1
|
Woods CN, Janowska MK, Ulmer LD, Kaur Sidhu J, Stone NL, James EI, Guttman M, Bush MF, Klevit RE. Activation mechanism of small heat shock protein HSPB5 revealed by disease-associated mutants. Proc Natl Acad Sci U S A 2025; 122:e2425061122. [PMID: 40377988 PMCID: PMC12107100 DOI: 10.1073/pnas.2425061122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/28/2025] [Indexed: 05/18/2025] Open
Abstract
Found from bacteria to humans, small heat shock proteins (sHSPs) are the least understood protein chaperones. HSPB5 (or αB-crystallin) is among the most widely expressed of the 10 human sHSPs, including in muscle, brain, and eye lens where it is constitutively present at high levels. A high content of disorder in HSPB5 has stymied efforts to uncover how its structure gives rise to function. To uncover its mechanisms of action, we compared human HSPB5 and two disease-associated mutants, R120G and D109H. Expecting to learn how the mutations lead to loss of function, we found instead that the mutants are constitutively activated chaperones while wild-type HSPB5 can transition reversibly between nonactivated (low activity) and activated (high activity) states in response to changing conditions. Techniques that provide information regarding interactions and accessibility of disordered regions revealed that the disordered N-terminal regions (NTR) that are required for chaperone activity exist in a complicated interaction network within HSPB5 oligomers and are sequestered from solvent in nonactivated states. Either mutation or an activating pH change causes rearrangements in the network that expose parts of the NTR, making them more available to bind an aggregating client. Although beneficial in the short-term, failure of the mutants to adopt a state with lower activity and lower NTR accessibility leads to increased coaggregation propensity and, presumably, early cataract. The results support a model where chaperone activity and solubility are modulated through the quasi-ordered NTR and its multiple competing interactions.
Collapse
Affiliation(s)
| | - Maria K. Janowska
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - Lindsey D. Ulmer
- Department of Chemistry, University of Washington, Seattle, WA98195
| | | | - Natalie L. Stone
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - Ellie I. James
- Department of Medicinal Chemistry, University of Washington, Seattle, WA98195
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA98195
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA98195
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, Seattle, WA98195
| | - Rachel E. Klevit
- Department of Biochemistry, University of Washington, Seattle, WA98195
| |
Collapse
|
2
|
Rezaei Somee L, Ebrahimi P, Agnetti G, Upadhyay M, Shobhawat R, Kumar A, Shahsavani MB, Zarei I, Amanlou M, Saboury AA, Moosavi-Movahedi AA, Yousefi R. Structural and functional consequences of the cardiomyopathy-associated p.R157C mutation in the C-terminal palindromic motif of human αB-crystallin. FEBS Lett 2025. [PMID: 40351021 DOI: 10.1002/1873-3468.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 05/14/2025]
Abstract
αB-crystallin, a small heat shock protein, is crucial for maintaining lenticular transparency and prevents protein aggregation as a molecular chaperone in various tissues. Mutations in αB-crystallin can lead to diseases such as cataracts, cardiomyopathy, and neurodegenerative disorders. This study explores the effects of the p.R157C mutation in the C-terminal domain, near the IXI motif, which is associated with cardiomyopathy. The mutant protein was generated through site-directed mutagenesis, expressed in bacterial systems, and purified by ion-exchange chromatography. Biophysical and computational techniques revealed significant alterations in secondary structure, oligomerization, and conformational stability. The mutation also enhanced chaperone activity and promoted amyloid fibril formation. These alterations may disrupt the interactions of the p.R157C mutant αB-crystallin with cardiac proteins such as desmin and calcineurin, potentially contributing to cardiomyopathy. These findings offer mechanistic insights into αB-crystallin-related cardiomyopathy, shedding light on its pathological role and potential therapeutic targets.
Collapse
Affiliation(s)
- Leila Rezaei Somee
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Iran
| | - Parisa Ebrahimi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Iran
| | - Giulio Agnetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Mansi Upadhyay
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Rahul Shobhawat
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | | | - Issa Zarei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Iran
| | | | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Iran
| |
Collapse
|
3
|
Salehi A, Bahrami Z, Shahsavani MB, Somee LR, Stroylova YY, Zarei I, Amanlou M, Hemmati M, Muronetz VI, Saboury AA, Moosavi-Movahedi AA, Yousefi R. Structural characterization and functional analysis of human αB-crystallin with the p.R11G mutation: Insights into cataractogenesis and cardiomyopathy. Int J Biol Macromol 2025; 307:141895. [PMID: 40086543 DOI: 10.1016/j.ijbiomac.2025.141895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
αB-crystallin, a member of the small heat-shock protein family, functions as a molecular chaperone and plays a critical role in maintaining cellular homeostasis by preventing the aggregation of misfolded proteins in various tissues. This research investigates the structural and functional consequences of the p.R11G mutation in human αB-crystallin, which is associated with serious health issues, including cataracts, myofibrillar myopathy, and dilated cardiomyopathy. Following the introduction of this mutation through site-directed mutagenesis, the mutant protein was expressed in a prokaryotic host system and purified using ion-exchange chromatography. The structure and stability of the mutant protein were assessed using various spectroscopic techniques. Moreover, the oligomeric structure of the mutant protein was examined using dynamic light scattering and atomic force microscopy. To evaluate the chaperone activity and cytoprotective effects of the protein, UV-Vis spectroscopy and the 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay were utilized. The results demonstrated that the p.R11G mutation significantly alters the protein's structure, leading to enhanced thermal and chemical stability, and formation of the larger oligomers compared to the wild-type protein. Additionally, the mutation was found to increase the protein's chaperone activity and its capacity to inhibit cancer cell death under oxidative stress conditions. Based on the results of our study, the significant changes observed in the structure and activity of human αB-crystallin due to this mutation elucidate the potential role of the mutated chaperone in cataract formation and myopathy. Further research is necessary to fully elucidate the underlying mechanisms and translate these findings into effective therapeutic interventions.
Collapse
Affiliation(s)
- Atefeh Salehi
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Zahra Bahrami
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Leila Rezaei Somee
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Yulia Y Stroylova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991 Moscow, Russia
| | - Issa Zarei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Hemmati
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Vladimir I Muronetz
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991 Moscow, Russia
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Xu H, Zhang X, Lv Z, Huang F, Zou Y, Wang C, Ding F, Sun Y. Computational exploration of the self-aggregation mechanisms of phenol-soluble modulins β1 and β2 in Staphylococcus aureus biofilms. Colloids Surf B Biointerfaces 2025; 248:114498. [PMID: 39778221 DOI: 10.1016/j.colsurfb.2025.114498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
The formation of functional bacterial amyloids by phenol-soluble modulins (PSMs) in Staphylococcus aureus is a critical component of biofilm-associated infections, providing robust protective barriers against antimicrobial agents and immune defenses. Clarifying the molecular mechanisms of PSM self-assembly within the biofilm matrix is essential for developing strategies to disrupt biofilm integrity and combat biofilm-related infections. In this study, we analyzed the self-assembly dynamics of PSM-β1 and PSM-β2 by examining their folding and dimerization through long-timescale atomistic discrete molecular dynamics simulations. Our findings revealed that both peptides primarily adopt helical structures as monomers but shift to β-sheets upon dimerization. Monomeric state, PSM-β1 exhibited frequent transitions between helical and β-sheet forms, while PSM-β2 largely retained a helical structure. Upon dimerization, both peptides showed pronounced β-sheet formation around conserved C-terminal residues 21-44. Residues 21-33, largely unstructured as monomers, demonstrated strong tendencies for β-sheet formation and intermolecular interactions, underscoring their central role in the self-assembly of both peptides. Additionally, the PSM-β1 N-terminus formed β-sheets only when interacting with the C-terminus, whereas the PSM-β2 N-terminus remained helical and uninvolved in β-sheet formation. These distinct aggregation behaviors likely contribute to biofilm dynamics, with C-terminal regions facilitating biofilm formation and N-terminal regions influencing stability. Targeting residues 21-33 in PSM-β1 and PSM-β2 offers a promising therapeutic approach for disrupting biofilm integrity. This study advances our understanding of PSM-β1 and PSM-β2 self-assembly and presents new targets for drug design against biofilm-associated diseases.
Collapse
Affiliation(s)
- Huan Xu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Xiaohan Zhang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Zhongyue Lv
- Department of Neurology, the Affiliated LiHuiLi Hospital of Ningbo University, Ningbo 315211, China
| | - Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), the Affiliated LiHuiLi Hospital of Ningbo University, Ningbo 315211, China
| | - Yu Zou
- Department of Sport and Exercise Science, Zhejiang University, Hangzhou 310058, China
| | - Chuang Wang
- School of Basic Medical Science, Health Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States.
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States.
| |
Collapse
|
5
|
Jami KM, Farb DC, Osumi KM, Shafer CC, Criscione S, Murray DT. Small heat shock protein HSPB8 interacts with a pre-fibrillar TDP43 low complexity domain species to delay fibril formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635368. [PMID: 39974920 PMCID: PMC11838303 DOI: 10.1101/2025.01.28.635368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The loss of cellular proteostasis through aberrant stress granule formation is implicated in neurodegenerative diseases. Stress granules are formed by biomolecular condensation involving protein-protein and protein-RNA interactions. These assemblies are protective, but can rigidify, leading to amyloid-like fibril formation, a hallmark of the disease pathology. Key proteins dictating stress granule formation and disassembly, such as TDP43, contain low-complexity (LC) domains that drive fibril formation. HSPB8, a small heat shock protein, plays a critical role modulating stress granule fluidity, preventing aggregation and promoting degradation of misfolded proteins. We examined the interaction between HSPB8 and the TDP43 LC using thioflavin T (ThT) and fluorescence polarization (FP) aggregation assays, fluorescence microscopy and photobleaching experiments, and crosslinking mass spectrometry (XL-MS). Our results indicate that HSPB8 delays TDP43 LC aggregation through domain-specific interactions with fibril nucleating species, without affecting fibril elongation rates. These findings provide mechanistic insight into how ATP-independent chaperones mediate LC domain aggregation and provide a basis for investigating how the TDP43 LC subverts chaperone activity in neurodegenerative disease.
Collapse
Affiliation(s)
- Khaled M. Jami
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Daniel C. Farb
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Kayla M. Osumi
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Catelynn C. Shafer
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Sophie Criscione
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Dylan T. Murray
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| |
Collapse
|
6
|
Zabcı S, Kocabıyık S. Anti-aggregation Properties of the Mini-Peptides Derived from Alpha Crystallin Domain of the Small Heat Shock Protein, Tpv HSP 14.3. Mol Biotechnol 2024:10.1007/s12033-024-01332-1. [PMID: 39645640 DOI: 10.1007/s12033-024-01332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024]
Abstract
The highly conserved alpha crystallin domain of the small heat shock proteins is essential for dimerization and also implicated in substrate interaction. In this study, we designed four novel mini-peptides from alpha crystallin domain of archaeal Small Heat Shock Protein Tpv HSP 14.3. Among the peptide designs, the mini-peptides 38SDLVLEAEMAGFDKKNIKVS57 and 40LVLEAEMAGFD50 overlapped to the sequences of β3-β4 region. The other two peptides 77YIDQRVDKVYKVVKLPVE94 and 107GILTVRMK114 correspond to β6-β7 region and β9, respectively. Functional activity of the peptides was evaluated by monitoring heat-induced aggregation of the model substrates alcohol dehydrogenase at 43 °C and citrate synthase at 45 °C. Our results showed that the (38-57) and the (77-94) fragments exhibited chaperone activity with both of the substrate proteins. The (40-50) fragment while exhibiting a noticeable protective effect (> 90%) when tested with citrate synthase showed an anti-chaperone property toward alcohol dehydrogenase. Unlike the (40-50) fragment, the (107-114) fragment did not show any chaperone activity with citrate synthase but exhibited the highest chaperone efficiency among four mini-peptides with alcohol dehydrogenase. The selectivity of the (40-50) and the (107-114) fragments in targeting the client proteins is most likely dependent on their surface hydrophobicity and/or charge as revealed by the sequence and exposed surface analyses.
Collapse
Affiliation(s)
- Sema Zabcı
- Department of Biological Sciences, Faculty of Arts and Science, Middle East Technical University, 06800, Ankara, Türkiye.
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Baskent University, 06790, Ankara, Türkiye.
| | - Semra Kocabıyık
- Department of Biological Sciences, Faculty of Arts and Science, Middle East Technical University, 06800, Ankara, Türkiye
| |
Collapse
|
7
|
Peters C, Haslbeck M, Buchner J. Catchers of folding gone awry: a tale of small heat shock proteins. Trends Biochem Sci 2024; 49:1063-1078. [PMID: 39271417 DOI: 10.1016/j.tibs.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024]
Abstract
Small heat shock proteins (sHsps) are an important part of the cellular system maintaining protein homeostasis under physiological and stress conditions. As molecular chaperones, they form complexes with different non-native proteins in an ATP-independent manner. Many sHsps populate ensembles of energetically similar but different-sized oligomers. Regulation of chaperone activity occurs by changing the equilibrium of these ensembles. This makes sHsps a versatile and adaptive system for trapping non-native proteins in complexes, allowing recycling with the help of ATP-dependent chaperones. In this review, we discuss progress in our understanding of the structural principles of sHsp oligomers and their functional principles, as well as their roles in aging and eye lens transparency.
Collapse
Affiliation(s)
- Carsten Peters
- School of Natural Sciences, and Department Bioscience, Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| | - Martin Haslbeck
- School of Natural Sciences, and Department Bioscience, Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany.
| | - Johannes Buchner
- School of Natural Sciences, and Department Bioscience, Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany.
| |
Collapse
|
8
|
Huang F, Yan J, Zhang X, Xu H, Lian J, Yang X, Wang C, Ding F, Sun Y. Computational insights into the aggregation mechanism and amyloidogenic core of aortic amyloid medin polypeptide. Colloids Surf B Biointerfaces 2024; 244:114192. [PMID: 39226847 PMCID: PMC11588409 DOI: 10.1016/j.colsurfb.2024.114192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
Medin amyloid, prevalent in the vessel walls of 97 % of individuals over 50, contributes to arterial stiffening and cerebrovascular dysfunction, yet our understanding of its aggregation mechanism remains limited. Dividing the full-length 50-amino-acid medin peptide into five 10-residue segments, we conducted individual investigations on each segment's self-assembly dynamics via microsecond-timescale atomistic discrete molecular dynamics (DMD) simulations. Our findings showed that medin1-10 and medin11-20 segments predominantly existed as isolated unstructured monomers, unable to form stable oligomers. Medin31-40 exhibited moderate aggregation, forming dynamic β-sheet oligomers with frequent association and dissociation. Conversely, medin21-30 and medin41-50 segments demonstrated significant self-assembly capability, readily forming stable β-sheet-rich oligomers. Residue pairwise contact frequency analysis highlighted the critical roles of residues 22-26 and 43-49 in driving the self-assembly of medin21-30 and medin41-50, acting as the β-sheet core and facilitating β-strand formation in other regions within medin monomers, expecting to extend to oligomers and fibrils. Regions containing residues 22-26 and 43-49, with substantial self-assembly abilities and assistance in β-sheet formation, represent crucial targets for amyloid inhibitor drug design against aortic medial amyloidosis (AMA). In summary, our study not only offers deep insights into the mechanism of medin amyloid formation but also provides crucial theoretical and practical guidance for future treatments of AMA.
Collapse
Affiliation(s)
- Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Jiajia Yan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Xiaohan Zhang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Huan Xu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Jiangfang Lian
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Xi Yang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Chuang Wang
- School of Medicine, Ningbo University, Ningbo 315211, China.
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States.
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States.
| |
Collapse
|
9
|
McFarland R, Noroozi R, Miller AP, Reichow SL. Dynamic fibrillar assembly of αB-crystallin induced by perturbation of the conserved NT-IXI motif resolved by cryo-EM. Nat Commun 2024; 15:10336. [PMID: 39609421 PMCID: PMC11604994 DOI: 10.1038/s41467-024-54647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
αB-crystallin is an archetypical member of the small heat shock proteins (sHSPs) vital for cellular proteostasis and mitigating protein misfolding diseases. Gaining insights into the principles defining their molecular organization and chaperone function have been hindered by intrinsic dynamic properties and limited high-resolution structural analysis. To disentangle the mechanistic underpinnings of these dynamical properties, we ablate a conserved IXI-motif located within the N-terminal (NT) domain of human αB-crystallin implicated in subunit exchange dynamics and client sequestration. This results in a profound structural transformation, from highly polydispersed caged-like native assemblies into an elongated fibril state amenable to high-resolution cryo-EM analysis. The reversible nature of this variant facilitates interrogation of functional effects due to perturbation of the NT-IXI motif in both the native-like oligomer and fibril states. Together, our investigations unveil several features thought to be key mechanistic attributes to sHSPs and point to a critical significance of the NT-IXI motif in αB-crystallin assembly, polydispersity, and chaperone activity.
Collapse
Affiliation(s)
- Russell McFarland
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Chemistry, Portland State University, Portland, OR, USA
- Analytical and Formulation Sciences, KBI Biopharma, Boulder, CO, USA
| | - Rozhan Noroozi
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Adam P Miller
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Steve L Reichow
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA.
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
- Department of Chemistry, Portland State University, Portland, OR, USA.
| |
Collapse
|
10
|
Garfagnini T, Ferrari L, Koopman MB, Dekker FA, Halters S, Van Kappel E, Mayer G, Bressler S, Maurice MM, Rüdiger SGD, Friedler A. A Peptide Strategy for Inhibiting Different Protein Aggregation Pathways. Chemistry 2024; 30:e202400080. [PMID: 38972842 DOI: 10.1002/chem.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Protein aggregation correlates with many human diseases. Protein aggregates differ in structure and shape. Strategies to develop effective aggregation inhibitors that reach the clinic failed so far. Here, we developed a family of peptides targeting early aggregation stages for both amorphous and fibrillar aggregates of proteins unrelated in sequence and structure. They act on dynamic precursors before mechanistic differentiation takes place. Using peptide arrays, we first identified peptides inhibiting the amorphous aggregation of a molten globular, aggregation-prone mutant of the Axin tumor suppressor. Optimization revealed that the peptides activity did not depend on their sequences but rather on their molecular determinants: a composition of 20-30 % flexible, 30-40 % aliphatic and 20-30 % aromatic residues, a hydrophobicity/hydrophilicity ratio close to 1, and an even distribution of residues of different nature throughout the sequence. The peptides also suppressed fibrillation of Tau, a disordered protein that forms amyloids in Alzheimer's disease, and slowed down that of Huntingtin Exon1, an amyloidogenic protein in Huntington's disease, both entirely unrelated to Axin. Our compounds thus target early stages of different aggregation mechanisms, inhibiting both amorphous and amyloid aggregation. Such cross-mechanistic, multi-targeting aggregation inhibitors may be lead compounds for developing drug candidates against various protein aggregation diseases.
Collapse
Affiliation(s)
- Tommaso Garfagnini
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 9190401, Jerusalem, Israel
| | - Luca Ferrari
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584, Utrecht CH, The Netherlands
- Science for Life, Utrecht University, Padualaan 8, 3584, Utrecht CH, The Netherlands
- Max Perutz Labs, Vienna BioCenter (VBC), University of Vienna, Vienna, Austria
| | - Margreet B Koopman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584, Utrecht CH, The Netherlands
- Science for Life, Utrecht University, Padualaan 8, 3584, Utrecht CH, The Netherlands
| | - Françoise A Dekker
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584, Utrecht CH, The Netherlands
- Science for Life, Utrecht University, Padualaan 8, 3584, Utrecht CH, The Netherlands
| | - Sem Halters
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584, Utrecht CH, The Netherlands
- Science for Life, Utrecht University, Padualaan 8, 3584, Utrecht CH, The Netherlands
| | - Eline Van Kappel
- Oncode Institute, Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584, Utrecht CH, The Netherlands
| | - Guy Mayer
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 9190401, Jerusalem, Israel
| | - Shachar Bressler
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 9190401, Jerusalem, Israel
| | - Madelon M Maurice
- Oncode Institute, Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584, Utrecht CH, The Netherlands
| | - Stefan G D Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584, Utrecht CH, The Netherlands
- Science for Life, Utrecht University, Padualaan 8, 3584, Utrecht CH, The Netherlands
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 9190401, Jerusalem, Israel
| |
Collapse
|
11
|
Cvekl A, Vijg J. Aging of the eye: Lessons from cataracts and age-related macular degeneration. Ageing Res Rev 2024; 99:102407. [PMID: 38977082 DOI: 10.1016/j.arr.2024.102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Aging is the greatest risk factor for chronic human diseases, including many eye diseases. Geroscience aims to understand the effects of the aging process on these diseases, including the genetic, molecular, and cellular mechanisms that underlie the increased risk of disease over the lifetime. Understanding of the aging eye increases general knowledge of the cellular physiology impacted by aging processes at various biological extremes. Two major diseases, age-related cataract and age-related macular degeneration (AMD) are caused by dysfunction of the lens and retina, respectively. Lens transparency and light refraction are mediated by lens fiber cells lacking nuclei and other organelles, which provides a unique opportunity to study a single aging hallmark, i.e., loss of proteostasis, within an environment of limited metabolism. In AMD, local dysfunction of the photoreceptors/retinal pigmented epithelium/Bruch's membrane/choriocapillaris complex in the macula leads to the loss of photoreceptors and eventually loss of central vision, and is driven by nearly all the hallmarks of aging and shares features with Alzheimer's disease, Parkinson's disease, cardiovascular disease, and diabetes. The aging eye can function as a model for studying basic mechanisms of aging and, vice versa, well-defined hallmarks of aging can be used as tools to understand age-related eye disease.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Jan Vijg
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
12
|
Rodina N, Hornung S, Sarkar R, Suladze S, Peters C, Schmid PWN, Niu Z, Haslbeck M, Buchner J, Kapurniotu A, Reif B. Modulation of Alzheimer's Disease Aβ40 Fibril Polymorphism by the Small Heat Shock Protein αB-Crystallin. J Am Chem Soc 2024; 146:19077-19087. [PMID: 38973199 PMCID: PMC11258688 DOI: 10.1021/jacs.4c03504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Deposition of amyloid plaques in the brains of Alzheimer's disease (AD) patients is a hallmark of the disease. AD plaques consist primarily of the beta-amyloid (Aβ) peptide but can contain other factors such as lipids, proteoglycans, and chaperones. So far, it is unclear how the cellular environment modulates fibril polymorphism and how differences in fibril structure affect cell viability. The small heat-shock protein (sHSP) alpha-B-Crystallin (αBC) is abundant in brains of AD patients, and colocalizes with Aβ amyloid plaques. Using solid-state NMR spectroscopy, we show that the Aβ40 fibril seed structure is not replicated in the presence of the sHSP. αBC prevents the generation of a compact fibril structure and leads to the formation of a new polymorph with a dynamic N-terminus. We find that the N-terminal fuzzy coat and the stability of the C-terminal residues in the Aβ40 fibril core affect the chemical and thermodynamic stability of the fibrils and influence their seeding capacity. We believe that our results yield a better understanding of how sHSP, such as αBC, that are part of the cellular environment, can affect fibril structures related to cell degeneration in amyloid diseases.
Collapse
Affiliation(s)
- Natalia Rodina
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Simon Hornung
- Division
of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 5, Freising 85354, Germany
| | - Riddhiman Sarkar
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Saba Suladze
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Carsten Peters
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Philipp W. N. Schmid
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Zheng Niu
- School
of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Martin Haslbeck
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Johannes Buchner
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Aphrodite Kapurniotu
- Division
of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 5, Freising 85354, Germany
| | - Bernd Reif
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| |
Collapse
|
13
|
Fan X, Zhang X, Yan J, Xu H, Zhao W, Ding F, Huang F, Sun Y. Computational Investigation of Coaggregation and Cross-Seeding between Aβ and hIAPP Underpinning the Cross-Talk in Alzheimer's Disease and Type 2 Diabetes. J Chem Inf Model 2024; 64:5303-5316. [PMID: 38921060 PMCID: PMC11339732 DOI: 10.1021/acs.jcim.4c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The coexistence of amyloid-β (Aβ) and human islet amyloid polypeptide (hIAPP) in the brain and pancreas is associated with an increased risk of Alzheimer's disease (AD) and type 2 diabetes (T2D) due to their coaggregation and cross-seeding. Despite this, the molecular mechanisms underlying their interaction remain elusive. Here, we systematically investigated the cross-talk between Aβ and hIAPP using atomistic discrete molecular dynamics (DMD) simulations. Our results revealed that the amyloidogenic core regions of both Aβ (Aβ10-21 and Aβ30-41) and hIAPP (hIAPP8-20 and hIAPP22-29), driving their self-aggregation, also exhibited a strong tendency for cross-interaction. This propensity led to the formation of β-sheet-rich heterocomplexes, including potentially toxic β-barrel oligomers. The formation of Aβ and hIAPP heteroaggregates did not impede the recruitment of additional peptides to grow into larger aggregates. Our cross-seeding simulations demonstrated that both Aβ and hIAPP fibrils could mutually act as seeds, assisting each other's monomers in converting into β-sheets at the exposed fibril elongation ends. The amyloidogenic core regions of Aβ and hIAPP, in both oligomeric and fibrillar states, exhibited the ability to recruit isolated peptides, thereby extending the β-sheet edges, with limited sensitivity to the amino acid sequence. These findings suggest that targeting these regions by capping them with amyloid-resistant peptide drugs may hold potential as a therapeutic approach for addressing AD, T2D, and their copathologies.
Collapse
Affiliation(s)
- Xinjie Fan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Xiaohan Zhang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Jiajia Yan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Huan Xu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Wenhui Zhao
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
14
|
Chen G, Wang Y, Zheng Z, Jiang W, Leppert A, Zhong X, Belorusova A, Siegal G, Jegerschöld C, Koeck PJB, Abelein A, Hebert H, Knight SD, Johansson J. Molecular basis for different substrate-binding sites and chaperone functions of the BRICHOS domain. Protein Sci 2024; 33:e5063. [PMID: 38864729 PMCID: PMC11168071 DOI: 10.1002/pro.5063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Proteins can misfold into fibrillar or amorphous aggregates and molecular chaperones act as crucial guardians against these undesirable processes. The BRICHOS chaperone domain, found in several otherwise unrelated proproteins that contain amyloidogenic regions, effectively inhibits amyloid formation and toxicity but can in some cases also prevent non-fibrillar, amorphous protein aggregation. Here, we elucidate the molecular basis behind the multifaceted chaperone activities of the BRICHOS domain from the Bri2 proprotein. High-confidence AlphaFold2 and RoseTTAFold predictions suggest that the intramolecular amyloidogenic region (Bri23) is part of the hydrophobic core of the proprotein, where it occupies the proposed amyloid binding site, explaining the markedly reduced ability of the proprotein to prevent an exogenous amyloidogenic peptide from aggregating. However, the BRICHOS-Bri23 complex maintains its ability to form large polydisperse oligomers that prevent amorphous protein aggregation. A cryo-EM-derived model of the Bri2 BRICHOS oligomer is compatible with surface-exposed hydrophobic motifs that get exposed and come together during oligomerization, explaining its effects against amorphous aggregation. These findings provide a molecular basis for the BRICHOS chaperone domain function, where distinct surfaces are employed against different forms of protein aggregation.
Collapse
Affiliation(s)
- Gefei Chen
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Yu Wang
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- College of Wildlife and Protected Area, Northeast Forestry UniversityHarbinChina
| | - Zihan Zheng
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Department of PharmacologyXi'an Jiaotong UniversityXi'anChina
| | - Wangshu Jiang
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Axel Leppert
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Present address:
Department of Microbiology, Tumour and Cell BiologyKarolinska InstitutetSolnaSweden
| | - Xueying Zhong
- Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyHuddingeSweden
| | | | | | - Caroline Jegerschöld
- Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyHuddingeSweden
| | - Philip J. B. Koeck
- Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyHuddingeSweden
| | - Axel Abelein
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Hans Hebert
- Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyHuddingeSweden
| | - Stefan D. Knight
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Jan Johansson
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| |
Collapse
|
15
|
Liu C, Ding X, Zhao M, Chen C, Zhang X, Zhao R, Chen Y, Xie Y. Biological effects and mechanism of β-amyloid aggregation inhibition by penetrable recombinant human HspB5-ACD structural domain protein. Biomed Pharmacother 2024; 175:116661. [PMID: 38678965 DOI: 10.1016/j.biopha.2024.116661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Alzheimer's disease (AD) is a global medical challenge. Studies have shown that neurotoxicity caused by pathological aggregation of β-amyloid (Aβ) is an important factor leading to AD. Therefore, inhibiting the pathological aggregation of Aβ is the key to treating AD. The recombinant human HspB5-ACD structural domain protein (AHspB5) prepared by our group in the previous period has been shown to have anti-amyloid aggregation effects, but its inability to penetrate biological membranes has limited its development. In this study, we prepared a recombinant fusion protein (T-AHspB5) of TAT and AHspB5. In vitro experiments showed that T-AHspB5 inhibited the formation of Aβ1-42 protofibrils and had the ability to penetrate the blood-brain barrier; in cellular experiments, T-AHspB5 prevented Aβ1-42-induced oxidative stress damage, apoptosis, and inflammatory responses in neuronal cells, and its mechanism of action was related to microglia activation and mitochondria-dependent apoptotic pathway. In animal experiments, T-AHspB5 improved memory and cognitive dysfunction and inhibited pathological changes of AD in APP/PS1 mice. In conclusion, this paper is expected to reveal the intervention mechanism and biological effect of T-AHspB5 on pathological aggregation of Aβ1-42, provide a new pathway for the treatment of AD, and lay the foundation for the future development and application of T-AHspB5.
Collapse
Affiliation(s)
- Chang Liu
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China.
| | - Xuying Ding
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Meijun Zhao
- Affiliated Hospital of Jilin Medical College, Jilin, Jilin 132013, PR China
| | - Chen Chen
- Affiliated Hospital of Yanbian University, Yanji, Jilin 133002, PR China
| | - Xiaojun Zhang
- State key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, PR China
| | - Risheng Zhao
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Yutong Chen
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Yining Xie
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| |
Collapse
|
16
|
Somee LR, Barati A, Shahsavani MB, Hoshino M, Hong J, Kumar A, Moosavi-Movahedi AA, Amanlou M, Yousefi R. Understanding the structural and functional changes and biochemical pathomechanism of the cardiomyopathy-associated p.R123W mutation in human αB-crystallin. Biochim Biophys Acta Gen Subj 2024; 1868:130579. [PMID: 38307443 DOI: 10.1016/j.bbagen.2024.130579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
αB-crystallin, a member of the small heat shock protein (sHSP) family, is expressed in diverse tissues, including the eyes, brain, muscles, and heart. This protein plays a crucial role in maintaining eye lens transparency and exhibits holdase chaperone and anti-apoptotic activities. Therefore, structural and functional changes caused by genetic mutations in this protein may contribute to the development of disorders like cataract and cardiomyopathy. Recently, the substitution of arginine 123 with tryptophan (p.R123W mutation) in human αB-crystallin has been reported to trigger cardiomyopathy. In this study, human αB-crystallin was expressed in Escherichia coli (E. coli), and the missense mutation p.R123W was created using site-directed mutagenesis. Following purification via anion exchange chromatography, the structural and functional properties of both proteins were investigated and compared using a wide range of spectroscopic and microscopic methods. The p.R123W mutation induced significant alterations in the secondary, tertiary, and quaternary structures of human αB-crystallin. This pathogenic mutation resulted in an increased β-sheet structure and formation of protein oligomers with larger sizes compared to the wild-type protein. The mutant protein also exhibited reduced chaperone activity and lower thermal stability. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) demonstrated that the p.R123W mutant protein is more prone to forming amyloid aggregates. The structural and functional changes observed in the p.R123W mutant protein, along with its increased propensity for aggregation, could impact its proper functional interaction with the target proteins in the cardiac muscle, such as calcineurin. Our results provide an explanation for the pathogenic intervention of p.R123W mutant protein in the occurrence of hypertrophic cardiomyopathy (HCM).
Collapse
Affiliation(s)
- Leila Rezaei Somee
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Anis Barati
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Masaru Hoshino
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Jun Hong
- School of Life Sciences, Henan University, Kaifen, People's Republic of China
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India
| | | | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
17
|
McFarland R, Reichow S. Dynamic fibrillar assembly of αB-crystallin induced by perturbation of the conserved NT-IXI motif resolved by cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586355. [PMID: 38585788 PMCID: PMC10996541 DOI: 10.1101/2024.03.22.586355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
αB-crystallin is an archetypical member of the small heat-shock proteins (sHSPs) vital for cellular proteostasis and mitigating protein misfolding diseases. Gaining insights into the principles defining their molecular organization and chaperone function have been hindered by intrinsic dynamic properties and limited high-resolution structural analysis. To disentangle the mechanistic underpinnings of these dynamical properties, we mutated a conserved IXI-motif located within the N-terminal (NT) domain of human αB-crystallin. This resulted in a profound structural transformation, from highly polydispersed caged-like native assemblies into a comparatively well-ordered helical fibril state amenable to high-resolution cryo-EM analysis. The reversible nature of the induced fibrils facilitated interrogation of functional effects due to perturbation of the NT-IXI motif in both the native-like oligomer and fibril states. Together, our investigations unveiled several features thought to be key mechanistic attributes to sHSPs and point to a critical significance of the NT-IXI motif in αB-crystallin assembly, dynamics and chaperone activity.
Collapse
Affiliation(s)
- Russell McFarland
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, USA
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
- Department of Chemistry, Portland State University, Portland, Oregon 97201, USA
- Current: Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Steve Reichow
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, USA
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
- Department of Chemistry, Portland State University, Portland, Oregon 97201, USA
| |
Collapse
|
18
|
Lee J, Ryu B, Kim T, Kim KK. Cryo-EM structure of a 16.5-kDa small heat-shock protein from Methanocaldococcus jannaschii. Int J Biol Macromol 2024; 258:128763. [PMID: 38103675 DOI: 10.1016/j.ijbiomac.2023.128763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The small heat-shock protein (sHSP) from the archaea Methanocaldococcus jannaschii, MjsHSP16.5, functions as a broad substrate ATP-independent holding chaperone protecting misfolded proteins from aggregation under stress conditions. This protein is the first sHSP characterized by X-ray crystallography, thereby contributing significantly to our understanding of sHSPs. However, despite numerous studies assessing its functions and structures, the precise arrangement of the N-terminal domains (NTDs) within this sHSP cage remains elusive. Here we present the cryo-electron microscopy (cryo-EM) structure of MjsHSP16.5 at 2.49-Å resolution. The subunits of MjsHSP16.5 in the cryo-EM structure exhibit lesser compaction compared to their counterparts in the crystal structure. This structural feature holds particular significance in relation to the biophysical properties of MjsHSP16.5, suggesting a close resemblance to this sHSP native state. Additionally, our cryo-EM structure unveils the density of residues 24-33 within the NTD of MjsHSP16.5, a feature that typically remains invisible in the majority of its crystal structures. Notably, these residues show a propensity to adopt a β-strand conformation and engage in antiparallel interactions with strand β1, both intra- and inter-subunit modes. These structural insights are corroborated by structural predictions, disulfide bond cross-linking studies of Cys-substitution mutants, and protein disaggregation assays. A comprehensive understanding of the structural features of MjsHSP16.5 expectedly holds the potential to inspire a wide range of interdisciplinary applications, owing to the renowned versatility of this sHSP as a nanoscale protein platform.
Collapse
Affiliation(s)
- Joohyun Lee
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Bumhan Ryu
- Research Solution Center, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Truc Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea.
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea.
| |
Collapse
|
19
|
Claeyssen C, Bulangalire N, Bastide B, Agbulut O, Cieniewski-Bernard C. Desmin and its molecular chaperone, the αB-crystallin: How post-translational modifications modulate their functions in heart and skeletal muscles? Biochimie 2024; 216:137-159. [PMID: 37827485 DOI: 10.1016/j.biochi.2023.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Maintenance of the highly organized striated muscle tissue requires a cell-wide dynamic network through protein-protein interactions providing an effective mechanochemical integrator of morphology and function. Through a continuous and complex trans-cytoplasmic network, desmin intermediate filaments ensure this essential role in heart and in skeletal muscle. Besides their role in the maintenance of cell shape and architecture (permitting contractile activity efficiency and conferring resistance towards mechanical stress), desmin intermediate filaments are also key actors of cell and tissue homeostasis. Desmin participates to several cellular processes such as differentiation, apoptosis, intracellular signalisation, mechanotransduction, vesicle trafficking, organelle biogenesis and/or positioning, calcium homeostasis, protein homeostasis, cell adhesion, metabolism and gene expression. Desmin intermediate filaments assembly requires αB-crystallin, a small heat shock protein. Over its chaperone activity, αB-crystallin is involved in several cellular functions such as cell integrity, cytoskeleton stabilization, apoptosis, autophagy, differentiation, mitochondria function or aggresome formation. Importantly, both proteins are known to be strongly associated to the aetiology of several cardiac and skeletal muscles pathologies related to desmin filaments disorganization and a strong disturbance of desmin interactome. Note that these key proteins of cytoskeleton architecture are extensively modified by post-translational modifications that could affect their functional properties. Therefore, we reviewed in the herein paper the impact of post-translational modifications on the modulation of cellular functions of desmin and its molecular chaperone, the αB-crystallin.
Collapse
Affiliation(s)
- Charlotte Claeyssen
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Nathan Bulangalire
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France; Université de Lille, CHU Lille, F-59000 Lille, France
| | - Bruno Bastide
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France.
| |
Collapse
|
20
|
Mukherjee S, Vogl DP, Becker CFW. Site-Specific Glycation of Human Heat Shock Protein (Hsp27) Enhances Its Chaperone Activity. ACS Chem Biol 2023; 18:1760-1771. [PMID: 37449780 PMCID: PMC10442856 DOI: 10.1021/acschembio.3c00214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Non-enzymatic posttranslational modifications are believed to affect at least 30% of human proteins, commonly termed glycation. Many of these modifications are implicated in various pathological conditions, e.g., cataract, diabetes, neurodegenerative diseases, and cancer. Chemical protein synthesis enables access to full-length proteins carrying site-specific modifications. One such modification, argpyrimidine (Apy), has been detected in human small heat shock protein Hsp27 and closely related proteins in patient-derived tissues. Thus far, studies have looked into only artificial mixtures of Apy modifications, and only one has analyzed Apy188. We were interested in understanding the impact of such individual Apy modifications on five different arginine sites within the crucial N-terminal domain of Hsp27. By combining protein semisynthesis with biochemical assays on semisynthetic Hsp27 analogues with single-point Apy modification at those sites, we have shown how a seemingly minimal modification within this region results in dramatically altered functional attributes.
Collapse
Affiliation(s)
- Somnath Mukherjee
- University
of Vienna, Faculty of Chemistry, Institute
of Biological Chemistry, Währinger Strasse 38, 1090 Vienna, Austria
| | - Dominik P. Vogl
- University
of Vienna, Faculty of Chemistry, Institute
of Biological Chemistry, Währinger Strasse 38, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry, Währinger Strasse 42, 1090 Vienna, Austria
| | - Christian F. W. Becker
- University
of Vienna, Faculty of Chemistry, Institute
of Biological Chemistry, Währinger Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
21
|
Wang Y, Xu J, Huang F, Yan J, Fan X, Zou Y, Wang C, Ding F, Sun Y. SEVI Inhibits Aβ Amyloid Aggregation by Capping the β-Sheet Elongation Edges. J Chem Inf Model 2023; 63:3567-3578. [PMID: 37246935 PMCID: PMC10363411 DOI: 10.1021/acs.jcim.3c00414] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Inhibiting the aggregation of amyloid peptides with endogenous peptides has broad interest due to their intrinsically high biocompatibility and low immunogenicity. Here, we investigated the inhibition mechanism of the prostatic acidic phosphatase fragment SEVI (semen-derived enhancer of viral infection) against Aβ42 fibrillization using atomistic discrete molecular dynamic simulations. Our result revealed that SEVI was intrinsically disordered with dynamic formation of residual helices. With a high positive net charge, the self-aggregation tendency of SEVI was weak. Aβ42 had a strong aggregation propensity by readily self-assembling into β-sheet-rich aggregates. SEVI preferred to interact with Aβ42, rather than SEVI themselves. In the heteroaggregates, Aβ42 mainly adopted β-sheets buried inside and capped by SEVI in the outer layer. SEVI could bind to various Aβ aggregation species─including monomers, dimers, and proto-fibrils─by capping the exposed β-sheet elongation edges. The aggregation processes Aβ42 from the formation of oligomers to conformational nucleation into fibrils and fibril growth should be inhibited as their β-sheet elongation edges are being occupied by the highly charged SEVI. Overall, our computational study uncovered the molecular mechanism of experimentally observed inhibition of SEVI against Aβ42 aggregation, providing novel insights into the development of therapeutic strategies against Alzheimer's disease.
Collapse
Affiliation(s)
- Ying Wang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Jia Xu
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Jiajia Yan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Xinjie Fan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yu Zou
- Department of Sport and Exercise Science, Zhejiang University, Hangzhou 310058, China
| | - Chuang Wang
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
22
|
Abelein A, Johansson J. Amyloid inhibition by molecular chaperones in vitro can be translated to Alzheimer's pathology in vivo. RSC Med Chem 2023; 14:848-857. [PMID: 37252101 PMCID: PMC10211315 DOI: 10.1039/d3md00040k] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/21/2023] [Indexed: 09/23/2023] Open
Abstract
Molecular chaperones are important components in the cellular quality-control machinery and increasing evidence points to potential new roles for them as suppressors of amyloid formation in neurodegenerative diseases, such as Alzheimer's disease. Approaches to treat Alzheimer's disease have not yet resulted in an effective treatment, suggesting that alternative strategies may be useful. Here, we discuss new treatment approaches based on molecular chaperones that inhibit amyloid-β (Aβ) aggregation by different microscopic mechanisms of action. Molecular chaperones that specifically target secondary nucleation reactions during Aβ aggregation in vitro - a process closely associated with Aβ oligomer generation - have shown promising results in animal treatment studies. The inhibition of Aβ oligomer generation in vitro seemingly correlates with the effects of treatment, giving indirect clues about the molecular mechanisms present in vivo. Interestingly, recent immunotherapy advances, which have demonstrated significant improvements in clinical phase III trials, have used antibodies that selectively act against Aβ oligomer formation, supporting the notion that specific inhibition of Aβ neurotoxicity is more rewarding than reducing overall amyloid fibril formation. Hence, specific modulation of chaperone activity represents a promising new strategy for treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Axel Abelein
- Department of Biosciences and Nutrition, Karolinska Institutet 141 83 Huddinge Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet 141 83 Huddinge Sweden
| |
Collapse
|
23
|
Chen G, Leppert A, Poska H, Nilsson HE, Alvira CP, Zhong X, Koeck P, Jegerschöld C, Abelein A, Hebert H, Johansson J. Short hydrophobic loop motifs in BRICHOS domains determine chaperone activity against amorphous protein aggregation but not against amyloid formation. Commun Biol 2023; 6:497. [PMID: 37156997 PMCID: PMC10167226 DOI: 10.1038/s42003-023-04883-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
ATP-independent molecular chaperones are important for maintaining cellular fitness but the molecular determinants for preventing aggregation of partly unfolded protein substrates remain unclear, particularly regarding assembly state and basis for substrate recognition. The BRICHOS domain can perform small heat shock (sHSP)-like chaperone functions to widely different degrees depending on its assembly state and sequence. Here, we observed three hydrophobic sequence motifs in chaperone-active domains, and found that they get surface-exposed when the BRICHOS domain assembles into larger oligomers. Studies of loop-swap variants and site-specific mutants further revealed that the biological hydrophobicities of the three short motifs linearly correlate with the efficiency to prevent amorphous protein aggregation. At the same time, they do not at all correlate with the ability to prevent ordered amyloid fibril formation. The linear correlations also accurately predict activities of chimeras containing short hydrophobic sequence motifs from a sHSP that is unrelated to BRICHOS. Our data indicate that short, exposed hydrophobic motifs brought together by oligomerisation are sufficient and necessary for efficient chaperone activity against amorphous protein aggregation.
Collapse
Affiliation(s)
- Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden.
| | - Axel Leppert
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, 171 65, Solna, Sweden
| | - Helen Poska
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Harriet E Nilsson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52, Huddinge, Sweden
| | | | - Xueying Zhong
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52, Huddinge, Sweden
| | - Philip Koeck
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52, Huddinge, Sweden
| | - Caroline Jegerschöld
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52, Huddinge, Sweden
| | - Axel Abelein
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Hans Hebert
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52, Huddinge, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden.
| |
Collapse
|
24
|
Huynh DT, Boyce M. Chemical Biology Approaches to Understanding Neuronal O-GlcNAcylation. Isr J Chem 2023; 63:e202200071. [PMID: 36874376 PMCID: PMC9983623 DOI: 10.1002/ijch.202200071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 11/16/2022]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is a ubiquitous post-translational modification in mammals, decorating thousands of intracellular proteins. O-GlcNAc cycling is an essential regulator of myriad aspects of cell physiology and is dysregulated in numerous human diseases. Notably, O-GlcNAcylation is abundant in the brain and numerous studies have linked aberrant O-GlcNAc signaling to various neurological conditions. However, the complexity of the nervous system and the dynamic nature of protein O-GlcNAcylation have presented challenges for studying of neuronal O-GlcNAcylation. In this context, chemical approaches have been a particularly valuable complement to conventional cellular, biochemical, and genetic methods to understand O-GlcNAc signaling and to develop future therapeutics. Here we review selected recent examples of how chemical tools have empowered efforts to understand and rationally manipulate O-GlcNAcylation in mammalian neurobiology.
Collapse
Affiliation(s)
- Duc Tan Huynh
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
25
|
Saluri M, Leppert A, Gese GV, Sahin C, Lama D, Kaldmäe M, Chen G, Elofsson A, Allison TM, Arsenian-Henriksson M, Johansson J, Lane DP, Hällberg BM, Landreh M. A "grappling hook" interaction connects self-assembly and chaperone activity of Nucleophosmin 1. PNAS NEXUS 2023; 2:pgac303. [PMID: 36743470 PMCID: PMC9896144 DOI: 10.1093/pnasnexus/pgac303] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
How the self-assembly of partially disordered proteins generates functional compartments in the cytoplasm and particularly in the nucleus is poorly understood. Nucleophosmin 1 (NPM1) is an abundant nucleolar protein that forms large oligomers and undergoes liquid-liquid phase separation by binding RNA or ribosomal proteins. It provides the scaffold for ribosome assembly but also prevents protein aggregation as part of the cellular stress response. Here, we use aggregation assays and native mass spectrometry (MS) to examine the relationship between the self-assembly and chaperone activity of NPM1. We find that oligomerization of full-length NPM1 modulates its ability to retard amyloid formation in vitro. Machine learning-based structure prediction and cryo-electron microscopy reveal fuzzy interactions between the acidic disordered region and the C-terminal nucleotide-binding domain, which cross-link NPM1 pentamers into partially disordered oligomers. The addition of basic peptides results in a tighter association within the oligomers, reducing their capacity to prevent amyloid formation. Together, our findings show that NPM1 uses a "grappling hook" mechanism to form a network-like structure that traps aggregation-prone proteins. Nucleolar proteins and RNAs simultaneously modulate the association strength and chaperone activity, suggesting a mechanism by which nucleolar composition regulates the chaperone activity of NPM1.
Collapse
Affiliation(s)
- Mihkel Saluri
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | | | | | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden,Structural Biology and NMR laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark
| | - Dilraj Lama
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | - Margit Kaldmäe
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge,, Sweden
| | - Arne Elofsson
- Science for Life Laboratory and Department of Biochemistry and Biophysics, Stockholm University, 114 19 Stockholm, Sweden
| | - Timothy M Allison
- Biomolecular Interaction Centre, School of Physical and Chemical Sciences, University of Canterbury, Upper Riccarton, Christchurch 8041, New Zealand
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge,, Sweden
| | - David P Lane
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | | | | |
Collapse
|
26
|
Bellanger T, Weidmann S. Is the lipochaperone activity of sHSP a key to the stress response encoded in its primary sequence? Cell Stress Chaperones 2023; 28:21-33. [PMID: 36367671 PMCID: PMC9877275 DOI: 10.1007/s12192-022-01308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Several strategies have been put in place by organisms to adapt to their environment. One of these strategies is the production of stress proteins such as sHSPs, which have been widely described over the last 30 years for their role as molecular chaperones. Some sHSPs have, in addition, the particularity to exert a lipochaperone role by interacting with membrane lipids to maintain an optimal membrane fluidity. However, the mechanisms involved in this sHSP-lipid interaction remain poorly understood and described rather sporadically in the literature. This review gathers the information concerning the structure and function of these proteins available in the literature in order to highlight the mechanism involved in this interaction. In addition, analysis of primary sequence data of sHSPs available in database shows that sHSPs can interact with lipids via certain amino acid residues present on some β sheets of these proteins. These residues could have a key role in the structure and/or oligomerization dynamics of sHPSs, which is certainly essential for interaction with membrane lipids and consequently for maintaining optimal cell membrane fluidity.
Collapse
Affiliation(s)
- Tiffany Bellanger
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Stéphanie Weidmann
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| |
Collapse
|
27
|
Törner R, Kupreichyk T, Hoyer W, Boisbouvier J. The role of heat shock proteins in preventing amyloid toxicity. Front Mol Biosci 2022; 9:1045616. [PMID: 36589244 PMCID: PMC9798239 DOI: 10.3389/fmolb.2022.1045616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The oligomerization of monomeric proteins into large, elongated, β-sheet-rich fibril structures (amyloid), which results in toxicity to impacted cells, is highly correlated to increased age. The concomitant decrease of the quality control system, composed of chaperones, ubiquitin-proteasome system and autophagy-lysosomal pathway, has been shown to play an important role in disease development. In the last years an increasing number of studies has been published which focus on chaperones, modulators of protein conformational states, and their effects on preventing amyloid toxicity. Here, we give a comprehensive overview of the current understanding of chaperones and amyloidogenic proteins and summarize the advances made in elucidating the impact of these two classes of proteins on each other, whilst also highlighting challenges and remaining open questions. The focus of this review is on structural and mechanistic studies and its aim is to bring novices of this field "up to speed" by providing insight into all the relevant processes and presenting seminal structural and functional investigations.
Collapse
Affiliation(s)
- Ricarda Törner
- University Grenoble Alpes, CNRS CEA Institut de Biologie Structurale (IBS), Grenoble, France,*Correspondence: Ricarda Törner, ; Jerome Boisbouvier,
| | - Tatsiana Kupreichyk
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jerome Boisbouvier
- University Grenoble Alpes, CNRS CEA Institut de Biologie Structurale (IBS), Grenoble, France,*Correspondence: Ricarda Törner, ; Jerome Boisbouvier,
| |
Collapse
|
28
|
Effects of Molecular Crowding and Betaine on HSPB5 Interactions, with Target Proteins Differing in the Quaternary Structure and Aggregation Mechanism. Int J Mol Sci 2022; 23:ijms232315392. [PMID: 36499725 PMCID: PMC9737104 DOI: 10.3390/ijms232315392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The aggregation of intracellular proteins may be enhanced under stress. The expression of heat-shock proteins (HSPs) and the accumulation of osmolytes are among the cellular protective mechanisms in these conditions. In addition, one should remember that the cell environment is highly crowded. The antiaggregation activity of HSPB5 and the effect on it of either a crowding agent (polyethylene glycol (PEG)) or an osmolyte (betaine), or their mixture, were tested on the aggregation of two target proteins that differ in the order of aggregation with respect to the protein: thermal aggregation of glutamate dehydrogenase and DTT-induced aggregation of lysozyme. The kinetic analysis of the dynamic light-scattering data indicates that crowding can decrease the chaperone-like activity of HSPB5. Nonetheless, the analytical ultracentrifugation shows the protective effect of HSPB5, which retains protein aggregates in a soluble state. Overall, various additives may either improve or impair the antiaggregation activity of HSPB5 against different protein targets. The mixed crowding arising from the presence of PEG and 1 M betaine demonstrates an extraordinary effect on the oligomeric state of protein aggregates. The shift in the equilibrium of HSPB5 dynamic ensembles allows for the regulation of its antiaggregation activity. Crowding can modulate HSPB5 activity by affecting protein-protein interactions.
Collapse
|
29
|
Lei T, Xiao Z, Bi W, Cai S, Yang Y, Du H. Targeting small heat shock proteins to degrade aggregates as a potential strategy in neurodegenerative diseases. Ageing Res Rev 2022; 82:101769. [PMID: 36283618 DOI: 10.1016/j.arr.2022.101769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 01/31/2023]
Abstract
Neurodegenerative diseases (NDs) are aging-related diseases that involve the death of neurons in the brain. Dysregulation of protein homeostasis leads to the production of toxic proteins or the formation of aggregates, which is the pathological basis of NDs. Small heat shock proteins (HSPB) is involved in the establishment of a protein quality control (PQC) system to maintain cellular homeostasis. HSPB can be secreted into the extracellular space and delivered by various routes, especially extracellular vehicles (EVs). HSPB plays an important role in influencing the aggregation phase of toxic proteins involved in heat shock transcription factor (HSF) regulation, oxidative stress, autophagy and apoptosis pathways. HSPB conferred neuroprotective effects by resisting toxic protein aggregation, reducing autophagy and reducing neuronal apoptosis. The HSPB treatment strategies, including targeted PQC system therapy and delivery of EVs-HSPB, can improve disease manifestations for NDs. This review aims to provide a comprehensive insight into the impact of HSPB in NDs and the feasibility of new technology to enhance HSPB expression and EVs-HSPB delivery for neurodegenerative disease.
Collapse
Affiliation(s)
- Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangzhuang Xiao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Wangyu Bi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Shanglin Cai
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanjie Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
30
|
Chen G, Andrade-Talavera Y, Zhong X, Hassan S, Biverstål H, Poska H, Abelein A, Leppert A, Kronqvist N, Rising A, Hebert H, Koeck PJB, Fisahn A, Johansson J. Abilities of the BRICHOS domain to prevent neurotoxicity and fibril formation are dependent on a highly conserved Asp residue. RSC Chem Biol 2022; 3:1342-1358. [PMID: 36349220 PMCID: PMC9627735 DOI: 10.1039/d2cb00187j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/15/2022] [Indexed: 09/23/2023] Open
Abstract
Proteins can self-assemble into amyloid fibrils or amorphous aggregates and thereby cause disease. Molecular chaperones can prevent both these types of protein aggregation, but to what extent the respective mechanisms are overlapping is not fully understood. The BRICHOS domain constitutes a disease-associated chaperone family, with activities against amyloid neurotoxicity, fibril formation, and amorphous protein aggregation. Here, we show that the activities of BRICHOS against amyloid-induced neurotoxicity and fibril formation, respectively, are oppositely dependent on a conserved aspartate residue, while the ability to suppress amorphous protein aggregation is unchanged by Asp to Asn mutations. The Asp is evolutionarily highly conserved in >3000 analysed BRICHOS domains but is replaced by Asn in some BRICHOS families. The conserved Asp in its ionized state promotes structural flexibility and has a pK a value between pH 6.0 and 7.0, suggesting that chaperone effects can be differently affected by physiological pH variations.
Collapse
Affiliation(s)
- Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet 141 52 Huddinge Sweden
| | - Yuniesky Andrade-Talavera
- Neuronal Oscillations Laboratory, Center for Alzheimer Research, Departments of NVS and KBH, Karolinska Institutet 171 77 Stockholm Sweden
| | - Xueying Zhong
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology 141 52 Huddinge Sweden
| | - Sameer Hassan
- Department of Biosciences and Nutrition, Karolinska Institutet 141 52 Huddinge Sweden
| | - Henrik Biverstål
- Department of Biosciences and Nutrition, Karolinska Institutet 141 52 Huddinge Sweden
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis Riga LV-1006 Latvia
| | - Helen Poska
- Department of Biosciences and Nutrition, Karolinska Institutet 141 52 Huddinge Sweden
- School of Natural Sciences and Health, Tallinn University Tallinn Estonia
| | - Axel Abelein
- Department of Biosciences and Nutrition, Karolinska Institutet 141 52 Huddinge Sweden
| | - Axel Leppert
- Department of Biosciences and Nutrition, Karolinska Institutet 141 52 Huddinge Sweden
| | - Nina Kronqvist
- Department of Biosciences and Nutrition, Karolinska Institutet 141 52 Huddinge Sweden
| | - Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet 141 52 Huddinge Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences 750 07 Uppsala Sweden
| | - Hans Hebert
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology 141 52 Huddinge Sweden
| | - Philip J B Koeck
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology 141 52 Huddinge Sweden
| | - André Fisahn
- Neuronal Oscillations Laboratory, Center for Alzheimer Research, Departments of NVS and KBH, Karolinska Institutet 171 77 Stockholm Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet 141 52 Huddinge Sweden
| |
Collapse
|
31
|
Xu Z, Gong Y, Zou Y, Wan J, Tang J, Zhan C, Wei G, Zhang Q. Dissecting the Inhibitory Mechanism of the αB-Crystallin Domain against Aβ 42 Aggregation and Its Effect on Aβ 42 Protofibrils: A Molecular Dynamics Simulation Study. ACS Chem Neurosci 2022; 13:2842-2851. [PMID: 36153964 DOI: 10.1021/acschemneuro.2c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Alzheimer's disease (AD) is related to the misfolding and aggregation of amyloid-β (Aβ) protein, and its major pathological hallmark is fibrillary β-amyloid plaques. Impeding the formation of Aβ β-structure-rich aggregates and dissociating Aβ fibrils are considered potent strategies to suppress the onset and progression of AD. As a molecular chaperone, human αB-crystallin has received extensive attention in the inhibition of protein aggregation. Previous experiments reported that the structured core region of αB-crystallin (αBC) exhibits a better preventive effect on Aβ aggregation and toxicity than the full-length protein. However, the molecular mechanism behind the effect of inhibition remains mostly unknown. Herein, we carried out six 500 ns molecular dynamics (MD) simulations to investigate the inhibitory mechanism of αBC on Aβ42 aggregation. Our simulations show that αBC greatly impedes the formation of β-structure contents. We find that the binding of αBC to the Aβ42 monomer is driven by polar, hydrophobic, and H-bonding interactions. To explore whether αBC could destabilize Aβ42 protofibrils, we also carried out MD simulations of Aβ42 protofibrils with and without αBC. The results show that αBC interacts with three binding sites of the Aβ42 protofibril, and the binding is mainly driven by polar and H-bonding interactions. The binding of αBC at these three sites has a preferred dissociation effect on the β-structure content, kink angle, and K28-A42 salt bridges. Overall, this study not only discloses the molecular mechanism of αBC against Aβ42 aggregation but also demonstrates the disruption effects of αBC on Aβ42 protofibrils, which yields an avenue for designing anti-AD drug candidates.
Collapse
Affiliation(s)
- Zhengdong Xu
- School of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China
| | - Yehong Gong
- School of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China.,School of Sports Science and Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
| | - Yu Zou
- Department Sport and Exercise Science, College of Education, Zhejiang University, 148 Tianmenshan Road, Hangzhou 310007, Zhejiang, People's Republic of China
| | - Jiaqian Wan
- School of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China
| | - Jiaxing Tang
- School of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China
| | - Chendi Zhan
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Qingwen Zhang
- School of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China
| |
Collapse
|
32
|
Moncaster JA, Moir RD, Burton MA, Chadwick O, Minaeva O, Alvarez VE, Ericsson M, Clark JI, McKee AC, Tanzi RE, Goldstein LE. Alzheimer's disease amyloid-β pathology in the lens of the eye. Exp Eye Res 2022; 221:108974. [PMID: 35202705 PMCID: PMC9873124 DOI: 10.1016/j.exer.2022.108974] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 01/26/2023]
Abstract
Neuropathological hallmarks of Alzheimer's disease (AD) include pathogenic accumulation of amyloid-β (Aβ) peptides and age-dependent formation of amyloid plaques in the brain. AD-associated Aβ neuropathology begins decades before onset of cognitive symptoms and slowly progresses over the course of the disease. We previously reported discovery of Aβ deposition, β-amyloidopathy, and co-localizing supranuclear cataracts (SNC) in lenses from people with AD, but not other neurodegenerative disorders or normal aging. We confirmed AD-associated Aβ molecular pathology in the lens by immunohistopathology, amyloid histochemistry, immunoblot analysis, epitope mapping, immunogold electron microscopy, quantitative immunoassays, and tryptic digest mass spectrometry peptide sequencing. Ultrastructural analysis revealed that AD-associated Aβ deposits in AD lenses localize as electron-dense microaggregates in the cytoplasm of supranuclear (deep cortex) fiber cells. These Aβ microaggregates also contain αB-crystallin and scatter light, thus linking Aβ pathology and SNC phenotype expression in the lenses of people with AD. Subsequent research identified Aβ lens pathology as the molecular origin of the distinctive cataracts associated with Down syndrome (DS, trisomy 21), a chromosomal disorder invariantly associated with early-onset Aβ accumulation and Aβ amyloidopathy in the brain. Investigation of 1249 participants in the Framingham Eye Study found that AD-associated quantitative traits in brain and lens are co-heritable. Moreover, AD-associated lens traits preceded MRI brain traits and cognitive deficits by a decade or more and predicted future AD. A genome-wide association study of bivariate outcomes in the same subjects identified a new AD risk factor locus in the CTNND2 gene encoding δ-catenin, a protein that modulates Aβ production in brain and lens. Here we report identification of AD-related human Aβ (hAβ) lens pathology and age-dependent SNC phenotype expression in the Tg2576 transgenic mouse model of AD. Tg2576 mice express Swedish mutant human amyloid precursor protein (APP-Swe), accumulate hAβ peptides and amyloid pathology in the brain, and exhibit cognitive deficits that slowly progress with increasing age. We found that Tg2576 trangenic (Tg+) mice, but not non-transgenic (Tg-) control mice, also express human APP, accumulate hAβ peptides, and develop hAβ molecular and ultrastructural pathologies in the lens. Tg2576 Tg+ mice exhibit age-dependent Aβ supranuclear lens opacification that recapitulates lens pathology and SNC phenotype expression in human AD. In addition, we detected hAβ in conditioned medium from lens explant cultures prepared from Tg+ mice, but not Tg- control mice, a finding consistent with constitutive hAβ generation in the lens. In vitro studies showed that hAβ promoted mouse lens protein aggregation detected by quasi-elastic light scattering (QLS) spectroscopy. These results support mechanistic (genotype-phenotype) linkage between Aβ pathology and AD-related phenotypes in lens and brain. Collectively, our findings identify Aβ pathology as the shared molecular etiology of two age-dependent AD-related cataracts associated with two human diseases (AD, DS) and homologous murine cataracts in the Tg2576 transgenic mouse model of AD. These results represent the first evidence of AD-related Aβ pathology outside the brain and point to lens Aβ as an optically-accessible AD biomarker for early detection and longitudinal monitoring of this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Juliet A. Moncaster
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, 02118, USA,Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA
| | - Robert D. Moir
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Mark A. Burton
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Oliver Chadwick
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Olga Minaeva
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, 02118, USA,Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA
| | - Victor E. Alvarez
- Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA,Edith Nourse Rogers Memorial Veterans’ Hospital, Bedford, MA, 01730, USA
| | - Maria Ericsson
- Electron Microscopy Facility, Harvard Medical School, Boston, MA, 02115, USA
| | - John I. Clark
- Departments of Biological Structure and Ophthalmology, University of Washington, Seattle, WA, 98195, USA
| | - Ann C. McKee
- Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA,Edith Nourse Rogers Memorial Veterans’ Hospital, Bedford, MA, 01730, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Lee E. Goldstein
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, 02118, USA,Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA,Corresponding author. Molecular Aging & Development Laboratory, Boston University, School of Medicine, 670 Albany Street, Boston, MA, 02118, USA. (L.E. Goldstein)
| |
Collapse
|
33
|
Selig EE, Lynn RJ, Zlatic CO, Mok YF, Ecroyd H, Gooley PR, Griffin MDW. The Monomeric α-Crystallin Domain of the Small Heat-shock Proteins αB-crystallin and Hsp27 Binds Amyloid Fibril Ends. J Mol Biol 2022; 434:167711. [PMID: 35777462 DOI: 10.1016/j.jmb.2022.167711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/05/2022] [Accepted: 06/25/2022] [Indexed: 11/25/2022]
Abstract
Small heat-shock proteins (sHSPs) are ubiquitously expressed molecular chaperones present in all kingdoms of life that inhibit protein misfolding and aggregation. Despite their importance in proteostasis, the structure-function relationships of sHSPs remain elusive. Human sHSPs are characterised by a central, highly conserved α-crystallin domain (ACD) and variable-length N- and C-terminal regions. The ACD forms antiparallel homodimers via an extended β-strand, creating a shared β-sheet at the dimer interface. The N- and C-terminal regions mediate formation of higher order oligomers that are thought to act as storage forms for chaperone-active dimers. We investigated the interactions of the ACD of two human sHSPs, αB-crystallin (αB-C) and Hsp27, with apolipoprotein C-II amyloid fibrils using analytical ultracentrifugation and nuclear magnetic resonance spectroscopy. The ACD was found to interact transiently with amyloid fibrils to inhibit fibril elongation and naturally occurring fibril end-to-end joining. This interaction was sensitive to the concentration of fibril ends indicating a 'fibril-capping' interaction. Furthermore, resonances arising from the ACD monomer were attenuated to a greater extent than those of the ACD dimer in the presence of fibrils, suggesting that the monomer may bind fibrils. This hypothesis was supported by mutagenesis studies in which disulfide cross-linked ACD dimers formed by both αB-C and Hsp27 were less effective at inhibiting amyloid fibril elongation and fibril end-to-end joining than ACD constructs lacking disulfide cross-linking. Our results indicate that sHSP monomers inhibit amyloid fibril elongation, highlighting the importance of the dynamic oligomeric nature of sHSPs for client binding.
Collapse
Affiliation(s)
- Emily E Selig
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Roberta J Lynn
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Courtney O Zlatic
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Yee-Foong Mok
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
34
|
Le Marchand T, Schubeis T, Bonaccorsi M, Paluch P, Lalli D, Pell AJ, Andreas LB, Jaudzems K, Stanek J, Pintacuda G. 1H-Detected Biomolecular NMR under Fast Magic-Angle Spinning. Chem Rev 2022; 122:9943-10018. [PMID: 35536915 PMCID: PMC9136936 DOI: 10.1021/acs.chemrev.1c00918] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 02/08/2023]
Abstract
Since the first pioneering studies on small deuterated peptides dating more than 20 years ago, 1H detection has evolved into the most efficient approach for investigation of biomolecular structure, dynamics, and interactions by solid-state NMR. The development of faster and faster magic-angle spinning (MAS) rates (up to 150 kHz today) at ultrahigh magnetic fields has triggered a real revolution in the field. This new spinning regime reduces the 1H-1H dipolar couplings, so that a direct detection of 1H signals, for long impossible without proton dilution, has become possible at high resolution. The switch from the traditional MAS NMR approaches with 13C and 15N detection to 1H boosts the signal by more than an order of magnitude, accelerating the site-specific analysis and opening the way to more complex immobilized biological systems of higher molecular weight and available in limited amounts. This paper reviews the concepts underlying this recent leap forward in sensitivity and resolution, presents a detailed description of the experimental aspects of acquisition of multidimensional correlation spectra with fast MAS, and summarizes the most successful strategies for the assignment of the resonances and for the elucidation of protein structure and conformational dynamics. It finally outlines the many examples where 1H-detected MAS NMR has contributed to the detailed characterization of a variety of crystalline and noncrystalline biomolecular targets involved in biological processes ranging from catalysis through drug binding, viral infectivity, amyloid fibril formation, to transport across lipid membranes.
Collapse
Affiliation(s)
- Tanguy Le Marchand
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Tobias Schubeis
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Marta Bonaccorsi
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Biochemistry and Biophysics, Stockholm
University, Svante Arrhenius
väg 16C SE-106 91, Stockholm, Sweden
| | - Piotr Paluch
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Daniela Lalli
- Dipartimento
di Scienze e Innovazione Tecnologica, Università
del Piemonte Orientale “A. Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Andrew J. Pell
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, SE-106
91 Stockholm, Sweden
| | - Loren B. Andreas
- Department
for NMR-Based Structural Biology, Max-Planck-Institute
for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Kristaps Jaudzems
- Latvian
Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006 Latvia
- Faculty
of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Jan Stanek
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Guido Pintacuda
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
35
|
Calabrese G, Molzahn C, Mayor T. Protein interaction networks in neurodegenerative diseases: from physiological function to aggregation. J Biol Chem 2022; 298:102062. [PMID: 35623389 PMCID: PMC9234719 DOI: 10.1016/j.jbc.2022.102062] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/26/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
The accumulation of protein inclusions is linked to many neurodegenerative diseases that typically develop in older individuals, due to a combination of genetic and environmental factors. In rare familial neurodegenerative disorders, genes encoding for aggregation-prone proteins are often mutated. While the underlying mechanism leading to these diseases still remains to be fully elucidated, efforts in the past 20 years revealed a vast network of protein–protein interactions that play a major role in regulating the aggregation of key proteins associated with neurodegeneration. Misfolded proteins that can oligomerize and form insoluble aggregates associate with molecular chaperones and other elements of the proteolytic machineries that are the frontline workers attempting to protect the cells by promoting clearance and preventing aggregation. Proteins that are normally bound to aggregation-prone proteins can become sequestered and mislocalized in protein inclusions, leading to their loss of function. In contrast, mutations, posttranslational modifications, or misfolding of aggregation-prone proteins can lead to gain of function by inducing novel or altered protein interactions, which in turn can impact numerous essential cellular processes and organelles, such as vesicle trafficking and the mitochondria. This review examines our current knowledge of protein–protein interactions involving several key aggregation-prone proteins that are associated with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, or amyotrophic lateral sclerosis. We aim to provide an overview of the protein interaction networks that play a central role in driving or mitigating inclusion formation, while highlighting some of the key proteomic studies that helped to uncover the extent of these networks.
Collapse
Affiliation(s)
- Gaetano Calabrese
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| | - Cristen Molzahn
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada
| | - Thibault Mayor
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| |
Collapse
|
36
|
Törner R, Kupreichyk T, Gremer L, Debled EC, Fenel D, Schemmert S, Gans P, Willbold D, Schoehn G, Hoyer W, Boisbouvier J. Structural basis for the inhibition of IAPP fibril formation by the co-chaperonin prefoldin. Nat Commun 2022; 13:2363. [PMID: 35501361 PMCID: PMC9061850 DOI: 10.1038/s41467-022-30042-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/13/2022] [Indexed: 01/16/2023] Open
Abstract
Chaperones, as modulators of protein conformational states, are key cellular actors to prevent the accumulation of fibrillar aggregates. Here, we integrated kinetic investigations with structural studies to elucidate how the ubiquitous co-chaperonin prefoldin inhibits diabetes associated islet amyloid polypeptide (IAPP) fibril formation. We demonstrated that both human and archaeal prefoldin interfere similarly with the IAPP fibril elongation and secondary nucleation pathways. Using archaeal prefoldin model, we combined nuclear magnetic resonance spectroscopy with electron microscopy to establish that the inhibition of fibril formation is mediated by the binding of prefoldin's coiled-coil helices to the flexible IAPP N-terminal segment accessible on the fibril surface and fibril ends. Atomic force microscopy demonstrates that binding of prefoldin to IAPP leads to the formation of lower amounts of aggregates, composed of shorter fibrils, clustered together. Linking structural models with observed fibrillation inhibition processes opens perspectives for understanding the interference between natural chaperones and formation of disease-associated amyloids.
Collapse
Affiliation(s)
- Ricarda Törner
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Tatsiana Kupreichyk
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Lothar Gremer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Elisa Colas Debled
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Daphna Fenel
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Sarah Schemmert
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Pierre Gans
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Guy Schoehn
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Wolfgang Hoyer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| | - Jerome Boisbouvier
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France.
| |
Collapse
|
37
|
Holguin BA, Hildenbrand ZL, Bernal RA. Insights Into the Role of Heat Shock Protein 27 in the Development of Neurodegeneration. Front Mol Neurosci 2022; 15:868089. [PMID: 35431800 PMCID: PMC9005852 DOI: 10.3389/fnmol.2022.868089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022] Open
Abstract
Small heat shock protein 27 is a critically important chaperone, that plays a key role in several essential and varied physiological processes. These include thermotolerance, apoptosis, cytoskeletal dynamics, cell differentiation, protein folding, among others. Despite its relatively small size and intrinsically disordered termini, it forms large and polydisperse oligomers that are in equilibrium with dimers. This equilibrium is driven by transient interactions between the N-terminal region, the α-crystallin domain, and the C-terminal region. The continuous redistribution of binding partners results in a conformationally dynamic protein that allows it to adapt to different functions where substrate capture is required. However, the intrinsic disorder of the amino and carboxy terminal regions and subsequent conformational variability has made structural investigations challenging. Because heat shock protein 27 is critical for so many key cellular functions, it is not surprising that it also has been linked to human disease. Charcot-Marie-Tooth and distal hereditary motor neuropathy are examples of neurodegenerative disorders that arise from single point mutations in heat shock protein 27. The development of possible treatments, however, depends on our understanding of its normal function at the molecular level so we might be able to understand how mutations manifest as disease. This review will summarize recent reports describing investigations into the structurally elusive regions of Hsp27. Recent insights begin to provide the required context to explain the relationship between a mutation and the resulting loss or gain of function that leads to Charcot-Marie Tooth disease and distal hereditary motor neuropathy.
Collapse
|
38
|
Soluble TREM2 inhibits secondary nucleation of Aβ fibrillization and enhances cellular uptake of fibrillar Aβ. Proc Natl Acad Sci U S A 2022; 119:2114486119. [PMID: 35082148 PMCID: PMC8812518 DOI: 10.1073/pnas.2114486119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 01/21/2023] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is a single-pass transmembrane receptor of the immunoglobulin superfamily that is secreted in a soluble (sTREM2) form. Mutations in TREM2 have been linked to increased risk of Alzheimer's disease (AD). A prominent neuropathological component of AD is deposition of the amyloid-β (Aβ) into plaques, particularly Aβ40 and Aβ42. While the membrane-bound form of TREM2 is known to facilitate uptake of Aβ fibrils and the polarization of microglial processes toward amyloid plaques, the role of its soluble ectodomain, particularly in interactions with monomeric or fibrillar Aβ, has been less clear. Our results demonstrate that sTREM2 does not bind to monomeric Aβ40 and Aβ42, even at a high micromolar concentration, while it does bind to fibrillar Aβ42 and Aβ40 with equal affinities (2.6 ± 0.3 µM and 2.3 ± 0.4 µM). Kinetic analysis shows that sTREM2 inhibits the secondary nucleation step in the fibrillization of Aβ, while having little effect on the primary nucleation pathway. Furthermore, binding of sTREM2 to fibrils markedly enhanced uptake of fibrils into human microglial and neuroglioma derived cell lines. The disease-associated sTREM2 mutant, R47H, displayed little to no effect on fibril nucleation and binding, but it decreased uptake and functional responses markedly. We also probed the structure of the WT sTREM2-Aβ fibril complex using integrative molecular modeling based primarily on the cross-linking mass spectrometry data. The model shows that sTREM2 binds fibrils along one face of the structure, leaving a second, mutation-sensitive site free to mediate cellular binding and uptake.
Collapse
|
39
|
Karamanos TK, Clore GM. Large Chaperone Complexes Through the Lens of Nuclear Magnetic Resonance Spectroscopy. Annu Rev Biophys 2022; 51:223-246. [PMID: 35044800 DOI: 10.1146/annurev-biophys-090921-120150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular chaperones are the guardians of the proteome inside the cell. Chaperones recognize and bind unfolded or misfolded substrates, thereby preventing further aggregation; promoting correct protein folding; and, in some instances, even disaggregating already formed aggregates. Chaperones perform their function by means of an array of weak protein-protein interactions that take place over a wide range of timescales and are therefore invisible to structural techniques dependent upon the availability of highly homogeneous samples. Nuclear magnetic resonance (NMR) spectroscopy, however, is ideally suited to study dynamic, rapidly interconverting conformational states and protein-protein interactions in solution, even if these involve a high-molecular-weight component. In this review, we give a brief overview of the principles used by chaperones to bind their client proteins and describe NMR methods that have emerged as valuable tools to probe chaperone-substrate and chaperone-chaperone interactions. We then focus on a few systems for which the application of these methods has greatly increased our understanding of the mechanisms underlying chaperone functions. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom;
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
40
|
Zhang Y, Liu Y, Zhao W, Sun Y. Hydroxylated single-walled carbon nanotube inhibits β2m 21-31 fibrillization and disrupts pre-formed proto-fibrils. Int J Biol Macromol 2021; 193:1-7. [PMID: 34687758 DOI: 10.1016/j.ijbiomac.2021.10.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022]
Abstract
Pathological aggregation of amyloid polypeptides is associated with numerous degenerative diseases. Preventing aggregation and clearing amyloid deposits are considered as promising strategies against amyloidosis. With the capacity of crossing the blood-brain barrier and good biocompatibility, the hydroxylated single-walled carbon nanotube (SWCNT-OH) has been shown with excellent anti-amyloid properties. Here, we systematically studied the SWCNT-OH effects on the fibrillization of the β2m21-31 peptides utilizing all-atom discrete molecular dynamics (DMD) simulation. Our results demonstrated the isolated β2m21-31 peptides first nucleated into unstructured oligomers followed by coil-to-sheet conformational conversions in oligomers with at least six peptides. The elongation and lateral surfaces of the preformed β-sheet could catalyze the other unstructured monomers and small oligomers converted into β-sheet formations via dock-lock fibril growth and secondary nucleation processes. Eventually, the β2m21-31 peptides would self-assemble into well-ordered cross-β structures. Regardless of isolated monomers or well-defined cross-β assemblies, the β2m21-31 would attach on the surfaces of SWCNT-OH adopting unstructured formations indicating the SWCNT-OH not only inhibited the fibrillization of β2m21-31 but also destroyed pre-formed proto-fibrils. Overall, our study displays a complete picture of the fibrillization mechanism of β2m21-31 and the amyloid inhibitory mechanism of SWCNT-OH, offering new insight into the de-novo design of anti-amyloid inhibitors.
Collapse
Affiliation(s)
- Yu Zhang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yuying Liu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Wenhui Zhao
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
41
|
Reif B. Deuteration for High-Resolution Detection of Protons in Protein Magic Angle Spinning (MAS) Solid-State NMR. Chem Rev 2021; 122:10019-10035. [PMID: 34870415 DOI: 10.1021/acs.chemrev.1c00681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton detection developed in the last 20 years as the method of choice to study biomolecules in the solid state. In perdeuterated proteins, proton dipolar interactions are strongly attenuated, which allows yielding of high-resolution proton spectra. Perdeuteration and backsubstitution of exchangeable protons is essential if samples are rotated with MAS rotation frequencies below 60 kHz. Protonated samples can be investigated directly without spin dilution using proton detection methods in case the MAS frequency exceeds 110 kHz. This review summarizes labeling strategies and the spectroscopic methods to perform experiments that yield assignments, quantitative information on structure, and dynamics using perdeuterated samples. Techniques for solvent suppression, H/D exchange, and deuterium spectroscopy are discussed. Finally, experimental and theoretical results that allow estimation of the sensitivity of proton detected experiments as a function of the MAS frequency and the external B0 field in a perdeuterated environment are compiled.
Collapse
Affiliation(s)
- Bernd Reif
- Bayerisches NMR Zentrum (BNMRZ) at the Department of Chemistry, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany.,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
42
|
Mühlhofer M, Peters C, Kriehuber T, Kreuzeder M, Kazman P, Rodina N, Reif B, Haslbeck M, Weinkauf S, Buchner J. Phosphorylation activates the yeast small heat shock protein Hsp26 by weakening domain contacts in the oligomer ensemble. Nat Commun 2021; 12:6697. [PMID: 34795272 PMCID: PMC8602628 DOI: 10.1038/s41467-021-27036-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Hsp26 is a small heat shock protein (sHsp) from S. cerevisiae. Its chaperone activity is activated by oligomer dissociation at heat shock temperatures. Hsp26 contains 9 phosphorylation sites in different structural elements. Our analysis of phospho-mimetic mutations shows that phosphorylation activates Hsp26 at permissive temperatures. The cryo-EM structure of the Hsp26 40mer revealed contacts between the conserved core domain of Hsp26 and the so-called thermosensor domain in the N-terminal part of the protein, which are targeted by phosphorylation. Furthermore, several phosphorylation sites in the C-terminal extension, which link subunits within the oligomer, are sensitive to the introduction of negative charges. In all cases, the intrinsic inhibition of chaperone activity is relieved and the N-terminal domain becomes accessible for substrate protein binding. The weakening of domain interactions within and between subunits by phosphorylation to activate the chaperone activity in response to proteotoxic stresses independent of heat stress could be a general regulation principle of sHsps.
Collapse
Affiliation(s)
- Moritz Mühlhofer
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Carsten Peters
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Thomas Kriehuber
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany ,grid.420061.10000 0001 2171 7500Present Address: Boehringer Ingelheim, Birkendorfer Str. 65, 88397 Biberach an der Riß, Germany
| | - Marina Kreuzeder
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany ,grid.5252.00000 0004 1936 973XPresent Address: Ludwig-Maximilians-Universität München, Biozentrum Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Pamina Kazman
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany ,grid.424277.0Present Address: Roche Diagnostics, Nonnenwald 2, 82377 Penzberg, Germany
| | - Natalia Rodina
- grid.6936.a0000000123222966BNMRZ, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 2, 85747 Garching, Germany ,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Bernd Reif
- grid.6936.a0000000123222966BNMRZ, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 2, 85747 Garching, Germany ,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Martin Haslbeck
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Sevil Weinkauf
- grid.6936.a0000000123222966Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Johannes Buchner
- Center for Protein Assemblies, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 8, 85747, Garching, Germany.
| |
Collapse
|
43
|
Fürsch J, Voormann C, Kammer KM, Stengel F. Structural Probing of Hsp26 Activation and Client Binding by Quantitative Cross-Linking Mass Spectrometry. Anal Chem 2021; 93:13226-13234. [PMID: 34542282 DOI: 10.1021/acs.analchem.1c02282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small heat-shock proteins (sHSPs) are important members of the cellular stress response in all species. Their best-described function is the binding of early unfolding states and the resulting prevention of protein aggregation. Many sHSPs exist as a polydisperse composition of oligomers, which undergoes changes in subunit composition, folding status, and relative distribution upon heat activation. To date, only an incomplete picture of the mechanism of sHSP activation exists; in particular, the molecular basis of how sHSPs bind client proteins and mediate client specificity is not fully understood. In this study, we have applied cross-linking mass spectrometry (XL-MS) to obtain detailed structural information on sHSP activation and client binding for yeast Hsp26. Our cross-linking data reveals the middle domain of Hsp26 as a client-independent interface in multiple Hsp26::client complexes and indicates that client specificity is likely mediated via additional binding sites within its α-crystallin domain and C-terminal extension. Our quantitative XL-MS data underpins the middle domain as the main driver of heat-induced activation and client binding but shows that global rearrangements spanning all domains of Hsp26 take place simultaneously. We also investigated a Hsp26::client complex in the presence of Ssa1 (Hsp70) and Ydj1(Hsp40) at the initial stage of refolding and observe that the interaction between refolding chaperones is altered by the presence of a client protein, pointing to a mechanism where the interaction of Ydj1 with the HSP::client complex initiates the assembly of the active refolding machinery.
Collapse
Affiliation(s)
- Julius Fürsch
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Carsten Voormann
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Kai-Michael Kammer
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Florian Stengel
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
44
|
The Pathophysiological Role of Heat Shock Response in Autoimmunity: A Literature Review. Cells 2021; 10:cells10102626. [PMID: 34685607 PMCID: PMC8533860 DOI: 10.3390/cells10102626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Within the last two decades, there has been increasing evidence that heat-shock proteins can have a differential influence on the immune system. They can either provoke or ameliorate immune responses. This review focuses on outlining the stimulatory as well as the inhibitory effects of heat-shock proteins 27, 40, 70, 65, 60, and 90 in experimental and clinical autoimmune settings.
Collapse
|
45
|
The binding of the small heat-shock protein αB-crystallin to fibrils of α-synuclein is driven by entropic forces. Proc Natl Acad Sci U S A 2021; 118:2108790118. [PMID: 34518228 PMCID: PMC8463877 DOI: 10.1073/pnas.2108790118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 11/18/2022] Open
Abstract
Molecular chaperones are key components of the cellular proteostasis network whose role includes the suppression of the formation and proliferation of pathogenic aggregates associated with neurodegenerative diseases. The molecular principles that allow chaperones to recognize misfolded and aggregated proteins remain, however, incompletely understood. To address this challenge, here we probe the thermodynamics and kinetics of the interactions between chaperones and protein aggregates under native solution conditions using a microfluidic platform. We focus on the binding between amyloid fibrils of α-synuclein, associated with Parkinson's disease, to the small heat-shock protein αB-crystallin, a chaperone widely involved in the cellular stress response. We find that αB-crystallin binds to α-synuclein fibrils with high nanomolar affinity and that the binding is driven by entropy rather than enthalpy. Measurements of the change in heat capacity indicate significant entropic gain originates from the disassembly of the oligomeric chaperones that function as an entropic buffer system. These results shed light on the functional roles of chaperone oligomerization and show that chaperones are stored as inactive complexes which are capable of releasing active subunits to target aberrant misfolded species.
Collapse
|
46
|
Xu Z, Gong Y, Wan J, Tang J, Zhang Q. Trends in HSPB5 research: a 36-year bibliometric analysis. Cell Stress Chaperones 2021; 26:799-810. [PMID: 34235603 PMCID: PMC8492881 DOI: 10.1007/s12192-021-01220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022] Open
Abstract
HSPB5 (heat shock protein B5), also known as αB-crystallin, is one of the most widespread and populous of the ten human small heat shock proteins (sHsps). Over the past decades, extensive research has been conducted on HSPB5. However, few studies have statistically analyzed these publications. Herein, we conducted a bibliometric analysis to track the global research trend and current development status of HSPB5 research from the Web of Science Core Collection (WoSCC) database between 1985 and 2020. Our results demonstrate that 1220 original articles cited 54,778 times in 391 scholarly journals were published. Visualization analyses reveal that the Journal of Biological Chemistry was the most influential journal with 85 articles. The USA dominated this field with 520 publications (42.62%), followed by Japan with 149 publications (12.21%), and Kato contributed the largest number of publications. Most related publications were published in journals focusing on biochemistry molecular biology, cell biology, neurosciences neurology, and ophthalmology. In addition, keyword co-occurrence analyses identify three predominant research topics: expression of HSPB5, chaperone studies for HSPB5, and pathological studies of HSPB5. This study provides valuable guidance for researchers and leads to collaborative opportunities between diverse research interests to be integrated for HSPB5 research.
Collapse
Affiliation(s)
- Zhengdong Xu
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, People's Republic of China
| | - Yehong Gong
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, People's Republic of China
| | - Jiaqian Wan
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, People's Republic of China
| | - Jiaxing Tang
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, People's Republic of China
| | - Qingwen Zhang
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
47
|
Höhfeld J, Benzing T, Bloch W, Fürst DO, Gehlert S, Hesse M, Hoffmann B, Hoppe T, Huesgen PF, Köhn M, Kolanus W, Merkel R, Niessen CM, Pokrzywa W, Rinschen MM, Wachten D, Warscheid B. Maintaining proteostasis under mechanical stress. EMBO Rep 2021; 22:e52507. [PMID: 34309183 PMCID: PMC8339670 DOI: 10.15252/embr.202152507] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cell survival, tissue integrity and organismal health depend on the ability to maintain functional protein networks even under conditions that threaten protein integrity. Protection against such stress conditions involves the adaptation of folding and degradation machineries, which help to preserve the protein network by facilitating the refolding or disposal of damaged proteins. In multicellular organisms, cells are permanently exposed to stress resulting from mechanical forces. Yet, for long time mechanical stress was not recognized as a primary stressor that perturbs protein structure and threatens proteome integrity. The identification and characterization of protein folding and degradation systems, which handle force-unfolded proteins, marks a turning point in this regard. It has become apparent that mechanical stress protection operates during cell differentiation, adhesion and migration and is essential for maintaining tissues such as skeletal muscle, heart and kidney as well as the immune system. Here, we provide an overview of recent advances in our understanding of mechanical stress protection.
Collapse
Affiliation(s)
- Jörg Höhfeld
- Institute for Cell BiologyRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports MedicineGerman Sport UniversityCologneGermany
| | - Dieter O Fürst
- Institute for Cell BiologyRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Sebastian Gehlert
- Institute of Cardiovascular Research and Sports MedicineGerman Sport UniversityCologneGermany
- Department for the Biosciences of SportsInstitute of Sports ScienceUniversity of HildesheimHildesheimGermany
| | - Michael Hesse
- Institute of Physiology I, Life & Brain CenterMedical FacultyRheinische Friedrich‐Wilhelms UniversityBonnGermany
| | - Bernd Hoffmann
- Institute of Biological Information Processing, IBI‐2: MechanobiologyForschungszentrum JülichJülichGermany
| | - Thorsten Hoppe
- Institute for GeneticsCologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) and CMMCUniversity of CologneCologneGermany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA3Forschungszentrum JülichJülichGermany
- CECADUniversity of CologneCologneGermany
| | - Maja Köhn
- Institute of Biology IIIFaculty of Biology, and Signalling Research Centres BIOSS and CIBSSAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Waldemar Kolanus
- LIMES‐InstituteRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Rudolf Merkel
- Institute of Biological Information Processing, IBI‐2: MechanobiologyForschungszentrum JülichJülichGermany
| | - Carien M Niessen
- Department of Dermatology and CECADUniversity of CologneCologneGermany
| | | | - Markus M Rinschen
- Department of Biomedicine and Aarhus Institute of Advanced StudiesAarhus UniversityAarhusDenmark
- Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Dagmar Wachten
- Institute of Innate ImmunityUniversity Hospital BonnBonnGermany
| | - Bettina Warscheid
- Institute of Biology IIFaculty of Biology, and Signalling Research Centres BIOSS and CIBSSAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| |
Collapse
|
48
|
Muranova LK, Shatov VM, Slushchev AV, Gusev NB. Quaternary Structure and Hetero-Oligomerization of Recombinant Human Small Heat Shock Protein HspB7 (cvHsp). Int J Mol Sci 2021; 22:ijms22157777. [PMID: 34360542 PMCID: PMC8345930 DOI: 10.3390/ijms22157777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/02/2023] Open
Abstract
In this study, a reliable and simple method of untagged recombinant human HspB7 preparation was developed. Recombinant HspB7 is presented in two oligomeric forms with an apparent molecular weight of 36 kDa (probably dimers) and oligomers with an apparent molecular weight of more than 600 kDa. By using hydrophobic and size-exclusion chromatography, we succeeded in preparation of HspB7 dimers. Mild oxidation promoted the formation of large oligomers, whereas the modification of Cys 126 by iodoacetamide prevented it. The deletion of the first 13 residues or deletion of the polySer motif (residues 17–29) also prevented the formation of large oligomers of HspB7. Cys-mutants of HspB6 and HspB8 containing a single-Cys residue in the central part of the β7 strand in a position homologous to that of Cys137 in HspB1 can be crosslinked to the wild-type HspB7 through a disulfide bond. Immobilized on monoclonal antibodies, the wild-type HspB6 interacted with the wild-type HspB7. We suppose that formation of heterodimers of HspB7 with HspB6 and HspB8 may be important for the functional activity of these small heat shock proteins.
Collapse
|
49
|
Reinle K, Mogk A, Bukau B. The Diverse Functions of Small Heat Shock Proteins in the Proteostasis Network. J Mol Biol 2021; 434:167157. [PMID: 34271010 DOI: 10.1016/j.jmb.2021.167157] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/21/2023]
Abstract
The protein quality control (PQC) system maintains protein homeostasis by counteracting the accumulation of misfolded protein conformers. Substrate degradation and refolding activities executed by ATP-dependent proteases and chaperones constitute major strategies of the proteostasis network. Small heat shock proteins represent ATP-independent chaperones that bind to misfolded proteins, preventing their uncontrolled aggregation. sHsps share the conserved α-crystallin domain (ACD) and gain functional specificity through variable and largely disordered N- and C-terminal extensions (NTE, CTE). They form large, polydisperse oligomers through multiple, weak interactions between NTE/CTEs and ACD dimers. Sequence variations of sHsps and the large variability of sHsp oligomers enable sHsps to fulfill diverse tasks in the PQC network. sHsp oligomers represent inactive yet dynamic resting states that are rapidly deoligomerized and activated upon stress conditions, releasing substrate binding sites in NTEs and ACDs Bound substrates are usually isolated in large sHsp/substrate complexes. This sequestration activity of sHsps represents a third strategy of the proteostasis network. Substrate sequestration reduces the burden for other PQC components during immediate and persistent stress conditions. Sequestered substrates can be released and directed towards refolding pathways by ATP-dependent Hsp70/Hsp100 chaperones or sorted for degradation by autophagic pathways. sHsps can also maintain the dynamic state of phase-separated stress granules (SGs), which store mRNA and translation factors, by reducing the accumulation of misfolded proteins inside SGs and preventing unfolding of SG components. This ensures SG disassembly and regain of translational capacity during recovery periods.
Collapse
Affiliation(s)
- Kevin Reinle
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
50
|
Wu YY, Desu NKR, Lu SY, Yu BY, Kumar R, Huang FY. H101G Mutation in Rat Lens αB-Crystallin Alters Chaperone Activity and Divalent Metal Ion Binding. Curr Pharm Biotechnol 2021; 23:719-727. [PMID: 34225616 DOI: 10.2174/1389201022666210702130843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/22/2021] [Accepted: 05/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The molecular chaperone function of αB-crystallins is heavily involved in maintaining lens transparency and the development of cataracts. OBJECTIVE To study whether divalent metal ion binding improves the stability and αB-crystallin chaperone activity. METHOD In this study, we have developed an H101G αB-crystallin mutant and compared the surface hydrophobicity, chaperone activity, and secondary and tertiary structure with the wild type in the presence and absence of metal ions. RESULTS Substitution of His101 with glycine resulted in structural and functional changes. Spectral analysis and chaperone-like activity assays showed that substitution of glycine resulted in a higher percentage of random coils, increased hydrophobicity, and 22±2% higher chaperone-like activity. Whereas in the presence of the Cu2+ ion, H101G exhibited 32±1% less chaperone-like activity compared to the wild type. CONCLUSION Cu2+ has been reported to enhance the chaperone-like activity of lens α-crystallin. Our results indicate that H101 is the predominant Cu2+binding site, and the mutation resulted in a partial unfolding that impaired the binding of Cu2+ to H101 residue. In conclusion, this study further helps to understand the important binding site for Cu2+ to αB-crystallin.
Collapse
Affiliation(s)
- Yi-Ying Wu
- Department of Chemistry, National Cheng Kung University, Tainan. Taiwan
| | | | - Shou-Yun Lu
- Department of Chemistry, National Cheng Kung University, Tainan. Taiwan
| | - Bi-Yu Yu
- Department of Chemistry, National Cheng Kung University, Tainan. Taiwan
| | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan. Taiwan
| | - Fu-Yung Huang
- Department of Chemistry, National Cheng Kung University, Tainan. Taiwan
| |
Collapse
|