1
|
Wang H, Xiang Z. Structural insights into type III polyketide synthase CylI from cylindrocyclophane biosynthesis. Protein Sci 2024; 33:e5130. [PMID: 39302095 PMCID: PMC11413912 DOI: 10.1002/pro.5130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/06/2024] [Accepted: 07/14/2024] [Indexed: 09/22/2024]
Abstract
Type III polyketide synthases (PKSs) catalyze the formation of a variety of polyketide natural products with remarkable structural diversity and biological activities. Despite significant progress in structural and mechanistic studies of type III PKSs in bacteria, fungi, and plants, research on type III PKSs in cyanobacteria is lacking. Here, we report structural and mechanistic insights into CylI, a type III PKS that catalyzes the formation of the alkylresorcinol intermediate in cylindrocyclophane biosynthesis. The crystal structure of apo-CylI reveals a distinct arrangement of structural elements that are proximal to the active site. We further solved the crystal structures of CylI in complexes with two substrate analogues at resolutions of 1.9 Å. The complex structures indicate that N259 is the key residue that determines the substrate preference of CylI. We also solved the crystal structure of CylI complexed with the alkylresorcinol product at a resolution of 2.0 Å. Structural analysis and mutagenesis experiments suggested that S170 functions as a key residue that determines cyclization specificity. On the basis of this result, a double mutant was engineered to completely switch the cyclization of CylI from aldol condensation to lactonization. This work elucidates the molecular basis of type III PKS in cyanobacteria and lays the foundation for engineering CylI-like enzymes to generate new products.
Collapse
Affiliation(s)
- Hua‐Qi Wang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenPR China
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenPR China
- Institute of Chemical Biology, Shenzhen Bay LaboratoryGaoke Innovation CenterShenzhenPR China
| |
Collapse
|
2
|
Bredy F, Ishida K, Hertweck C. A Type III Polyketide Synthase Specific for Sporulating Negativicutes is Responsible for Alkylpyrone Biosynthesis. Chembiochem 2022; 23:e202200431. [PMID: 35997218 PMCID: PMC9827899 DOI: 10.1002/cbic.202200431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Indexed: 01/12/2023]
Abstract
Genomic analyses indicate that anaerobic bacteria represent a neglected source of natural products. Whereas a limited number of polyketides have been reported from anaerobes, products of type III polyketide synthases (PKSs) have remained unknown. We found a highly conserved biosynthetic gene cluster (BGC) comprising genes putatively encoding a type III PKS and a methyltransferase in genomes of the Negativicutes, strictly anaerobic, diderm bacteria. By in vivo and in vitro expression of a type III PKS gene, dquA from the oak-associated Dendrosporobacter quercicolus in E. coli we show production of long-chain alkylpyrones. Intriguingly, this BGC is specific for sporulating Sporomusaceae but absent in related Negativicutes that do not sporulate, thus suggesting a physiological role.
Collapse
Affiliation(s)
- Florian Bredy
- Dept. of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology HKIBeutenbergstr. 11a07745JenaGermany
| | - Keishi Ishida
- Dept. of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology HKIBeutenbergstr. 11a07745JenaGermany
| | - Christian Hertweck
- Dept. of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology HKIBeutenbergstr. 11a07745JenaGermany,Institute for MicrobiologyFaculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
3
|
Aslam M, Aparato VPM, Suh DY. (2'-Oxo)alkylresorcinols restore dehydration tolerance in a knockout line of PpORS, a bryophyte-specific type III polyketide synthase in Physcomitrium (Physcomitrella) patens. PLANTA 2022; 255:129. [PMID: 35587293 DOI: 10.1007/s00425-022-03909-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
PpORS-produced 2'-oxo-5-pentacosylresorcinol (2'-oxo-C25-RL) restored dehydration tolerance in ors-3, a knockout mutant of PpORS. Feeding experiments with [14C]-2'-oxo-C25-RL suggested the role of PpORS products in cuticular polymer that confer dehydration resistance. 2'-Oxoalkylresorcinol synthase from the moss Physcomitrium (Physcomitrella) patens (PpORS) is the earliest diverged member of plant type III polyketide synthases, and produces very-long-chain 2'-oxoalkylresorcinols in vitro. Targeted knockouts of PpORS (ors) exhibited an abnormal phenotype (increased susceptibility to dehydration), and a defective cuticle in ors was suggested (Li et al., Planta 247:527-541, 2018). In the present study, we investigated chemical rescue of the ors phenotype and also metabolic fates of the PpORS products in the moss. Using C24-CoA as substrate, 2'-oxo-5-pentacosylresorcinol (2'-oxo-C25-RL) and two minor pyrones were first enzymatically prepared as total in vitro products. When a knockout mutant (ors-3) and control strains were grown in the presence of the total in vitro products or purified 2'-oxo-C25-RL, the ability of ors-3 and the control to survive dehydration stress increased in a dose-dependent manner. Structurally analogous long-chain alkylresorcinols also rescued the ors phenotype, although less efficiently. When the moss was grown in the presence of 14C-radiolabeled 2'-oxo-C25-RL, 96% of the radioactivity was recovered only after acid hydrolysis. These findings led us to propose that 2'-oxoalkylresorcinols are the functional in planta products of PpORS and are incorporated into cuticular biopolymers that confer resistance to dehydration. In addition, the earliest diverging ORS clade in phylogenetic trees of plant type III PKSs exclusively comprises bryophyte enzymes that share similar active site substitutions with PpORS. Further studies on these bryophyte enzymes may shed light on their roles in early plant evolution and offer a novel strategy for improving dehydration tolerance in plants.
Collapse
Affiliation(s)
- Misbah Aslam
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Vincent P M Aparato
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Dae-Yeon Suh
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, S4S 0A2, Canada.
| |
Collapse
|
4
|
Larsen JS, Pearson LA, Neilan BA. Genome Mining and Evolutionary Analysis Reveal Diverse Type III Polyketide Synthase Pathways in Cyanobacteria. Genome Biol Evol 2021; 13:6178795. [PMID: 33739400 PMCID: PMC8086630 DOI: 10.1093/gbe/evab056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 11/30/2022] Open
Abstract
Cyanobacteria are prolific producers of natural products, including polyketides and hybrid compounds thereof. Type III polyketide synthases (PKSs) are of particular interest, due to their wide substrate specificity and simple reaction mechanism, compared with both type I and type II PKSs. Surprisingly, only two type III PKS products, hierridins, and (7.7)paracyclophanes, have been isolated from cyanobacteria. Here, we report the mining of 517 cyanobacterial genomes for type III PKS biosynthesis gene clusters. Approximately 17% of the genomes analyzed encoded one or more type III PKSs. Together with already characterized type III PKSs, the phylogeny of this group of enzymes was investigated. Our analysis showed that type III PKSs in cyanobacteria evolved into three major lineages, including enzymes associated with 1) (7.7)paracyclophane-like biosynthesis gene clusters, 2) hierridin-like biosynthesis gene clusters, and 3) cytochrome b5 genes. The evolutionary history of these enzymes is complex, with some sequences partitioning primarily according to speciation and others putatively according to their reaction type. Protein modeling showed that cyanobacterial type III PKSs generally have a smaller active site cavity (mean = 109.035 Å3) compared with enzymes from other organisms. The size of the active site did not correlate well with substrate size, however, the “Gatekeeper” amino acid residues within the active site were strongly correlated to enzyme phylogeny. Our study provides unprecedented insight into the distribution, diversity, and molecular evolution of cyanobacterial type III PKSs, which could facilitate the discovery, characterization, and exploitation of novel enzymes, biochemical pathways, and specialized metabolites from this biosynthetically talented clade of microorganisms.
Collapse
Affiliation(s)
- Joachim Steen Larsen
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Leanne Andrea Pearson
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Brett Anthony Neilan
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
5
|
Pan L, Yang L, Huang Y, Liang Y, He Q, Yang D. Combinatorial Enzymatic Synthesis of Unnatural Long-Chain β-Branch Pyrones by a Highly Promiscuous Enzyme. ACS OMEGA 2019; 4:21078-21082. [PMID: 31867500 PMCID: PMC6921269 DOI: 10.1021/acsomega.9b02473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
In this study, we described in detail a combinatorial enzymatic synthesis approach to produce a series of unnatural long-chain β-branch pyrones. We attempted to investigate the catalytic potential of a highly promiscuous enzyme type III PKS to catalyze the non-decarboxylative condensation reaction by two molecules of fatty acyl diketide-N-acetylcysteines (diketide-NACs) units. Two non-natural long-chain (C16, C18) fatty acyl diketide-NACs were prepared successfully for testing the ability of non-decarboxylative condensation. In vitro, 12 novel naturally unavailable long-chain β-branch pyrones were generated by one-pot formation and characterized by ultraviolet-visible spectroscopy and high-resolution liquid chromatography-mass spectrometry. Interestingly, enzymatic kinetics result displays that this enzyme exhibits the remarkable compatibility to various non-natural long-chain substrates. These results would be useful to deeply understand the catalytic mechanism of this enzyme and further extend the application of enzymatic synthesis of non-natural products.
Collapse
Affiliation(s)
- Lixia Pan
- Guangxi
Key Laboratory of Biorefinery, Guangxi Biomass Industrialization
Engineering Institute, National Engineering Research Center of Non-food
Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology and Guangxi Key Laboratory
of Marine Natural Products and Combinatorial Biosynthesis Chemistry,
Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Lilan Yang
- Guangxi
Key Laboratory of Biorefinery, Guangxi Biomass Industrialization
Engineering Institute, National Engineering Research Center of Non-food
Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology and Guangxi Key Laboratory
of Marine Natural Products and Combinatorial Biosynthesis Chemistry,
Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Yanbing Huang
- Guangxi
Key Laboratory of Biorefinery, Guangxi Biomass Industrialization
Engineering Institute, National Engineering Research Center of Non-food
Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology and Guangxi Key Laboratory
of Marine Natural Products and Combinatorial Biosynthesis Chemistry,
Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Yongyuan Liang
- Guangxi
Key Laboratory of Biorefinery, Guangxi Biomass Industrialization
Engineering Institute, National Engineering Research Center of Non-food
Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology and Guangxi Key Laboratory
of Marine Natural Products and Combinatorial Biosynthesis Chemistry,
Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Qihuan He
- Guangxi
Key Laboratory of Biorefinery, Guangxi Biomass Industrialization
Engineering Institute, National Engineering Research Center of Non-food
Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology and Guangxi Key Laboratory
of Marine Natural Products and Combinatorial Biosynthesis Chemistry,
Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Dengfeng Yang
- Guangxi
Key Laboratory of Biorefinery, Guangxi Biomass Industrialization
Engineering Institute, National Engineering Research Center of Non-food
Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology and Guangxi Key Laboratory
of Marine Natural Products and Combinatorial Biosynthesis Chemistry,
Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| |
Collapse
|
6
|
Transcriptional heterologous expression of two type III PKS from the lichen Cladonia uncialis. Mycol Prog 2019. [DOI: 10.1007/s11557-019-01539-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Reiter S, Cahn JKB, Wiebach V, Ueoka R, Piel J. Characterization of an Orphan Type III Polyketide Synthase Conserved in Uncultivated "Entotheonella" Sponge Symbionts. Chembiochem 2019; 21:564-571. [PMID: 31430416 PMCID: PMC7064976 DOI: 10.1002/cbic.201900352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/19/2019] [Indexed: 02/06/2023]
Abstract
Uncultivated bacterial symbionts from the candidate genus "Entotheonella" have been shown to produce diverse natural products previously attributed to their sponge hosts. In addition to these known compounds, "Entotheonella" genomes contain rich sets of biosynthetic gene clusters that lack identified natural products. Among these is a small type III polyketide synthase (PKS) cluster, one of only three clusters present in all known "Entotheonella" genomes. This conserved "Entotheonella" PKS (cep) cluster encodes the type III PKS CepA and the putative methyltransferase CepB. Herein, the characterization of CepA as an enzyme involved in phenolic lipid biosynthesis is reported. In vitro analysis showed a specificity for alkyl starter substrates and the production of tri- and tetraketide pyrones and tetraketide resorcinols. The conserved distribution of the cep cluster suggests an important role for the phenolic lipid polyketides produced in "Entotheonella" variants.
Collapse
Affiliation(s)
- Silke Reiter
- Department of Microbiology, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland.,Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Jackson K B Cahn
- Department of Microbiology, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Vincent Wiebach
- Department of Microbiology, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Reiko Ueoka
- Department of Microbiology, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Jörn Piel
- Department of Microbiology, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| |
Collapse
|
8
|
Elucidation of marine fungi derived anthraquinones as mycobacterial mycolic acid synthesis inhibitors: an in silico approach. Mol Biol Rep 2019; 46:1715-1725. [DOI: 10.1007/s11033-019-04621-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/18/2019] [Indexed: 02/03/2023]
|
9
|
Genome mining reveals uncommon alkylpyrones as type III PKS products from myxobacteria. J Ind Microbiol Biotechnol 2018; 46:319-334. [PMID: 30506464 DOI: 10.1007/s10295-018-2105-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022]
Abstract
Type III polyketide synthases (PKSs) are comparatively small homodimeric enzymes affording natural products with diverse structures and functions. While type III PKS biosynthetic pathways have been studied thoroughly in plants, their counterparts from bacteria and fungi are to date scarcely characterized. This gap is exemplified by myxobacteria from which no type III PKS-derived small molecule has previously been isolated. In this study, we conducted a genomic survey of myxobacterial type III PKSs and report the identification of uncommon alkylpyrones as the products of type III PKS biosynthesis from the myxobacterial model strain Myxococcus xanthus DK1622 through a self-resistance-guided screening approach focusing on genes encoding pentapetide repeat proteins, proficient to confer resistance to topoisomerase inhibitors. Using promoter-induced gene expression in the native host as well as heterologous expression of biosynthetic type III PKS genes, sufficient amounts of material could be obtained for structural elucidation and bioactivity testing, revealing potent topoisomerase activity in vitro.
Collapse
|
10
|
Parvez A, Giri S, Bisht R, Saxena P. New Insights on Cyclization Specificity of Fungal Type III Polyketide Synthase, PKSIII Nc in Neurospora crassa. Indian J Microbiol 2018; 58:268-277. [PMID: 30013270 PMCID: PMC6023819 DOI: 10.1007/s12088-018-0738-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022] Open
Abstract
Type III polyketide synthases (PKSs) biosynthesize varied classes of metabolites with diverse bio-functionalities. Inherent promiscuous substrate specificity, multiple elongations of reaction intermediates and several modes of ring-closure, confer the proteins with the ability to generate unique scaffolds from limited substrate pools. Structural studies have identified crucial amino acid residues that dictate type III PKS functioning, though cyclization specific residues need further investigation. PKSIIINc, a functionally and structurally characterized type III PKS from the fungus, Neurospora crassa, is known to biosynthesize alkyl-resorcinol, alkyl-triketide- and alkyl-tetraketide-α-pyrone products. In this study, we attempted to identify residue positions governing cyclization specificity in PKSIIINc through comparative structural analysis. Structural comparisons with other type III PKSs revealed a motif with conserved hydroxyl/thiol groups that could dictate PKSIIINc catalysis. Site-directed mutagenesis of Cys120 and Ser186 to Ser and Cys, respectively, altered product profiles of mutant proteins. While both C120S and S186C proteins retained wild-type PKSIIINc product activity, S186C favoured lactonization and yielded higher amounts of the α-pyrone products. Notably, C120S gained new cyclization capability and biosynthesized acyl-phloroglucinol in addition to wild-type PKSIIINc products. Generation of alkyl-resorcinol and acyl-phloroglucinol by a single protein is a unique observation in fungal type III PKS family. Mutation of Cys120 to bulky Phe side-chain abrogated formation of tetraketide products and adversely affected overall protein stability as revealed by molecular dynamics simulation studies. Our investigations identify residue positions governing cyclization programming in PKSIIINc protein and provide insights on how subtle variations in protein cores dictate product profiles in type III PKS family.
Collapse
Affiliation(s)
- Amreesh Parvez
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
| | - Samir Giri
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
- Present Address: Department of Ecology, School of Biology, University of Osnabrück, Osnabrück, 49076 Germany
| | - Renu Bisht
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
| | - Priti Saxena
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
| |
Collapse
|
11
|
Fatty Acyl-AMP Ligases as Mechanistic Variants of ANL Superfamily and Molecular Determinants Dictating Substrate Specificities. J Indian Inst Sci 2018. [DOI: 10.1007/s41745-018-0084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Parvez A, Giri S, Giri GR, Kumari M, Bisht R, Saxena P. Novel Type III Polyketide Synthases Biosynthesize Methylated Polyketides in Mycobacterium marinum. Sci Rep 2018; 8:6529. [PMID: 29695799 PMCID: PMC5916927 DOI: 10.1038/s41598-018-24980-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/12/2018] [Indexed: 01/09/2023] Open
Abstract
Mycobacterial pathogenesis is hallmarked by lipidic polyketides that decorate the cell envelope and mediate infection. However, factors mediating persistence remain largely unknown. Dynamic cell wall remodeling could facilitate the different pathogenic phases. Recent studies have implicated type III polyketide synthases (PKSs) in cell wall alterations in several bacteria. Comparative genome analysis revealed several type III pks gene clusters in mycobacteria. In this study, we report the functional characterization of two novel type III PKSs, MMAR_2470 and MMAR_2474, in Mycobacterium marinum. These type III pkss belong to a unique pks genomic cluster conserved exclusively in pathogenic mycobacteria. Cell-free reconstitution assays and high-resolution mass spectrometric analyses revealed methylated polyketide products in independent reactions of both proteins. MMAR_2474 protein exceptionally biosynthesized methylated alkyl-resorcinol and methylated acyl-phloroglucinol products from the same catalytic core. Structure-based homology modeling, product docking, and mutational studies identified residues that could facilitate the distinctive catalysis of these proteins. Functional investigations in heterologous mycobacterial strain implicated MMAR_2474 protein to be vital for mycobacterial survival in stationary biofilms. Our investigations provide new insights into type III PKSs conserved in pathogenic mycobacterial species.
Collapse
Affiliation(s)
- Amreesh Parvez
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - Samir Giri
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India.,Department of Ecology, School of Biology, University of Osnabrück, Osnabrück, 49076, Germany
| | - Gorkha Raj Giri
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - Monika Kumari
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India.,Department of Biochemistry, University College of Medical Sciences, Delhi, 110095, India
| | - Renu Bisht
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - Priti Saxena
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India.
| |
Collapse
|
13
|
Ramakrishnan D, Tiwari MK, Manoharan G, Sairam T, Thangamani R, Lee JK, Marimuthu J. Molecular characterization of two alkylresorcylic acid synthases from Sordariomycetes fungi. Enzyme Microb Technol 2018; 115:16-22. [PMID: 29859598 DOI: 10.1016/j.enzmictec.2018.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
Two putative type III polyketide synthase genes (PKS) were identified from Sordariomycetes fungi. These two type III PKS genes from Sordaria macrospora (SmPKS) and Chaetomium thermophilum (CtPKS), shared 59.8% sequence identity. Both, full-length and truncated versions of type III PKSs were successfully cloned and overexpressed in a bacterial host, Escherichia Coli BL21 (DE3) using a N-terminus hexa-histidine tag. The full-length and the truncated construct of PKSs showed similar activity profiles, suggesting that additional amino acid residues at the C-terminal of both SmPKS and CtPKS may not be involved in catalytic functions. We demonstrate that these two recombinant polyketide synthases could efficiently synthesize tri- and tetraketide pyrones, resorcinols and resorcylic acids using various acyl-CoAs (C4-C20) as starter units. The truncated S. macrospora polyketide synthases (TrSmPKS) showed a maximum of 7.0 × 104 s-1 M-1 catalytic efficiency towards stearoyl-CoA.Whereas, truncated C. thermophilum polyketide synthases (TrCtPKS) preferred the long-chain acyl-CoA starter arachidoyl-CoA, to produce pentaketide and hexaketide resorcinols with a high catalytic efficiency of 6.2 × 104 s-1 M-1. Homology model and substrate docking analyses suggest a shorter distance between sulfur of catalytic Cys152 and thioester carbonyl group of arachidoyl-CoA as well as stronger imidazolium-thiolate ion pair distance in TrCtPKS between catalytic Cys152-His309 compared to TrSmPKS- arachidoyl CoA complex. Enhanced binding interactions of CtPKS residues forming intermolecular contacts at the active site could be attributed to its high specificity towards arachidoyl-CoA. This study reports the functional characterization of two fungal type III polyketide synthases, SmPKS and CtPKS with high catalytic efficiency from S. macrospora and C. thermophilum respectively. Furthermore, the results suggested that the both SmPKS and CtPKS could be attractive targets for protein engineering to discern the unique substrate specificity and catalytic efficiency.
Collapse
Affiliation(s)
- Dhivya Ramakrishnan
- PSG Centre for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore 641001, India
| | - Manish K Tiwari
- Department of Chemistry, University of Copenhagen,Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Gomathi Manoharan
- PSG Centre for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore 641001, India
| | - Thiagarajan Sairam
- PSG Centre for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore 641001, India
| | - Rajesh Thangamani
- Biotechnology Division, CSIR-National Environmental Engineering Research Institute, CMC, Chennai 600113, India
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeya Marimuthu
- PSG Centre for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore 641001, India.
| |
Collapse
|
14
|
Exploiting the Biosynthetic Potential of Type III Polyketide Synthases. Molecules 2016; 21:molecules21060806. [PMID: 27338328 PMCID: PMC6274091 DOI: 10.3390/molecules21060806] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 11/17/2022] Open
Abstract
Polyketides are structurally and functionally diverse secondary metabolites that are biosynthesized by polyketide synthases (PKSs) using acyl-CoA precursors. Recent studies in the engineering and structural characterization of PKSs have facilitated the use of target enzymes as biocatalysts to produce novel functionally optimized polyketides. These compounds may serve as potential drug leads. This review summarizes the insights gained from research on type III PKSs, from the discovery of chalcone synthase in plants to novel PKSs in bacteria and fungi. To date, at least 15 families of type III PKSs have been characterized, highlighting the utility of PKSs in the development of natural product libraries for therapeutic development.
Collapse
|
15
|
Bhetariya PJ, Prajapati M, Bhaduri A, Mandal RS, Varma A, Madan T, Singh Y, Sarma PU. Phylogenetic and Structural Analysis of Polyketide Synthases in Aspergilli. Evol Bioinform Online 2016; 12:109-19. [PMID: 27199544 PMCID: PMC4863872 DOI: 10.4137/ebo.s32694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/09/2015] [Accepted: 12/13/2015] [Indexed: 12/15/2022] Open
Abstract
Polyketide synthases (PKSs) of Aspergillus species are multidomain and multifunctional megaenzymes that play an important role in the synthesis of diverse polyketide compounds. Putative PKS protein sequences from Aspergillus species representing medically, agriculturally, and industrially important Aspergillus species were chosen and screened for in silico studies. Six candidate Aspergillus species, Aspergillus fumigatus Af293, Aspergillus flavus NRRL3357, Aspergillus niger CBS 513.88, Aspergillus terreus NIH2624, Aspergillus oryzae RIB40, and Aspergillus clavatus NRRL1, were selected to study the PKS phylogeny. Full-length PKS proteins and only ketosynthase (KS) domain sequence were retrieved for independent phylogenetic analysis from the aforementioned species, and phylogenetic analysis was performed with characterized fungal PKS. This resulted into grouping of Aspergilli PKSs into nonreducing (NR), partially reducing (PR), and highly reducing (HR) PKS enzymes. Eight distinct clades with unique domain arrangements were classified based on homology with functionally characterized PKS enzymes. Conserved motif signatures corresponding to each type of PKS were observed. Three proteins from Protein Data Bank corresponding to NR, PR, and HR type of PKS (XP_002384329.1, XP_753141.2, and XP_001402408.2, respectively) were selected for mapping of conserved motifs on three-dimensional structures of KS domain. Structural variations were found at the active sites on modeled NR, PR, and HR enzymes of Aspergillus. It was observed that the number of iteration cycles was dependent on the size of the cavity in the active site of the PKS enzyme correlating with a type with reducing or NR products, such as pigment, 6MSA, and lovastatin. The current study reports the grouping and classification of PKS proteins of Aspergilli for possible exploration of novel polyketides based on sequence homology; this information can be useful for selection of PKS for polyketide exploration and specific detection of Aspergilli.
Collapse
Affiliation(s)
- Preetida J Bhetariya
- Division of Plant Pathology, Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| | - Madhvi Prajapati
- Division of Plant Pathology, Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| | - Asani Bhaduri
- Cluster innovation Centre, University of Delhi, Delhi, India
| | - Rahul Shubhra Mandal
- Biomedical Informatics Center, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Anupam Varma
- Division of Plant Pathology, Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| | - Taruna Madan
- National Institute for Research in Reproductive Health (ICMR), Mumbai, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, New Delhi, India
| | - P Usha Sarma
- Division of Plant Pathology, Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| |
Collapse
|
16
|
Mori T, Yang D, Matsui T, Hashimoto M, Morita H, Fujii I, Abe I. Structural basis for the formation of acylalkylpyrones from two β-ketoacyl units by the fungal type III polyketide synthase CsyB. J Biol Chem 2015; 290:5214-5225. [PMID: 25564614 DOI: 10.1074/jbc.m114.626416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The acylalkylpyrone synthase CsyB from Aspergillus oryzae catalyzes the one-pot formation of the 3-acyl-4-hydroxy-6-alkyl-α-pyrone scaffold from acetoacetyl-CoA, fatty acyl-CoA, and malonyl-CoA. This is the first type III polyketide synthase that performs not only the polyketide chain elongation but also the condensation of two β-ketoacyl units. The crystal structures of wild-type CsyB and its I375F and I375W mutants were solved at 1.7-, 2.3-, and 2.0-Å resolutions, respectively. The crystal structures revealed a unique active site architecture featuring a hitherto unidentified novel pocket for accommodation of the acetoacetyl-CoA starter in addition to the conventional elongation/cyclization pocket with the Cys-His-Asn catalytic triad and the long hydrophobic tunnel for binding the fatty acyl chain. The structures also indicated the presence of a putative nucleophilic water molecule activated by the hydrogen bond networks with His-377 and Cys-155 at the active site center. Furthermore, an in vitro enzyme reaction confirmed that the (18)O atom of the H2(18)O molecule is enzymatically incorporated into the final product. These observations suggested that the enzyme reaction is initiated by the loading of acetoacetyl-CoA onto Cys-155, and subsequent thioester bond cleavage by the nucleophilic water generates the β-keto acid intermediate, which is placed within the novel pocket. The second β-ketoacyl unit is then produced by polyketide chain elongation of fatty acyl-CoA with one molecule of malonyl-CoA, and the condensation with the β-keto acid generates the final products. Indeed, steric modulation of the novel pocket by the structure-based I375F and I375W mutations resulted in altered specificities for the chain lengths of the substrates.
Collapse
Affiliation(s)
- Takahiro Mori
- From the Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Dengfeng Yang
- From the Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Matsui
- Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan, and
| | - Makoto Hashimoto
- School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| | - Hiroyuki Morita
- Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan, and.
| | - Isao Fujii
- School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan.
| | - Ikuro Abe
- From the Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan,.
| |
Collapse
|
17
|
Jepson C, Karppinen K, Daku RM, Sterenberg BT, Suh DY. Hypericum perforatum hydroxyalkylpyrone synthase involved in sporopollenin biosynthesis--phylogeny, site-directed mutagenesis, and expression in nonanther tissues. FEBS J 2014; 281:3855-68. [PMID: 25040801 DOI: 10.1111/febs.12920] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/10/2014] [Accepted: 07/07/2014] [Indexed: 11/30/2022]
Abstract
Anther-specific chalcone synthase-like enzyme (ASCL), an ancient plant type III polyketide synthase, is involved in the biosynthesis of sporopollenin, the stable biopolymer found in the exine layer of the wall of a spore or pollen grain. The gene encoding polyketide synthase 1 from Hypericum perforatum (HpPKS1) was previously shown to be expressed mainly in young flower buds, but also in leaves and other tissues at lower levels. Angiosperm ASCLs, identified by sequence and phylogenetic analyses, are divided into two sister clades, the Ala-clade and the Val-clade, and HpPKS1 belongs to the Ala-clade. Recombinant HpPKS1 produced triketide and, to a lesser extent, tetraketide alkylpyrones from medium-chain (C6) to very long-chain (C24) fatty acyl-CoA substrates. Like other ASCLs, HpPKS1 also preferred hydroxyl fatty acyl-CoA esters over the analogous unsubstituted fatty acyl-CoA esters. To study the structural basis of the substrate preference, mutants of Ala200 and Ala215 at the putative active site and Arg202 and Asp211 at the modeled acyl-binding tunnel were constructed. The A200T/A215Q mutant accepted decanoyl-CoA, a poor substrate for the wild-type enzyme, possibly because of active site constriction by bulkier substitutions. The substrate preference of the A215V and A200T/A215Q mutants shifted toward nonhydroxylated, medium-chain to long-chain fatty acyl-CoA substrates. The R202L/D211V double mutant was selective for acyl-CoA with chain lengths of C16-C18, and showed a diminished preference for the hydroxylated acyl-CoA substrates. Transient upregulation by abscisic acid and downregulation by jasmonic acid and wounding suggested that HpPKS1, and possibly other Ala-clade ASCLs, may be involved in the biosynthesis of minor cell wall components in nonanther tissues.
Collapse
Affiliation(s)
- Christina Jepson
- Department of Chemistry and Biochemistry, University of Regina, Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
18
|
Abstract
Efforts from the TB Structural Genomics Consortium together with those of tuberculosis structural biologists worldwide have led to the determination of about 350 structures, making up nearly a tenth of the pathogen's proteome. Given that knowledge of protein structures is essential to obtaining a high-resolution understanding of the underlying biology, it is desirable to have a structural view of the entire proteome. Indeed, structure prediction methods have advanced sufficiently to allow structural models of many more proteins to be built based on homology modeling and fold recognition strategies. By means of these approaches, structural models for about 2,877 proteins, making up nearly 70% of the Mycobacterium tuberculosis proteome, are available. Knowledge from bioinformatics has made significant inroads into an improved annotation of the M. tuberculosis genome and in the prediction of key protein players that interact in vital pathways, some of which are unique to the organism. Functional inferences have been made for a large number of proteins based on fold-function associations. More importantly, ligand-binding pockets of the proteins are identified and scanned against a large database, leading to binding site-based ligand associations and hence structure-based function annotation. Near proteome-wide structural models provide a global perspective of the fold distribution in the genome. New insights about the folds that predominate in the genome, as well as the fold combinations that make up multidomain proteins, are also obtained. This chapter describes the structural proteome, functional inferences drawn from it, and its applications in drug discovery.
Collapse
|
19
|
Quadri LEN. Biosynthesis of mycobacterial lipids by polyketide synthases and beyond. Crit Rev Biochem Mol Biol 2014; 49:179-211. [DOI: 10.3109/10409238.2014.896859] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Satou R, Miyanaga A, Ozawa H, Funa N, Katsuyama Y, Miyazono KI, Tanokura M, Ohnishi Y, Horinouchi S. Structural basis for cyclization specificity of two Azotobacter type III polyketide synthases: a single amino acid substitution reverses their cyclization specificity. J Biol Chem 2013; 288:34146-34157. [PMID: 24100027 DOI: 10.1074/jbc.m113.487272] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type III polyketide synthases (PKSs) show diverse cyclization specificity. We previously characterized two Azotobacter type III PKSs (ArsB and ArsC) with different cyclization specificity. ArsB and ArsC, which share a high sequence identity (71%), produce alkylresorcinols and alkylpyrones through aldol condensation and lactonization of the same polyketomethylene intermediate, respectively. Here we identified a key amino acid residue for the cyclization specificity of each enzyme by site-directed mutagenesis. Trp-281 of ArsB corresponded to Gly-284 of ArsC in the amino acid sequence alignment. The ArsB W281G mutant synthesized alkylpyrone but not alkylresorcinol. In contrast, the ArsC G284W mutant synthesized alkylresorcinol with a small amount of alkylpyrone. These results indicate that this amino acid residue (Trp-281 of ArsB or Gly-284 of ArsC) should occupy a critical position for the cyclization specificity of each enzyme. We then determined crystal structures of the wild-type and G284W ArsC proteins at resolutions of 1.76 and 1.99 Å, respectively. Comparison of these two ArsC structures indicates that the G284W substitution brings a steric wall to the active site cavity, resulting in a significant reduction of the cavity volume. We postulate that the polyketomethylene intermediate can be folded to a suitable form for aldol condensation only in such a relatively narrow cavity of ArsC G284W (and presumably ArsB). This is the first report on the alteration of cyclization specificity from lactonization to aldol condensation for a type III PKS. The ArsC G284W structure is significant as it is the first reported structure of a microbial resorcinol synthase.
Collapse
Affiliation(s)
- Ryutaro Satou
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akimasa Miyanaga
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroki Ozawa
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nobutaka Funa
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ken-Ichi Miyazono
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Sueharu Horinouchi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
21
|
Gokulan K, O'Leary SE, Russell WK, Russell DH, Lalgondar M, Begley TP, Ioerger TR, Sacchettini JC. Crystal structure of Mycobacterium tuberculosis polyketide synthase 11 (PKS11) reveals intermediates in the synthesis of methyl-branched alkylpyrones. J Biol Chem 2013; 288:16484-16494. [PMID: 23615910 DOI: 10.1074/jbc.m113.468892] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PKS11 is one of three type III polyketide synthases (PKSs) identified in Mycobacterium tuberculosis. Although many PKSs in M. tuberculosis have been implicated in producing complex cell wall glycolipids, the biological function of PKS11 is unknown. PKS11 has previously been proposed to synthesize alkylpyrones from fatty acid substrates. We solved the crystal structure of M. tuberculosis PKS11 and found the overall fold to be similar to other type III PKSs. PKS11 has a deep hydrophobic tunnel proximal to the active site Cys-138 to accommodate substrates. We observed electron density in this tunnel from a co-purified molecule that was identified by mass spectrometry to be palmitate. Co-crystallization with malonyl-CoA (MCoA) or methylmalonyl-CoA (MMCoA) led to partial turnover of the substrate, resulting in trapped intermediates. Reconstitution of the reaction in solution confirmed that both co-factors are required for optimal activity, and kinetic analysis shows that MMCoA is incorporated first, then MCoA, followed by lactonization to produce methyl-branched alkylpyrones.
Collapse
Affiliation(s)
- Kuppan Gokulan
- Departments of Biochemistry and Biophysics, College Station, Texas 77843
| | | | | | | | | | | | - Thomas R Ioerger
- Computer Science and Engineering, Texas A&M University, College Station, Texas 77843
| | | |
Collapse
|
22
|
Anti-mycobacterial activity of marine fungus-derived 4-deoxybostrycin and nigrosporin. Molecules 2013; 18:1728-40. [PMID: 23434859 PMCID: PMC6269944 DOI: 10.3390/molecules18021728] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 12/17/2012] [Accepted: 01/15/2013] [Indexed: 11/18/2022] Open
Abstract
4-Deoxybostrycin is a natural anthraquinone compound isolated from the Mangrove endophytic fungus Nigrospora sp. collected from the South China Sea. Nigrosporin is the deoxy-derivative of 4-deoxybostrycin. They were tested against mycobacteria, especially Mycobacterium tuberculosis. In the Kirby-Bauer disk diffusion susceptibility test, they both had inhibition zone sizes of over 25 mm. The results of the absolute concentration susceptibility test suggested that they had inhibitory effects against mycobacteria. Moreover, 4-deoxybostrycin exhibited good inhibition which was even better than that of first line anti-tuberculosis (TB) drugs against some clinical multidrug-resistant (MDR) M. tuberculosis strains. The gene expression profile of M. tuberculosis H37Rv after treatment with 4-deoxybostrycin was compared with untreated bacteria. One hundred and nineteen out of 3,875 genes were significantly different in M. tuberculosis exposed to 4-deoxybostrycin from control. There were 46 functionally known genes which are involved in metabolism, information storage and processing and cellular processes. The differential expressions of six genes were further confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). The present study provides a useful experiment basis for exploitation of correlative new drugs against TB and for finding out new targets of anti-mycobacterial therapy.
Collapse
|
23
|
Kim SY, Colpitts CC, Wiedemann G, Jepson C, Rahimi M, Rothwell JR, McInnes AD, Hasebe M, Reski R, Sterenberg BT, Suh DY. Physcomitrella PpORS, basal to plant type III polyketide synthases in phylogenetic trees, is a very long chain 2'-oxoalkylresorcinol synthase. J Biol Chem 2012; 288:2767-77. [PMID: 23223578 DOI: 10.1074/jbc.m112.430686] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plant type III polyketide synthases (PKSs), which produce diverse secondary metabolites with different biological activities, have successfully co-evolved with land plants. To gain insight into the roles that ancestral type III PKSs played during the early evolution of land plants, we cloned and characterized PpORS from the moss Physcomitrella. PpORS has been proposed to closely resemble the most recent common ancestor of the plant type III PKSs. PpORS condenses a very long chain fatty acyl-CoA with four molecules of malonyl-CoA and catalyzes decarboxylative aldol cyclization to yield the pentaketide 2'-oxoalkylresorcinol. Therefore, PpORS is a 2'-oxoalkylresorcinol synthase. Structure modeling and sequence alignments identified a unique set of amino acid residues (Gln(218), Val(277), and Ala(286)) at the putative PpORS active site. Substitution of the Ala(286) to Phe apparently constricted the active site cavity, and the A286F mutant instead produced triketide alkylpyrones from fatty acyl-CoA substrates with shorter chain lengths. Phylogenetic analysis and comparison of the active sites of PpORS and alkylresorcinol synthases from sorghum and rice suggested that the gramineous enzymes evolved independently from PpORS to have similar functions but with distinct active site architecture. Microarray analysis revealed that PpORS is exclusively expressed in nonprotonemal moss cells. The in planta function of PpORS, therefore, is probably related to a nonprotonemal structure, such as the cuticle.
Collapse
Affiliation(s)
- Sun Young Kim
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wu HC, Li YS, Liu YC, Lyu SY, Wu CJ, Li TL. Chain elongation and cyclization in type III PKS DpgA. Chembiochem 2012; 13:862-71. [PMID: 22492619 DOI: 10.1002/cbic.201200051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chain elongation and cyclization of precursors of dihydroxyphenylacetyl-CoA (DPA-CoA) catalyzed by the bacterial type III polyketide synthase DpgA were studied. Two labile intermediates, di- and tri-ketidyl-CoA (DK- and TK-CoA), were proposed and chemically synthesized. In the presence of DpgABD, each of these with [(13)C(3)]malonyl-CoA (MA-CoA) was able to form partially (13)C-enriched DPA-CoA. By NMR and MS analysis, the distribution of (13)C atoms in the partially (13)C-enriched DPA-CoA shed light on how the polyketide chain elongates and cyclizes in the DpgA-catalyzed reaction. Polyketone intermediates elongate in a manner different from that which had been believed: two molecules of DK-CoA, or one DK-CoA plus one acetoacetyl-CoA (AA-CoA), but not two molecules of AA-CoA can form one molecule of DPA-CoA. As a result, polyketidyl-CoA serves as both the starter and extender, whereas polyketone-CoA without the terminal carboxyl group can only act as an extender. The terminal carboxyl group is crucial for the cyclization that likely takes place on CoA.
Collapse
Affiliation(s)
- Hai-Chen Wu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | | | | | | | | | | |
Collapse
|
25
|
Bergeret F, Gavalda S, Chalut C, Malaga W, Quémard A, Pedelacq JD, Daffé M, Guilhot C, Mourey L, Bon C. Biochemical and structural study of the atypical acyltransferase domain from the mycobacterial polyketide synthase Pks13. J Biol Chem 2012; 287:33675-90. [PMID: 22825853 DOI: 10.1074/jbc.m111.325639] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pks13 is a type I polyketide synthase involved in the final biosynthesis step of mycolic acids, virulence factors, and essential components of the Mycobacterium tuberculosis envelope. Here, we report the biochemical and structural characterization of a 52-kDa fragment containing the acyltransferase domain of Pks13. This fragment retains the ability to load atypical extender units, unusually long chain acyl-CoA with a predilection for carboxylated substrates. High resolution crystal structures were determined for the apo, palmitoylated, and carboxypalmitoylated forms. Structural conservation with type I polyketide synthases and related fatty-acid synthases also extends to the interdomain connections. Subtle changes could be identified both in the active site and in the upstream and downstream linkers in line with the organization displayed by this singular polyketide synthase. More importantly, the crystallographic analysis illustrated for the first time how a long saturated chain can fit in the core structure of an acyltransferase domain through a dedicated channel. The structures also revealed the unexpected binding of a 12-mer peptide that might provide insight into domain-domain interaction.
Collapse
Affiliation(s)
- Fabien Bergeret
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Baharum H, Morita H, Tomitsuka A, Lee FC, Ng KY, Rahim RA, Abe I, Ho CL. Molecular cloning, modeling, and site-directed mutagenesis of type III polyketide synthase from Sargassum binderi (Phaeophyta). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:845-56. [PMID: 21181422 DOI: 10.1007/s10126-010-9344-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 10/24/2010] [Indexed: 05/30/2023]
Abstract
Type III polyketide synthases (PKSs) produce an array of metabolites with diverse functions. In this study, we have cloned the complete reading frame encoding type III PKS (SbPKS) from a brown seaweed, Sargassum binderi, and characterized the activity of its recombinant protein biochemically. The deduced amino acid sequence of SbPKS is 414 residues in length, sharing a higher sequence similarity with bacterial PKSs (38% identity) than with plant PKSs. The Cys-His-Asn catalytic triad of PKS is conserved in SbPKS with differences in some of the residues lining the active and CoA binding sites. The wild-type SbPKS displayed broad starter substrate specificity to aliphatic long-chain acyl-CoAs (C(6)-C(14)) to produce tri- and tetraketide pyrones. Mutations at H(331) and N(364) caused complete loss of its activity, thus suggesting that these two residues are the catalytic residues for SbPKS as in other type III PKSs. Furthermore, H227G, H227G/L366V substitutions resulted in increased tetraketide-forming activity, while wild-type SbPKS produces triketide α-pyrone as a major product. On the other hand, mutant H227G/L366V/F93A/V95A demonstrated a dramatic decrease of tetraketide pyrone formation. These observations suggest that His(227) and Leu(366) play an important role for the polyketide elongation reaction in SbPKS. The conformational changes in protein structure especially the cavity of the active site may have more significant effect to the activity of SbPKS compared with changes in individual residues.
Collapse
Affiliation(s)
- Hariyanti Baharum
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Arora A, Chandra NR, Das A, Gopal B, Mande SC, Prakash B, Ramachandran R, Sankaranarayanan R, Sekar K, Suguna K, Tyagi AK, Vijayan M. Structural biology of Mycobacterium tuberculosis proteins: The Indian efforts. Tuberculosis (Edinb) 2011; 91:456-68. [DOI: 10.1016/j.tube.2011.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 01/23/2023]
|
28
|
Mohanty D, Sankaranarayanan R, Gokhale RS. Fatty acyl-AMP ligases and polyketide synthases are unique enzymes of lipid biosynthetic machinery in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2011; 91:448-55. [PMID: 21601529 DOI: 10.1016/j.tube.2011.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 12/24/2022]
Abstract
The cell envelope of Mycobacterium tuberculosis (Mtb) possesses a repertoire of unusual lipids that are believed to play an important role in pathogenesis. In this review, we specifically focus on computational, biochemical and structural studies in lipid biosynthesis that have established functional role of polyketide synthases (PKSs) and fatty acyl-AMP ligases (FAALs). Mechanistic and structural studies with FAALs suggest that this group of proteins may have evolved from omnipresent fatty acyl-CoA ligases (FACLs). FAALs activate fatty acids as acyl-adenylates and transfer them on to the PKSs which then produce unusual acyl chains that are the components of mycobacterial lipids. FAALs are a newly discovered family of enzymes; whereas involvement of PKSs in lipid metabolism was not known prior to their discovery in Mtb. Since Mtb genome contains multiple homologs of FAALs and PKSs and owing to the conserved reaction mechanism and overlapping substrate specificity; there is tempting opportunity to develop 'systemic drugs' against these enzymes as anti-tuberculosis agents.
Collapse
Affiliation(s)
- Debasisa Mohanty
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| | | | | |
Collapse
|
29
|
Bhetariya PJ, Madan T, Basir SF, Varma A, Usha SP. Allergens/Antigens, toxins and polyketides of important Aspergillus species. Indian J Clin Biochem 2011; 26:104-19. [PMID: 22468035 PMCID: PMC3107401 DOI: 10.1007/s12291-011-0131-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 12/11/2022]
Abstract
The medical, agricultural and biotechnological importance of the primitive eukaryotic microorganisms, the Fungi was recognized way back in 1920. Among various groups of fungi, the Aspergillus species are studied in great detail using advances in genomics and proteomics to unravel biological and molecular mechanisms in these fungi. Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Aspergillus parasiticus, Aspergillus nidulans and Aspergillus terreus are some of the important species relevant to human, agricultural and biotechnological applications. The potential of Aspergillus species to produce highly diversified complex biomolecules such as multifunctional proteins (allergens, antigens, enzymes) and polyketides is fascinating and demands greater insight into the understanding of these fungal species for application to human health. Recently a regulator gene for secondary metabolites, LaeA has been identified. Gene mining based on LaeA has facilitated new metabolites with antimicrobial activity such as emericellamides and antitumor activity such as terrequinone A from A. nidulans. Immunoproteomic approach was reported for identification of few novel allergens for A. fumigatus. In this context, the review is focused on recent developments in allergens, antigens, structural and functional diversity of the polyketide synthases that produce polyketides of pharmaceutical and biological importance. Possible antifungal drug targets for development of effective antifungal drugs and new strategies for development of molecular diagnostics are considered.
Collapse
Affiliation(s)
- Preetida J. Bhetariya
- Division of Plant Pathology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012 India
| | - Taruna Madan
- National Institute for Research in Reproductive Health (NIRRH), Parel, Mumbai, 400012 India
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Anupam Varma
- Division of Plant Pathology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012 India
| | - Sarma P. Usha
- Division of Plant Pathology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012 India
| |
Collapse
|
30
|
Affiliation(s)
- P Usha Sarma
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
31
|
Structural basis for the one-pot formation of the diarylheptanoid scaffold by curcuminoid synthase from Oryza sativa. Proc Natl Acad Sci U S A 2010; 107:19778-83. [PMID: 21041675 DOI: 10.1073/pnas.1011499107] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Curcuminoid synthase (CUS) from Oryza sativa is a plant-specific type III polyketide synthase (PKS) that catalyzes the remarkable one-pot formation of the C(6)-C(7)-C(6) diarylheptanoid scaffold of bisdemethoxycurcumin, by the condensation of two molecules of 4-coumaroyl-CoA and one molecule of malonyl-CoA. The crystal structure of O. sativa CUS was solved at 2.5-Å resolution, which revealed a unique, downward expanding active-site architecture, previously unidentified in the known type III PKSs. The large active-site cavity is long enough to accommodate the two C(6)-C(3) coumaroyl units and one malonyl unit. Furthermore, the crystal structure indicated the presence of a putative nucleophilic water molecule, which forms hydrogen bond networks with Ser351-Asn142-H(2)O-Tyr207-Glu202, neighboring the catalytic Cys174 at the active-site center. These observations suggest that CUS employs unique catalytic machinery for the one-pot formation of the C(6)-C(7)-C(6) scaffold. Thus, CUS utilizes the nucleophilic water to terminate the initial polyketide chain elongation at the diketide stage. Thioester bond cleavage of the enzyme-bound intermediate generates 4-coumaroyldiketide acid, which is then kept within the downward expanding pocket for subsequent decarboxylative condensation with the second 4-coumaroyl-CoA starter, to produce bisdemethoxycurcumin. The structure-based site-directed mutants, M265L and G274F, altered the substrate and product specificities to accept 4-hydroxyphenylpropionyl-CoA as the starter to produce tetrahydrobisdemethoxycurcumin. These findings not only provide a structural basis for the catalytic machinery of CUS but also suggest further strategies toward expanding the biosynthetic repertoire of the type III PKS enzymes.
Collapse
|
32
|
Shimokawa Y, Morita H, Abe I. Structure-based engineering of benzalacetone synthase. Bioorg Med Chem Lett 2010; 20:5099-103. [PMID: 20667730 DOI: 10.1016/j.bmcl.2010.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/04/2010] [Accepted: 07/07/2010] [Indexed: 11/15/2022]
Abstract
Benzalacetone synthase (BAS) and chalcone synthase (CHS) are plant-specific type III polyketide synthases (PKSs), sharing 70% amino acid sequence identity and highly homologous overall protein structures. BAS catalyzes the decarboxylative coupling of 4-coumaroyl-CoA with malonyl-CoA to produce the diketide benzalacetone, whereas CHS produces the tetraketide chalcone by iterative condensations with three molecules of malonyl-CoA, and folding the resulting intermediate into a new aromatic ring system. Recent crystallographic analyses of Rheum palmatum BAS revealed that the characteristic substitution of Thr132 (numbering of Medicago sativa CHS2), a conserved CHS residue lining the active-site cavity, with Leu causes steric contraction of the BAS active-site to produce the diketide, instead of the tetraketide. To test this hypothesis, we constructed a set of R. palmatum BAS site-directed mutants (L132G, L132A, L132S, L132C, L132T, L132F, L132Y, L132W and L132P), and investigated the mechanistic consequences of the point mutations. As a result, the single amino acid substitution L132T restored the chalcone-forming activity in BAS, whereas the Ala, Ser, and Cys substitutions expanded the product chain length to produce 4-coumaroyltriacetic acid lactone (CTAL) after three condensations with malonyl-CoA, but without the formation of the aromatic ring system. Homology modeling suggested that this is probably caused by the restoration of the 'coumaroyl binding pocket' in the active-site cavity. These findings provide further insights into the structural details of the catalytic mechanism of the type III PKS enzymes.
Collapse
Affiliation(s)
- Yoshihiko Shimokawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
33
|
Matsuzawa M, Katsuyama Y, Funa N, Horinouchi S. Alkylresorcylic acid synthesis by type III polyketide synthases from rice Oryza sativa. PHYTOCHEMISTRY 2010; 71:1059-67. [PMID: 20451227 DOI: 10.1016/j.phytochem.2010.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 01/08/2010] [Accepted: 02/09/2010] [Indexed: 05/11/2023]
Abstract
Alkylresorcinols, produced by various plants, bacteria, and fungi, are bioactive compounds possessing beneficial activities for human health, such as anti-cancer activity. In rice, they accumulate in seedlings, contributing to protection against fungi. Alkylresorcylic acids, which are carboxylated forms of alkylresorcinols, are unstable compounds and decarboxylate readily to yield alkylresorcinols. Genome mining of the rice Oryza sativa identified two type III polyketide synthases, named ARAS1 (alkylresorcylic acid synthase) and ARAS2, that catalyze the formation of alkylresorcylic acids. Both enzymes condensed fatty acyl-CoAs with three C(2) units from malonyl-CoA and cyclized the resulting tetraketide intermediates via intramolecular C-2 to C-7 aldol condensation. The alkylresorcylic acids thus produced were released from the enzyme and decarboxylated non-enzymatically to yield alkylresorcinols. This is the first report on a plant type III polyketide synthase that produces tetraketide alkylresorcylic acids as major products.
Collapse
Affiliation(s)
- Miku Matsuzawa
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
34
|
Abe I, Morita H. Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases. Nat Prod Rep 2010; 27:809-38. [PMID: 20358127 DOI: 10.1039/b909988n] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
35
|
Cook D, Rimando AM, Clemente TE, Schröder J, Dayan FE, Nanayakkara ND, Pan Z, Noonan BP, Fishbein M, Abe I, Duke SO, Baerson SR. Alkylresorcinol synthases expressed in Sorghum bicolor root hairs play an essential role in the biosynthesis of the allelopathic benzoquinone sorgoleone. THE PLANT CELL 2010; 22:867-87. [PMID: 20348430 PMCID: PMC2861460 DOI: 10.1105/tpc.109.072397] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sorghum bicolor is considered to be an allelopathic crop species, producing phytotoxins such as the lipid benzoquinone sorgoleone, which likely accounts for many of the allelopathic properties of Sorghum spp. Current evidence suggests that sorgoleone biosynthesis occurs exclusively in root hair cells and involves the production of an alkylresorcinolic intermediate (5-[(Z,Z)-8',11',14'-pentadecatrienyl]resorcinol) derived from an unusual 16:3Delta(9,12,15) fatty acyl-CoA starter unit. This led to the suggestion of the involvement of one or more alkylresorcinol synthases (ARSs), type III polyketide synthases (PKSs) that produce 5-alkylresorcinols using medium to long-chain fatty acyl-CoA starter units via iterative condensations with malonyl-CoA. In an effort to characterize the enzymes responsible for the biosynthesis of the pentadecyl resorcinol intermediate, a previously described expressed sequence tag database prepared from isolated S. bicolor (genotype BTx623) root hairs was first mined for all PKS-like sequences. Quantitative real-time RT-PCR analyses revealed that three of these sequences were preferentially expressed in root hairs, two of which (designated ARS1 and ARS2) were found to encode ARS enzymes capable of accepting a variety of fatty acyl-CoA starter units in recombinant enzyme studies. Furthermore, RNA interference experiments directed against ARS1 and ARS2 resulted in the generation of multiple independent transformant events exhibiting dramatically reduced sorgoleone levels. Thus, both ARS1 and ARS2 are likely to participate in the biosynthesis of sorgoleone in planta. The sequences of ARS1 and ARS2 were also used to identify several rice (Oryza sativa) genes encoding ARSs, which are likely involved in the production of defense-related alkylresorcinols.
Collapse
Affiliation(s)
- Daniel Cook
- U.S. Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677
| | - Agnes M. Rimando
- U.S. Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677
| | - Thomas E. Clemente
- Center for Biotechnology, University of Nebraska, Lincoln, Nebraska 68588
| | - Joachim Schröder
- Universität Freiburg, Institut für Biologie II, D-79104 Freiburg, Germany
| | - Franck E. Dayan
- U.S. Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677
| | - N.P. Dhammika Nanayakkara
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677
| | - Zhiqiang Pan
- U.S. Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677
| | - Brice P. Noonan
- Department of Biology, University of Mississippi, University, Mississippi 38677
| | - Mark Fishbein
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Stephen O. Duke
- U.S. Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677
| | - Scott R. Baerson
- U.S. Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677
- Address correspondence to
| |
Collapse
|
36
|
A structure-based mechanism for benzalacetone synthase from Rheum palmatum. Proc Natl Acad Sci U S A 2009; 107:669-73. [PMID: 20080733 DOI: 10.1073/pnas.0909982107] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Benzalacetone synthase (BAS), a plant-specific type III polyketide synthase (PKS), catalyzes a one-step decarboxylative condensation of malonyl-CoA and 4-coumaroyl-CoA to produce the diketide benzalacetone. We solved the crystal structures of both the wild-type and chalcone-producing I207L/L208F mutant of Rheum palmatum BAS at 1.8 A resolution. In addition, we solved the crystal structure of the wild-type enzyme, in which a monoketide coumarate intermediate is covalently bound to the catalytic cysteine residue, at 1.6 A resolution. This is the first direct evidence that type III PKS utilizes the cysteine as the nucleophile and as the attachment site for the polyketide intermediate. The crystal structures revealed that BAS utilizes an alternative, novel active-site pocket for locking the aromatic moiety of the coumarate, instead of the chalcone synthase's coumaroyl-binding pocket, which is lost in the active-site of the wild-type enzyme and restored in the I207L/L208F mutant. Furthermore, the crystal structures indicated the presence of a putative nucleophilic water molecule which forms hydrogen bond networks with the Cys-His-Asn catalytic triad. This suggested that BAS employs novel catalytic machinery for the thioester bond cleavage of the enzyme-bound diketide intermediate and the final decarboxylation reaction to produce benzalacetone. These findings provided a structural basis for the functional diversity of the type III PKS enzymes.
Collapse
|
37
|
Miyanaga A, Horinouchi S. Enzymatic synthesis of bis-5-alkylresorcinols by resorcinol-producing type III polyketide synthases. J Antibiot (Tokyo) 2009; 62:371-6. [PMID: 19557027 DOI: 10.1038/ja.2009.44] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
No enzyme systems responsible for the biosynthesis of structurally and biosynthetically intriguing bis-5-alkylresorcinols produced by plants have been identified. Herein, we show that bacterial, fungal and plant alkylresorcinol-producing type III polyketide synthases (PKSs), such as ArsB in the Gram-negative bacterium Azotobacter vinelandii, ORAS in the fungus Neurospora crassa and ARAS2 in the rice plant Oryza sativa, can synthesize bis-5-alkylresorcinol from alkanedioic acid N-acetylcysteamine dithioester as a starter substrate and from malonyl-CoA as an extender substrate by two-step conversion. Plants presumably use a type III PKS for the biosynthesis of bis-5-alkylresorcinols.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
38
|
Biosynthesis of aliphatic polyketides by type III polyketide synthase and methyltransferase in Bacillus subtilis. J Bacteriol 2009; 191:4916-23. [PMID: 19465653 DOI: 10.1128/jb.00407-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Type III polyketide synthases (PKSs) synthesize a variety of aromatic polyketides in plants, fungi, and bacteria. The bacterial genome projects predicted that probable type III PKS genes are distributed in a wide variety of gram-positive and -negative bacteria. The gram-positive model microorganism Bacillus subtilis contained the bcsA-ypbQ operon, which appeared to encode a type III PKS and a methyltransferase, respectively. Here, we report the characterization of bcsA (renamed bpsA, for Bacillus pyrone synthase, on the basis of its function) and ypbQ, which are involved in the biosynthesis of aliphatic polyketides. In vivo analysis demonstrated that BpsA was a type III PKS catalyzing the synthesis of triketide pyrones from long-chain fatty acyl-coenzyme A (CoA) thioesters as starter substrates and malonyl-CoA as an extender substrate, and YpbQ was a methyltransferase acting on the triketide pyrones to yield alkylpyrone methyl ethers. YpbQ thus was named BpsB because of its functional relatedness to BpsA. In vitro analysis with histidine-tagged BpsA revealed that it used broad starter substrates and produced not only triketide pyrones but also tetraketide pyrones and alkylresorcinols. Although the aliphatic polyketides were expected to localize in the membrane and play some role in modulating the rigidity and properties of the membrane, no detectable phenotypic changes were observed for a B. subtilis mutant containing a whole deletion of the bpsA-bpsB operon.
Collapse
|
39
|
Taneja B, Yadav J, Chakraborty TK, Brahmachari SK. An Indian effort towards affordable drugs: “Generic to designer drugs”. Biotechnol J 2009; 4:348-60. [DOI: 10.1002/biot.200900031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
|
41
|
Chopra T, Gokhale RS. Chapter 12 Polyketide Versatility in the Biosynthesis of Complex Mycobacterial Cell Wall Lipids. Methods Enzymol 2009; 459:259-94. [DOI: 10.1016/s0076-6879(09)04612-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Jindaprasert A, Springob K, Schmidt J, De-Eknamkul W, Kutchan TM. Pyrone polyketides synthesized by a type III polyketide synthase from Drosophyllum lusitanicum. PHYTOCHEMISTRY 2008; 69:3043-53. [PMID: 18466932 DOI: 10.1016/j.phytochem.2008.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 02/11/2008] [Accepted: 03/11/2008] [Indexed: 05/09/2023]
Abstract
To isolate cDNAs involved in the biosynthesis of acetate-derived naphthoquinones in Drosophyllum lusitanicum, an expressed sequence tag analysis was performed. RNA from callus cultures was used to create a cDNA library from which 2004 expressed sequence tags were generated. One cDNA with similarity to known type III polyketide synthases was isolated as full-length sequence and termed DluHKS. The translated polypeptide sequence of DluHKS showed 51-67% identity with other plant type III PKSs. Recombinant DluHKS expressed in Escherichia coli accepted acetyl-coenzyme A (CoA) as starter and carried out sequential decarboxylative condensations with malonyl-CoA yielding alpha-pyrones from three to six acetate units. However, naphthalenes, the expected products, were not isolated. Since the main compound produced by DluHKS is a hexaketide alpha-pyrone, and the naphthoquinones in D. lusitanicum are composed of six acetate units, we propose that the enzyme provides the backbone of these secondary metabolites. An involvement of accessory proteins in this biosynthetic pathway is discussed.
Collapse
Affiliation(s)
- Aphacha Jindaprasert
- Faculty of Agroindustry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | | | | | | | | |
Collapse
|
43
|
Rubin-Pitel SB, Zhang H, Vu T, Brunzelle JS, Zhao H, Nair SK. Distinct structural elements dictate the specificity of the type III pentaketide synthase from Neurospora crassa. CHEMISTRY & BIOLOGY 2008; 15:1079-90. [PMID: 18940668 PMCID: PMC2610677 DOI: 10.1016/j.chembiol.2008.08.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 07/24/2008] [Accepted: 08/08/2008] [Indexed: 11/16/2022]
Abstract
The fungal type III polyketide synthase 2'-oxoalkylresorcylic acid synthase (ORAS) primes with a range of acyl-Coenzyme A thioesters (C4-C20) and extends using malonyl-Coenzyme A to produce pyrones, resorcinols, and resorcylic acids. To gain insight into this unusual substrate specificity and product profile, we have determined the crystal structures of ORAS to 1.75 A resolution, the Phe-252-->Gly site-directed mutant to 2.1 A resolution, and a binary complex of ORAS with eicosanoic acid to 2.0 A resolution. The structures reveal a distinct rearrangement of structural elements near the active site that allows accommodation of long-chain fatty acid esters and a reorientation of the gating mechanism that controls cyclization and polyketide chain length. The roles of these structural elements are further elucidated by characterization of various structure-based site-directed variants. These studies establish an unexpected plasticity to the PKS fold, unanticipated from structural studies of other members of this enzyme family.
Collapse
Affiliation(s)
- Sheryl B. Rubin-Pitel
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Houjin Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Trang Vu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Joseph S. Brunzelle
- Life Sciences Collaborative Access Team, Argonne National Laboratories, Argonne, IL 60439, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
44
|
Ghosh R, Chhabra A, Phatale PA, Samrat SK, Sharma J, Gosain A, Mohanty D, Saran S, Gokhale RS. Dissecting the functional role of polyketide synthases in Dictyostelium discoideum: biosynthesis of the differentiation regulating factor 4-methyl-5-pentylbenzene-1,3-diol. J Biol Chem 2008; 283:11348-54. [PMID: 18252726 DOI: 10.1074/jbc.m709588200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dictyostelium discoideum exhibits the largest repository of polyketide synthase (PKS) proteins of all known genomes. However, the functional relevance of these proteins in the biology of this organism remains largely obscure. On the basis of computational, biochemical, and gene expression studies, we propose that the multifunctional Dictyostelium PKS (DiPKS) protein DiPKS1 could be involved in the biosynthesis of the differentiation regulating factor 4-methyl-5-pentylbenzene-1,3-diol (MPBD). Our cell-free reconstitution studies of a novel acyl carrier protein Type III PKS didomain from DiPKS1 revealed a crucial role of protein-protein interactions in determining the final biosynthetic product. Whereas the Type III PKS domain by itself primarily produces acyl pyrones, the presence of the interacting acyl carrier protein domain modulates the catalytic activity to produce the alkyl resorcinol scaffold of MPBD. Furthermore, we have characterized an O-methyltransferase (OMT12) from Dictyostelium with the capability to modify this resorcinol ring to synthesize a variant of MPBD. We propose that such a modification in vivo could in fact provide subtle variations in biological function and specificity. In addition, we have performed systematic computational analysis of 45 multidomain PKSs, which revealed several unique features in DiPKS proteins. Our studies provide a new perspective in understanding mechanisms by which metabolic diversity could be generated by combining existing functional scaffolds.
Collapse
Affiliation(s)
- Ratna Ghosh
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mizuuchi Y, Shimokawa Y, Wanibuchi K, Noguchi H, Abe I. Structure Function Analysis of Novel Type III Polyketide Synthases from Arabidopsis thaliana. Biol Pharm Bull 2008; 31:2205-10. [DOI: 10.1248/bpb.31.2205] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | - Ikuro Abe
- School of Pharmaceutical Sciences, University of Shizuoka
- PRESTO, Japan Science and Technology Agency
| |
Collapse
|
46
|
Morita H, Kondo S, Oguro S, Noguchi H, Sugio S, Abe I, Kohno T. Structural insight into chain-length control and product specificity of pentaketide chromone synthase from Aloe arborescens. ACTA ACUST UNITED AC 2007; 14:359-69. [PMID: 17462571 DOI: 10.1016/j.chembiol.2007.02.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2006] [Revised: 01/24/2007] [Accepted: 02/06/2007] [Indexed: 11/19/2022]
Abstract
The crystal structures of a wild-type and a mutant PCS, a novel plant type III polyketide synthase from a medicinal plant, Aloe arborescens, were solved at 1.6 A resolution. The crystal structures revealed that the pentaketide-producing wild-type and the octaketide-producing M207G mutant shared almost the same overall folding, and that the large-to-small substitution dramatically increases the volume of the polyketide-elongation tunnel by opening a gate to two hidden pockets behind the active site of the enzyme. The chemically inert active site residue 207 thus controls the number of condensations of malonyl-CoA, solely depending on the steric bulk of the side chain. These findings not only provided insight into the polyketide formation reaction, but they also suggested strategies for the engineered biosynthesis of polyketides.
Collapse
Affiliation(s)
- Hiroyuki Morita
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Gokhale RS, Sankaranarayanan R, Mohanty D. Versatility of polyketide synthases in generating metabolic diversity. Curr Opin Struct Biol 2007; 17:736-43. [PMID: 17935970 DOI: 10.1016/j.sbi.2007.08.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 08/20/2007] [Accepted: 08/24/2007] [Indexed: 11/25/2022]
Abstract
Polyketide synthases (PKSs) form a large family of multifunctional proteins involved in the biosynthesis of diverse classes of natural products. Architecturally at least three different types of PKSs have been discovered in the microbial world and recent years have revealed tremendous versatility of PKSs, both in terms of their structural and functional organization and in their ability to produce compounds other than typical secondary metabolites. Mycobacterium tuberculosis exploits polyketide biosynthetic enzymes to synthesize complex lipids, many of which are essential for its survival. The functional significance of the large repertoire of PKSs in Dictyostelium discoideum, perhaps in producing developmental regulating factors, is emerging. Recently determined structures of fatty acid synthases (FASs) and PKSs now provide an opportunity to delineate the mechanistic and structural basis of polyketide biosynthetic machinery.
Collapse
Affiliation(s)
- Rajesh S Gokhale
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | | | | |
Collapse
|
48
|
Fukuma K, Neuls ED, Ryberg JM, Suh DY, Sankawa U. Mutational Analysis of Conserved Outer Sphere Arginine Residues of Chalcone Synthase. ACTA ACUST UNITED AC 2007; 142:731-9. [DOI: 10.1093/jb/mvm188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Grüschow S, Buchholz TJ, Seufert W, Dordick JS, Sherman DH. Substrate profile analysis and ACP-mediated acyl transfer in Streptomyces coelicolor Type III polyketide synthases. Chembiochem 2007; 8:863-8. [PMID: 17440908 DOI: 10.1002/cbic.200700026] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sabine Grüschow
- Life Sciences Institute, Department of Medicinal Chemistry, Chemical Biology Program, University of Michigan-Ann Arbor, Ann Arbor, MI 48109-2216, USA.
| | | | | | | | | |
Collapse
|
50
|
Kumar P, Schelle MW, Jain M, Lin FL, Petzold CJ, Leavell MD, Leary JA, Cox JS, Bertozzi CR. PapA1 and PapA2 are acyltransferases essential for the biosynthesis of the Mycobacterium tuberculosis virulence factor sulfolipid-1. Proc Natl Acad Sci U S A 2007; 104:11221-6. [PMID: 17592143 PMCID: PMC2040880 DOI: 10.1073/pnas.0611649104] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis produces numerous exotic lipids that have been implicated as virulence determinants. One such glycolipid, Sulfolipid-1 (SL-1), consists of a trehalose-2-sulfate (T2S) core acylated with four lipid moieties. A diacylated intermediate in SL-1 biosynthesis, SL(1278), has been shown to activate the adaptive immune response in human patients. Although several proteins involved in SL-1 biosynthesis have been identified, the enzymes that acylate the T2S core to form SL(1278) and SL-1, and the biosynthetic order of these acylation reactions, are unknown. Here we demonstrate that PapA2 and PapA1 are responsible for the sequential acylation of T2S to form SL(1278) and are essential for SL-1 biosynthesis. In vitro, recombinant PapA2 converts T2S to 2'-palmitoyl T2S, and PapA1 further elaborates this newly identified SL-1 intermediate to an analog of SL(1278). Disruption of papA2 and papA1 in M. tuberculosis confirmed their essential role in SL-1 biosynthesis and their order of action. Finally, the Delta papA2 and Delta papA1 mutants were screened for virulence defects in a mouse model of infection. The loss of SL-1 (and SL(1278)) did not appear to affect bacterial replication or trafficking, suggesting that the functions of SL-1 are specific to human infection.
Collapse
Affiliation(s)
- Pawan Kumar
- *Department of Chemistry and Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Michael W. Schelle
- *Department of Chemistry and Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Madhulika Jain
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; and
| | - Fiona L. Lin
- *Department of Chemistry and Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Christopher J. Petzold
- Department of Chemistry and Division of Molecular and Cellular Biology, Genome Center, University of California, Davis, CA 95606
| | - Michael D. Leavell
- Department of Chemistry and Division of Molecular and Cellular Biology, Genome Center, University of California, Davis, CA 95606
| | - Julie A. Leary
- Department of Chemistry and Division of Molecular and Cellular Biology, Genome Center, University of California, Davis, CA 95606
| | - Jeffery S. Cox
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; and
| | - Carolyn R. Bertozzi
- *Department of Chemistry and Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|