1
|
McElhenney SJ, Yu J. Collective Variables and Facilitated Conformational Opening during Translocation of Human Mitochondrial RNA Polymerase (POLRMT) from Atomic Simulations. J Chem Theory Comput 2025; 21:4815-4829. [PMID: 40238747 DOI: 10.1021/acs.jctc.4c01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Collective variable (CV) identification is challenging in complex dynamical systems. To study the translocation of a single-subunit RNA polymerase (RNAP) during human mitochondrial transcription, we employed all-atom molecular dynamics (MD) as a vehicle to illustrate CV refinement in conformational samplings and dimension reduction analyses. RNAP translocation is an essential mechanical step of transcription elongation that dictates gene expression. The translocation generally follows from polymerization product release and proceeds to initial binding or preinsertion of incoming nucleotides. The human mitochondrial DNA-dependent RNAP (or POLRMT) plays a critical role in cellular metabolism and can be a key molecular off-target in the design of nucleotide analogue antiviral and antitumor drugs due to its structural similarities with many viral RNAPs or RNA-dependent RNA polymerases (RdRps). While POLRMT shares particularly high structural similarity with bacteriophage T7 RNAP, previous experimental studies and our current simulations suggest that POLRMT's mechanochemical coupling mechanisms may be distinct. In the current work, we modeled POLRMT elongation complexes and performed equilibrium MD simulations on the pre- and post-translocation models, with extensive samplings around two potential translocation paths (with or without coupling to the fingers subdomain conformational change). We then compared time-lagged independent component analysis (tICA) and the neural network implementation of the variational approach for Markov processes (VAMPnets) as dimensional reduction methods on selected atomic coordinate sets to best represent the sampled features from the MD simulations. Our results indicate that POLRMT translocation is likely coupled with NTP binding to enable fingers subdomain opening at post-translocation which would otherwise be nonstabilized, or the translocations may proceed futilely without the fingers opening for incoming NTP initial binding or incorporation. The time scale of the coupled translocation reaches over hundreds of microseconds, as predicted by the VAMPnets analyses. Such a time scale seems to match a last postcatalytic kinetic step suggested for the POLRMT elongation cycle by previous experimental measurements. Our MD simulation studies combining atomic coordinate refinements and dimension reduction analyses on top of extensive conformational samplings thus suggest a variation of Brownian ratcheting in POLRMT translocation, as if the Brownian motions of translocation are coupled with NTP binding, which captures transient fingers subdomain opening to couple the translocation with a sustained fingers opening.
Collapse
Affiliation(s)
- Shannon J McElhenney
- Department of Chemistry, University of California-Irvine, Irvine, California 92697, United States
| | - Jin Yu
- Department of Chemistry, University of California-Irvine, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California-Irvine, Irvine, California 92697, United States
| |
Collapse
|
2
|
Snyder RJ, Shankar U, Delker D, Soerianto W, Burdick JT, Cheung VG, Watts JA. Guanine quadruplexes mediate mitochondrial RNA polymerase pausing. BMC Biol 2025; 23:129. [PMID: 40361112 PMCID: PMC12076976 DOI: 10.1186/s12915-025-02229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND The information content within nucleic acids extends beyond the primary sequence to include secondary structures with functional roles in transcription regulation. Guanine-rich sequences form structures called guanine quadruplexes that result from non-canonical base pairing between guanine residues. These stable guanine quadruplex structures are prevalent in gene promoters in nuclear DNA and are known to be associated with promoter proximal pausing of some genes. However, the transcriptional impact of guanine quadruplexes that form in nascent RNA is poorly understood. RESULTS We examined mitochondrial RNA polymerase (POLRMT) pausing patterns in primary human skin fibroblast cells using the precision nuclear run-on assay and uncovered over 400 pause sites on the mitochondrial genome. We identified that these pauses frequently occur following guanine-rich sequences where quadruplexes form. Using an in vitro primer extension assay, we show that quadruplexes formed in nascent RNA act as mediators of POLRMT pausing, and in cell-based assays their stabilization disrupts POLRMT transcription. Cells exposed to a guanine-quadruplex stabilizing agent (RHPS4) had diminished mitochondrial gene expression and significantly lowered cellular respiration within 24 h. The resulting ATP stress was sufficient to reduce active transport in renal epithelia. CONCLUSIONS Our findings connect RNA guanine quadruplex-mediated pausing with the regulation of POLRMT transcription and mitochondrial function. We demonstrate that tuning of quadruplex dynamics in nascent RNA, rather than template DNA upstream of the polymerase, is sufficient to regulate mitochondrial gene expression.
Collapse
Affiliation(s)
- Ryan J Snyder
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Uma Shankar
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Don Delker
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Winny Soerianto
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Joshua T Burdick
- Department of Pediatrics, Division of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Vivian G Cheung
- Department of Pediatrics, Division of Neurology, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Jason A Watts
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
- Department of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Hsieh AH, Mishanina TV. Nucleic acid sequence determinants of transcriptional pausing by human mitochondrial RNA polymerase (POLRMT). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.25.650729. [PMID: 40313918 PMCID: PMC12045343 DOI: 10.1101/2025.04.25.650729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Transcription by RNA polymerase (RNAP) lies at the heart of gene expression in all organisms. The speed with which RNAPs produce the RNA is tuned in part by the signals in the transcribed nucleic-acid sequences, which temporarily arrange RNAPs into a paused conformation unable to extend the RNA. In turn, the altered transcription kinetics determines the three-dimensional shape into which RNA ultimately folds, dictates the chromatin state, and promotes or inhibits co-transcriptional events. While pause sequence determinants have been characterized for multi-subunit RNAPs in bacteria and the eukaryotic nuclei, this information is lacking for the single-subunit RNAP of human mitochondria, POLRMT. Here, we developed a robust nucleic-acid scaffold system to reconstitute POLRMT transcription in vitro and identified multiple transcriptional pause sites on the human mitochondrial genomic sequence (mtDNA). Using one of the pause sequences as a representative, we performed a suite of mutational studies to pinpoint the nucleic-acid elements that enhance, weaken, or completely abolish POLRMT pausing. Finally, a search of the human mtDNA for the pause motif revealed multiple predicted pause sites, with potential roles in mitochondrial co-transcriptional processes.
Collapse
|
4
|
Herbine K, Nayak AR, Zamudio-Ochoa A, Temiakov D. Structural Basis for Promoter Recognition and Transcription Factor Binding and Release in Human Mitochondria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.647028. [PMID: 40236250 PMCID: PMC11996575 DOI: 10.1101/2025.04.03.647028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Transcription in human mitochondria is driven by a core apparatus consisting of a Pol A family RNA polymerase (mtRNAP), the initiation factors TFAM and TFB2M, and the elongation factor TEFM. While earlier structures of initiation and elongation complexes provided valuable snapshots, they represent isolated stages of a highly dynamic and multistep process. Critical aspects of mitochondrial transcription-such as DNA recognition and melting, promoter escape, and the release of initiation factors-remain poorly understood. Here, we present a series of cryo-EM structures that capture the transcription complex as it transitions from the initial open promoter complex to the processive elongation complex through intermediate stages. Our data reveal new determinants of promoter specificity, the sequential disengagement of mtRNAP from TFAM and the promoter, the release of TFB2M, and the recruitment of TEFM. Together, these findings provide a detailed molecular mechanism underlying transcription in human mitochondria.
Collapse
|
5
|
Majhi S, Roy P, Jo M, Liu J, Hurto R, Freddolino L, Marsh ENG. Viperin expression leads to downregulation of mitochondrial genes through misincorporation of ddhCTP by mitochondrial RNA polymerase. J Biol Chem 2025; 301:108359. [PMID: 40015636 PMCID: PMC11982959 DOI: 10.1016/j.jbc.2025.108359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025] Open
Abstract
Increasing lines of evidence link the expression of the interferon-stimulated gene RSAD2, encoding the antiviral enzyme, viperin, to autoimmune disease. Autoimmune diseases are characterized by chronic overproduction of cytokines such as interferons that upregulate the inflammatory response. Immune cells exposed to interferon selectively downregulate transcription of the mitochondrially encoded components of the oxidative phosphorylation system, which leads to mitochondria becoming dysfunctional and impairing their ability to produce ATP. But the mechanism by which downregulation occurs has remained unknown. Here we show that 3'-deoxy-3',4'-didehydrocytidine triphosphate (ddhCTP) which is synthesized by viperin suppresses mitochondrial transcription by causing premature chain termination when misincorporated by the mitochondrial RNA polymerase (POLRMT). We show that viperin expression in human cell lines downregulates mitochondrially encoded gene expression. A similar effect is observed across multiple cell lines when cells are exposed to ddhC, the precursor to ddhCTP. The pattern of gene downregulation fits well with a simple, quantitative model describing chain-termination. In vitro measurements with purified POLRMT demonstrate that ddhCTP competes effectively with CTP, leading to its misincorporation into RNA. These findings reveal a new molecular mechanism for mitochondrial transcriptional regulation that explains the reduction in mitochondrially-encoded transcript levels in response to chronic interferon stimulation, characteristic of inflammatory diseases.
Collapse
Affiliation(s)
- Srijoni Majhi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Pronay Roy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Minshik Jo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiying Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Rebecca Hurto
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
6
|
Shen J, Goovaerts Q, Ajjugal Y, Wijngaert BD, Das K, Patel SS. Human mitochondrial RNA polymerase structures reveal transcription start-site and slippage mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626445. [PMID: 39677640 PMCID: PMC11642874 DOI: 10.1101/2024.12.02.626445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Human mitochondrial RNA polymerase (POLRMT) and protein factors TFAM and TFB2M assemble on mitochondrial DNA promoters to initiate promoter-specific transcription. We present cryo-EM structures of two initiation complexes, IC3 and slipped-IC3, with fully resolved transcription bubbles containing RNA transcripts starting from +1 and -1 positions, respectively. These structures reveal the mechanisms of promoter melting, start site selection, and slippage synthesis. Promoter melting begins at -4 with base-specific interactions of -4 and -3 template guanines with POLRMT and -1 non-template adenine with TFB2M, stabilizing the bubble and facilitating initiation from +1. Slippage occurs when a synthesized 2-mer RNA shifts to -1; the -1 position is not an alternative start-site. The conserved non-template sequence (-1)AAA(+2) is recognized by a non-template stabilizing loop (K153LDPRSGGVIKPP165) and Y209 from TFB2M and W1026 of POLRMT. The initiation complex on cryo-EM grids exist in equilibrium with apo and dimeric POLRMTs, whose relative concentrations may regulate transcription initiation.
Collapse
Affiliation(s)
- Jiayu Shen
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
- Graduate School of Biomedical Sciences at the Robert Wood Johnson Medical School of Rutgers University, USA
| | - Quinten Goovaerts
- Molecular Structural and Translational Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Yogeeshwar Ajjugal
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Brent De Wijngaert
- Molecular Structural and Translational Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Kalyan Das
- Molecular Structural and Translational Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB T6G 2T9, Canada
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
7
|
Mäkinen JJ, Rosenqvist P, Virta P, Metsä-Ketelä M, Belogurov GA. Probing the nucleobase selectivity of RNA polymerases with dual-coding substrates. J Biol Chem 2024; 300:107755. [PMID: 39260691 PMCID: PMC11474200 DOI: 10.1016/j.jbc.2024.107755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Formycin A (FOR) and pyrazofurin A (PYR) are nucleoside analogs with antiviral and antitumor properties. They are known to interfere with nucleic acid metabolism, but their direct effect on transcription is less understood. We explored how RNA polymerases (RNAPs) from bacteria, mitochondria, and viruses utilize FOR, PYR, and oxidized purine nucleotides. All tested polymerases incorporated FOR in place of adenine and PYR in place of uridine. FOR also exhibited surprising dual-coding behavior, functioning as a cytosine substitute, particularly for viral RNAP. In contrast, 8-oxoadenine and 8-oxoguanine were incorporated in place of uridine in addition to their canonical Watson-Crick codings. Our data suggest that the interconversion of canonical anti and alternative syn conformers underlies dual-coding abilities of FOR and oxidized purines. Structurally distinct RNAPs displayed varying abilities to utilize syn conformers during transcription. By examining base pairings that led to substrate incorporation and the entire spectrum of geometrically compatible pairings, we have gained new insights into the nucleobase selection processes employed by structurally diverse RNAPs. These insights may pave the way for advancements in antiviral therapies.
Collapse
Affiliation(s)
- Janne J Mäkinen
- Department of Life Technologies, University of Turku, Turku, Finland
| | | | - Pasi Virta
- Department of Chemistry, University of Turku, Turku, Finland
| | | | | |
Collapse
|
8
|
Herbine K, Nayak AR, Temiakov D. Structural basis for substrate binding and selection by human mitochondrial RNA polymerase. Nat Commun 2024; 15:7134. [PMID: 39164235 PMCID: PMC11335763 DOI: 10.1038/s41467-024-50817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
The mechanism by which RNAP selects cognate substrates and discriminates between deoxy and ribonucleotides is of fundamental importance to the fidelity of transcription. Here, we present cryo-EM structures of human mitochondrial transcription elongation complexes that reveal substrate ATP bound in Entry and Insertion Sites. In the Entry Site, the substrate binds along the O helix of the fingers domain of mtRNAP but does not interact with the templating DNA base. Interactions between RNAP and the triphosphate moiety of the NTP in the Entry Site ensure discrimination against nucleosides and their diphosphate and monophosphate derivatives but not against non-cognate rNTPs and dNTPs. Closing of the fingers domain over the catalytic site results in delivery of both the templating DNA base and the substrate into the Insertion Site and recruitment of the catalytic magnesium ions. The cryo-EM data also reveal a conformation adopted by mtRNAP to reject a non-cognate substrate from its active site. Our findings establish a structural basis for substrate binding and suggest a unified mechanism of NTP selection for single-subunit RNAPs.
Collapse
Affiliation(s)
- Karl Herbine
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Ashok R Nayak
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Dmitry Temiakov
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA.
| |
Collapse
|
9
|
Gordon CJ, Walker SM, Tchesnokov EP, Kocincova D, Pitts J, Siegel DS, Perry JK, Feng JY, Bilello JP, Götte M. Mechanism and spectrum of inhibition of a 4'-cyano modified nucleotide analog against diverse RNA polymerases of prototypic respiratory RNA viruses. J Biol Chem 2024; 300:107514. [PMID: 38945449 PMCID: PMC11345399 DOI: 10.1016/j.jbc.2024.107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024] Open
Abstract
The development of safe and effective broad-spectrum antivirals that target the replication machinery of respiratory viruses is of high priority in pandemic preparedness programs. Here, we studied the mechanism of action of a newly discovered nucleotide analog against diverse RNA-dependent RNA polymerases (RdRps) of prototypic respiratory viruses. GS-646939 is the active 5'-triphosphate metabolite of a 4'-cyano modified C-adenosine analog phosphoramidate prodrug GS-7682. Enzyme kinetics show that the RdRps of human rhinovirus type 16 (HRV-16) and enterovirus 71 incorporate GS-646939 with unprecedented selectivity; GS-646939 is incorporated 20-50-fold more efficiently than its natural ATP counterpart. The RdRp complex of respiratory syncytial virus and human metapneumovirus incorporate GS-646939 and ATP with similar efficiency. In contrast, influenza B RdRp shows a clear preference for ATP and human mitochondrial RNA polymerase does not show significant incorporation of GS-646939. Once incorporated into the nascent RNA strand, GS-646939 acts as a chain terminator although higher NTP concentrations can partially overcome inhibition for some polymerases. Modeling and biochemical data suggest that the 4'-modification inhibits RdRp translocation. Comparative studies with GS-443902, the active triphosphate form of the 1'-cyano modified prodrugs remdesivir and obeldesivir, reveal not only different mechanisms of inhibition, but also differences in the spectrum of inhibition of viral polymerases. In conclusion, 1'-cyano and 4'-cyano modifications of nucleotide analogs provide complementary strategies to target the polymerase of several families of respiratory RNA viruses.
Collapse
Affiliation(s)
- Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Simon M Walker
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Dana Kocincova
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jared Pitts
- Gilead Sciences, Inc, Foster City, California, USA
| | | | | | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
10
|
Chazot A, Zimberger C, Feracci M, Moussa A, Good S, Sommadossi JP, Alvarez K, Ferron F, Canard B. The activation cascade of the broad-spectrum antiviral bemnifosbuvir characterized at atomic resolution. PLoS Biol 2024; 22:e3002743. [PMID: 39190717 DOI: 10.1371/journal.pbio.3002743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024] Open
Abstract
Bemnifosbuvir (AT-527) and AT-752 are guanosine analogues currently in clinical trials against several RNA viruses. Here, we show that these drugs require a minimal set of 5 cellular enzymes for activation to their common 5'-triphosphate AT-9010, with an obligate order of reactions. AT-9010 selectively inhibits essential viral enzymes, accounting for antiviral potency. Functional and structural data at atomic resolution decipher N6-purine deamination compatible with its metabolic activation. Crystal structures of human histidine triad nucleotide binding protein 1, adenosine deaminase-like protein 1, guanylate kinase 1, and nucleoside diphosphate kinase at 2.09, 2.44, 1.76, and 1.9 Å resolution, respectively, with cognate precursors of AT-9010 illuminate the activation pathway from the orally available bemnifosbuvir to AT-9010, pointing to key drug-protein contacts along the activation pathway. Our work provides a framework to integrate the design of antiviral nucleotide analogues, confronting requirements and constraints associated with activation enzymes along the 5'-triphosphate assembly line.
Collapse
Affiliation(s)
- Aurélie Chazot
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
| | - Claire Zimberger
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
| | - Mikael Feracci
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
| | - Adel Moussa
- ATEA Pharmaceuticals, Inc., Boston, Massachusetts, United States of America
| | - Steven Good
- ATEA Pharmaceuticals, Inc., Boston, Massachusetts, United States of America
| | | | - Karine Alvarez
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
| | - François Ferron
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
- European Virus Bioinformatics Center, Jena, Germany
| | - Bruno Canard
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
- European Virus Bioinformatics Center, Jena, Germany
| |
Collapse
|
11
|
Yan W, Xie C, Sun S, Zheng Q, Wang J, Wang Z, Man CH, Wang H, Yang Y, Wang T, Shi L, Zhang S, Huang C, Xu S, Wang YP. SUCLG1 restricts POLRMT succinylation to enhance mitochondrial biogenesis and leukemia progression. EMBO J 2024; 43:2337-2367. [PMID: 38649537 PMCID: PMC11183053 DOI: 10.1038/s44318-024-00101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Mitochondria are cellular powerhouses that generate energy through the electron transport chain (ETC). The mitochondrial genome (mtDNA) encodes essential ETC proteins in a compartmentalized manner, however, the mechanism underlying metabolic regulation of mtDNA function remains unknown. Here, we report that expression of tricarboxylic acid cycle enzyme succinate-CoA ligase SUCLG1 strongly correlates with ETC genes across various TCGA cancer transcriptomes. Mechanistically, SUCLG1 restricts succinyl-CoA levels to suppress the succinylation of mitochondrial RNA polymerase (POLRMT). Lysine 622 succinylation disrupts the interaction of POLRMT with mtDNA and mitochondrial transcription factors. SUCLG1-mediated POLRMT hyposuccinylation maintains mtDNA transcription, mitochondrial biogenesis, and leukemia cell proliferation. Specifically, leukemia-promoting FMS-like tyrosine kinase 3 (FLT3) mutations modulate nuclear transcription and upregulate SUCLG1 expression to reduce succinyl-CoA and POLRMT succinylation, resulting in enhanced mitobiogenesis. In line, genetic depletion of POLRMT or SUCLG1 significantly delays disease progression in mouse and humanized leukemia models. Importantly, succinyl-CoA level and POLRMT succinylation are downregulated in FLT3-mutated clinical leukemia samples, linking enhanced mitobiogenesis to cancer progression. Together, SUCLG1 connects succinyl-CoA with POLRMT succinylation to modulate mitochondrial function and cancer development.
Collapse
Affiliation(s)
- Weiwei Yan
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Chengmei Xie
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Sijun Sun
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Quan Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jingyi Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Zihao Wang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Cheuk-Him Man
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Haiyan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Yunfan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China
| | - Tianshi Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Leilei Shi
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Shengjie Zhang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China.
| | - Chen Huang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China.
| | - Shuangnian Xu
- Department of Hematology, Southwest Hospital, Army Medical University, 400038, Chongqing, China.
| | - Yi-Ping Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China.
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
12
|
Vučković A, Freyer C, Wredenberg A, Hillen HS. The molecular machinery for maturation of primary mtDNA transcripts. Hum Mol Genet 2024; 33:R19-R25. [PMID: 38779769 PMCID: PMC11112384 DOI: 10.1093/hmg/ddae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 05/25/2024] Open
Abstract
Human mitochondria harbour a circular, polyploid genome (mtDNA) encoding 11 messenger RNAs (mRNAs), two ribosomal RNAs (rRNAs) and 22 transfer RNAs (tRNAs). Mitochondrial transcription produces long, polycistronic transcripts that span almost the entire length of the genome, and hence contain all three types of RNAs. The primary transcripts then undergo a number of processing and maturation steps, which constitute key regulatory points of mitochondrial gene expression. The first step of mitochondrial RNA processing consists of the separation of primary transcripts into individual, functional RNA molecules and can occur by two distinct pathways. Both are carried out by dedicated molecular machineries that substantially differ from RNA processing enzymes found elsewhere. As a result, the underlying molecular mechanisms remain poorly understood. Over the last years, genetic, biochemical and structural studies have identified key players involved in both RNA processing pathways and provided the first insights into the underlying mechanisms. Here, we review our current understanding of RNA processing in mammalian mitochondria and provide an outlook on open questions in the field.
Collapse
MESH Headings
- Humans
- DNA, Mitochondrial/genetics
- RNA Processing, Post-Transcriptional
- Mitochondria/genetics
- Mitochondria/metabolism
- RNA, Mitochondrial/genetics
- RNA, Mitochondrial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Animals
- Transcription, Genetic
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
Collapse
Affiliation(s)
- Ana Vučković
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christoph Freyer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Anna Steckséns gata 47, 171 64 Solna, Sweden
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Anna Steckséns gata 47, 171 64 Solna, Sweden
| | - Hauke S Hillen
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Robert-Koch-Straße 40, 37073 Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
| |
Collapse
|
13
|
Tan BG, Gustafsson CM, Falkenberg M. Mechanisms and regulation of human mitochondrial transcription. Nat Rev Mol Cell Biol 2024; 25:119-132. [PMID: 37783784 DOI: 10.1038/s41580-023-00661-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 10/04/2023]
Abstract
The expression of mitochondrial genes is regulated in response to the metabolic needs of different cell types, but the basic mechanisms underlying this process are still poorly understood. In this Review, we describe how different layers of regulation cooperate to fine tune initiation of both mitochondrial DNA (mtDNA) transcription and replication in human cells. We discuss our current understanding of the molecular mechanisms that drive and regulate transcription initiation from mtDNA promoters, and how the packaging of mtDNA into nucleoids can control the number of mtDNA molecules available for both transcription and replication. Indeed, a unique aspect of the mitochondrial transcription machinery is that it is coupled to mtDNA replication, such that mitochondrial RNA polymerase is additionally required for primer synthesis at mtDNA origins of replication. We discuss how the choice between replication-primer formation and genome-length RNA synthesis is controlled at the main origin of replication (OriH) and how the recent discovery of an additional mitochondrial promoter (LSP2) in humans may change this long-standing model.
Collapse
Affiliation(s)
- Benedict G Tan
- Institute for Mitochondrial Diseases and Ageing, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
14
|
Hsieh AH, Reardon SD, Munozvilla-Cabellon JH, Shen J, Patel SS, Mishanina TV. Expression and Purification of Recombinant Human Mitochondrial RNA Polymerase (POLRMT) and the Initiation Factors TFAM and TFB2M. Bio Protoc 2023; 13:e4892. [PMID: 38094251 PMCID: PMC10714150 DOI: 10.21769/bioprotoc.4892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 02/01/2024] Open
Abstract
Human mitochondrial DNA (mtDNA) encodes several components of oxidative phosphorylation responsible for the bulk of cellular energy production. The mtDNA is transcribed by a dedicated human mitochondrial RNA polymerase (POLRMT) that is structurally distinct from its nuclear counterparts, instead closely resembling the single-subunit viral RNA polymerases (e.g., T7 RNA polymerase). The initiation of transcription by POLRMT is aided by two initiation factors: transcription factor A, mitochondrial (TFAM), and transcription factor B2, mitochondrial (TFB2M). Although many details of human mitochondrial transcription initiation have been elucidated with in vitro biochemical and structural studies, much remains to be addressed relating to the mechanism and regulation of transcription. Studies of such mechanisms require reliable, high-yield, and high-purity methods for protein production, and this protocol provides the level of detail and troubleshooting tips that are necessary for a novice to generate meaningful amounts of proteins for experimental work. The current protocol describes how to purify recombinant POLRMT, TFAM, and TFB2M from Escherichia coli using techniques such as affinity column chromatography (Ni2+ and heparin), how to remove the solubility tags with TEV protease and recover untagged proteins of interest, and how to overcome commonly encountered challenges in obtaining high yield of each protein. Key features • This protocol builds upon purification methods developed by Patel lab (Ramachandran et al., 2017) and others with greater detail than previously published works. • The protocol requires several days to complete as various steps are designed to be performed overnight. • The recombinantly purified proteins have been successfully used for in vitro transcription experiments, allowing for finer control of experimental components in a minimalistic system.
Collapse
Affiliation(s)
- An H. Hsieh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Sean D. Reardon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | | | - Jiayu Shen
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Smita S. Patel
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Tatiana V. Mishanina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
15
|
Snyder R, Delker D, Burdick JT, Cheung VG, Watts JA. Guanine quadruplexes mediate mitochondrial RNA polymerase pausing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562821. [PMID: 37905021 PMCID: PMC10614896 DOI: 10.1101/2023.10.17.562821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The information content within nucleic acids extends beyond the primary sequence to include secondary structures with functional roles in cells. Guanine-rich sequences form structures called guanine quadruplexes (G4) that result from non-canonical base pairing between guanine residues. These stable structures are enriched in gene promoters and have been correlated with the locations of RNA polymerase II pausing (Pol II). While promoter-proximal RNA polymerase pausing regulates gene expression, the effects of guanine quadruplexes on gene transcription have been less clear. We determined the pattern of mitochondrial RNA polymerase (mtRNAP) pausing in human fibroblasts and found that it pauses over 400 times on the mitochondrial genome. We identified quadruplexes as a mediator of mtRNAP pausing and show that stabilization of quadruplexes impeded transcription by mtRNAP. Gene products encoded by the mitochondrial genome are required for oxidative phosphorylation and the decreased transcription by mtRNAP resulted in lower expression of mitochondrial genes and significantly reduced ATP generation. Energy from mitochondria is essential for transport function in renal epithelia, and impeded mitochondrial transcription inhibits transport function in renal proximal tubule cells. These results link formation of guanine quadruplex structures to regulation of mtRNAP elongation and mitochondrial function.
Collapse
Affiliation(s)
- Ryan Snyder
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Don Delker
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Joshua T Burdick
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vivian G Cheung
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Division of Neurology, University of Michigan, Ann Arbor, MI,USA
| | - Jason A Watts
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Goovaerts Q, Shen J, De Wijngaert B, Basu U, Patel SS, Das K. Structures illustrate step-by-step mitochondrial transcription initiation. Nature 2023; 622:872-879. [PMID: 37821701 PMCID: PMC10600007 DOI: 10.1038/s41586-023-06643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Transcription initiation is a key regulatory step in gene expression during which RNA polymerase (RNAP) initiates RNA synthesis de novo, and the synthesized RNA at a specific length triggers the transition to the elongation phase. Mitochondria recruit a single-subunit RNAP and one or two auxiliary factors to initiate transcription. Previous studies have revealed the molecular architectures of yeast1 and human2 mitochondrial RNAP initiation complexes (ICs). Here we provide a comprehensive, stepwise mechanism of transcription initiation by solving high-resolution cryogenic electron microscopy (cryo-EM) structures of yeast mitochondrial RNAP and the transcription factor Mtf1 catalysing two- to eight-nucleotide RNA synthesis at single-nucleotide addition steps. The growing RNA-DNA is accommodated in the polymerase cleft by template scrunching and non-template reorganization, creating stressed intermediates. During early initiation, non-template strand scrunching and unscrunching destabilize the short two- and three-nucleotide RNAs, triggering abortive synthesis. Subsequently, the non-template reorganizes into a base-stacked staircase-like structure supporting processive five- to eight-nucleotide RNA synthesis. The expanded non-template staircase and highly scrunched template in IC8 destabilize the promoter interactions with Mtf1 to facilitate initiation bubble collapse and promoter escape for the transition from initiation to the elongation complex (EC). The series of transcription initiation steps, each guided by the interplay of multiple structural components, reveal a finely tuned mechanism for potential regulatory control.
Collapse
Affiliation(s)
- Quinten Goovaerts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Jiayu Shen
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Brent De Wijngaert
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Urmimala Basu
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| | - Kalyan Das
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| |
Collapse
|
17
|
Zhu X, Xie X, Das H, Tan BG, Shi Y, Al-Behadili A, Peter B, Motori E, Valenzuela S, Posse V, Gustafsson CM, Hällberg BM, Falkenberg M. Non-coding 7S RNA inhibits transcription via mitochondrial RNA polymerase dimerization. Cell 2022; 185:2309-2323.e24. [PMID: 35662414 DOI: 10.1016/j.cell.2022.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/05/2022] [Accepted: 05/05/2022] [Indexed: 12/19/2022]
Abstract
The mitochondrial genome encodes 13 components of the oxidative phosphorylation system, and altered mitochondrial transcription drives various human pathologies. A polyadenylated, non-coding RNA molecule known as 7S RNA is transcribed from a region immediately downstream of the light strand promoter in mammalian cells, and its levels change rapidly in response to physiological conditions. Here, we report that 7S RNA has a regulatory function, as it controls levels of mitochondrial transcription both in vitro and in cultured human cells. Using cryo-EM, we show that POLRMT dimerization is induced by interactions with 7S RNA. The resulting POLRMT dimer interface sequesters domains necessary for promoter recognition and unwinding, thereby preventing transcription initiation. We propose that the non-coding 7S RNA molecule is a component of a negative feedback loop that regulates mitochondrial transcription in mammalian cells.
Collapse
Affiliation(s)
- Xuefeng Zhu
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Xie Xie
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Hrishikesh Das
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Benedict G Tan
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Yonghong Shi
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Ali Al-Behadili
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Bradley Peter
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Elisa Motori
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany; Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany
| | - Sebastian Valenzuela
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Viktor Posse
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, 405 30 Gothenburg, Sweden.
| |
Collapse
|
18
|
Miranda M, Bonekamp NA, Kühl I. Starting the engine of the powerhouse: mitochondrial transcription and beyond. Biol Chem 2022; 403:779-805. [PMID: 35355496 DOI: 10.1515/hsz-2021-0416] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/09/2022] [Indexed: 12/25/2022]
Abstract
Mitochondria are central hubs for cellular metabolism, coordinating a variety of metabolic reactions crucial for human health. Mitochondria provide most of the cellular energy via their oxidative phosphorylation (OXPHOS) system, which requires the coordinated expression of genes encoded by both the nuclear (nDNA) and mitochondrial genomes (mtDNA). Transcription of mtDNA is not only essential for the biogenesis of the OXPHOS system, but also generates RNA primers necessary to initiate mtDNA replication. Like the prokaryotic system, mitochondria have no membrane-based compartmentalization to separate the different steps of mtDNA maintenance and expression and depend entirely on nDNA-encoded factors imported into the organelle. Our understanding of mitochondrial transcription in mammalian cells has largely progressed, but the mechanisms regulating mtDNA gene expression are still poorly understood despite their profound importance for human disease. Here, we review mechanisms of mitochondrial gene expression with a focus on the recent findings in the field of mammalian mtDNA transcription and disease phenotypes caused by defects in proteins involved in this process.
Collapse
Affiliation(s)
- Maria Miranda
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, D-50931, Germany
| | - Nina A Bonekamp
- Department of Neuroanatomy, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, D-68167, Germany
| | - Inge Kühl
- Department of Cell Biology, Institute of Integrative Biology of the Cell (I2BC), UMR9198, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, F-91190, France
| |
Collapse
|
19
|
Singh M, Posse V, Peter B, Falkenberg M, Gustafsson C. Ribonucleotides embedded in template DNA impair mitochondrial RNA polymerase progression. Nucleic Acids Res 2022; 50:989-999. [PMID: 35018464 PMCID: PMC8789056 DOI: 10.1093/nar/gkab1251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 11/12/2022] Open
Abstract
Human mitochondria lack ribonucleotide excision repair pathways, causing misincorporated ribonucleotides (rNMPs) to remain embedded in the mitochondrial genome. Previous studies have demonstrated that human mitochondrial DNA polymerase γ can bypass a single rNMP, but that longer stretches of rNMPs present an obstacle to mitochondrial DNA replication. Whether embedded rNMPs also affect mitochondrial transcription has not been addressed. Here we demonstrate that mitochondrial RNA polymerase elongation activity is affected by a single, embedded rNMP in the template strand. The effect is aggravated at stretches with two or more consecutive rNMPs in a row and cannot be overcome by addition of the mitochondrial transcription elongation factor TEFM. Our findings lead us to suggest that impaired transcription may be of functional relevance in genetic disorders associated with imbalanced nucleotide pools and higher levels of embedded rNMPs.
Collapse
Affiliation(s)
- Meenakshi Singh
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| | - Viktor Posse
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| | - Bradley Peter
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| |
Collapse
|
20
|
Zamudio-Ochoa A, Morozov YI, Sarfallah A, Anikin M, Temiakov D. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2765-2781. [PMID: 35191499 PMCID: PMC8934621 DOI: 10.1093/nar/gkac103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Recognition of mammalian mitochondrial promoters requires the concerted action of mitochondrial RNA polymerase (mtRNAP) and transcription initiation factors TFAM and TFB2M. In this work, we found that transcript slippage results in heterogeneity of the human mitochondrial transcripts in vivo and in vitro. This allowed us to correctly interpret the RNAseq data, identify the bona fide transcription start sites (TSS), and assign mitochondrial promoters for > 50% of mammalian species and some other vertebrates. The divergent structure of the mammalian promoters reveals previously unappreciated aspects of mtDNA evolution. The correct assignment of TSS also enabled us to establish the precise register of the DNA in the initiation complex and permitted investigation of the sequence-specific protein-DNA interactions. We determined the molecular basis of promoter recognition by mtRNAP and TFB2M, which cooperatively recognize bases near TSS in a species-specific manner. Our findings reveal a role of mitochondrial transcription machinery in mitonuclear coevolution and speciation.
Collapse
Affiliation(s)
- Angelica Zamudio-Ochoa
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Yaroslav I Morozov
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Azadeh Sarfallah
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Michael Anikin
- Department of Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, 42 E Laurel Rd, Stratford, NJ 08084, USA
| | | |
Collapse
|
21
|
Choi WS, Garcia-Diaz M. A minimal motif for sequence recognition by mitochondrial transcription factor A (TFAM). Nucleic Acids Res 2021; 50:322-332. [PMID: 34928349 PMCID: PMC8754647 DOI: 10.1093/nar/gkab1230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 11/13/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial transcription factor A (TFAM) plays a critical role in mitochondrial transcription initiation and mitochondrial DNA (mtDNA) packaging. Both functions require DNA binding, but in one case TFAM must recognize a specific promoter sequence, while packaging requires coating of mtDNA by association with non sequence-specific regions. The mechanisms by which TFAM achieves both sequence-specific and non sequence-specific recognition have not yet been determined. Existing crystal structures of TFAM bound to DNA allowed us to identify two guanine-specific interactions that are established between TFAM and the bound DNA. These interactions are observed when TFAM is bound to both specific promoter sequences and non-sequence specific DNA. These interactions are established with two guanine bases separated by 10 random nucleotides (GN10G). Our biochemical results demonstrate that the GN10G consensus is essential for transcriptional initiation and contributes to facilitating TFAM binding to DNA substrates. Furthermore, we report a crystal structure of TFAM in complex with a non sequence-specific sequence containing a GN10G consensus. The structure reveals a unique arrangement in which TFAM bridges two DNA substrates while maintaining the GN10G interactions. We propose that the GN10G consensus is key to facilitate the interaction of TFAM with DNA.
Collapse
Affiliation(s)
- Woo Suk Choi
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
22
|
Sarfallah A, Zamudio-Ochoa A, Anikin M, Temiakov D. Mechanism of transcription initiation and primer generation at the mitochondrial replication origin OriL. EMBO J 2021; 40:e107988. [PMID: 34423452 DOI: 10.15252/embj.2021107988] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 11/09/2022] Open
Abstract
The intricate process of human mtDNA replication requires the coordinated action of both transcription and replication machineries. Transcription and replication events at the lagging strand of mtDNA prompt the formation of a stem-loop structure (OriL) and the synthesis of a ∼25 nt RNA primer by mitochondrial RNA polymerase (mtRNAP). The mechanisms by which mtRNAP recognizes OriL, initiates transcription, and transfers the primer to the replisome are poorly understood. We found that transcription initiation at OriL involves slippage of the nascent transcript. The transcript slippage is essential for initiation complex stability and its ability to translocate the mitochondrial DNA polymerase gamma, PolG, which pre-binds to OriL, downstream of the replication origin thus allowing for the primer synthesis. Our data suggest the primosome assembly at OriL-a complex of mtRNAP and PolG-can efficiently generate the primer, transfer it to the replisome, and protect it from degradation by mitochondrial endonucleases.
Collapse
Affiliation(s)
- Azadeh Sarfallah
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Angelica Zamudio-Ochoa
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael Anikin
- Department of Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
| | - Dmitry Temiakov
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
23
|
Long C, Romero ME, La Rocco D, Yu J. Dissecting nucleotide selectivity in viral RNA polymerases. Comput Struct Biotechnol J 2021; 19:3339-3348. [PMID: 34104356 PMCID: PMC8175102 DOI: 10.1016/j.csbj.2021.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 01/18/2023] Open
Abstract
Designing antiviral therapeutics is of great concern per current pandemics caused by novel coronavirus or SARS-CoV-2. The core polymerase enzyme in the viral replication/transcription machinery is generally conserved and serves well for drug target. In this work we briefly review structural biology and computational clues on representative single-subunit viral polymerases that are more or less connected with SARS-CoV-2 RNA dependent RNA polymerase (RdRp), in particular, to elucidate how nucleotide substrates and potential drug analogs are selected in the viral genome synthesis. To do that, we first survey two well studied RdRps from Polio virus and hepatitis C virus in regard to structural motifs and key residues that have been identified for the nucleotide selectivity. Then we focus on related structural and biochemical characteristics discovered for the SARS-CoV-2 RdRp. To further compare, we summarize what we have learned computationally from phage T7 RNA polymerase (RNAP) on its stepwise nucleotide selectivity, and extend discussion to a structurally similar human mitochondria RNAP, which deserves special attention as it cannot be adversely affected by antiviral treatments. We also include viral phi29 DNA polymerase for comparison, which has both helicase and proofreading activities on top of nucleotide selectivity for replication fidelity control. The helicase and proofreading functions are achieved by protein components in addition to RdRp in the coronavirus replication-transcription machine, with the proofreading strategy important for the fidelity control in synthesizing a comparatively large viral genome.
Collapse
Affiliation(s)
- Chunhong Long
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | | | - Daniel La Rocco
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Jin Yu
- Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
| |
Collapse
|
24
|
Oláhová M, Peter B, Szilagyi Z, Diaz-Maldonado H, Singh M, Sommerville EW, Blakely EL, Collier JJ, Hoberg E, Stránecký V, Hartmannová H, Bleyer AJ, McBride KL, Bowden SA, Korandová Z, Pecinová A, Ropers HH, Kahrizi K, Najmabadi H, Tarnopolsky MA, Brady LI, Weaver KN, Prada CE, Õunap K, Wojcik MH, Pajusalu S, Syeda SB, Pais L, Estrella EA, Bruels CC, Kunkel LM, Kang PB, Bonnen PE, Mráček T, Kmoch S, Gorman GS, Falkenberg M, Gustafsson CM, Taylor RW. POLRMT mutations impair mitochondrial transcription causing neurological disease. Nat Commun 2021; 12:1135. [PMID: 33602924 PMCID: PMC7893070 DOI: 10.1038/s41467-021-21279-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
While >300 disease-causing variants have been identified in the mitochondrial DNA (mtDNA) polymerase γ, no mitochondrial phenotypes have been associated with POLRMT, the RNA polymerase responsible for transcription of the mitochondrial genome. Here, we characterise the clinical and molecular nature of POLRMT variants in eight individuals from seven unrelated families. Patients present with global developmental delay, hypotonia, short stature, and speech/intellectual disability in childhood; one subject displayed an indolent progressive external ophthalmoplegia phenotype. Massive parallel sequencing of all subjects identifies recessive and dominant variants in the POLRMT gene. Patient fibroblasts have a defect in mitochondrial mRNA synthesis, but no mtDNA deletions or copy number abnormalities. The in vitro characterisation of the recombinant POLRMT mutants reveals variable, but deleterious effects on mitochondrial transcription. Together, our in vivo and in vitro functional studies of POLRMT variants establish defective mitochondrial transcription as an important disease mechanism.
Collapse
Affiliation(s)
- Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Bradley Peter
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Zsolt Szilagyi
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Hector Diaz-Maldonado
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Meenakshi Singh
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ewen W Sommerville
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Emma L Blakely
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jack J Collier
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Emily Hoberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Viktor Stránecký
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, 120 00, Czech Republic
| | - Hana Hartmannová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, 120 00, Czech Republic
| | - Anthony J Bleyer
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, 120 00, Czech Republic
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Kim L McBride
- Center for Cardiovascular and Pulmonary Research, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, USA
| | - Sasigarn A Bowden
- Division of Endocrinology, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, USA
| | - Zuzana Korandová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, 120 00, Czech Republic
- Department of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Pecinová
- Department of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hans-Hilger Ropers
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mark A Tarnopolsky
- Department of Pediatric and Medicines, Division of Neuromuscular and Neurometabolic Diseases, McMaster University Children's Hospital, Hamilton, Canada
| | - Lauren I Brady
- Department of Pediatric and Medicines, Division of Neuromuscular and Neurometabolic Diseases, McMaster University Children's Hospital, Hamilton, Canada
| | - K Nicole Weaver
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Carlos E Prada
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, Cardiovascular Foundation of Colombia, Floridablanca, Colombia
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Monica H Wojcik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Newborn Medicine and Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Safoora B Syeda
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Lynn Pais
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Elicia A Estrella
- Division of Genetics & Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Christine C Bruels
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Louis M Kunkel
- Division of Genetics & Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter B Kang
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Molecular Genetics & Microbiology, and Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
- Genetics Institute and Myology Institute, University of Florida, Gainesville, FL, USA
| | - Penelope E Bonnen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tomáš Mráček
- Department of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, 120 00, Czech Republic
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden.
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
25
|
Basu U, Bostwick AM, Das K, Dittenhafer-Reed KE, Patel SS. Structure, mechanism, and regulation of mitochondrial DNA transcription initiation. J Biol Chem 2020; 295:18406-18425. [PMID: 33127643 PMCID: PMC7939475 DOI: 10.1074/jbc.rev120.011202] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are specialized compartments that produce requisite ATP to fuel cellular functions and serve as centers of metabolite processing, cellular signaling, and apoptosis. To accomplish these roles, mitochondria rely on the genetic information in their small genome (mitochondrial DNA) and the nucleus. A growing appreciation for mitochondria's role in a myriad of human diseases, including inherited genetic disorders, degenerative diseases, inflammation, and cancer, has fueled the study of biochemical mechanisms that control mitochondrial function. The mitochondrial transcriptional machinery is different from nuclear machinery. The in vitro re-constituted transcriptional complexes of Saccharomyces cerevisiae (yeast) and humans, aided with high-resolution structures and biochemical characterizations, have provided a deeper understanding of the mechanism and regulation of mitochondrial DNA transcription. In this review, we will discuss recent advances in the structure and mechanism of mitochondrial transcription initiation. We will follow up with recent discoveries and formative findings regarding the regulatory events that control mitochondrial DNA transcription, focusing on those involved in cross-talk between the mitochondria and nucleus.
Collapse
Affiliation(s)
- Urmimala Basu
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | | - Kalyan Das
- Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.
| |
Collapse
|
26
|
Small-molecule inhibitors of human mitochondrial DNA transcription. Nature 2020; 588:712-716. [PMID: 33328633 DOI: 10.1038/s41586-020-03048-z] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/22/2020] [Indexed: 01/31/2023]
Abstract
Altered expression of mitochondrial DNA (mtDNA) occurs in ageing and a range of human pathologies (for example, inborn errors of metabolism, neurodegeneration and cancer). Here we describe first-in-class specific inhibitors of mitochondrial transcription (IMTs) that target the human mitochondrial RNA polymerase (POLRMT), which is essential for biogenesis of the oxidative phosphorylation (OXPHOS) system1-6. The IMTs efficiently impair mtDNA transcription in a reconstituted recombinant system and cause a dose-dependent inhibition of mtDNA expression and OXPHOS in cell lines. To verify the cellular target, we performed exome sequencing of mutagenized cells and identified a cluster of amino acid substitutions in POLRMT that cause resistance to IMTs. We obtained a cryo-electron microscopy (cryo-EM) structure of POLRMT bound to an IMT, which further defined the allosteric binding site near the active centre cleft of POLRMT. The growth of cancer cells and the persistence of therapy-resistant cancer stem cells has previously been reported to depend on OXPHOS7-17, and we therefore investigated whether IMTs have anti-tumour effects. Four weeks of oral treatment with an IMT is well-tolerated in mice and does not cause OXPHOS dysfunction or toxicity in normal tissues, despite inducing a strong anti-tumour response in xenografts of human cancer cells. In summary, IMTs provide a potent and specific chemical biology tool to study the role of mtDNA expression in physiology and disease.
Collapse
|
27
|
De Wijngaert B, Sultana S, Singh A, Dharia C, Vanbuel H, Shen J, Vasilchuk D, Martinez SE, Kandiah E, Patel SS, Das K. Cryo-EM Structures Reveal Transcription Initiation Steps by Yeast Mitochondrial RNA Polymerase. Mol Cell 2020; 81:268-280.e5. [PMID: 33278362 DOI: 10.1016/j.molcel.2020.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023]
Abstract
Mitochondrial RNA polymerase (mtRNAP) is crucial in cellular energy production, yet understanding of mitochondrial DNA transcription initiation lags that of bacterial and nuclear DNA transcription. We report structures of two transcription initiation intermediate states of yeast mtRNAP that explain promoter melting, template alignment, DNA scrunching, abortive synthesis, and transition into elongation. In the partially melted initiation complex (PmIC), transcription factor MTF1 makes base-specific interactions with flipped non-template (NT) nucleotides "AAGT" at -4 to -1 positions of the DNA promoter. In the initiation complex (IC), the template in the expanded 7-mer bubble positions the RNA and NTP analog UTPαS, while NT scrunches into an NT loop. The scrunched NT loop is stabilized by the centrally positioned MTF1 C-tail. The IC and PmIC states coexist in solution, revealing a dynamic equilibrium between two functional states. Frequent scrunching/unscruching transitions and the imminent steric clashes of the inflating NT loop and growing RNA:DNA with the C-tail explain abortive synthesis and transition into elongation.
Collapse
Affiliation(s)
- Brent De Wijngaert
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Shemaila Sultana
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Anupam Singh
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Chhaya Dharia
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Hans Vanbuel
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Jiayu Shen
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Daniel Vasilchuk
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Sergio E Martinez
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Eaazhisai Kandiah
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA.
| | - Kalyan Das
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
28
|
Bonekamp NA, Peter B, Hillen HS, Felser A, Bergbrede T, Choidas A, Horn M, Unger A, Di Lucrezia R, Atanassov I, Li X, Koch U, Menninger S, Boros J, Habenberger P, Giavalisco P, Cramer P, Denzel MS, Nussbaumer P, Klebl B, Falkenberg M, Gustafsson CM, Larsson NG. Small-molecule inhibitors of human mitochondrial DNA transcription. Nature 2020. [PMID: 33328633 DOI: 10.1038/s41586-020-03048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Altered expression of mitochondrial DNA (mtDNA) occurs in ageing and a range of human pathologies (for example, inborn errors of metabolism, neurodegeneration and cancer). Here we describe first-in-class specific inhibitors of mitochondrial transcription (IMTs) that target the human mitochondrial RNA polymerase (POLRMT), which is essential for biogenesis of the oxidative phosphorylation (OXPHOS) system1-6. The IMTs efficiently impair mtDNA transcription in a reconstituted recombinant system and cause a dose-dependent inhibition of mtDNA expression and OXPHOS in cell lines. To verify the cellular target, we performed exome sequencing of mutagenized cells and identified a cluster of amino acid substitutions in POLRMT that cause resistance to IMTs. We obtained a cryo-electron microscopy (cryo-EM) structure of POLRMT bound to an IMT, which further defined the allosteric binding site near the active centre cleft of POLRMT. The growth of cancer cells and the persistence of therapy-resistant cancer stem cells has previously been reported to depend on OXPHOS7-17, and we therefore investigated whether IMTs have anti-tumour effects. Four weeks of oral treatment with an IMT is well-tolerated in mice and does not cause OXPHOS dysfunction or toxicity in normal tissues, despite inducing a strong anti-tumour response in xenografts of human cancer cells. In summary, IMTs provide a potent and specific chemical biology tool to study the role of mtDNA expression in physiology and disease.
Collapse
Affiliation(s)
- Nina A Bonekamp
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Bradley Peter
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Hauke S Hillen
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Andrea Felser
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Moritz Horn
- Metabolic and Genetic Regulation of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
- Acus Laboratories, Cologne, Germany
- JLP Health, Vienna, Austria
| | - Anke Unger
- Lead Discovery Center, Dortmund, Germany
| | | | - Ilian Atanassov
- Proteomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Xinping Li
- Proteomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Uwe Koch
- Lead Discovery Center, Dortmund, Germany
| | | | | | | | - Patrick Giavalisco
- Metabolomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Martin S Denzel
- Metabolic and Genetic Regulation of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Bert Klebl
- Lead Discovery Center, Dortmund, Germany
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden.
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Max Planck Institute for Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
29
|
Mikami A, Erande N, Matsuda S, Kel'in A, Woods LB, Chickering T, Pallan PS, Schlegel MK, Zlatev I, Egli M, Manoharan M. Synthesis, chirality-dependent conformational and biological properties of siRNAs containing 5'-(R)- and 5'-(S)-C-methyl-guanosine. Nucleic Acids Res 2020; 48:10101-10124. [PMID: 32990754 PMCID: PMC7544225 DOI: 10.1093/nar/gkaa750] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
Various chemical modifications have been identified that enhance potency of small interfering RNAs (siRNAs) and that reduce off-target effects, immune stimulation, and toxicities of metabolites of these therapeutic agents. We previously described 5′-C-methyl pyrimidine nucleotides also modified at the 2′ position of the sugar. Here, we describe the synthesis of 2′-position unmodified 5′-(R)- and 5′-(S)-C-methyl guanosine and evaluation of these nucleotides in the context of siRNA. The (R) isomer provided protection from 5′ exonuclease and the (S) isomer provided protection from 3′ exonuclease in the context of a terminally modified oligonucleotide. siRNA potency was maintained when these modifications were incorporated at the tested positions of sense and antisense strands. Moreover, the corresponding 5′ triphosphates were not substrates for mitochondrial DNA polymerase. Models generated based on crystal structures of 5′ and 3′ exonuclease oligonucleotide complexes with 5′-(R)- and 5′-(S)-C-methyl substituents attached to the 5′- and 3′-terminal nucleotides, respectively, provided insight into the origins of the observed protections. Structural properties of 5′-(R)-C-methyl guanosine incorporated into an RNA octamer were analysed by X-ray crystallography, and the structure explains the loss in duplex thermal stability for the (R) isomer compared with the (S) isomer. Finally, the effect of 5′-C-methylation on endoribonuclease activity has been explained.
Collapse
Affiliation(s)
- Atsushi Mikami
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA
| | - Namrata Erande
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA
| | - Shigeo Matsuda
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA
| | - Alexander Kel'in
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA
| | - Lauren Blair Woods
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA
| | - Tyler Chickering
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA
| | - Pradeep S Pallan
- Department of Biochemistry Vanderbilt University, School of Medicine Nashville, TN 37232, USA
| | - Mark K Schlegel
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA
| | - Ivan Zlatev
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA
| | - Martin Egli
- Department of Biochemistry Vanderbilt University, School of Medicine Nashville, TN 37232, USA
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
30
|
Sohn BK, Basu U, Lee SW, Cho H, Shen J, Deshpande A, Johnson LC, Das K, Patel SS, Kim H. The dynamic landscape of transcription initiation in yeast mitochondria. Nat Commun 2020; 11:4281. [PMID: 32855416 PMCID: PMC7452894 DOI: 10.1038/s41467-020-17793-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 07/14/2020] [Indexed: 01/24/2023] Open
Abstract
Controlling efficiency and fidelity in the early stage of mitochondrial DNA transcription is crucial for regulating cellular energy metabolism. Conformational transitions of the transcription initiation complex must be central for such control, but how the conformational dynamics progress throughout transcription initiation remains unknown. Here, we use single-molecule fluorescence resonance energy transfer techniques to examine the conformational dynamics of the transcriptional system of yeast mitochondria with single-base resolution. We show that the yeast mitochondrial transcriptional complex dynamically transitions among closed, open, and scrunched states throughout the initiation stage. Then abruptly at position +8, the dynamic states of initiation make a sharp irreversible transition to an unbent conformation with associated promoter release. Remarkably, stalled initiation complexes remain in dynamic scrunching and unscrunching states without dissociating the RNA transcript, implying the existence of backtracking transitions with possible regulatory roles. The dynamic landscape of transcription initiation suggests a kinetically driven regulation of mitochondrial transcription.
Collapse
Affiliation(s)
- Byeong-Kwon Sohn
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Urmimala Basu
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Seung-Won Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hayoon Cho
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jiayu Shen
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Aishwarya Deshpande
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Laura C Johnson
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Kalyan Das
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
| | - Hajin Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
- Institute for Basic Science, Ulsan, Republic of Korea.
| |
Collapse
|
31
|
Ghosh S, Marsh ENG. Viperin: An ancient radical SAM enzyme finds its place in modern cellular metabolism and innate immunity. J Biol Chem 2020; 295:11513-11528. [PMID: 32546482 PMCID: PMC7450102 DOI: 10.1074/jbc.rev120.012784] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Viperin plays an important and multifaceted role in the innate immune response to viral infection. Viperin is also notable as one of very few radical SAM-dependent enzymes present in higher animals; however, the enzyme appears broadly conserved across all kingdoms of life, which suggests that it represents an ancient defense mechanism against viral infections. Although viperin was discovered some 20 years ago, only recently was the enzyme's structure determined and its catalytic activity elucidated. The enzyme converts CTP to 3'-deoxy-3',4'-didehydro-CTP, which functions as novel chain-terminating antiviral nucleotide when misincorporated by viral RNA-dependent RNA polymerases. Moreover, in higher animals, viperin interacts with numerous other host and viral proteins, and it is apparent that this complex network of interactions constitutes another important aspect of the protein's antiviral activity. An emerging theme is that viperin appears to facilitate ubiquitin-dependent proteasomal degradation of some of the proteins it interacts with. Viperin-targeted protein degradation contributes to the antiviral response either by down-regulating various metabolic pathways important for viral replication or by directly targeting viral proteins for degradation. Here, we review recent advances in our understanding of the structure and catalytic activity of viperin, together with studies investigating the interactions between viperin and its target proteins. These studies have provided detailed insights into the biochemical processes underpinning this unusual enzyme's wide-ranging antiviral activity. We also highlight recent intriguing reports that implicate a broader role for viperin in regulating nonpathological cellular processes, including thermogenesis and protein secretion.
Collapse
Affiliation(s)
- Soumi Ghosh
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
32
|
Bostwick AM, Moya GE, Senti ML, Basu U, Shen J, Patel SS, Dittenhafer-Reed KE. Phosphorylation of mitochondrial transcription factor B2 controls mitochondrial DNA binding and transcription. Biochem Biophys Res Commun 2020; 528:580-585. [PMID: 32505352 PMCID: PMC9161741 DOI: 10.1016/j.bbrc.2020.05.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/20/2020] [Indexed: 11/24/2022]
Abstract
Mammalian cells contain genetic information in two compartments, the nucleus and the mitochondria. Mitochondrial gene expression must be coordinated with nuclear gene expression to respond to cellular energetic needs. To gain insight into the coordination between the nucleus and mitochondria, there is a need to understand the regulation of transcription of mitochondrial DNA (mtDNA). Reversible protein post-translational modifications of the mtDNA transcriptional machinery may be one way to control mtDNA transcription. Here we focus on a member of the mtDNA transcription initiation complex, mitochondrial transcription factor B2 (TFB2M). TFB2M melts mtDNA at the promoter to allow the RNA polymerase (POLRMT) to access the DNA template and initiate transcription. Three phosphorylation sites have been previously identified on TFB2M by mass spectrometry: threonine 184, serine 197, and threonine 313. Phosphomimetics were established at these positions. Proteins were purified and analyzed for their ability to bind mtDNA and initiate transcription in vitro. Our results indicate phosphorylation at threonine 184 and threonine 313 impairs promoter binding and prevents transcription. These findings provide a potential regulatory mechanism of mtDNA transcription and help clarify the importance of protein post-translational modifications in mitochondrial function.
Collapse
Affiliation(s)
- Alicia M Bostwick
- Hope College, Department of Chemistry, 35 E. 12th Street, Holland, MI, 49423, United States
| | - Gonzalo E Moya
- Hope College, Department of Chemistry, 35 E. 12th Street, Holland, MI, 49423, United States
| | - Mackenna L Senti
- Hope College, Department of Chemistry, 35 E. 12th Street, Holland, MI, 49423, United States
| | - Urmimala Basu
- Rutgers University, Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ, 08854, United States
| | - Jiayu Shen
- Rutgers University, Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ, 08854, United States
| | - Smita S Patel
- Rutgers University, Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ, 08854, United States
| | | |
Collapse
|
33
|
Koonin EV, Krupovic M, Ishino S, Ishino Y. The replication machinery of LUCA: common origin of DNA replication and transcription. BMC Biol 2020; 18:61. [PMID: 32517760 PMCID: PMC7281927 DOI: 10.1186/s12915-020-00800-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Origin of DNA replication is an enigma because the replicative DNA polymerases (DNAPs) are not homologous among the three domains of life, Bacteria, Archaea, and Eukarya. The homology between the archaeal replicative DNAP (PolD) and the large subunits of the universal RNA polymerase (RNAP) responsible for transcription suggests a parsimonious evolutionary scenario. Under this model, RNAPs and replicative DNAPs evolved from a common ancestor that functioned as an RNA-dependent RNA polymerase in the RNA-protein world that predated the advent of DNA replication. The replicative DNAP of the Last Universal Cellular Ancestor (LUCA) would be the ancestor of the archaeal PolD.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, 75015, Paris, France
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
34
|
Basu U, Lee SW, Deshpande A, Shen J, Sohn BK, Cho H, Kim H, Patel SS. The C-terminal tail of the yeast mitochondrial transcription factor Mtf1 coordinates template strand alignment, DNA scrunching and timely transition into elongation. Nucleic Acids Res 2020; 48:2604-2620. [PMID: 31980825 PMCID: PMC7049685 DOI: 10.1093/nar/gkaa040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 01/13/2020] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial RNA polymerases depend on initiation factors, such as TFB2M in humans and Mtf1 in yeast Saccharomyces cerevisiae, for promoter-specific transcription. These factors drive the melting of promoter DNA, but how they support RNA priming and growth was not understood. We show that the flexible C-terminal tails of Mtf1 and TFB2M play a crucial role in RNA priming by aiding template strand alignment in the active site for high-affinity binding of the initiating nucleotides. Using single-molecule fluorescence approaches, we show that the Mtf1 C-tail promotes RNA growth during initiation by stabilizing the scrunched DNA conformation. Additionally, due to its location in the path of the nascent RNA, the C-tail of Mtf1 serves as a sensor of the RNA-DNA hybrid length. Initially, steric clashes of the Mtf1 C-tail with short RNA-DNA hybrids cause abortive synthesis but clashes with longer RNA-DNA trigger conformational changes for the timely release of the promoter DNA to commence the transition into elongation. The remarkable similarities in the functions of the C-tail and σ3.2 finger of the bacterial factor suggest mechanistic convergence of a flexible element in the transcription initiation factor that engages the DNA template for RNA priming and growth and disengages when needed to generate the elongation complex.
Collapse
Affiliation(s)
- Urmimala Basu
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
- Graduate School of Biomedical Sciences at Robert Wood Johnson Medical School of the Rutgers University, USA
| | - Seung-Won Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Aishwarya Deshpande
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Jiayu Shen
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
- Graduate School of Biomedical Sciences at Robert Wood Johnson Medical School of the Rutgers University, USA
| | - Byeong-Kwon Sohn
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hayoon Cho
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hajin Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
35
|
Dumbrepatil AB, Zegalia KA, Sajja K, Kennedy RT, Marsh ENG. Targeting viperin to the mitochondrion inhibits the thiolase activity of the trifunctional enzyme complex. J Biol Chem 2020; 295:2839-2849. [PMID: 31980458 DOI: 10.1074/jbc.ra119.011526] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/09/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding the mechanisms by which viruses evade host cell immune defenses is important for developing improved antiviral therapies. In an unusual twist, human cytomegalovirus co-opts the antiviral radical SAM enzyme viperin (virus-inhibitory protein, endoplasmic reticulum-associated, interferon-inducible) to enhance viral infectivity. This process involves translocation of viperin to the mitochondrion, where it binds the β-subunit (HADHB) of the mitochondrial trifunctional enzyme complex that catalyzes thiolysis of β-ketoacyl-CoA esters as part of fatty acid β-oxidation. Here we investigated how the interaction between these two enzymes alters their activities and affects cellular ATP levels. Experiments with purified enzymes indicated that viperin inhibits the thiolase activity of HADHB, but, unexpectedly, HADHB activates viperin, leading to synthesis of the antiviral nucleotide 3'-deoxy-3',4'-didehydro-CTP. Measurements of enzyme activities in lysates prepared from transfected HEK293T cells expressing these enzymes mirrored the findings obtained with purified enzymes. Thus, localizing viperin to mitochondria decreased thiolase activity, and coexpression of HADHB significantly increased viperin activity. Furthermore, targeting viperin to mitochondria also increased the rate at which HADHB is retrotranslocated out of mitochondria and degraded, providing an additional mechanism by which viperin reduces HADHB activity. Targeting viperin to mitochondria decreased cellular ATP levels by more than 50%, consistent with the enzyme disrupting fatty acid catabolism. These results provide biochemical insight into the mechanism by which human cytomegalovirus subverts viperin; they also provide a biochemical rationale for viperin's recently discovered role in regulating thermogenesis in adipose tissues.
Collapse
Affiliation(s)
- Arti B Dumbrepatil
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| | - Kelcie A Zegalia
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| | - Keerthi Sajja
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055; Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055.
| |
Collapse
|
36
|
Transcriptional Fidelity of Mitochondrial RNA Polymerase RpoTm from Arabidopsis thaliana. J Mol Biol 2019; 431:4767-4783. [PMID: 31626802 DOI: 10.1016/j.jmb.2019.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 05/30/2019] [Accepted: 08/26/2019] [Indexed: 11/21/2022]
Abstract
Fidelity of RNA synthesis is essential for the faithful transfer of information from DNA to RNA. A comprehensive analysis of the nucleotide selectivity by the mitochondrial RNA polymerase (RNAP) RpoTm, from Arabidopsis thaliana, has been carried out. The kinetic parameters for the incorporation of cognate, noncognate, and oxidized bases have been determined. The results establish high fidelity of mitochondrial transcription resembling those of replicative polymerases in the absence of repair. In addition, RpoTm incorporates oxidized nucleotides with similar efficiency compared with mismatches and is capable of extending the RNA beyond the insertion of the oxidized base. Furthermore, lesion bypass study on RpoTm demonstrates that the enzyme bypasses 8-oxo-guanine by insertion of adenine leading to C to A mutations in RNA. Homology modeling of RpoTm elongation complex allows delineation of the residues necessary for stabilizing the incoming NTP substrate and for posing the template nucleotide residue. Substitution of these residues leads to compromise in the activity of the enzyme corroborating their importance in RNA synthesis. Comparison of the data with T7 RNAPs indicates that low efficiency of misincorporation is a universal strategy used by single-subunit RNAPs for maintaining high fidelity in the absence of proofreading and repair activity in mitochondria.
Collapse
|
37
|
Organization and regulation of gene transcription. Nature 2019; 573:45-54. [PMID: 31462772 DOI: 10.1038/s41586-019-1517-4] [Citation(s) in RCA: 437] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
The regulated transcription of genes determines cell identity and function. Recent structural studies have elucidated mechanisms that govern the regulation of transcription by RNA polymerases during the initiation and elongation phases. Microscopy studies have revealed that transcription involves the condensation of factors in the cell nucleus. A model is emerging for the transcription of protein-coding genes in which distinct transient condensates form at gene promoters and in gene bodies to concentrate the factors required for transcription initiation and elongation, respectively. The transcribing enzyme RNA polymerase II may shuttle between these condensates in a phosphorylation-dependent manner. Molecular principles are being defined that rationalize transcriptional organization and regulation, and that will guide future investigations.
Collapse
|
38
|
Is mitochondrial gene expression coordinated or stochastic? Biochem Soc Trans 2018; 46:1239-1246. [PMID: 30301847 DOI: 10.1042/bst20180174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/25/2022]
Abstract
Mitochondrial biogenesis is intimately dependent on the coordinated expression of the nuclear and mitochondrial genomes that is necessary for the assembly and function of the respiratory complexes to produce most of the energy required by cells. Although highly compacted in animals, the mitochondrial genome and its expression are essential for survival, development, and optimal energy production. The machinery that regulates gene expression within mitochondria is localised within the same compartment and, like in their ancestors, the bacteria, this machinery does not use membrane-based compartmentalisation to order the gene expression pathway. Therefore, the lifecycle of mitochondrial RNAs from transcription through processing, maturation, translation to turnover is mediated by a gamut of RNA-binding proteins (RBPs), all contained within the mitochondrial matrix milieu. Recent discoveries indicate that multiple processes regulating RNA metabolism occur at once but since mitochondria have a new complement of RBPs, many evolved de novo from nuclear genes, we are left wondering how co-ordinated are these processes? Here, we review recently identified examples of the co-ordinated and stochastic processes that govern the mitochondrial transcriptome. These new discoveries reveal the complexity of mitochondrial gene expression and the need for its in-depth exploration to understand how these organelles can respond to the energy demands of the cell.
Collapse
|
39
|
Structural basis of mitochondrial transcription. Nat Struct Mol Biol 2018; 25:754-765. [PMID: 30190598 DOI: 10.1038/s41594-018-0122-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/29/2018] [Indexed: 01/17/2023]
Abstract
The mitochondrial genome is transcribed by a single-subunit DNA-dependent RNA polymerase (mtRNAP) and its auxiliary factors. Structural studies have elucidated how mtRNAP cooperates with its dedicated transcription factors to direct RNA synthesis: initiation factors TFAM and TFB2M assist in promoter-DNA binding and opening by mtRNAP while the elongation factor TEFM increases polymerase processivity to the levels required for synthesis of long polycistronic mtRNA transcripts. Here, we review the emerging body of structural and functional studies of human mitochondrial transcription, provide a molecular movie that can be used for teaching purposes and discuss the open questions to guide future directions of investigation.
Collapse
|
40
|
Molodtsov V, Murakami KS. Minimalism and functionality: Structural lessons from the heterodimeric N4 bacteriophage RNA polymerase II. J Biol Chem 2018; 293:13616-13625. [PMID: 29991593 PMCID: PMC6120196 DOI: 10.1074/jbc.ra118.003447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/19/2018] [Indexed: 01/07/2023] Open
Abstract
Genomes of phages, mitochondria, and chloroplasts are transcribed by a diverse group of transcriptional machineries with structurally related single-subunit RNA polymerases (RNAPs). Our understanding of transcription mechanisms of these enzymes is predominantly based on biochemical and structural studies of three most-studied members, transcription factor-independent phage T7 RNAP, transcription factor-dependent phage N4 virion-encapsidated RNAP, and transcription factor-dependent mitochondrial RNAPs (mtRNAP). Although these RNAPs employ completely different mechanisms for promoter recognition and transcription termination, these enzymes are relatively large and formed by single polypeptides. Historically being a model enzyme for studying the mechanisms of transcription by T7-like RNAPs, however, T7 RNAP represents only a small group of RNAPs in this family. The vast majority of T7-like RNAPs are transcription factor-dependent, and several of them are heterodimeric enzymes. Here, we report X-ray crystal structures of transcription complexes of the smallest and heterodimeric form of T7-like RNAP, bacteriophage N4 RNAPII, providing insights into the structural organization of a minimum RNAP in this family. We analyze structural and functional aspects of heterodimeric architecture of N4 RNAPII concerning the mechanisms of transcription initiation and transition to processive RNA elongation. Interestingly, N4 RNAPII maintains the same conformation in promoter-bound and elongation transcription complexes, revealing a novel transcription mechanism for single-subunit RNAPs. This work establishes a structural basis for studying mechanistic aspects of transcription by factor-dependent minimum RNAP.
Collapse
Affiliation(s)
- Vadim Molodtsov
- From the Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, To whom correspondence may be addressed. E-mail:
| | - Katsuhiko S. Murakami
- From the Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, To whom correspondence may be addressed. E-mail:
| |
Collapse
|
41
|
Freedman H, Winter P, Tuszynski J, Tyrrell DL, Houghton M. A computational approach for predicting off-target toxicity of antiviral ribonucleoside analogues to mitochondrial RNA polymerase. J Biol Chem 2018; 293:9696-9705. [PMID: 29739852 DOI: 10.1074/jbc.ra118.002588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/04/2018] [Indexed: 12/18/2022] Open
Abstract
In the development of antiviral drugs that target viral RNA-dependent RNA polymerases, off-target toxicity caused by the inhibition of the human mitochondrial RNA polymerase (POLRMT) is a major liability. Therefore, it is essential that all new ribonucleoside analogue drugs be accurately screened for POLRMT inhibition. A computational tool that can accurately predict NTP binding to POLRMT could assist in evaluating any potential toxicity and in designing possible salvaging strategies. Using the available crystal structure of POLRMT bound to an RNA transcript, here we created a model of POLRMT with an NTP molecule bound in the active site. Furthermore, we implemented a computational screening procedure that determines the relative binding free energy of an NTP analogue to POLRMT by free energy perturbation (FEP), i.e. a simulation in which the natural NTP molecule is slowly transformed into the analogue and back. In each direction, the transformation was performed over 40 ns of simulation on our IBM Blue Gene Q supercomputer. This procedure was validated across a panel of drugs for which experimental dissociation constants were available, showing that NTP relative binding free energies could be predicted to within 0.97 kcal/mol of the experimental values on average. These results demonstrate for the first time that free-energy simulation can be a useful tool for predicting binding affinities of NTP analogues to a polymerase. We expect that our model, together with similar models of viral polymerases, will be very useful in the screening and future design of NTP inhibitors of viral polymerases that have no mitochondrial toxicity.
Collapse
Affiliation(s)
- Holly Freedman
- From the Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology and
| | - Philip Winter
- the Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Jack Tuszynski
- the Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada.,the Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada and
| | - D Lorne Tyrrell
- From the Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology and
| | - Michael Houghton
- From the Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology and
| |
Collapse
|
42
|
Ferreira N, Rackham O, Filipovska A. Regulation of a minimal transcriptome by repeat domain proteins. Semin Cell Dev Biol 2018; 76:132-141. [DOI: 10.1016/j.semcdb.2017.08.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 01/19/2023]
|
43
|
Simple In Vitro Assay To Evaluate the Incorporation Efficiency of Ribonucleotide Analog 5'-Triphosphates into RNA by Human Mitochondrial DNA-Dependent RNA Polymerase. Antimicrob Agents Chemother 2018; 62:AAC.01830-17. [PMID: 29180528 PMCID: PMC5786792 DOI: 10.1128/aac.01830-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/21/2017] [Indexed: 01/27/2023] Open
Abstract
There is a growing body of evidence suggesting that some ribonucleoside/ribonucleotide analogs may be incorporated into mitochondrial RNA by human mitochondrial DNA-dependent RNA polymerase (POLRMT) and disrupt mitochondrial RNA synthesis. An assessment of the incorporation efficiency of a ribonucleotide analog 5′-triphosphate by POLRMT may be used to evaluate the potential mitochondrial toxicity of the analog early in the development process. In this report, we provide a simple method to prepare active recombinant POLRMT. A robust in vitro nonradioactive primer extension assay was developed to assay the incorporation efficiency of ribonucleotide analog 5′-triphosphates. Our results show that many ribonucleotide analogs, including some antiviral compounds currently in various preclinical or clinical development stages, can be incorporated into newly synthesized RNA by POLRMT and that the incorporation of some of them can lead to chain termination. The discrimination (D) values of ribonucleotide analog 5′-triphosphates over those of natural ribonucleotide triphosphates (rNTPs) were measured to evaluate the incorporation efficiency of the ribonucleotide analog 5′-triphosphates by POLRMT. The discrimination values of natural rNTPs under the condition of misincorporation by POLRMT were used as a reference to evaluate the potential mitochondrial toxicity of ribonucleotide analogs. We propose the following criteria for the potential mitochondrial toxicity of ribonucleotide analogs based on D values: a safe compound has a D value of >105; a potentially toxic compound has a D value of >104 but <105; and a toxic compound has a D value of <104. This report provides a simple screening method that should assist investigators in designing ribonucleoside-based drugs having lower mitochondrial toxicity.
Collapse
|
44
|
Hillen HS, Morozov YI, Sarfallah A, Temiakov D, Cramer P. Structural Basis of Mitochondrial Transcription Initiation. Cell 2017; 171:1072-1081.e10. [PMID: 29149603 DOI: 10.1016/j.cell.2017.10.036] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/18/2017] [Accepted: 10/22/2017] [Indexed: 12/31/2022]
Abstract
Transcription in human mitochondria is driven by a single-subunit, factor-dependent RNA polymerase (mtRNAP). Despite its critical role in both expression and replication of the mitochondrial genome, transcription initiation by mtRNAP remains poorly understood. Here, we report crystal structures of human mitochondrial transcription initiation complexes assembled on both light and heavy strand promoters. The structures reveal how transcription factors TFAM and TFB2M assist mtRNAP to achieve promoter-dependent initiation. TFAM tethers the N-terminal region of mtRNAP to recruit the polymerase to the promoter whereas TFB2M induces structural changes in mtRNAP to enable promoter opening and trapping of the DNA non-template strand. Structural comparisons demonstrate that the initiation mechanism in mitochondria is distinct from that in the well-studied nuclear, bacterial, or bacteriophage transcription systems but that similarities are found on the topological and conceptual level. These results provide a framework for studying the regulation of gene expression and DNA replication in mitochondria.
Collapse
Affiliation(s)
- Hauke S Hillen
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Yaroslav I Morozov
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, 2 Medical Center Dr., Stratford, NJ 08084, USA
| | - Azadeh Sarfallah
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, 2 Medical Center Dr., Stratford, NJ 08084, USA
| | - Dmitry Temiakov
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, 2 Medical Center Dr., Stratford, NJ 08084, USA.
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
45
|
Hillen HS, Parshin AV, Agaronyan K, Morozov YI, Graber JJ, Chernev A, Schwinghammer K, Urlaub H, Anikin M, Cramer P, Temiakov D. Mechanism of Transcription Anti-termination in Human Mitochondria. Cell 2017; 171:1082-1093.e13. [PMID: 29033127 DOI: 10.1016/j.cell.2017.09.035] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/27/2017] [Accepted: 09/18/2017] [Indexed: 11/18/2022]
Abstract
In human mitochondria, transcription termination events at a G-quadruplex region near the replication origin are thought to drive replication of mtDNA by generation of an RNA primer. This process is suppressed by a key regulator of mtDNA-the transcription factor TEFM. We determined the structure of an anti-termination complex in which TEFM is bound to transcribing mtRNAP. The structure reveals interactions of the dimeric pseudonuclease core of TEFM with mobile structural elements in mtRNAP and the nucleic acid components of the elongation complex (EC). Binding of TEFM to the DNA forms a downstream "sliding clamp," providing high processivity to the EC. TEFM also binds near the RNA exit channel to prevent formation of the RNA G-quadruplex structure required for termination and thus synthesis of the replication primer. Our data provide insights into target specificity of TEFM and mechanisms by which it regulates the switch between transcription and replication of mtDNA.
Collapse
Affiliation(s)
- Hauke S Hillen
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Andrey V Parshin
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Karen Agaronyan
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Yaroslav I Morozov
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - James J Graber
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Aleksandar Chernev
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Kathrin Schwinghammer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Michael Anikin
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Dmitry Temiakov
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA.
| |
Collapse
|
46
|
Sultana S, Solotchi M, Ramachandran A, Patel SS. Transcriptional fidelities of human mitochondrial POLRMT, yeast mitochondrial Rpo41, and phage T7 single-subunit RNA polymerases. J Biol Chem 2017; 292:18145-18160. [PMID: 28882896 DOI: 10.1074/jbc.m117.797480] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/23/2017] [Indexed: 12/31/2022] Open
Abstract
Single-subunit RNA polymerases (RNAPs) are present in phage T7 and in mitochondria of all eukaryotes. This RNAP class plays important roles in biotechnology and cellular energy production, but we know little about its fidelity and error rates. Herein, we report the error rates of three single-subunit RNAPs measured from the catalytic efficiencies of correct and all possible incorrect nucleotides. The average error rates of T7 RNAP (2 × 10-6), yeast mitochondrial Rpo41 (6 × 10-6), and human mitochondrial POLRMT (RNA polymerase mitochondrial) (2 × 10-5) indicate high accuracy/fidelity of RNA synthesis resembling those of replicative DNA polymerases. All three RNAPs exhibit a distinctly high propensity for GTP misincorporation opposite dT, predicting frequent A→G errors in RNA with rates of ∼10-4 The A→C, G→A, A→U, C→U, G→U, U→C, and U→G errors mostly due to pyrimidine-purine mismatches were relatively frequent (10-5-10-6), whereas C→G, U→A, G→C, and C→A errors from purine-purine and pyrimidine-pyrimidine mismatches were rare (10-7-10-10). POLRMT also shows a high C→A error rate on 8-oxo-dG templates (∼10-4). Strikingly, POLRMT shows a high mutagenic bypass rate, which is exacerbated by TEFM (transcription elongation factor mitochondrial). The lifetime of POLRMT on terminally mismatched elongation substrate is increased in the presence of TEFM, which allows POLRMT to efficiently bypass the error and continue with transcription. This investigation of nucleotide selectivity on normal and oxidatively damaged DNA by three single-subunit RNAPs provides the basic information to understand the error rates in mitochondria and, in the case of T7 RNAP, to assess the quality of in vitro transcribed RNAs.
Collapse
Affiliation(s)
- Shemaila Sultana
- From the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and
| | - Mihai Solotchi
- School of Arts and Sciences, Rutgers University, Piscataway, New Jersey 08854
| | - Aparna Ramachandran
- From the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and
| | - Smita S Patel
- From the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and
| |
Collapse
|
47
|
Alshamsan A, Khan S, Imran A, Aljuffali IA, Alsaleh K. Prediction of Chlamydia pneumoniae protein localization in host mitochondria and cytoplasm and possible involvements in lung cancer etiology: a computational approach. Saudi Pharm J 2017; 25:1151-1157. [PMID: 30166903 PMCID: PMC6111117 DOI: 10.1016/j.jsps.2017.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/30/2017] [Indexed: 01/22/2023] Open
Abstract
Collecting evidence suggests that the intercellular infection of Chlamydia pneumoniae in lungs contributes to the etiology of lung cancer. Many proteins of Chlamydia pneumoniae outmanoeuvre the various system of the host. The infection may regulate various factors, which can influence the growth of lung cancer in affected persons. In this in-silico study, we predict potential targeting of Chlamydia pneumoniae proteins in mitochondrial and cytoplasmic comportments of host cell and their possible involvement in growth and development of lung cancer. Various cellular activities are controlled in mitochondria and cytoplasm, where the localization of Chlamydia pneumoniae proteins may alter the normal functioning of host cells. The rationale of this study is to find out and explain the connection between Chlamydia pneumoniae infection and lung cancer. A sum of 183 and 513 proteins were predicted to target in mitochondria and cytoplasm of host cell out of total 1112 proteins of Chlamydia pneumoniae. In particular, many targeted proteins may interfere with normal growth behaviour of host cells, thereby altering the decision of program cell death. Present article provides a potential connection of Chlamydia pneumoniae protein targeting and proposed that various targeted proteins may play crucial role in lung cancer etiology through diverse mechanisms.
Collapse
Affiliation(s)
- Aws Alshamsan
- Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Shahanavaj Khan
- Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahamad Imran
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim A Aljuffali
- Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Alsaleh
- Oncology Center, King Saud Medical City, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
48
|
Kruszewski J, Golik P. Pentatricopeptide Motifs in the N-Terminal Extension Domain of Yeast Mitochondrial RNA Polymerase Rpo41p Are Not Essential for Its Function. BIOCHEMISTRY. BIOKHIMIIA 2016; 81:1101-1110. [PMID: 27908235 DOI: 10.1134/s0006297916100084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The core mitochondrial RNA polymerase is a single-subunit enzyme that in yeast Saccharomyces cerevisiae is encoded by the nuclear RPO41 gene. It is an evolutionary descendant of the bacteriophage RNA polymerases, but it includes an additional unconserved N-terminal extension (NTE) domain that is unique to the organellar enzymes. This domain mediates interactions between the polymerase and accessory regulatory factors, such as yeast Sls1p and Nam1p. Previous studies demonstrated that deletion of the entire NTE domain results only in a temperature-dependent respiratory deficiency. Several sequences related to the pentatricopeptide (PPR) motifs were identified in silico in Rpo41p, three of which are located in the NTE domain. PPR repeat proteins are a large family of organellar RNA-binding factors, mostly involved in posttranscriptional gene expression mechanisms. To study their function, we analyzed the phenotype of strains bearing Rpo41p variants where each of these motifs was deleted. We found that deletion of any of the three PPR motifs in the NTE domain does not affect respiratory growth at normal temperature, and it results in a moderate decrease in mtDNA stability. Steady-state levels of COX1 and COX2 mRNAs are also moderately affected. Only the deletion of the second motif results in a partial respiratory deficiency, manifested only at elevated temperature. Our results thus indicate that the PPR motifs do not play an essential role in the function of the NTE domain of the mitochondrial RNA polymerase.
Collapse
Affiliation(s)
- J Kruszewski
- University of Warsaw, Institute of Genetics and Biotechnology, Faculty of Biology, Warsaw, 02-106, Poland.
| | | |
Collapse
|
49
|
Abstract
During transcription, RNA polymerase moves downstream along the DNA template and maintains a transcription bubble. Several recent structural studies of transcription complexes with a complete transcription bubble provide new insights into how RNAP couples the nucleotide addition reaction to its directional movement.
Collapse
Affiliation(s)
- Yuhong Zuo
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA
| | - Thomas A Steitz
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA.,b Howard Hughes Medical Institute , New Haven , CT , USA.,c Department of Chemistry , Yale University , New Haven , CT , USA
| |
Collapse
|
50
|
Kühl I, Miranda M, Posse V, Milenkovic D, Mourier A, Siira SJ, Bonekamp NA, Neumann U, Filipovska A, Polosa PL, Gustafsson CM, Larsson NG. POLRMT regulates the switch between replication primer formation and gene expression of mammalian mtDNA. SCIENCE ADVANCES 2016; 2:e1600963. [PMID: 27532055 PMCID: PMC4975551 DOI: 10.1126/sciadv.1600963] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/01/2016] [Indexed: 05/27/2023]
Abstract
Mitochondria are vital in providing cellular energy via their oxidative phosphorylation system, which requires the coordinated expression of genes encoded by both the nuclear and mitochondrial genomes (mtDNA). Transcription of the circular mammalian mtDNA depends on a single mitochondrial RNA polymerase (POLRMT). Although the transcription initiation process is well understood, it is debated whether POLRMT also serves as the primase for the initiation of mtDNA replication. In the nucleus, the RNA polymerases needed for gene expression have no such role. Conditional knockout of Polrmt in the heart results in severe mitochondrial dysfunction causing dilated cardiomyopathy in young mice. We further studied the molecular consequences of different expression levels of POLRMT and found that POLRMT is essential for primer synthesis to initiate mtDNA replication in vivo. Furthermore, transcription initiation for primer formation has priority over gene expression. Surprisingly, mitochondrial transcription factor A (TFAM) exists in an mtDNA-free pool in the Polrmt knockout mice. TFAM levels remain unchanged despite strong mtDNA depletion, and TFAM is thus protected from degradation of the AAA(+) Lon protease in the absence of POLRMT. Last, we report that mitochondrial transcription elongation factor may compensate for a partial depletion of POLRMT in heterozygous Polrmt knockout mice, indicating a direct regulatory role of this factor in transcription. In conclusion, we present in vivo evidence that POLRMT has a key regulatory role in the replication of mammalian mtDNA and is part of a transcriptional mechanism that provides a switch between primer formation for mtDNA replication and mitochondrial gene expression.
Collapse
Affiliation(s)
- Inge Kühl
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Maria Miranda
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Viktor Posse
- Department of Medical Biochemistry and Cell Biology, Göteborgs Universitet, 40530 Göteborg, Sweden
| | - Dusanka Milenkovic
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Arnaud Mourier
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
- Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Stefan J. Siira
- Harry Perkins Institute of Medical Research, Centre for Medical Research and School of Chemistry and Biochemistry, The University of Western Australia, Perth 6009, Australia
| | - Nina A. Bonekamp
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, Centre for Medical Research and School of Chemistry and Biochemistry, The University of Western Australia, Perth 6009, Australia
| | - Paola Loguercio Polosa
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Claes M. Gustafsson
- Department of Medical Biochemistry and Cell Biology, Göteborgs Universitet, 40530 Göteborg, Sweden
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|