapy for treating HIV-1 infection. The emergence of drug-resistant mutations continues to pose a challenge in HIV treatment. The RT mutations M184I and E138K emerge in patients receiving rilpivirine. We obtained the structural snapshots of rilpivirine, doravirine, and nevirapine inhibited wild-type and M184I/E138K RT/DNA polymerase complexes by cryo-electron microscopy. Key structural changes observed in the rilpivirine- and doravirine-bound structures have implications for understanding NNRTI drug resistance. Additionally, the cryo-EM structure determination strategy outlined in this study can be adapted to aid drug design targeting smaller and flexible proteins. Structures trapping a variety of functional and conformational states of HIV-1 reverse transcriptase (RT) have been determined by X-ray crystallography. These structures have played important roles in explaining the mechanisms of catalysis, inhibition, and drug resistance and in driving drug design. However, structures of several desired complexes of RT could not be obtained even after many crystallization or crystal soaking experiments. The ternary complexes of doravirine and rilpivirine with RT/DNA are such examples. Structural study of HIV-1 RT by single-particle cryo-electron microscopy (cryo-EM) has been challenging due to the enzyme’s relatively smaller size and higher flexibility. We optimized a protocol for rapid structure determination of RT complexes by cryo-EM and determined six structures of wild-type and E138K/M184I mutant RT/DNA in complexes with the nonnucleoside inhibitors rilpivirine, doravirine, and nevirapine. RT/DNA/rilpivirine and RT/DNA/doravirine complexes have structural differences between them and differ from the typical conformation of nonnucleoside RT inhibitor (NNRTI)–bound RT/double-stranded DNA (dsDNA), RT/RNA–DNA, and RT/dsRNA complexes; the primer grip in RT/DNA/doravirine and the YMDD motif in RT/DNA/rilpivirine have large shifts. The DNA primer 3′-end in the doravirine-bound structure is positioned at the active site, but the complex is in a nonproductive state. In the mutant RT/DNA/rilpivirine structure, I184 is stacked with the DNA such that their relative positioning can influence rilpivirine in the pocket. Simultaneously, E138K mutation opens the NNRTI-binding pocket entrance, potentially contributing to a faster rate of rilpivirine dissociation by E138K/M184I mutant RT, as reported by an earlier kinetic study. These structural differences have implications for understanding molecular mechanisms of drug resistance and for drug design.
Collapse
|
6
|
Insights into HIV-1 Reverse Transcriptase (RT) Inhibition and Drug Resistance from Thirty Years of Structural Studies. Viruses 2022; 14:v14051027. [PMID: 35632767 PMCID: PMC9148108 DOI: 10.3390/v14051027] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
The enzyme reverse transcriptase (RT) plays a central role in the life cycle of human immunodeficiency virus (HIV), and RT has been an important drug target. Elucidations of the RT structures trapping and detailing the enzyme at various functional and conformational states by X-ray crystallography have been instrumental for understanding RT activities, inhibition, and drug resistance. The structures have contributed to anti-HIV drug development. Currently, two classes of RT inhibitors are in clinical use. These are nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs). However, the error-prone viral replication generates variants that frequently develop resistance to the available drugs, thus warranting a continued effort to seek more effective treatment options. RT also provides multiple additional potential druggable sites. Recently, the use of single-particle cryogenic electron microscopy (cryo-EM) enabled obtaining structures of NNRTI-inhibited HIV-1 RT/dsRNA initiation and RT/dsDNA elongation complexes that were unsuccessful by X-ray crystallography. The cryo-EM platform for the structural study of RT has been established to aid drug design. In this article, we review the roles of structural biology in understanding and targeting HIV RT in the past three decades and the recent structural insights of RT, using cryo-EM.
Collapse
|
7
|
Jones SP, Goossen C, Lewis SD, Delaney AM, Gleghorn ML. Not making the cut: Techniques to prevent RNA cleavage in structural studies of RNase-RNA complexes. J Struct Biol X 2022; 6:100066. [PMID: 35340590 PMCID: PMC8943300 DOI: 10.1016/j.yjsbx.2022.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
RNases are varied in the RNA structures and sequences they target for cleavage and are an important type of enzyme in cells. Despite the numerous examples of RNases known, and of those with determined three-dimensional structures, relatively few examples exist with the RNase bound to intact cognate RNA substrate prior to cleavage. To better understand RNase structure and sequence specificity for RNA targets, in vitro methods used to assemble these enzyme complexes trapped in a pre-cleaved state have been developed for a number of different RNases. We have surveyed the Protein Data Bank for such structures and in this review detail methodologies that have successfully been used and relate them to the corresponding structures. We also offer ideas and suggestions for future method development. Many strategies within this review can be used in combination with X-ray crystallography, as well as cryo-EM, and other structure-solving techniques. Our hope is that this review will be used as a guide to resolve future yet-to-be-determined RNase-substrate complex structures.
Collapse
Affiliation(s)
- Seth P. Jones
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
| | - Christian Goossen
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Lothrop St, Pittsburgh, PA 15261, United States
| | - Sean D. Lewis
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
- Mayo Clinic, 200 1st St SW, Rochester, MN 5590, United States
| | - Annie M. Delaney
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
| | - Michael L. Gleghorn
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
| |
Collapse
|
8
|
High-resolution view of HIV-1 reverse transcriptase initiation complexes and inhibition by NNRTI drugs. Nat Commun 2021; 12:2500. [PMID: 33947853 PMCID: PMC8096811 DOI: 10.1038/s41467-021-22628-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/12/2021] [Indexed: 02/02/2023] Open
Abstract
Reverse transcription of the HIV-1 viral RNA genome (vRNA) is an integral step in virus replication. Upon viral entry, HIV-1 reverse transcriptase (RT) initiates from a host tRNALys3 primer bound to the vRNA genome and is the target of key antivirals, such as non-nucleoside reverse transcriptase inhibitors (NNRTIs). Initiation proceeds slowly with discrete pausing events along the vRNA template. Despite prior medium-resolution structural characterization of reverse transcriptase initiation complexes (RTICs), higher-resolution structures of the RTIC are needed to understand the molecular mechanisms that underlie initiation. Here we report cryo-EM structures of the core RTIC, RTIC-nevirapine, and RTIC-efavirenz complexes at 2.8, 3.1, and 2.9 Å, respectively. In combination with biochemical studies, these data suggest a basis for rapid dissociation kinetics of RT from the vRNA-tRNALys3 initiation complex and reveal a specific structural mechanism of nucleic acid conformational stabilization during initiation. Finally, our results show that NNRTIs inhibit the RTIC and exacerbate discrete pausing during early reverse transcription.
Collapse
|
9
|
Álvarez M, Sapena-Ventura E, Luczkowiak J, Martín-Alonso S, Menéndez-Arias L. Analysis and Molecular Determinants of HIV RNase H Cleavage Specificity at the PPT/U3 Junction. Viruses 2021; 13:131. [PMID: 33477685 PMCID: PMC7831940 DOI: 10.3390/v13010131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 02/05/2023] Open
Abstract
HIV reverse transcriptases (RTs) convert viral genomic RNA into double-stranded DNA. During reverse transcription, polypurine tracts (PPTs) resilient to RNase H cleavage are used as primers for plus-strand DNA synthesis. Nonnucleoside RT inhibitors (NNRTIs) can interfere with the initiation of plus-strand DNA synthesis by enhancing PPT removal, while HIV RT connection subdomain mutations N348I and N348I/T369I mitigate this effect by altering RNase H cleavage specificity. Now, we demonstrate that among approved nonnucleoside RT inhibitors (NNRTIs), nevirapine and doravirine show the largest effects. The combination N348I/T369I in HIV-1BH10 RT has a dominant effect on the RNase H cleavage specificity at the PPT/U3 site. Biochemical studies showed that wild-type HIV-1 and HIV-2 RTs were able to process efficiently and accurately all tested HIV PPT sequences. However, the cleavage accuracy at the PPT/U3 junction shown by the HIV-2EHO RT was further improved after substituting the sequence YQEPFKNLKT of HIV-1BH10 RT (positions 342-351) for the equivalent residues of the HIV-2 enzyme (HQGDKILKV). Our results highlight the role of β-sheets 17 and 18 and their connecting loop (residues 342-350) in the connection subdomain of the large subunit, in determining the RNase H cleavage window of HIV RTs.
Collapse
Affiliation(s)
| | | | | | | | - Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Campus de Cantoblanco-UAM, 28049 Madrid, Spain; (M.Á.); (E.S.-V.); (J.L.); (S.M.-A.)
| |
Collapse
|
10
|
Schmidt T, Louis JM, Marius Clore G. Probing the Interaction between HIV-1 Protease and the Homodimeric p66/p66' Reverse Transcriptase Precursor by Double Electron-Electron Resonance EPR Spectroscopy. Chembiochem 2020; 21:3051-3055. [PMID: 32558168 PMCID: PMC7678880 DOI: 10.1002/cbic.202000263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/16/2020] [Indexed: 11/08/2022]
Abstract
Following excision from the Gag-Pol polyprotein, HIV-1 reverse transcriptase is released as an asymmetric homodimer comprising two p66 subunits that are structurally dissimilar but identical in amino acid sequence. Subsequent cleavage of the RNase H domain from only one of the subunits, denoted p66', results in the formation of the mature p66/p51 enzyme in which catalytic activity resides in the p66 subunit, and the p51 subunit (derived from p66') provides a supporting structural scaffold. Here, we probe the interaction of the p66/p66' asymmetric reverse transcriptase precursor with HIV-1 protease by pulsed Q-band double electron-electron resonance EPR spectroscopy to measure distances between nitroxide labels introduced at surface-engineered cysteine residues. The data suggest that the flexible, exposed linker between the RNaseH and connection domains in the open state of the p66' subunit binds to the active site of protease in a configuration that is similar to that of extended peptide substrates.
Collapse
Affiliation(s)
- Thomas Schmidt
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520 (USA)
| | - John M. Louis
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520 (USA)
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520 (USA)
| |
Collapse
|
11
|
Panwar U, Chandra I, Selvaraj C, Singh SK. Current Computational Approaches for the Development of Anti-HIV Inhibitors: An Overview. Curr Pharm Des 2020; 25:3390-3405. [PMID: 31538884 DOI: 10.2174/1381612825666190911160244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Today, HIV-1 infection has become an extensive problem to public health and a greater challenge to all working researchers throughout the world. Since the beginning of HIV-1 virus, several antiviral therapeutic agents have been developed at various stages to combat HIV-1 infection. But, many of antiviral drugs are on the platform of drug resistance and toxicology issues, needs an urgent constructive investigation for the development of productive and protective therapeutics to make an improvement of individual life suffering with viral infection. As developing a novel agent is very costly, challenging and time taking route in the recent times. METHODS The review summarized about the modern approaches of computational aided drug discovery to developing a novel inhibitor within a short period of time and less cost. RESULTS The outcome suggests on the premise of reported information that the computational drug discovery is a powerful technology to design a defensive and fruitful therapeutic agents to combat HIV-1 infection and recover the lifespan of suffering one. CONCLUSION Based on survey of the reported information, we concluded that the current computational approaches is highly supportive in the progress of drug discovery and controlling the viral infection.
Collapse
Affiliation(s)
- Umesh Panwar
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 004, Tamil Nadu, India
| | - Ishwar Chandra
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 004, Tamil Nadu, India
| | - Chandrabose Selvaraj
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice, Czech Republic
| | - Sanjeev K Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 004, Tamil Nadu, India
| |
Collapse
|
12
|
Wang L, Sarafianos SG, Wang Z. Cutting into the Substrate Dominance: Pharmacophore and Structure-Based Approaches toward Inhibiting Human Immunodeficiency Virus Reverse Transcriptase-Associated Ribonuclease H. Acc Chem Res 2020; 53:218-230. [PMID: 31880912 DOI: 10.1021/acs.accounts.9b00450] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Human immunodeficiency virus (HIV) reverse transcriptase (RT) contains two distinct functional domains: a DNA polymerase (pol) domain and a ribonuclease H (RNase H) domain, both of which are required for viral genome replication. Over the last 3 decades, RT has been at the forefront of HIV drug discovery efforts with numerous nucleoside reverse transcriptase inhibitors (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs) approved by the FDA. However, all these RT inhibitors target only the pol function, and inhibitors of RT-associated RNase H have yet to enter the development pipeline, which in itself manifests both the opportunity and challenges of targeting RNase H: if developed, RT RNase H inhibitors would represent a mechanistically novel class of HIV drugs that can be particularly valuable in treating HIV strains resistant to current drugs. The challenges include (1) the difficulty in selectively targeting RT RNase H over RT pol due to their close interplay both spatially and temporally and over HIV-1 integrase strand transfer (INST) activity because of their active site similarities; (2) to a larger extent, the inability of active site inhibitors to confer significant antiviral effect, presumably due to a steep substrate barrier by which the pre-existing substrate prevents access of small molecules to the active site. As a result, previously reported RT RNase H inhibitors typically lacked target specificity and significant antiviral potency. Achieving meaningful antiviral activity via active site targeting likely entails selective and ultrapotent RNase H inhibition to allow small molecules to cut into the dominance of substrates. Based on a pharmacophore model informed by prior work, we designed and redesigned a few metal-chelating chemotypes, such as 2-hydroxyisoquinolinedione (HID), hydroxypyridonecarboxylic acid (HPCA), 3-hydroxypyrimidine-2,4-dione (HPD), and N-hydroxythienopyrimidine-2,4-dione (HTPD). Analogues of these chemotypes generally exhibited improved potency and selectivity inhibiting RT RNase H over the best previous compounds and further validated the pharmacophore model. Extended structure-activity relationship (SAR) on the HPD inhibitor type by mainly altering the linkage generated a few subtypes showing exceptional potency (single-digit nanomolar) and excellent selectivity over the inhibition of RT pol and INST. In parallel, a structure-based approach also allowed us to design a unique double-winged HPD subtype to potently and selectively inhibit RT RNase H and effectively compete against the RNA/DNA substrate. Significantly, all potent HPD subtypes consistently inhibited HIV-1 in the cell culture, suggesting that carefully designed active site RNase H inhibitors with ultrapotency could partially overcome the barrier to antiviral phenotype. Overall, in addition to identifying our own inhibitor types, our medicinal chemistry efforts demonstrated the value of pharmacophore and structure-based approaches in designing active side-directed RNase H inhibitors and could provide a viable path to validating RNase H as a novel antiviral target.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Massari S, Corona A, Distinto S, Desantis J, Caredda A, Sabatini S, Manfroni G, Felicetti T, Cecchetti V, Pannecouque C, Maccioni E, Tramontano E, Tabarrini O. From cycloheptathiophene-3-carboxamide to oxazinone-based derivatives as allosteric HIV-1 ribonuclease H inhibitors. J Enzyme Inhib Med Chem 2019; 34:55-74. [PMID: 30362381 PMCID: PMC6211256 DOI: 10.1080/14756366.2018.1523901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 11/30/2022] Open
Abstract
The paper focussed on a step-by-step structural modification of a cycloheptathiophene-3-carboxamide derivative recently identified by us as reverse transcriptase (RT)-associated ribonuclease H (RNase H) inhibitor. In particular, its conversion to a 2-aryl-cycloheptathienoozaxinone derivative and the successive thorough exploration of both 2-aromatic and cycloheptathieno moieties led to identify oxazinone-based compounds as new anti-RNase H chemotypes. The presence of the catechol moiety at the C-2 position of the scaffold emerged as critical to achieve potent anti-RNase H activity, which also encompassed anti-RNA dependent DNA polymerase (RDDP) activity for the tricyclic derivatives. Benzothienooxazinone derivative 22 resulted the most potent dual inhibitor exhibiting IC50s of 0.53 and 2.90 μM against the RNase H and RDDP functions. Mutagenesis and docking studies suggested that compound 22 binds two allosteric pockets within the RT, one located between the RNase H active site and the primer grip region and the other close to the DNA polymerase catalytic centre.
Collapse
Affiliation(s)
- Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Jenny Desantis
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Alessia Caredda
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Stefano Sabatini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, K.U. Leuven, Leuven, Belgium
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
14
|
Spatial domain organization in the HIV-1 reverse transcriptase p66 homodimer precursor probed by double electron-electron resonance EPR. Proc Natl Acad Sci U S A 2019; 116:17809-17816. [PMID: 31383767 DOI: 10.1073/pnas.1911086116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
HIV type I (HIV-1) reverse transcriptase (RT) catalyzes the conversion of viral RNA into DNA, initiating the chain of events leading to integration of proviral DNA into the host genome. RT is expressed as a single polypeptide chain within the Gag-Pol polyprotein, and either prior to or following excision by HIV-1 protease forms a 66 kDa chain (p66) homodimer precursor. Further proteolytic attack by HIV-1 protease cleaves the ribonuclease H (RNase H) domain of a single subunit to yield the mature p66/p51 heterodimer. Here, we probe the spatial domain organization within the p66 homodimer using pulsed Q-band double electron-electron resonance (DEER) EPR spectroscopy to measure a large number of intra- and intersubunit distances between spin labels attached to surface-engineered cysteines. The DEER-derived distances are fully consistent with the structural subunit asymmetry found in the mature p66/p51 heterodimer in which catalytic activity resides in the p66 subunit, while the p51 subunit purely serves as a structural scaffold. Furthermore, the p66 homodimer precursor undergoes a conformational change involving the thumb, palm, and finger domains in one of the subunits (corresponding to the p66 subunit in the mature p66/p51 heterodimer) from a closed to a partially open state upon addition of a nonnucleoside inhibitor. The relative orientation of the domains was modeled by simulated annealing driven by the DEER-derived distances. Finally, the RNase H domain that is cleaved to generate p51 in the mature p66/p51 heterodimer is present in 2 major conformers. One conformer is fully solvent accessible thereby accounting for the observation that only a single subunit of the p66 homodimer precursor is susceptible to HIV-1 protease.
Collapse
|
15
|
Hyjek M, Figiel M, Nowotny M. RNases H: Structure and mechanism. DNA Repair (Amst) 2019; 84:102672. [PMID: 31371183 DOI: 10.1016/j.dnarep.2019.102672] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022]
Abstract
RNases H are a family of endonucleases that hydrolyze RNA residues in various nucleic acids. These enzymes are present in all branches of life, and their counterpart domains are also found in reverse transcriptases (RTs) from retroviruses and retroelements. RNases H are divided into two main classes (RNases H1 and H2 or type 1 and type 2 enzymes) with common structural features of the catalytic domain but different range of substrates for enzymatic cleavage. Additionally, a third class is found in some Archaea and bacteria. Besides distinct cellular functions specific for each type of RNases H, this family of proteins is generally involved in the maintenance of genome stability with overlapping and cooperative role in removal of R-loops thus preventing their accumulation. Extensive biochemical and structural studies of RNases H provided not only a comprehensive and complete picture of their mechanism but also revealed key basic principles of nucleic acid recognition and processing. RNase H1 is present in prokaryotes and eukaryotes and cleaves RNA in RNA/DNA hybrids. Its main function is hybrid removal, notably in the context of R-loops. RNase H2, which is also present in all branches of life, can play a similar role but it also has a specialized function in the cleavage of single ribonucleotides embedded in the DNA. RNase H3 is present in Archaea and bacteria and is closely related to RNase H2 in sequence and structure but has RNase H1-like biochemical properties. This review summarizes the mechanisms of substrate recognition and enzymatic cleavage by different classes of RNases H with particular insights into structural features of nucleic acid binding, specificity towards RNA and/or DNA strands and catalysis.
Collapse
Affiliation(s)
- Malwina Hyjek
- ProBiostructures, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw, 02-109, Poland.
| | - Małgorzata Figiel
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw, 02-109, Poland.
| | - Marcin Nowotny
- ProBiostructures, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw, 02-109, Poland; Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw, 02-109, Poland.
| |
Collapse
|
16
|
DeStefano JJ. Non-nucleoside Reverse Transcriptase Inhibitors Inhibit Reverse Transcriptase through a Mutually Exclusive Interaction with Divalent Cation-dNTP Complexes. Biochemistry 2019; 58:2176-2187. [PMID: 30900874 DOI: 10.1021/acs.biochem.9b00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are considered noncompetitive inhibitors that structurally alter reverse transcriptase (RT) and dramatically decrease catalysis. In this report, biochemical analysis with various divalent cations was used to demonstrate that NNRTIs and divalent cation-dNTP complexes are mutually exclusive, inhibiting each other's binding to RT/primer/template (RT-P/T) complexes. The binding of catalytically competent divalent cation-dNTP complexes to RT-P/T was measured with Mg2+, Mn2+, Zn2+, Co2+, and Ni2+ using Ca2+, a noncatalytic cation, for displacement. Binding strength order was Mn2+ ≈ Zn2+ ≫ Co2+ > Mg2+ ≈ Ni2+. Consistent with but not exclusive to mutually exclusive binding, primer extension assays showed that stronger divalent cation-dNTP complexes were more resistant to NNRTIs (efavirenz (EFV), rilpivirine (RPV), and nevirapine (NVP)). Filtration assays demonstrated that divalent cation-dNTP complexes inhibited the binding of 14C-labeled EFV to RT-P/T with stronger binding complexes formed with Mn2+ inhibiting more potently than those with Mg2+. Conversely, filter binding assays demonstrated that EFV inhibited 3H-labeled dNTP binding to RT-P/T complexes with displacement of Mn2+-dNTP complexes requiring much greater concentrations of EFV than the more weakly bound Mg2+-dNTP complexes. EFV bound relatively weakly to the NNRTI resistant K103N RT; but, binding was modestly enhanced in the presence of P/T, and EFV was easily displaced by divalent cation-dNTP complexes. This suggests that K103N overcomes EFV inhibition mostly by binding more weakly to the drug and is in contrast to other reports that indicate K103N has little to no effect on drug or dNTP binding. Overall, this biochemical analysis supports recent biophysical analyses of NNRTI-RT interactions that indicate mutually exclusive binding.
Collapse
Affiliation(s)
- Jeffrey J DeStefano
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
17
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 386] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
18
|
Schmidt T, Tian L, Clore GM. Probing Conformational States of the Finger and Thumb Subdomains of HIV-1 Reverse Transcriptase Using Double Electron-Electron Resonance Electron Paramagnetic Resonance Spectroscopy. Biochemistry 2018; 57:489-493. [PMID: 29251492 PMCID: PMC6034511 DOI: 10.1021/acs.biochem.7b01035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The configurational space sampled by the finger and thumb subdomains of the p66 subunit of HIV-1 reverse transcriptase was investigated by Q-band double electron-electron resonance pulsed electron paramagnetic resonance spectroscopy, a method for determining long-range distances between pairs of nitroxide spin-labels introduced via surface-engineered cysteine residues. Four constructs were examined, each containing two spin-labels in the p66 subunit, one in the finger subdomain and the other in the thumb subdomain. In the unliganded state, open and closed configurations for the finger and thumb subdomains are observed with the distribution between these states modulated by the spin-labels and associated mutations, in contrast to crystallographic data in which the unliganded state crystallizes in the closed conformation. Upon addition of double-stranded DNA, all constructs adopt open conformations consistent with previous crystallographic data in which the position of the thumb and finger subdomains is determined by contacts with the bound oligonucleotide duplex (DNA or DNA/RNA). Likewise, binary complexes with five different non-nucleoside reverse transcriptase inhibitors are in open or partially open conformations, indicating that binding of the inhibitor to the palm subdomain indirectly restricts the conformational space sampled by the finger and thumb subdomains.
Collapse
Affiliation(s)
- Thomas Schmidt
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Lan Tian
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
19
|
Kielpinski LJ, Hagedorn PH, Lindow M, Vinther J. RNase H sequence preferences influence antisense oligonucleotide efficiency. Nucleic Acids Res 2018; 45:12932-12944. [PMID: 29126318 PMCID: PMC5728404 DOI: 10.1093/nar/gkx1073] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/19/2017] [Indexed: 12/24/2022] Open
Abstract
RNase H cleaves RNA in RNA-DNA duplexes. It is present in all domains of life as well as in multiple viruses and is essential for mammalian development and for human immunodeficiency virus replication. Here, we developed a sequencing-based method to measure the cleavage of thousands of different RNA-DNA duplexes and thereby comprehensively characterized the sequence preferences of HIV-1, human and Escherichia coli RNase H enzymes. We find that the catalytic domains of E. coli and human RNase H have nearly identical sequence preferences, which correlate with the efficiency of RNase H-recruiting antisense oligonucleotides. The sequences preferred by HIV-1 RNase H are distributed in the HIV genome in a way suggesting selection for efficient RNA cleavage during replication. Our findings can be used to improve the design of RNase H-recruiting antisense oligonucleotides and show that sequence preferences of HIV-1 RNase H may have shaped evolution of the viral genome and contributed to the use of tRNA-Lys3 as primer during viral replication.
Collapse
Affiliation(s)
- Lukasz J Kielpinski
- Roche Pharmaceutical Discovery and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Fremtidsvej 3, DK-2970 Hørsholm, Denmark
| | - Peter H Hagedorn
- Roche Pharmaceutical Discovery and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Fremtidsvej 3, DK-2970 Hørsholm, Denmark
| | - Morten Lindow
- Roche Pharmaceutical Discovery and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Fremtidsvej 3, DK-2970 Hørsholm, Denmark
| | - Jeppe Vinther
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
20
|
Sebastián-Martín A, Barrioluengo V, Menéndez-Arias L. Transcriptional inaccuracy threshold attenuates differences in RNA-dependent DNA synthesis fidelity between retroviral reverse transcriptases. Sci Rep 2018; 8:627. [PMID: 29330371 PMCID: PMC5766491 DOI: 10.1038/s41598-017-18974-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
In M13mp2 lacZα forward mutation assays measuring intrinsic fidelity of DNA-dependent DNA synthesis, wild-type human immunodeficiency virus type 1 (HIV-1) RTs of group M/subtype B previously showed >10-fold higher error rates than murine leukaemia virus (MLV) and avian myeloblastosis virus (AMV) RTs. An adapted version of the assay was used to obtain error rates of RNA-dependent DNA synthesis for several RTs, including wild-type HIV-1BH10, HIV-1ESP49, AMV and MLV RTs, and the high-fidelity mutants of HIV-1ESP49 RT K65R and K65R/V75I. Our results showed that there were less than two-fold differences in fidelity between the studied RTs with error rates ranging within 2.5 × 10-5 and 3.5 × 10-5. These results were consistent with the existence of a transcriptional inaccuracy threshold, generated by the RNA polymerase while synthesizing the RNA template used in the assay. A modest but consistent reduction of the inaccuracy threshold was achieved by lowering the pH and Mg2+ concentration of the transcription reaction. Despite assay limitations, we conclude that HIV-1BH10 and HIV-1ESP49 RTs are less accurate when copying DNA templates than RNA templates. Analysis of the RNA-dependent mutational spectra revealed a higher tendency to introduce large deletions at the initiation of reverse transcription by all HIV-1 RTs except the double-mutant K65R/V75I.
Collapse
Affiliation(s)
- Alba Sebastián-Martín
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Verónica Barrioluengo
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049, Madrid, Spain
- DiaSorin Iberia S.A., Avenida de la Vega 1, 28108, Alcobendas (Madrid), Spain
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
21
|
Structure of HIV-1 reverse transcriptase cleaving RNA in an RNA/DNA hybrid. Proc Natl Acad Sci U S A 2018; 115:507-512. [PMID: 29295939 DOI: 10.1073/pnas.1719746115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
HIV-1 reverse transcriptase (RT) contains both DNA polymerase and RNase H activities to convert the viral genomic RNA to dsDNA in infected host cells. Here we report the 2.65-Å resolution structure of HIV-1 RT engaging in cleaving RNA in an RNA/DNA hybrid. A preferred substrate sequence is absolutely required to enable the RNA/DNA hybrid to adopt the distorted conformation needed to interact properly with the RNase H active site in RT. Substituting two nucleotides 4 bp upstream from the cleavage site results in scissile-phosphate displacement by 4 Å. We also have determined the structure of HIV-1 RT complexed with an RNase H-resistant polypurine tract sequence, which adopts a rigid structure and is accommodated outside of the nuclease active site. Based on this newly gained structural information and a virtual drug screen, we have identified an inhibitor specific for the viral RNase H but not for its cellular homologs.
Collapse
|
22
|
Kietrys AM, Velema WA, Kool ET. Fingerprints of Modified RNA Bases from Deep Sequencing Profiles. J Am Chem Soc 2017; 139:17074-17081. [PMID: 29111692 PMCID: PMC5819333 DOI: 10.1021/jacs.7b07914] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Posttranscriptional modifications of RNA bases are not only found in many noncoding RNAs but have also recently been identified in coding (messenger) RNAs as well. They require complex and laborious methods to locate, and many still lack methods for localized detection. Here we test the ability of next-generation sequencing (NGS) to detect and distinguish between ten modified bases in synthetic RNAs. We compare ultradeep sequencing patterns of modified bases, including miscoding, insertions and deletions (indels), and truncations, to unmodified bases in the same contexts. The data show widely varied responses to modification, ranging from no response, to high levels of mutations, insertions, deletions, and truncations. The patterns are distinct for several of the modifications, and suggest the future use of ultradeep sequencing as a fingerprinting strategy for locating and identifying modifications in cellular RNAs.
Collapse
Affiliation(s)
- Anna M. Kietrys
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Willem A. Velema
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
23
|
Penno C, Kumari R, Baranov PV, van Sinderen D, Atkins JF. Specific reverse transcriptase slippage at the HIV ribosomal frameshift sequence: potential implications for modulation of GagPol synthesis. Nucleic Acids Res 2017; 45:10156-10167. [PMID: 28973470 PMCID: PMC5737442 DOI: 10.1093/nar/gkx690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/24/2017] [Indexed: 12/28/2022] Open
Abstract
Synthesis of HIV GagPol involves a proportion of ribosomes translating a U6A shift site at the distal end of the gag gene performing a programmed -1 ribosomal frameshift event to enter the overlapping pol gene. In vitro studies here show that at the same shift motif HIV reverse transcriptase generates -1 and +1 indels with their ratio being sensitive to the relative concentration ratio of dNTPs specified by the RNA template slippage-prone sequence and its 5' adjacent base. The GGG sequence 3' adjacent to the U6A shift/slippage site, which is important for ribosomal frameshifting, is shown here to limit reverse transcriptase base substitution and indel 'errors' in the run of A's in the product. The indels characterized here have either 1 more or less A, than the corresponding number of template U's. cDNA with 5 A's may yield novel Gag product(s), while cDNA with an extra base, 7 A's, may only be a minor contributor to GagPol polyprotein. Synthesis of a proportion of non-ribosomal frameshift derived GagPol would be relevant in efforts to identify therapeutically useful compounds that perturb the ratio of GagPol to Gag, and pertinent to the extent in which specific polymerase slippage is utilized in gene expression.
Collapse
Affiliation(s)
- Christophe Penno
- School of Biochemistry, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Romika Kumari
- School of Biochemistry, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - John F Atkins
- School of Biochemistry, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
24
|
Figiel M, Krepl M, Park S, Poznański J, Skowronek K, Gołąb A, Ha T, Šponer J, Nowotny M. Mechanism of polypurine tract primer generation by HIV-1 reverse transcriptase. J Biol Chem 2017; 293:191-202. [PMID: 29122886 PMCID: PMC5766924 DOI: 10.1074/jbc.m117.798256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/02/2017] [Indexed: 12/27/2022] Open
Abstract
HIV-1 reverse transcriptase (RT) possesses both DNA polymerase activity and RNase H activity that act in concert to convert single-stranded RNA of the viral genome to double-stranded DNA that is then integrated into the DNA of the infected cell. Reverse transcriptase-catalyzed reverse transcription critically relies on the proper generation of a polypurine tract (PPT) primer. However, the mechanism of PPT primer generation and the features of the PPT sequence that are critical for its recognition by HIV-1 RT remain unclear. Here, we used a chemical cross-linking method together with molecular dynamics simulations and single-molecule assays to study the mechanism of PPT primer generation. We found that the PPT was specifically and properly recognized within covalently tethered HIV-1 RT-nucleic acid complexes. These findings indicated that recognition of the PPT occurs within a stable catalytic complex after its formation. We found that this unique recognition is based on two complementary elements that rely on the PPT sequence: RNase H sequence preference and incompatibility of the poly(rA/dT) tract of the PPT with the nucleic acid conformation that is required for RNase H cleavage. The latter results from rigidity of the poly(rA/dT) tract and leads to base-pair slippage of this sequence upon deformation into a catalytically relevant geometry. In summary, our results reveal an unexpected mechanism of PPT primer generation based on specific dynamic properties of the poly(rA/dT) segment and help advance our understanding of the mechanisms in viral RNA reverse transcription.
Collapse
Affiliation(s)
- Małgorzata Figiel
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 771 46 Olomouc, Czech Republic
| | - Sangwoo Park
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Krzysztof Skowronek
- Biophysics Core Facility, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Agnieszka Gołąb
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University, Baltimore, Maryland 21205; Howard Hughes Medical Institute, Baltimore, Maryland 21205; Department of Biophysics, The Johns Hopkins University, Baltimore, Maryland 21205; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Jiří Šponer
- Biophysics Core Facility, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 771 46 Olomouc, Czech Republic
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland.
| |
Collapse
|
25
|
Döring J, Hurek T. Arm-specific cleavage and mutation during reverse transcription of 2΄,5΄-branched RNA by Moloney murine leukemia virus reverse transcriptase. Nucleic Acids Res 2017; 45:3967-3984. [PMID: 28160599 PMCID: PMC5399748 DOI: 10.1093/nar/gkx073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 01/30/2017] [Indexed: 11/14/2022] Open
Abstract
Branchpoint nucleotides of intron lariats induce pausing of DNA synthesis by reverse transcriptases (RTs), but it is not known yet how they direct RT RNase H activity on branched RNA (bRNA). Here, we report the effects of the two arms of bRNA on branchpoint-directed RNA cleavage and mutation produced by Moloney murine leukemia virus (M-MLV) RT during DNA polymerization. We constructed a long-chained bRNA template by splinted-ligation. The bRNA oligonucleotide is chimeric and contains DNA to identify RNA cleavage products by probe hybridization. Unique sequences surrounding the branchpoint facilitate monitoring of bRNA purification by terminal-restriction fragment length polymorphism analysis. We evaluate the M-MLV RT-generated cleavage and mutational patterns. We find that cleavage of bRNA and misprocessing of the branched nucleotide proceed arm-specifically. Bypass of the branchpoint from the 2΄-arm causes single-mismatch errors, whereas bypass from the 3΄-arm leads to deletion mutations. The non-template arm is cleaved when reverse transcription is primed from the 3΄-arm but not from the 2΄-arm. This suggests that RTs flip ∼180° at branchpoints and RNases H cleave the non-template arm depending on its accessibility. Our observed interplay between M-MLV RT and bRNA would be compatible with a bRNA-mediated control of retroviral and related retrotransposon replication.
Collapse
Affiliation(s)
- Jessica Döring
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, PO Box 330440, D-28334 Bremen, Germany
| | - Thomas Hurek
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, PO Box 330440, D-28334 Bremen, Germany
| |
Collapse
|
26
|
Figiel M, Krepl M, Poznanski J, Golab A, Šponer J, Nowotny M. Coordination between the polymerase and RNase H activity of HIV-1 reverse transcriptase. Nucleic Acids Res 2017; 45:3341-3352. [PMID: 28108662 PMCID: PMC5389522 DOI: 10.1093/nar/gkx004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/03/2017] [Indexed: 11/17/2022] Open
Abstract
Replication of human immunodeficiency virus 1 (HIV-1) involves conversion of its single-stranded RNA genome to double-stranded DNA, which is integrated into the genome of the host. This conversion is catalyzed by reverse transcriptase (RT), which possesses DNA polymerase and RNase H domains. The available crystal structures suggest that at any given time the RNA/DNA substrate interacts with only one active site of the two domains of HIV-1 RT. Unknown is whether a simultaneous interaction of the substrate with polymerase and RNase H active sites is possible. Therefore, the mechanism of the coordination of the two activities is not fully understood. We performed molecular dynamics simulations to obtain a conformation of the complex in which the unwound RNA/DNA substrate simultaneously interacts with the polymerase and RNase H active sites. When the RNA/DNA hybrid was immobilized at the polymerase active site, RNase H cleavage occurred, experimentally verifying that the substrate can simultaneously interact with both active sites. These findings demonstrate the existence of a transient conformation of the HIV-1 RT substrate complex, which is important for modulating and coordinating the enzymatic activities of HIV-1 RT.
Collapse
Affiliation(s)
- Malgorzata Figiel
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 77146 Olomouc, Czech Republic
| | - Jaroslaw Poznanski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Agnieszka Golab
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Jirí Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 77146 Olomouc, Czech Republic
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| |
Collapse
|
27
|
Omar R, Yadav A. A mechanistic study of anti-HIV activities of antifungal peptides. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HIV patients are constantly at risk of developing internal fungal infection and are thus regularly prescribed antifungal medications. Several classes of antifungal agents have been developed to combat ever increasing cases of resistant strains of fungi. Azoles, despite being the most popular clinical choice, are not devoid of side effects. Many antimicrobial peptides have also been tested in search of safe, nontoxic antifungals but none succeeded as a commercial alternative. Recent research attempts show continued interest in these compounds and the complexities associated. Some experimental observations indicate involvement of these antimicrobial peptides in enhancing the efficacy of anti-HIV agents. We present here an intertwined approach to deal with two fatal diseases, internal fungal infection and HIV infection. Several naturally occurring antimicrobial peptides have been studied for their possible interaction with the viral RNA primer binding site (template) through interactions other than the base pair – base pair type. Peptides have been prepared and docked into viral template utilizing extra precision, flexible ligand docking. Implicit solvent was added around the complex and MMGBSA interaction energies were computed. Druggability aspects were explored by calculating ADME-related properties. A peptidomimetic compound has been strategically designed to introduce some druggability features in the peptide maintaining its viral template inhibition capability. The designed peptidomimetic lead compound may help in obtaining nontoxic anti-HIV agents in the future. This is the first study to suggest a plausible explanation for the anti-HIV activity of antifungal peptides at the molecular level and corroborate experimental findings of synergistic effects of these peptides on anti-HIV agents.
Collapse
Affiliation(s)
- Ruchi Omar
- Department of Chemistry, University Institute of Engineering and Technology, Chhatrapati Shahuji Maharaj University, Kanpur 208024, India
- Department of Chemistry, University Institute of Engineering and Technology, Chhatrapati Shahuji Maharaj University, Kanpur 208024, India
| | - Arpita Yadav
- Department of Chemistry, University Institute of Engineering and Technology, Chhatrapati Shahuji Maharaj University, Kanpur 208024, India
- Department of Chemistry, University Institute of Engineering and Technology, Chhatrapati Shahuji Maharaj University, Kanpur 208024, India
| |
Collapse
|
28
|
Menéndez-Arias L, Sebastián-Martín A, Álvarez M. Viral reverse transcriptases. Virus Res 2017; 234:153-176. [PMID: 28043823 DOI: 10.1016/j.virusres.2016.12.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/19/2016] [Accepted: 12/24/2016] [Indexed: 12/11/2022]
Abstract
Reverse transcriptases (RTs) play a major role in the replication of Retroviridae, Metaviridae, Pseudoviridae, Hepadnaviridae and Caulimoviridae. RTs are enzymes that are able to synthesize DNA using RNA or DNA as templates (DNA polymerase activity), and degrade RNA when forming RNA/DNA hybrids (ribonuclease H activity). In retroviruses and LTR retrotransposons (Metaviridae and Pseudoviridae), the coordinated action of both enzymatic activities converts single-stranded RNA into a double-stranded DNA that is flanked by identical sequences known as long terminal repeats (LTRs). RTs of retroviruses and LTR retrotransposons are active as monomers (e.g. murine leukemia virus RT), homodimers (e.g. Ty3 RT) or heterodimers (e.g. human immunodeficiency virus type 1 (HIV-1) RT). RTs lack proofreading activity and display high intrinsic error rates. Besides, high recombination rates observed in retroviruses are promoted by poor processivity that causes template switching, a hallmark of reverse transcription. HIV-1 RT inhibitors acting on its polymerase activity constitute the backbone of current antiretroviral therapies, although novel drugs, including ribonuclease H inhibitors, are still necessary to fight HIV infections. In Hepadnaviridae and Caulimoviridae, reverse transcription leads to the formation of nicked circular DNAs that will be converted into episomal DNA in the host cell nucleus. Structural and biochemical information on their polymerases is limited, although several drugs inhibiting HIV-1 RT are known to be effective against the human hepatitis B virus polymerase. In this review, we summarize current knowledge on reverse transcription in the five virus families and discuss available biochemical and structural information on RTs, including their biosynthesis, enzymatic activities, and potential inhibition.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Alba Sebastián-Martín
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mar Álvarez
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
29
|
Reverse Transcription in the Saccharomyces cerevisiae Long-Terminal Repeat Retrotransposon Ty3. Viruses 2017; 9:v9030044. [PMID: 28294975 PMCID: PMC5371799 DOI: 10.3390/v9030044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Converting the single-stranded retroviral RNA into integration-competent double-stranded DNA is achieved through a multi-step process mediated by the virus-coded reverse transcriptase (RT). With the exception that it is restricted to an intracellular life cycle, replication of the Saccharomyces cerevisiae long terminal repeat (LTR)-retrotransposon Ty3 genome is guided by equivalent events that, while generally similar, show many unique and subtle differences relative to the retroviral counterparts. Until only recently, our knowledge of RT structure and function was guided by a vast body of literature on the human immunodeficiency virus (HIV) enzyme. Although the recently-solved structure of Ty3 RT in the presence of an RNA/DNA hybrid adds little in terms of novelty to the mechanistic basis underlying DNA polymerase and ribonuclease H activity, it highlights quite remarkable topological differences between retroviral and LTR-retrotransposon RTs. The theme of overall similarity but distinct differences extends to the priming mechanisms used by Ty3 RT to initiate (−) and (+) strand DNA synthesis. The unique structural organization of the retrotransposon enzyme and interaction with its nucleic acid substrates, with emphasis on polypurine tract (PPT)-primed initiation of (+) strand synthesis, is the subject of this review.
Collapse
|
30
|
Wang Z, Zhang J, Li F, Ji X, Liao L, Ma L, Xing H, Feng Y, Li D, Shao Y. Drug resistance-related mutations T369V/I in the connection subdomain of HIV-1 reverse transcriptase severely impair viral fitness. Virus Res 2017; 233:8-16. [PMID: 28279801 DOI: 10.1016/j.virusres.2017.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/22/2017] [Accepted: 03/01/2017] [Indexed: 10/20/2022]
Abstract
Fitness is a key parameter in the measurement of transmission capacity of individual drug-resistant HIV. Drug-resistance related mutations (DRMs) T369V/I and A371V in the connection subdomain (CN) of reverse transcriptase (RT) occur at higher frequencies in the individuals experiencing antiretroviral therapy failure. Here, we evaluated the effects of T369V/I and A371V on viral fitness, in the presence or in the absence of thymidine analogue resistance-associated mutations (TAMs) and assessed the effect of potential RT structure-related mechanism on change in viral fitness. Mutations T369V/I, A371V, alone or in combination with TAMs were introduced into a modified HIV-1 infectious clone AT1 by site-directed mutagenesis. Then, experiments on mutant and wild-type virus AT2 were performed separately using a growth-competition assay, and then the relative fitness was calculated. Structural analysis of RT was conducted using Pymol software. Results showed that T369V/I severely impaired the relative virus fitness, and A371V compensated for the viral fitness reduction caused by TAMs. Structural modeling of RT suggests that T369V/I substitutions disrupt powerful hydrogen bonds formed by T369 and V365 in p51 and p66. This study indicates that the secondary DRMs within CN might efficiently damage viral fitness, and provides valuable information for clinical surveillance and prevention of HIV-1 strains carrying these DRMs.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China.
| | - Junli Zhang
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Fan Li
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Xiaolin Ji
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Lingjie Liao
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Liying Ma
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Hui Xing
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Yi Feng
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Dan Li
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Yiming Shao
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China.
| |
Collapse
|
31
|
Sharaf NG, Brereton AE, Byeon IJL, Karplus PA, Gronenborn AM. NMR structure of the HIV-1 reverse transcriptase thumb subdomain. JOURNAL OF BIOMOLECULAR NMR 2016; 66:273-280. [PMID: 27858311 PMCID: PMC5218889 DOI: 10.1007/s10858-016-0077-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/09/2016] [Indexed: 06/06/2023]
Abstract
The solution NMR structure of the isolated thumb subdomain of HIV-1 reverse transcriptase (RT) has been determined. A detailed comparison of the current structure with dozens of the highest resolution crystal structures of this domain in the context of the full-length enzyme reveals that the overall structures are very similar, with only two regions exhibiting local conformational differences. The C-terminal capping pattern of the αH helix is subtly different, and the loop connecting the αI and αJ helices in the p51 chain of the full-length p51/p66 heterodimeric RT differs from our NMR structure due to unique packing interactions in mature RT. Overall, our data show that the thumb subdomain folds independently and essentially the same in isolation as in its natural structural context.
Collapse
Affiliation(s)
- Naima G Sharaf
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh, School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Andrew E Brereton
- Department of Biochemistry and Biophysics, 2011 Ag & Life Sciences Bldg, Oregon State University, Corvallis, OR, 97331, USA
| | - In-Ja L Byeon
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh, School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics, 2011 Ag & Life Sciences Bldg, Oregon State University, Corvallis, OR, 97331, USA
| | - Angela M Gronenborn
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh, School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
32
|
Li A, Li J, Johnson KA. HIV-1 Reverse Transcriptase Polymerase and RNase H (Ribonuclease H) Active Sites Work Simultaneously and Independently. J Biol Chem 2016; 291:26566-26585. [PMID: 27777303 DOI: 10.1074/jbc.m116.753160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/20/2016] [Indexed: 01/15/2023] Open
Abstract
HIV reverse transcriptase plays a central role in viral replication and requires coordination of both polymerase and RNase H activities. Although this coordination is crucial in viral replication, whether a DNA/RNA hybrid can simultaneously engage both active sites has yet to be determined as structural and kinetic analyses have provided contradictory results. Single nucleotide incorporation and RNase H cleavage were examined using presteady-state kinetics with global data analysis. The results revealed three interconverting reverse transcriptase-DNA/RNA species; 43% were active for both sites simultaneously, 27% showed only polymerase activity, and the remaining 30% were nonproductive. Our data clearly demonstrated that the DNA/RNA hybrid could contact both active sites simultaneously, although the single nucleotide incorporation (105 s-1) was ∼5-fold faster than the cleavage (23 s-1). By using a series of primers with different lengths, we found that a string of at least 4-6 nucleotides downstream of the cleaving site was required for efficient RNA cleavage. This was corroborated by our observations that during processive nucleotide incorporation, sequential rounds of RNA cleavage occurred each time after ∼6 nucleotides were incorporated. More importantly, during processive primer extension, pyrophosphate (PPi) release was rate-limiting so that the average rate of nucleotide incorporation (∼28 s-1) was comparable with that of net RNA cleavage (∼27 nucleotides(s)). Although polymerization is efficient and processive, RNase H is inefficient and periodic. This combination allows the two catalytic centers of HIVRT to work simultaneously at similar speeds without being tightly coupled.
Collapse
Affiliation(s)
- An Li
- From the The University of Texas at Austin, Institute for Cell and Molecular Biology, Department of Molecular Biosciences, Austin, Texas 78712
| | - Jiawen Li
- From the The University of Texas at Austin, Institute for Cell and Molecular Biology, Department of Molecular Biosciences, Austin, Texas 78712
| | - Kenneth A Johnson
- From the The University of Texas at Austin, Institute for Cell and Molecular Biology, Department of Molecular Biosciences, Austin, Texas 78712
| |
Collapse
|
33
|
Schmidt T, Ghirlando R, Baber J, Clore GM. Quantitative Resolution of Monomer-Dimer Populations by Inversion Modulated DEER EPR Spectroscopy. Chemphyschem 2016; 17:2987-2991. [PMID: 27442455 PMCID: PMC5590656 DOI: 10.1002/cphc.201600726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Indexed: 12/13/2022]
Abstract
A simple method, based on inversion modulated double electron-electron resonance electron paramagnetic resonance (DEER EPR) spectroscopy, is presented for determining populations of monomer and dimer in proteins (as well as any other biological macromolecules). The method is based on analysis of modulation depth versus electron double resonance (ELDOR) pulse flip angle. High accuracy is achieved by complete deuteration, extensive sampling of a large number of ELDOR pulse flip angle values, and combined analysis of differently labeled spin samples. We demonstrate the method using two different proteins: an obligate monomer exemplified by the small immunoglobulin binding B domain of protein A, and the p66 subunit of HIV-1 reverse transcriptase which exists as an equilibrium mixture of monomer and dimer species whose relative populations are affected by glycerol content. This information is crucial for quantitative analysis of distance distributions involving proteins that may exist as mixtures of monomer, dimer and high order multimers under the conditions of the DEER EPR experiment.
Collapse
Affiliation(s)
- Thomas Schmidt
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Rodolfo Ghirlando
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - James Baber
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
34
|
Zhang B, D’Erasmo M, Murelli RP, Gallicchio E. Free Energy-Based Virtual Screening and Optimization of RNase H Inhibitors of HIV-1 Reverse Transcriptase. ACS OMEGA 2016; 1:435-447. [PMID: 27713931 PMCID: PMC5046171 DOI: 10.1021/acsomega.6b00123] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
We report the results of a binding free energy-based virtual screening campaign of a library of 77 α-hydroxytropolone derivatives against the challenging RNase H active site of the reverse transcriptase (RT) enzyme of human immunodeficiency virus-1. Multiple protonation states, rotamer states, and binding modalities of each compound were individually evaluated. The work involved more than 300 individual absolute alchemical binding free energy parallel molecular dynamics calculations and over 1 million CPU hours on national computing clusters and a local campus computational grid. The thermodynamic and structural measures obtained in this work rationalize a series of characteristics of this system useful for guiding future synthetic and biochemical efforts. The free energy model identified key ligand-dependent entropic and conformational reorganization processes difficult to capture using standard docking and scoring approaches. Binding free energy-based optimization of the lead compounds emerging from the virtual screen has yielded four compounds with very favorable binding properties, which will be the subject of further experimental investigations. This work is one of the few reported applications of advanced-binding free energy models to large-scale virtual screening and optimization projects. It further demonstrates that, with suitable algorithms and automation, advanced-binding free energy models can have a useful role in early-stage drug-discovery programs.
Collapse
Affiliation(s)
- Baofeng Zhang
- Department
of Chemistry, Brooklyn
College, City University of New York, Brooklyn, New York 11210, United States
| | - Michael
P. D’Erasmo
- Department
of Chemistry, Brooklyn
College, City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry and Ph.D. Program in
Biochemistry, The Graduate Center of the
City University of New York, New
York, New York 10016, United States
| | - Ryan P. Murelli
- Department
of Chemistry, Brooklyn
College, City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry and Ph.D. Program in
Biochemistry, The Graduate Center of the
City University of New York, New
York, New York 10016, United States
| | - Emilio Gallicchio
- Department
of Chemistry, Brooklyn
College, City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry and Ph.D. Program in
Biochemistry, The Graduate Center of the
City University of New York, New
York, New York 10016, United States
| |
Collapse
|
35
|
Corona A, di Leva FS, Rigogliuso G, Pescatori L, Madia VN, Subra F, Delelis O, Esposito F, Cadeddu M, Costi R, Cosconati S, Novellino E, di Santo R, Tramontano E. New insights into the interaction between pyrrolyl diketoacids and HIV-1 integrase active site and comparison with RNase H. Antiviral Res 2016; 134:236-243. [PMID: 27659398 DOI: 10.1016/j.antiviral.2016.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/16/2016] [Accepted: 09/19/2016] [Indexed: 12/18/2022]
Abstract
HIV-1 integrase (IN) inhibitors are one of the most recent innovations in the treatment of HIV infection. The selection of drug resistance viral strains is however a still open issue requiring constant efforts to identify new anti-HIV-1 drugs. Pyrrolyl diketo acid (DKA) derivatives inhibit HIV-1 replication by interacting with the Mg2+ cofactors within the HIV-1 IN active site or within the HIV-1 reverse-transcriptase associated ribonuclease H (RNase H) active site. While the interaction mode of pyrrolyl DKAs with the RNase H active site has been recently reported and substantiated by mutagenesis experiments, their interaction within the IN active site still lacks a detailed understanding. In this study, we investigated the binding mode of four pyrrolyl DKAs to the HIV-1 IN active site by molecular modeling coupled with site-directed mutagenesis studies showing that the DKA pyrrolyl scaffold primarily interacts with the IN amino residues P145, Q146 and Q148. Importantly, the tested DKAs demonstrated good effectiveness against HIV-1 Raltegravir resistant Y143A and N155H INs, thus showing an interaction pattern with relevant differences if compared with the first generation IN inhibitors. These data provide precious insights for the design of new HIV inhibitors active on clinically selected Raltegravir resistant variants. Furthermore, this study provides new structural information to modulate IN and RNase H inhibitory activities for development of dual-acting anti-HIV agents.
Collapse
Affiliation(s)
- Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042, Monserrato, Italy
| | - Francesco Saverio di Leva
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano, 49 80131, Naples, Italy
| | - Giuseppe Rigogliuso
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042, Monserrato, Italy; LBPA, ENS Cachan, CNRS, 61 Avenue du président Wilson, 94235, Cachan Cedex, France
| | - Luca Pescatori
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Valentina Noemi Madia
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Frederic Subra
- LBPA, ENS Cachan, CNRS, 61 Avenue du président Wilson, 94235, Cachan Cedex, France
| | - Olivier Delelis
- LBPA, ENS Cachan, CNRS, 61 Avenue du président Wilson, 94235, Cachan Cedex, France
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042, Monserrato, Italy
| | - Marta Cadeddu
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042, Monserrato, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Sandro Cosconati
- DiSTABiF, Seconda Università di Napoli, Via Vivaldi, 43, 81100, Caserta, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano, 49 80131, Naples, Italy
| | - Roberto di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042, Monserrato, Italy.
| |
Collapse
|
36
|
Murelli RP, D'Erasmo MP, Hirsch DR, Meck C, Masaoka T, Wilson JA, Zhang B, Pal RK, Gallicchio E, Beutler JA, Le Grice SFJ. Synthetic α-Hydroxytropolones as Inhibitors of HIV Reverse Transcriptase Ribonuclease H Activity. MEDCHEMCOMM 2016; 7:1783-1788. [PMID: 28093576 PMCID: PMC5234084 DOI: 10.1039/c6md00238b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HIV Reverse Transcriptase-associated ribonuclease H activity is a promising enzymatic target for drug development that has not been successfully targeted in the clinic. While the α-hydroxytropolone-containing natural products β-thujaplicinol and manicol have emerged as some of the most potent leads described to date, structure-function studies have been limited to the natural products and semi-synthetic derivatives of manicol. Thus, a library of α-hydroxytropolones synthesized through a convenient oxidopyrylium cycloaddition/ring-opening sequence have been tested in in vitro and cell-based assays, and have been analyzed using computational support. These studies reveal new synthetic α-hydroxytropolones that, unlike the natural product leads they are derived from, demonstrate protective antiviral activity in cellular assays.
Collapse
Affiliation(s)
- Ryan P Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA; PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, USA
| | - Michael P D'Erasmo
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA; PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, USA
| | - Danielle R Hirsch
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA; PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, USA
| | - Christine Meck
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA; PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, USA
| | - Takashi Masaoka
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Jennifer A Wilson
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Baofeng Zhang
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA
| | - Rajat K Pal
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA; PhD Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY, USA
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA; PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, NY, USA; PhD Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY, USA
| | - John A Beutler
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Stuart F J Le Grice
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| |
Collapse
|
37
|
Sharaf NG, Ishima R, Gronenborn AM. Conformational Plasticity of the NNRTI-Binding Pocket in HIV-1 Reverse Transcriptase: A Fluorine Nuclear Magnetic Resonance Study. Biochemistry 2016; 55:3864-73. [PMID: 27163463 DOI: 10.1021/acs.biochem.6b00113] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HIV-1 reverse transcriptase (RT) is a major drug target in the treatment of HIV-1 infection. RT inhibitors currently in use include non-nucleoside, allosteric RT inhibitors (NNRTIs), which bind to a hydrophobic pocket, distinct from the enzyme's active site. We investigated RT-NNRTI interactions by solution (19)F nuclear magnetic resonance (NMR), using singly (19)F-labeled RT proteins. Comparison of (19)F chemical shifts of fluorinated RT and drug-resistant variants revealed that the fluorine resonance is a sensitive probe for identifying mutation-induced changes in the enzyme. Our data show that in the unliganded enzyme, the NNRTI-binding pocket is highly plastic and not locked into a single conformation. Upon inhibitor binding, the binding pocket becomes rigidified. In the inhibitor-bound state, the (19)F signal of RT is similar to that of drug-resistant mutant enzymes, distinct from what is observed for the free state. Our results demonstrate the power of (19)F NMR spectroscopy to characterize conformational properties using selectively (19)F-labeled protein.
Collapse
Affiliation(s)
- Naima G Sharaf
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Rieko Ishima
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Angela M Gronenborn
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
38
|
Villa JA, Pike DP, Patel KB, Lomonosova E, Lu G, Abdulqader R, Tavis JE. Purification and enzymatic characterization of the hepatitis B virus ribonuclease H, a new target for antiviral inhibitors. Antiviral Res 2016; 132:186-95. [PMID: 27321664 DOI: 10.1016/j.antiviral.2016.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/10/2016] [Accepted: 06/12/2016] [Indexed: 01/05/2023]
Abstract
Hepatitis B virus (HBV) reverse transcription requires coordinated function of the reverse transcriptase and ribonuclease H (RNaseH) activities of the viral polymerase protein. The reverse transcriptase has been biochemically characterized, but technical difficulties have prevented both assessment of the RNaseH and development of high throughput inhibitor screens against the RNaseH. Expressing the HBV RNaseH domain with both maltose binding protein and hexahistidine tags led to stable, high-level accumulation of the RNaseH in bacteria. Nickel-affinity purification in the presence of Mg(2+) and ATP removed co-purifying bacterial chaperones and yielded nearly pure monomeric recombinant enzyme. The endonucleolytic RNaseH activity required an DNA:RNA duplex ≥14 nt, could not tolerate a stem-loop in either the RNA or DNA strands, and could tolerate a nick in the DNA strand but not a gap. The RNaseH had no obvious sequence specificity or positional dependence within the RNA, and it cut the RNA at multiple positions even within the minimal 14 nt duplex. The RNaseH also possesses a processive 3'-5' exoribonuclease activity that is slower than the endonucleolytic reaction. These results are consistent with the HBV reverse transcription mechanism that features an initial endoribonucleolytic cut, 3'-5' degradation of RNA, and a sequence-independent terminal RNA cleavage. These data provide support for ongoing anti-RNaseH drug discovery efforts.
Collapse
Affiliation(s)
- Juan Antonio Villa
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Daniel P Pike
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Kunjan B Patel
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Elena Lomonosova
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Gaofeng Lu
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO 63104, USA; Department of Gastroenterology, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Roz Abdulqader
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - John E Tavis
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
39
|
Abstract
The enzyme reverse transcriptase (RT) was discovered in retroviruses almost 50 years ago. The demonstration that other types of viruses, and what are now called retrotransposons, also replicated using an enzyme that could copy RNA into DNA came a few years later. The intensity of the research in both the process of reverse transcription and the enzyme RT was greatly stimulated by the recognition, in the mid-1980s, that human immunodeficiency virus (HIV) was a retrovirus and by the fact that the first successful anti-HIV drug, azidothymidine (AZT), is a substrate for RT. Although AZT monotherapy is a thing of the past, the most commonly prescribed, and most successful, combination therapies still involve one or both of the two major classes of anti-RT drugs. Although the basic mechanics of reverse transcription were worked out many years ago, and the first high-resolution structures of HIV RT are now more than 20 years old, we still have much to learn, particularly about the roles played by the host and viral factors that make the process of reverse transcription much more efficient in the cell than in the test tube. Moreover, we are only now beginning to understand how various host factors that are part of the innate immunity system interact with the process of reverse transcription to protect the host-cell genome, the host cell, and the whole host, from retroviral infection, and from unwanted retrotransposition.
Collapse
|
40
|
Corona A, Desantis J, Massari S, Distinto S, Masaoka T, Sabatini S, Esposito F, Manfroni G, Maccioni E, Cecchetti V, Pannecouque C, Le Grice SFJ, Tramontano E, Tabarrini O. Studies on Cycloheptathiophene-3-carboxamide Derivatives as Allosteric HIV-1 Ribonuclease H Inhibitors. ChemMedChem 2016; 11:1709-20. [PMID: 26990134 DOI: 10.1002/cmdc.201600015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 02/04/2023]
Abstract
Despite the significant progress achieved with combination antiretroviral therapy in the fight against human immunodeficiency virus (HIV) infection, the difficulty to eradicate the virus together with the rapid emergence of multidrug-resistant strains clearly underline a pressing need for innovative agents, possibly endowed with novel mechanisms of action. In this context, owing to its essential role in HIV genome replication, the reverse transcriptase associated ribonuclease H (RNase H) has proven to be an appealing target. To identify new RNase H inhibitors, an in-house cycloheptathiophene-3-carboxamide library was screened; this led to compounds endowed with inhibitory activity, the structural optimization of which led to the catechol derivative 2-(3,4-dihydroxybenzamido)-N-(pyridin-2-yl)-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carboxamide (compound 33) with an IC50 value on the RNase H activity in the nanomolar range. Mechanistic studies suggested selective inhibition of the RNase H through binding to an innovative allosteric site, which could be further exploited to enrich this class of inhibitors.
Collapse
Affiliation(s)
- Angela Corona
- Dipartimento di Scienze della Vita e dell'Ambiente, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Italy
| | - Jenny Desantis
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Serena Massari
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Simona Distinto
- Dipartimento di Scienze della Vita e dell'Ambiente, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Italy
| | - Takashi Masaoka
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Stefano Sabatini
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Francesca Esposito
- Dipartimento di Scienze della Vita e dell'Ambiente, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Italy
| | - Giuseppe Manfroni
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Elias Maccioni
- Dipartimento di Scienze della Vita e dell'Ambiente, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Italy
| | - Violetta Cecchetti
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research-KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - Stuart F J Le Grice
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Enzo Tramontano
- Dipartimento di Scienze della Vita e dell'Ambiente, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Italy.
| | - Oriana Tabarrini
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06123, Perugia, Italy.
| |
Collapse
|
41
|
Yadahalli S, Gosavi S. Functionally Relevant Specific Packing Can Determine Protein Folding Routes. J Mol Biol 2015; 428:509-21. [PMID: 26724535 DOI: 10.1016/j.jmb.2015.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/26/2015] [Accepted: 12/18/2015] [Indexed: 10/22/2022]
Abstract
Functional residues can modulate the folding mechanisms of proteins. In some proteins, mutations to such residues can radically change the primary folding route. Is it possible then to learn more about the functional regions of a protein by investigating just its choice of folding route? The folding and the function of the protein Escherichia coli ribonuclease H (ecoRNase-H) have been extensively studied and its folding route is known to near-residue resolution. Here, we computationally study the folding of ecoRNase-H using molecular dynamics simulations of structure-based models of increasing complexity. The differences between a model that correctly predicts the experimentally determined folding route and a simpler model that does not can be attributed to a set of six aromatic residues clustered together in a region of the protein called CORE. This clustering, which we term "specific" packing, drives CORE to fold early and determines the folding route. Both the residues involved in specific packing and their packing are largely conserved across E. coli-like RNase-Hs from diverse species. Residue conservation is usually implicated in function. Here, the identified residues either are known to bind substrate in ecoRNase-H or pack against the substrate in the homologous human RNase-H where a substrate-bound crystal structure exists. Thus, the folding mechanism of ecoRNase-H is a byproduct of functional demands upon its sequence. Using our observations on specific packing, we suggest mutations to an engineered HIV RNase-H to make its function better. Our results show that understanding folding route choice in proteins can provide unexpected insights into their function.
Collapse
Affiliation(s)
- Shilpa Yadahalli
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India; Manipal University, Madhav Nagar, Manipal 576104, India; Bioinformatics Institute (A*STAR), Singapore 138671, Singapore
| | - Shachi Gosavi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
42
|
Nakamura A, Tamura N, Yasutake Y. Structure of the HIV-1 reverse transcriptase Q151M mutant: insights into the inhibitor resistance of HIV-1 reverse transcriptase and the structure of the nucleotide-binding pocket of Hepatitis B virus polymerase. Acta Crystallogr F Struct Biol Commun 2015; 71:1384-90. [PMID: 26527265 PMCID: PMC4631587 DOI: 10.1107/s2053230x15017896] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/24/2015] [Indexed: 02/08/2023] Open
Abstract
Hepatitis B virus polymerase (HBV Pol) is an important target for anti-HBV drug development; however, its low solubility and stability in vitro has hindered detailed structural studies. Certain nucleotide reverse transcriptase (RT) inhibitors (NRTIs) such as tenofovir and lamivudine can inhibit both HBV Pol and Human immunodeficiency virus 1 (HIV-1) RT, leading to speculation on structural and mechanistic analogies between the deoxynucleotide triphosphate (dNTP)-binding sites of these enzymes. The Q151M mutation in HIV-1 RT, located at the dNTP-binding site, confers resistance to various NRTIs, while maintaining sensitivity to tenofovir and lamivudine. The residue corresponding to Gln151 is strictly conserved as a methionine in HBV Pol. Therefore, the structure of the dNTP-binding pocket of the HIV-1 RT Q151M mutant may reflect that of HBV Pol. Here, the crystal structure of HIV-1 RT Q151M, determined at 2.6 Å resolution, in a new crystal form with space group P321 is presented. Although the structure of HIV-1 RT Q151M superimposes well onto that of HIV-1 RT in a closed conformation, a slight movement of the β-strands (β2-β3) that partially create the dNTP-binding pocket was observed. This movement might be caused by the introduction of the bulky thioether group of Met151. The structure also highlighted the possibility that the hydrogen-bonding network among amino acids and NRTIs is rearranged by the Q151M mutation, leading to a difference in the affinity of NRTIs for HIV-1 RT and HBV Pol.
Collapse
Affiliation(s)
- Akiyoshi Nakamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira, Sapporo, Hokkaido 062-8517, Japan
| | - Noriko Tamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira, Sapporo, Hokkaido 062-8517, Japan
| | - Yoshiaki Yasutake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira, Sapporo, Hokkaido 062-8517, Japan
| |
Collapse
|
43
|
Sharma KK, Przybilla F, Restle T, Boudier C, Godet J, Mély Y. Reverse Transcriptase in Action: FRET-Based Assay for Monitoring Flipping and Polymerase Activity in Real Time. Anal Chem 2015; 87:7690-7. [PMID: 26125954 DOI: 10.1021/acs.analchem.5b01126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Reverse transcriptase (RT) of human immunodeficiency virus-1 (HIV-1) is a multifunctional enzyme that catalyzes the conversion of the single stranded viral RNA genome into double-stranded DNA, competent for host-cell integration. RT is endowed with RNA- and DNA-dependent DNA polymerase activity and DNA-directed RNA hydrolysis (RNase H activity). As a key enzyme of reverse transcription, RT is a key target of currently used highly active antiretroviral therapy (HAART), though RT inhibitors offer generally a poor resistance profile, urging new RT inhibitors to be developed. Using single molecule fluorescence approaches, it has been recently shown that RT binding orientation and dynamics on its substrate play a critical role in its activity. Currently, most in vitro RT activity assays, inherently end-point measurements, are based on the detection of reaction products by using radio-labeled or chemically modified nucleotides. Here, we propose a simple and continuous real-time Förster resonance energy transfer (FRET) based-assay for the direct measurement of RT's binding orientation and polymerase activity, with the use of conventional steady-state fluorescence spectroscopy. Under our working conditions, the change in binding orientation and the primer elongation step can be visualized separately on the basis of their opposite fluorescence changes and their different kinetics. The assay presented can easily discriminate non-nucleoside RT inhibitors from nucleoside RT inhibitors and determine reliably their potency. This one-step and one-pot assay constitutes an improved alternative to the currently used screening assays to disclose new anti-RT drugs and identify at the same time the class to which they belong.
Collapse
Affiliation(s)
- K K Sharma
- †Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - F Przybilla
- †Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - T Restle
- ‡Institute für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein, Universität zu Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Schleswig-Holstein, Germany
| | - C Boudier
- †Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - J Godet
- †Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France.,§Département d'Information Médicale et de Biostatistiques, Hôpitaux Universitaires de Strasbourg, 1, pl de l'Hôpital, 67400 Strasbourg, France
| | - Y Mély
- †Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
44
|
Rausch JW, Tian M, Li Y, Angelova L, Bagaya BS, Krebs KC, Qian F, Zhu C, Arts EJ, Le Grice SFJ, Gao Y. SiRNA-induced mutation in HIV-1 polypurine tract region and its influence on viral fitness. PLoS One 2015; 10:e0122953. [PMID: 25860884 PMCID: PMC4393142 DOI: 10.1371/journal.pone.0122953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/16/2015] [Indexed: 02/06/2023] Open
Abstract
Converting single-stranded viral RNA into double stranded DNA for integration is an essential step in HIV-1 replication. Initial polymerization of minus-strand DNA is primed from a host derived tRNA, whereas subsequent plus-strand synthesis requires viral primers derived from the 3' and central polypurine tracts (3' and cPPTs). The 5' and 3' termini of these conserved RNA sequence elements are precisely cleaved by RT-associated RNase H to generate specific primers that are used to initiate plus-strand DNA synthesis. In this study, siRNA wad used to produce a replicative HIV-1 variant contained G(-1)A and T(-16)A substitutions within/adjacent to the 3'PPT sequence. Introducing either or both mutations into the 3'PPT region or only the G(-1)A substitution in the cPPT region of NL4-3 produced infectious virus with decreased fitness relative to the wild-type virus. In contrast, introducing the T(-16)A or both mutations into the cPPT rendered the virus(es) incapable of replication, most likely due to the F185L integrase mutation produced by this nucleotide substitution. Finally, the effects of G(-1)A and T(-16)A mutations on cleavage of the 3'PPT were examined using an in vitro RNase H cleavage assay. Substrate containing both mutations was mis-cleaved to a greater extent than either wild-type substrate or substrate containing the T(-16)A mutation alone, which is consistent with the observed effects of the equivalent nucleotide substitutions on the replication fitness of NL4-3 virus. In conclusion, siRNA targeting of the HIV-1 3'PPT region can substantially suppress virus replication, and this selective pressure can be used to generate infectious virus containing mutations within or near the HIV-1 PPT. Moreover, in-depth analysis of the resistance mutations demonstrates that although virus containing a G(-1)A mutation within the 3'PPT is capable of replication, this nucleotide substitution shifts the 3'-terminal cleavage site in the 3'PPT by one nucleotide (nt) and significantly reduces viral fitness.
Collapse
Affiliation(s)
- Jason W. Rausch
- HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Meijuan Tian
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yuejin Li
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Lora Angelova
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Bernard S. Bagaya
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kendall C. Krebs
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Feng Qian
- Suzhou Fifth People’s Hospital, Suzhou, Jiangsu, China
| | - Chuanwu Zhu
- Suzhou Fifth People’s Hospital, Suzhou, Jiangsu, China
| | - Eric J. Arts
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Stuart F. J. Le Grice
- HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Yong Gao
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
45
|
Betancor G, Álvarez M, Marcelli B, Andrés C, Martínez MA, Menéndez-Arias L. Effects of HIV-1 reverse transcriptase connection subdomain mutations on polypurine tract removal and initiation of (+)-strand DNA synthesis. Nucleic Acids Res 2015; 43:2259-2270. [PMID: 25662223 PMCID: PMC4344514 DOI: 10.1093/nar/gkv077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/25/2022] Open
Abstract
HIV-1 reverse transcriptase (RT) connection subdomain mutations at positions 348, 369 and 376 have been associated with resistance to non-nucleoside RT inhibitors (NNRTIs). N348I may interfere with the initiation of (+)-strand DNA synthesis by reducing polypurine tract (PPT) removal in the presence of nevirapine. The effect of NNRTIs on the RNase H-mediated cleavage of PPT-containing template-primers has been studied with wild-type HIV-1 RT and mutants N348I, T369I, T369V, T376S and N348I/T369I. In the presence of NNRTIs, all RTs were able to stimulate PPT cleavage after primer elongation. The enhancing effects of nevirapine and efavirenz were reduced in RTs carrying mutation N348I, and specially N348I/T369I. However, those mutations had no effect on rilpivirine-mediated cleavage. Prior to elongation, the PPT remains resilient to cleavage, although efavirenz and rilpivirine facilitate RNase H-mediated trimming of its 3'-end. The integrity of the 3'-end is essential for the initiation of (+)-strand DNA synthesis. In the presence of dNTPs, rilpivirine was the most effective inhibitor of (+)-strand DNA synthesis blocking nucleotide incorporation and preventing usage of available PPT primers. The N348I/T369I RT showed reduced ability to generate short RNA products revealing a cleavage window defect. Its lower RNase H activity could be attributed to enhanced rigidity compared to the wild-type enzyme.
Collapse
Affiliation(s)
- Gilberto Betancor
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mar Álvarez
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Barbara Marcelli
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Cristina Andrés
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain Laboratori de Retrovirologia, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Miguel A Martínez
- Laboratori de Retrovirologia, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Luis Menéndez-Arias
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
46
|
Zhang XM, Wu H, Zhang Q, Lau TCK, Chu H, Chen ZW, Jin DY, Zheng BJ. A novel mutation, D404N, in the connection subdomain of reverse transcriptase of HIV-1 CRF08_BC subtype confers cross-resistance to NNRTIs. J Antimicrob Chemother 2015; 70:1381-90. [PMID: 25637519 DOI: 10.1093/jac/dku565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 12/17/2014] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES Growing evidence suggests that mutations in the connection domain of the HIV-1 reverse transcriptase (RT) can contribute to viral resistance to RT inhibitors. This work was designed to determine the effects of a novel mutation, D404N, in the connection subdomain of RT of HIV-1 CRF08_BC subtype on drug resistance, viral replication capacity (RC) and RT activity. METHODS Mutation D404N, alone or together with the other reported mutations, was introduced into an HIV-1 CRF08_BC subtype infectious clone by site-directed mutagenesis. Viral susceptibility to nine RT inhibitors, viral RC and the DNA polymerase activity of viral RT of the constructed virus mutants were investigated. A modelling study using the server SWISS-MODEL was conducted to explore the possible structure-related drug resistance mechanism of the mutation D404N. RESULTS Single mutations D404N and H221Y conferred low-level resistance to nevirapine, efavirenz, rilpivirine and zidovudine. Double mutations Y181C/D404N and Y181C/H221Y significantly reduced susceptibility to NNRTIs. The most pronounced resistance to NNRTIs was observed with the triple mutation Y181C/D404N/H221Y. Virus containing D404N as the only mutation displayed ∼50% RC compared with the WT virus. The modelling study suggested that the D404N mutation might abolish the hydrogen bonds between residues 404 and K30 in p51 or K431 in p66, leading to impaired RT subunit structure and enhanced drug resistance. CONCLUSIONS These results indicate that D404N is a novel NNRTI-associated mutation in the HIV-1 subtype CRF08_BC and provides information valuable for the monitoring of clinical RTI resistance.
Collapse
Affiliation(s)
- Xiao-Min Zhang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Hao Wu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Qiwei Zhang
- Biosafety Level-3 Laboratory, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Terrence Chi-Kong Lau
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, SAR, China
| | - Hin Chu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Zhi-Wei Chen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Dong-Yan Jin
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Bo-Jian Zheng
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
47
|
Ustyantsev K, Novikova O, Blinov A, Smyshlyaev G. Convergent evolution of ribonuclease h in LTR retrotransposons and retroviruses. Mol Biol Evol 2015; 32:1197-207. [PMID: 25605791 PMCID: PMC4408406 DOI: 10.1093/molbev/msv008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ty3/Gypsy long terminals repeat (LTR) retrotransposons are structurally and phylogenetically close to retroviruses. Two notable structural differences between these groups of genetic elements are 1) the presence in retroviruses of an additional envelope gene, env, which mediates infection, and 2) a specific dual ribonuclease H (RNH) domain encoded by the retroviral pol gene. However, similar to retroviruses, many Ty3/Gypsy LTR retrotransposons harbor additional env-like genes, promoting concepts of the infective mode of these retrotransposons. Here, we provide a further line of evidence of similarity between retroviruses and some Ty3/Gypsy LTR retrotransposons. We identify that, together with their additional genes, plant Ty3/Gypsy LTR retrotransposons of the Tat group have a second RNH, as do retroviruses. Most importantly, we show that the resulting dual RNHs of Tat LTR retrotransposons and retroviruses emerged independently, providing strong evidence for their convergent evolution. The convergent resemblance of Tat LTR retrotransposons and retroviruses may indicate similar selection pressures acting on these diverse groups of elements and reveal potential evolutionary constraints on their structure. We speculate that dual RNH is required to accelerate retrotransposon evolution through increased rates of strand transfer events and subsequent recombination events.
Collapse
Affiliation(s)
- Kirill Ustyantsev
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany
| | - Alexander Blinov
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Georgy Smyshlyaev
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, Russia Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
48
|
Abstract
Retroviruses and LTR retrotransposons are transposable elements that encapsidate the RNAs that are intermediates in the transposition of DNA copies of their genomes (proviruses), from one cell (or one locus) to another. Mechanistic similarities in DNA transposase enzymes and retroviral/retrotransposon integrases underscore the close evolutionary relationship among these elements. The retroviruses are very ancient infectious agents, presumed to have evolved from Ty3/Gypsy LTR retrotransposons (1), and DNA copies of their sequences can be found embedded in the genomes of most, if not all, members of the tree of life. All retroviruses share a specific gene arrangement and similar replication strategies. However, given their ancestries and occupation of diverse evolutionary niches, it should not be surprising that unique sequences have been acquired in some retroviral genomes and that the details of the mechanism by which their transposition is accomplished can vary. While every step in the retrovirus lifecycle is, in some sense, relevant to transposition, this Chapter focuses mainly on the early phase of retroviral replication, during which viral DNA is synthesized and integrated into its host genome. Some of the initial studies that set the stage for current understanding are highlighted, as well as more recent findings obtained through use of an ever-expanding technological toolbox including genomics, proteomics, and siRNA screening. Persistence in the area of structural biology has provided new insight into conserved mechanisms as well as variations in detail among retroviruses, which can also be instructive.
Collapse
Affiliation(s)
- Anna Marie Skalka
- Fox Chase Cancer Center 333 Cottman Avenue Philadelphia, PA 19111 United States 2157282192 2157282778 (fax)
| |
Collapse
|
49
|
The nature of the N-terminal amino acid residue of HIV-1 RNase H is critical for the stability of reverse transcriptase in viral particles. J Virol 2014; 89:1286-97. [PMID: 25392207 DOI: 10.1128/jvi.02312-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) is synthesized and packaged into the virion as a part of the GagPol polyprotein. Mature RT is released by the action of viral protease. However, unlike other viral proteins, RT is subject to an internal cleavage event leading to the formation of two subunits in the virion: a p66 subunit and a p51 subunit that lacks the RNase H domain. We have previously identified RNase H to be an HIV-1 protein that has the potential to be a substrate for the N-end rule pathway, which is an ubiquitin-dependent proteolytic system in which the identity of the N-terminal amino acid determines the half-life of a protein. Here we examined the importance of the N-terminal amino acid residue of RNase H in the early life cycle of HIV-1. We show that changing this residue to an amino acid structurally different from the conserved residue leads to the degradation of RT and, in some cases, integrase in the virus particle and this abolishes infectivity. Using intravirion complementation and in vitro protease cleavage assays, we show that degradation of RT in RNase H N-terminal mutants occurs in the absence of active viral protease in the virion. Our results also indicate the importance of the RNase H N-terminal residue in the dimerization of RT subunits. IMPORTANCE HIV-1 proteins are initially made as part of a polyprotein that is cleaved by the viral protease into the proteins that form the virus particle. We were interested in one particular protein, RNase H, that is cleaved from reverse transcriptase. In particular, we found that the first amino acid of RNase H never varied in over 1,850 isolates of HIV-1 that we compared. When we changed the first amino acid, we found that the reverse transcriptase in the virus was degraded. While other studies have implied that the viral protease can degrade mutant RT proteins, we show here that this may not be the case for our mutants. Our results suggest that the presence of active viral protease is not required for the degradation of RT in RNase H N-terminal mutants, suggesting a role for a cellular protease in this process.
Collapse
|
50
|
Singh K, Flores JA, Kirby KA, Neogi U, Sonnerborg A, Hachiya A, Das K, Arnold E, McArthur C, Parniak M, Sarafianos SG. Drug resistance in non-B subtype HIV-1: impact of HIV-1 reverse transcriptase inhibitors. Viruses 2014; 6:3535-62. [PMID: 25254383 PMCID: PMC4189038 DOI: 10.3390/v6093535] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/09/2014] [Accepted: 09/09/2014] [Indexed: 01/20/2023] Open
Abstract
Human immunodeficiency virus (HIV) causes approximately 2.5 million new infections every year, and nearly 1.6 million patients succumb to HIV each year. Several factors, including cross-species transmission and error-prone replication have resulted in extraordinary genetic diversity of HIV groups. One of these groups, known as group M (main) contains nine subtypes (A-D, F-H and J-K) and causes ~95% of all HIV infections. Most reported data on susceptibility and resistance to anti-HIV therapies are from subtype B HIV infections, which are prevalent in developed countries but account for only ~12% of all global HIV infections, whereas non-B subtype HIV infections that account for ~88% of all HIV infections are prevalent primarily in low and middle-income countries. Although the treatments for subtype B infections are generally effective against non-B subtype infections, there are differences in response to therapies. Here, we review how polymorphisms, transmission efficiency of drug-resistant strains, and differences in genetic barrier for drug resistance can differentially alter the response to reverse transcriptase-targeting therapies in various subtypes.
Collapse
Affiliation(s)
- Kamalendra Singh
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | - Jacqueline A Flores
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | - Karen A Kirby
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm 141 86, Sweden.
| | - Anders Sonnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm 141 86, Sweden.
| | - Atsuko Hachiya
- Clinical Research Center, Department of Infectious Diseases and Immunology, National Hospital Organization, Nagoya Medical Center, Nagoya 460-0001, Japan.
| | - Kalyan Das
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA.
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA.
| | - Carole McArthur
- Department of Oral and Craniofacial Science , School of Dentistry, University of Missouri, Kansas City, MO 64108, USA.
| | - Michael Parniak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - Stefan G Sarafianos
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|