1
|
Kilzheimer A, Hentrich T, Rotermund C, Kahle PJ, Schulze-Hentrich JM. Failure of diet-induced transcriptional adaptations in alpha-synuclein transgenic mice. Hum Mol Genet 2022; 32:450-461. [PMID: 36001352 PMCID: PMC9851747 DOI: 10.1093/hmg/ddac205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023] Open
Abstract
Nutritional influences have been discussed as potential modulators of Parkinson's disease (PD) pathology through various epidemiological and physiological studies. In animal models, a high-fat diet (HFD) with greater intake of lipid-derived calories leads to accelerated disease onset and progression. The underlying molecular mechanisms of HFD-induced aggravated pathology, however, remain largely unclear. In this study, we aimed to further illuminate the effects of a fat-enriched diet in PD by examining the brainstem and hippocampal transcriptome of alpha-synuclein transgenic mice exposed to a life-long HFD. Investigating individual transcript isoforms, differential gene expression and co-expression clusters, we observed that transcriptional differences between wild-type (WT) and transgenic animals intensified in both regions under HFD. Both brainstem and hippocampus displayed strikingly similar transcriptomic perturbation patterns. Interestingly, expression differences resulted mainly from responses in WT animals to HFD, while these genes remained largely unchanged or were even slightly oppositely regulated by diet in transgenic animals. Genes and co-expressed gene groups exhibiting this dysregulation were linked to metabolic and mitochondrial pathways. Our findings propose the failure of metabolic adaptions as the potential explanation for accelerated disease unfolding under exposure to HFD. From the identified clusters of co-expressed genes, several candidates lend themselves to further functional investigations.
Collapse
Affiliation(s)
| | | | - Carola Rotermund
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, 72074 Tübingen, Germany,German Center for Neurodegenerative Diseases (DZNE), 72074 Tübingen, Germany
| | - Philipp J Kahle
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, 72074 Tübingen, Germany
| | - Julia M Schulze-Hentrich
- To whom correspondence should be addressed at: Calwerstr. 7, 72076 Tübingen, Germany. Tel: +49-7071-2972276; Fax: +49-7071-29-5171;
| |
Collapse
|
2
|
Saito H, Wada N, Iida K. Isonitrogenous low-carbohydrate diet elicits specific changes in metabolic gene expression in the skeletal muscle of exercise-trained mice. PLoS One 2022; 17:e0262875. [PMID: 35061842 PMCID: PMC8782354 DOI: 10.1371/journal.pone.0262875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022] Open
Abstract
With the renewed interest in low-carbohydrate diets (LCDs) in the sports field, a few animal studies have investigated their potential. However, most rodent studies have used an LCD containing low protein, which does not recapitulate a human LCD, and the muscle-specific adaptation in response to an LCD remains unclear. Therefore, we investigated the effects of two types of LCDs, both containing the same proportion of protein as a regular diet (isonitrogenous LCD; INLCD), on body composition, exercise performance, and metabolic fuel selection at the genetic level in the skeletal muscles of exercise-trained mice. Three groups of mice (n = 8 in each group), one fed a regular AIN-93G diet served as the control, and the others fed either of the two INLCDs containing 20% protein and 10% carbohydrate (INLCD-10%) or 20% protein and 1% carbohydrate (INLCD-1%) had a regular exercise load (5 times/week) for 12 weeks. Body weight and muscle mass did not decrease in either of the INLCD-fed groups, and the muscle glycogen levels and endurance capacity did not differ among the three groups. Only in the mice fed INLCD-1% did the plasma ketone concentration significantly increase, and gene expression related to glucose utilization significantly declined in the muscles. Both INLCD-1% and INLCD-10% consumption increased gene expression related to lipid utilization. These results suggest that, although INLCD treatment did not affect endurance capacity, it helped maintain muscle mass and glycogen content regardless of the glucose intake restrictions in trained mice. Moreover, an INLCD containing a low carbohydrate content might present an advantage by increasing lipid oxidation without ketosis and suppressing muscle glucose utilization.
Collapse
Affiliation(s)
- Hazuki Saito
- Department of Food and Nutrition Science, Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo, Tokyo, Japan
| | - Naoko Wada
- Department of Food and Nutrition Science, Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo, Tokyo, Japan
| | - Kaoruko Iida
- Department of Food and Nutrition Science, Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo, Tokyo, Japan
- The Institute for Human Life Innovation, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
3
|
Female Mice Are Protected from Metabolic Decline Associated with Lack of Skeletal Muscle HuR. BIOLOGY 2021; 10:biology10060543. [PMID: 34204316 PMCID: PMC8233974 DOI: 10.3390/biology10060543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary Metabolic flexibility describes the ability to adapt to utilization of metabolic fuels such as carbohydrates, lipids, and proteins as they become available. The RNA binding protein HuR controls this flexibility in mouse and human skeletal muscle, but the molecular mechanisms governing this process remain poorly characterized. Additionally, studies from mice indicate that HuR control of metabolic flexibility may be more essential for males than females. This is because males lacking HuR in skeletal muscle develop hallmarks of insulin sensitivity, while females have not been shown to do so. Here we examine this sexual dimorphism in mice lacking HuR in skeletal muscle. Our results reveal that lack of HuR in skeletal muscle drives increased adiposity regardless of sex, but that this increase in adiposity drives the development of insulin resistance in male animals only. Additionally, relative to male mice, the detrimental metabolic phenotype associated with HuR inhibition in skeletal muscle can be corrected by feeding of a diet heavily composed of either lipids or carbohydrates. Abstract Male mice lacking HuR in skeletal muscle (HuRm−/−) have been shown to have decreased gastrocnemius lipid oxidation and increased adiposity and insulin resistance. The same consequences have not been documented in female HuRm−/− mice. Here we examine this sexually dimorphic phenotype. HuRm−/− mice have an increased fat mass to lean mass ratio (FM/LM) relative to controls where food intake is similar. Increased body weight for male mice correlates with increased blood glucose during glucose tolerance tests (GTT), suggesting increased fat mass in male HuRm−/− mice as a driver of decreased glucose clearance. However, HuRm−/− female mice show decreased blood glucose levels during GTT relative to controls. HuRm−/− mice display decreased palmitate oxidation in skeletal muscle relative to controls. This difference is more robust for male HuRm−/− mice and more exaggerated for both sexes at high dietary fat. A high-fat diet stimulates expression of Pgc1α in HuRm−/− male skeletal muscle, but not in females. However, the lipid oxidation Pparα pathway remains decreased in HuRm−/− male mice relative to controls regardless of diet. This pathway is only decreased in female HuRm−/− mice fed high fat diet. A decreased capacity for lipid oxidation in skeletal muscle in the absence of HuR may thus be linked to decreased glucose clearance in male but not female mice.
Collapse
|
4
|
Huang TY, Linden MA, Fuller SE, Goldsmith FR, Simon J, Batdorf HM, Scott MC, Essajee NM, Brown JM, Noland RC. Combined effects of a ketogenic diet and exercise training alter mitochondrial and peroxisomal substrate oxidative capacity in skeletal muscle. Am J Physiol Endocrinol Metab 2021; 320:E1053-E1067. [PMID: 33843280 PMCID: PMC8285595 DOI: 10.1152/ajpendo.00410.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ketogenic diets (KDs) are reported to improve body weight, fat mass, and exercise performance in humans. Unfortunately, most rodent studies have used a low-protein KD, which does not recapitulate diets used by humans. Since skeletal muscle plays a critical role in responding to macronutrient perturbations induced by diet and exercise, the purpose of this study was to test if a normal-protein KD (NPKD) impacts shifts in skeletal muscle substrate oxidative capacity in response to exercise training (ExTr). A high fat, carbohydrate-deficient NPKD (16.1% protein, 83.9% fat, 0% carbohydrate) was given to C57BL/6J male mice for 6 wk, whereas controls (Con) received a low-fat diet with similar protein (15.9% protein, 11.9% fat, 72.2% carbohydrate). After 3 wk on the diet, mice began treadmill training 5 days/wk, 60 min/day for 3 wks. The NPKD increased body weight and fat mass, whereas ExTr negated a continued rise in adiposity. ExTr increased intramuscular glycogen, whereas the NPKD increased intramuscular triglycerides. Neither the NPKD nor ExTr alone altered mitochondrial content; however, in combination, the NPKD-ExTr group showed increases in PGC-1α and markers of mitochondrial fission/fusion. Pyruvate oxidative capacity was unchanged by either intervention, whereas ExTr increased leucine oxidation in NPKD-fed mice. Lipid metabolism pathways had the most notable changes as the NPKD and ExTr interventions both enhanced mitochondrial and peroxisomal lipid oxidation and many adaptations were additive or synergistic. Overall, these results suggest that a combination of a NPKD and ExTr induces additive and/or synergistic adaptations in skeletal muscle oxidative capacity.NEW & NOTEWORTHY A ketogenic diet with normal protein content (NPKD) increases body weight and fat mass, increases intramuscular triglyceride storage, and upregulates pathways related to protein metabolism. In combination with exercise training, a NPKD induces additive and/or synergistic activation of AMPK, PGC-1α, mitochondrial fission/fusion genes, mitochondrial fatty acid oxidation, and peroxisomal adaptations in skeletal muscle. Collectively, results from this study provide mechanistic insight into adaptations in skeletal muscle relevant to keto-adaptation.
Collapse
Affiliation(s)
- Tai-Yu Huang
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Melissa A Linden
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Scott E Fuller
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Felicia R Goldsmith
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Jacob Simon
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Heidi M Batdorf
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Matthew C Scott
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Nabil M Essajee
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - John M Brown
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Robert C Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| |
Collapse
|
5
|
Ogura Y, Kakehashi C, Yoshihara T, Kurosaka M, Kakigi R, Higashida K, Fujiwara SE, Akema T, Funabashi T. Ketogenic diet feeding improves aerobic metabolism property in extensor digitorum longus muscle of sedentary male rats. PLoS One 2020; 15:e0241382. [PMID: 33125406 PMCID: PMC7598508 DOI: 10.1371/journal.pone.0241382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/13/2020] [Indexed: 12/01/2022] Open
Abstract
Recent studies of the ketogenic diet, an extremely high-fat diet with extremely low carbohydrates, suggest that it changes the energy metabolism properties of skeletal muscle. However, ketogenic diet effects on muscle metabolic characteristics are diverse and sometimes countervailing. Furthermore, ketogenic diet effects on skeletal muscle performance are unknown. After male Wistar rats (8 weeks of age) were assigned randomly to a control group (CON) and a ketogenic diet group (KD), they were fed for 4 weeks respectively with a control diet (10% fat, 10% protein, 80% carbohydrate) and a ketogenic diet (90% fat, 10% protein, 0% carbohydrate). After the 4-week feeding period, the extensor digitorum longus (EDL) muscle was evaluated ex vivo for twitch force, tetanic force, and fatigue. We also analyzed the myosin heavy chain composition, protein expression of metabolic enzymes and regulatory factors, and citrate synthase activity. No significant difference was found between CON and KD in twitch or tetanic forces or muscle fatigue. However, the KD citrate synthase activity and the protein expression of Sema3A, citrate synthase, succinate dehydrogenase, cytochrome c oxidase subunit 4, and 3-hydroxyacyl-CoA dehydrogenase were significantly higher than those of CON. Moreover, a myosin heavy chain shift occurred from type IIb to IIx in KD. These results demonstrated that the 4-week ketogenic diet improves skeletal muscle aerobic capacity without obstructing muscle contractile function in sedentary male rats and suggest involvement of Sema3A in the myosin heavy chain shift of EDL muscle.
Collapse
Affiliation(s)
- Yuji Ogura
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| | - Chiaki Kakehashi
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| | - Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Mitsutoshi Kurosaka
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| | - Ryo Kakigi
- Faculty of Management & Information Science, Josai International University, Togane, Chiba, Japan
| | - Kazuhiko Higashida
- Department of Nutrition, University of Shiga Prefecture, Hikone, Shiga, Japan
| | - Sei-Etsu Fujiwara
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| | - Tatsuo Akema
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| | - Toshiya Funabashi
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| |
Collapse
|
6
|
Shimizu K, Saito H, Sumi K, Sakamoto Y, Tachi Y, Iida K. Short-term and long-term ketogenic diet therapy and the addition of exercise have differential impacts on metabolic gene expression in the mouse energy-consuming organs heart and skeletal muscle. Nutr Res 2018; 60:77-86. [DOI: 10.1016/j.nutres.2018.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/06/2018] [Accepted: 09/14/2018] [Indexed: 11/24/2022]
|
7
|
Kleinert M, Parker BL, Jensen TE, Raun SH, Pham P, Han X, James DE, Richter EA, Sylow L. Quantitative proteomic characterization of cellular pathways associated with altered insulin sensitivity in skeletal muscle following high-fat diet feeding and exercise training. Sci Rep 2018; 8:10723. [PMID: 30013070 PMCID: PMC6048112 DOI: 10.1038/s41598-018-28540-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/21/2018] [Indexed: 01/26/2023] Open
Abstract
Regular exercise elicits advantageous metabolic adaptations in skeletal muscle, such as improved insulin sensitivity. However, the underpinning molecular mechanisms and the effect of diet on muscle exercise training benefits are unclear. We therefore characterized the skeletal muscle proteome following exercise training (ET) in mice fed chow or high-fat diet (HFD). ET increased exercise performance, lowered body-weight, decreased fat mass and improved muscle insulin action in chow- and HFD-fed mice. At the molecular level, ET regulated 170 muscle proteins in chow-fed mice, but only 29 proteins in HFD-fed mice. HFD per se altered 56 proteins, most of which were regulated in a similar direction by ET. To identify proteins that might have particular health-related bearing on skeletal muscle metabolism, we filtered for differentially regulated proteins in response to ET and HFD. This yielded 15 proteins, including the major urinary protein 1 (MUP1), which was the protein most decreased after HFD, but increased with ET. The ET-induced Mup1 expression was absent in mouse muscle lacking functional AMPK. MUP1 also potentiated insulin-stimulated GLUT4 translocation in cultured muscle cells. Collectively, we provide a resource of ET-regulated proteins in insulin-sensitive and insulin-resistant skeletal muscle. The identification of MUP1 as a diet-, ET- and AMPK-regulated skeletal muscle protein that improves insulin sensitivity in muscle cells demonstrates the usefulness of these data.
Collapse
Affiliation(s)
- Maximilian Kleinert
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany.,Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333, Munich, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Benjamin L Parker
- The University of Sydney, Charles Perkins Centre, School of Life and Environmental Sciences, Sydney, Australia
| | - Thomas E Jensen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Steffen H Raun
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Phung Pham
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany
| | - Xiuqing Han
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - David E James
- The University of Sydney, Charles Perkins Centre, School of Life and Environmental Sciences, Sydney, Australia
| | - Erik A Richter
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| | - Lykke Sylow
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Miller VJ, Villamena FA, Volek JS. Nutritional Ketosis and Mitohormesis: Potential Implications for Mitochondrial Function and Human Health. J Nutr Metab 2018; 2018:5157645. [PMID: 29607218 PMCID: PMC5828461 DOI: 10.1155/2018/5157645] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Impaired mitochondrial function often results in excessive production of reactive oxygen species (ROS) and is involved in the etiology of many chronic diseases, including cardiovascular disease, diabetes, neurodegenerative disorders, and cancer. Moderate levels of mitochondrial ROS, however, can protect against chronic disease by inducing upregulation of mitochondrial capacity and endogenous antioxidant defense. This phenomenon, referred to as mitohormesis, is induced through increased reliance on mitochondrial respiration, which can occur through diet or exercise. Nutritional ketosis is a safe and physiological metabolic state induced through a ketogenic diet low in carbohydrate and moderate in protein. Such a diet increases reliance on mitochondrial respiration and may, therefore, induce mitohormesis. Furthermore, the ketone β-hydroxybutyrate (BHB), which is elevated during nutritional ketosis to levels no greater than those resulting from fasting, acts as a signaling molecule in addition to its traditionally known role as an energy substrate. BHB signaling induces adaptations similar to mitohormesis, thereby expanding the potential benefit of nutritional ketosis beyond carbohydrate restriction. This review describes the evidence supporting enhancement of mitochondrial function and endogenous antioxidant defense in response to nutritional ketosis, as well as the potential mechanisms leading to these adaptations.
Collapse
Affiliation(s)
- Vincent J. Miller
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| | - Frederick A. Villamena
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jeff S. Volek
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Vartanian V, Tumova J, Dobrzyn P, Dobrzyn A, Nakabeppu Y, Lloyd RS, Sampath H. 8-oxoguanine DNA glycosylase (OGG1) deficiency elicits coordinated changes in lipid and mitochondrial metabolism in muscle. PLoS One 2017; 12:e0181687. [PMID: 28727777 PMCID: PMC5519207 DOI: 10.1371/journal.pone.0181687] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/04/2017] [Indexed: 12/04/2022] Open
Abstract
Oxidative stress resulting from endogenous and exogenous sources causes damage to cellular components, including genomic and mitochondrial DNA. Oxidative DNA damage is primarily repaired via the base excision repair pathway that is initiated by DNA glycosylases. 8-oxoguanine DNA glycosylase (OGG1) recognizes and cleaves oxidized and ring-fragmented purines, including 8-oxoguanine, the most commonly formed oxidative DNA lesion. Mice lacking the OGG1 gene product are prone to multiple features of the metabolic syndrome, including high-fat diet-induced obesity, hepatic steatosis, and insulin resistance. Here, we report that OGG1-deficient mice also display skeletal muscle pathologies, including increased muscle lipid deposition and alterations in genes regulating lipid uptake and mitochondrial fission in skeletal muscle. In addition, expression of genes of the TCA cycle and of carbohydrate and lipid metabolism are also significantly altered in muscle of OGG1-deficient mice. These tissue changes are accompanied by marked reductions in markers of muscle function in OGG1-deficient animals, including decreased grip strength and treadmill endurance. Collectively, these data indicate a role for skeletal muscle OGG1 in the maintenance of optimal tissue function.
Collapse
Affiliation(s)
- Vladimir Vartanian
- From the Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jana Tumova
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Pawel Dobrzyn
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - R. Stephen Lloyd
- From the Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Harini Sampath
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
- Rutgers Center for Lipid Research and Center for Digestive Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, United States of America
| |
Collapse
|
10
|
Gonzalez-Franquesa A, Patti ME. Insulin Resistance and Mitochondrial Dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:465-520. [DOI: 10.1007/978-3-319-55330-6_25] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Wessels B, van den Broek NMA, Ciapaite J, Houten SM, Wanders RJA, Nicolay K, Prompers JJ. Carnitine supplementation in high-fat diet-fed rats does not ameliorate lipid-induced skeletal muscle mitochondrial dysfunction in vivo. Am J Physiol Endocrinol Metab 2015; 309:E670-8. [PMID: 26286868 DOI: 10.1152/ajpendo.00144.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/17/2015] [Indexed: 12/24/2022]
Abstract
Muscle lipid overload and the associated accumulation of lipid intermediates play an important role in the development of insulin resistance. Carnitine insufficiency is a common feature of insulin-resistant states and might lead to incomplete fatty acid oxidation and impaired export of lipid intermediates out of the mitochondria. The aim of the present study was to test the hypothesis that carnitine supplementation reduces high-fat diet-induced lipotoxicity, improves muscle mitochondrial function, and ameliorates insulin resistance. Wistar rats were fed either normal chow or a high-fat diet for 15 wk. One group of high-fat diet-fed rats was supplemented with 300 mg·kg(-1)·day(-1) L-carnitine during the last 8 wk. Muscle mitochondrial function was measured in vivo by (31)P magnetic resonance spectroscopy (MRS) and ex vivo by high-resolution respirometry. Muscle lipid status was determined by (1)H MRS (intramyocellular lipids) and tandem mass spectrometry (acylcarnitines). High-fat diet feeding induced insulin resistance and was associated with decreases in muscle and blood free carnitine, elevated levels of muscle lipids and acylcarnitines, and an increased number of muscle mitochondria that showed an improved capacity to oxidize fat-derived substrates when tested ex vivo. This was, however, not accompanied by an increase in muscle oxidative capacity in vivo, indicating that in vivo mitochondrial function was compromised. Despite partial normalization of muscle and blood free carnitine content, carnitine supplementation did not induce improvements in muscle lipid status, in vivo mitochondrial function, or insulin sensitivity. Carnitine insufficiency, therefore, does not play a major role in high-fat diet-induced muscle mitochondrial dysfunction in vivo.
Collapse
Affiliation(s)
- Bart Wessels
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; and
| | - Nicole M A van den Broek
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; and
| | - Jolita Ciapaite
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; and
| | - Sander M Houten
- Laboratory Genetic Metabolic Diseases, Departments of Pediatrics and Clinical Chemistry, Academic Medical Center, Amsterdam, the Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Departments of Pediatrics and Clinical Chemistry, Academic Medical Center, Amsterdam, the Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; and
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; and
| |
Collapse
|
12
|
Increased pyruvate dehydrogenase kinase expression in cultured myotubes from obese and diabetic individuals. Eur J Nutr 2014; 54:1033-43. [DOI: 10.1007/s00394-014-0780-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 10/06/2014] [Indexed: 12/11/2022]
|
13
|
Neels JG, Grimaldi PA. Physiological functions of peroxisome proliferator-activated receptor β. Physiol Rev 2014; 94:795-858. [PMID: 24987006 DOI: 10.1152/physrev.00027.2013] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The peroxisome proliferator-activated receptors, PPARα, PPARβ, and PPARγ, are a family of transcription factors activated by a diversity of molecules including fatty acids and fatty acid metabolites. PPARs regulate the transcription of a large variety of genes implicated in metabolism, inflammation, proliferation, and differentiation in different cell types. These transcriptional regulations involve both direct transactivation and interaction with other transcriptional regulatory pathways. The functions of PPARα and PPARγ have been extensively documented mainly because these isoforms are activated by molecules clinically used as hypolipidemic and antidiabetic compounds. The physiological functions of PPARβ remained for a while less investigated, but the finding that specific synthetic agonists exert beneficial actions in obese subjects uplifted the studies aimed to elucidate the roles of this PPAR isoform. Intensive work based on pharmacological and genetic approaches and on the use of both in vitro and in vivo models has considerably improved our knowledge on the physiological roles of PPARβ in various cell types. This review will summarize the accumulated evidence for the implication of PPARβ in the regulation of development, metabolism, and inflammation in several tissues, including skeletal muscle, heart, skin, and intestine. Some of these findings indicate that pharmacological activation of PPARβ could be envisioned as a therapeutic option for the correction of metabolic disorders and a variety of inflammatory conditions. However, other experimental data suggesting that activation of PPARβ could result in serious adverse effects, such as carcinogenesis and psoriasis, raise concerns about the clinical use of potent PPARβ agonists.
Collapse
Affiliation(s)
- Jaap G Neels
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| | - Paul A Grimaldi
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| |
Collapse
|
14
|
Abstract
Based on evidence that patients with type 2 diabetes (T2DM), obese insulin-resistant individuals, and lean insulin-resistant offspring of parents with T2DM have ~30% less mitochondria in their muscles than lean control subjects, it appears to be widely accepted that mitochondrial "deficiency" is responsible for insulin resistance. The proposed mechanism for this effect is an impaired ability to oxidize fat, resulting in lipid accumulation in muscle. The purpose of this counterpoint article is to review the evidence against the mitochondrial deficiency concept. This evidence includes the findings that 1) development of insulin resistance in laboratory rodents fed high-fat diets occurs despite a concomitant increase in muscle mitochondria; 2) mitochondrial deficiency severe enough to impair fat oxidation in resting muscle causes an increase, not a decrease, in insulin action; and 3) most of the studies comparing fat oxidation in insulin-sensitive and insulin-resistant individuals have shown that fat oxidation is higher in T2DM patients and obese insulin-resistant individuals than in insulin-sensitive control subjects. In conclusion, it seems clear, based on this evidence, that the 30% reduction in muscle content of mitochondria in patients with T2DM is not responsible for insulin resistance.
Collapse
Affiliation(s)
- John O Holloszy
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
15
|
Association of bovine meat quality traits with genes included in the PPARG and PPARGC1A networks. Meat Sci 2013; 94:328-35. [PMID: 23567132 DOI: 10.1016/j.meatsci.2013.02.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 02/08/2013] [Accepted: 02/19/2013] [Indexed: 11/21/2022]
Abstract
Understanding which are the genetic variants underlying the nutritional and sensory properties of beef, enables improvement in meat quality. The aim of this study is to identify new molecular markers for meat quality through an association study using candidate genes included in the PPARG and PPARGC1A networks given their master role in coordinating metabolic adaptation in fat tissue, muscle and liver. Amongst the novel associations found in this study, selection of the positive marker variants of genes such as BCL3, LPL, PPARG, SCAP, and SCD will improve meat organoleptic characteristics and health by balancing the n-6 to n-3 fatty acid ratio in meat. Also previous results on GDF8 and DGAT1 were validated, and the novel ATF4, HNF4A and PPARGC1A associations, although slightly under the significance threshold, are consistent with their physiological roles. These data contribute insights into the complex gene-networks underlying economically important traits.
Collapse
|
16
|
Carnevali L, Eder R, Lira F, Lima W, Gonçalves D, Zanchi N, Nicastro H, Lavoie J, Seelaender M. Effects of high-intensity intermittent training on carnitine palmitoyl transferase activity in the gastrocnemius muscle of rats. Braz J Med Biol Res 2012; 45:777-83. [PMID: 22735180 PMCID: PMC3854250 DOI: 10.1590/s0100-879x2012007500105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/16/2012] [Indexed: 11/22/2022] Open
Abstract
We examined the capacity of high-intensity intermittent training (HI-IT) to facilitate the delivery of lipids to enzymes responsible for oxidation, a task performed by the carnitine palmitoyl transferase (CPT) system in the rat gastrocnemius muscle. Male adult Wistar rats (160-250 g) were randomly distributed into 3 groups: sedentary (Sed, N = 5), HI-IT (N = 10), and moderate-intensity continuous training (MI-CT, N = 10). The trained groups were exercised for 8 weeks with a 10% (HI-IT) and a 5% (MI-CT) overload. The HI-IT group presented 11.8% decreased weight gain compared to the Sed group. The maximal activities of CPT-I, CPT-II, and citrate synthase were all increased in the HI-IT group compared to the Sed group (P < 0.01), as also was gene expression, measured by RT-PCR, of fatty acid binding protein (FABP; P < 0.01) and lipoprotein lipase (LPL; P < 0.05). Lactate dehydrogenase also presented a higher maximal activity (nmol·min(-1)·mg protein(-1)) in HI-IT (around 83%). We suggest that 8 weeks of HI-IT enhance mitochondrial lipid transport capacity thus facilitating the oxidation process in the gastrocnemius muscle. This adaptation may also be associated with the decrease in weight gain observed in the animals and was concomitant to a higher gene expression of both FABP and LPL in HI-IT, suggesting that intermittent exercise is a "time-efficient" strategy inducing metabolic adaptation.
Collapse
Affiliation(s)
- L.C. Carnevali
- Grupo de Biologia Molecular da Célula, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP, Brasil
- Centro Universitário Ítalo-Brasileiro (Unítalo), São Paulo SP, Brasil
| | - R. Eder
- Grupo de Biologia Molecular da Célula, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP, Brasil
| | - F.S. Lira
- Grupo de Biologia Molecular da Célula, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP, Brasil
| | - W.P. Lima
- Grupo de Biologia Molecular da Célula, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP, Brasil
- Instituto Federal de Educação,Ciência e Tecnologia de São Paulo, São Paulo SP, Brasil
| | - D.C. Gonçalves
- Grupo de Biologia Molecular da Célula, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP, Brasil
| | - N.E. Zanchi
- Laboratorio de Nutrição e Metabolismo Aplicado à Atividade Motora, Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo SP, Brasil
- Centro de Pesquisa do Genoma Humano, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP, Brasil
| | - H. Nicastro
- Laboratorio de Nutrição e Metabolismo Aplicado à Atividade Motora, Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo SP, Brasil
| | - J.M. Lavoie
- Department of Kinesiology, University of Montreal, Montreal, Canada
| | - M.C.L. Seelaender
- Grupo de Biologia Molecular da Célula, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP, Brasil
| |
Collapse
|
17
|
Insulin-stimulated glucose uptake and pathways regulating energy metabolism in skeletal muscle cells: the effects of subcutaneous and visceral fat, and long-chain saturated, n-3 and n-6 polyunsaturated fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:468-75. [PMID: 21570480 DOI: 10.1016/j.bbalip.2011.04.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/05/2011] [Accepted: 04/27/2011] [Indexed: 02/06/2023]
Abstract
AIMS The study aims to determine the effect of long-chain saturated and polyunsaturated (PUFA) fatty acids, specifically palmitic acid (PA; 16:0), docosahexaenoic acid (DHA; 22:6n-3) and linoleic acid (LA; 18:2n-6), and their interactions with factors from adipose tissue, on insulin sensitivity and lipid metabolism in skeletal muscle. METHODS L6 myotubes were cultured with PA, DHA or LA (0.4mmol/l), with or without conditioned media from human subcutaneous (SC) and visceral (IAB) fat. Insulin-stimulated glucose uptake, lipid content, mRNA expression of key genes involved in nutrient utilization and protein expression of inhibitor protein inhibitor kappa B (IκB)-α and mammalian target of rapamycin (mTOR) were measured. RESULTS PA and IAB fat reduced insulin-stimulated glucose uptake and their combined effect was similar to that of PA alone. PA-induced insulin resistance was ameliorated by inhibiting the de novo synthesis of ceramide, IκBα degradation or mTOR activation. The PA effect was also partially reversed by DHA and completely by LA in the presence of SC fat. PA increased diacylglycerol content, which was reduced by LA and to a greater extent when either IAB or SC fat was also present. PA increased SCD1 whereas DHA and LA increased AMPKα2 mRNA. In the presence of SC or IAB fat, the combination of PA with either DHA or LA decreased SCD1 and increased AMPKα2 mRNA. CONCLUSIONS PA-induced insulin resistance in skeletal muscle involves inflammatory (nuclear factor kappa B/mTOR) and nutrient (ceramide) pathways. PUFAs promote pathways, at a transcriptional level, that increase fat oxidation and synergize with factors from SC fat to abrogate PA-induced insulin resistance.
Collapse
|
18
|
Liao B, Xu Y. Exercise improves skeletal muscle insulin resistance without reduced basal mTOR/S6K1 signaling in rats fed a high-fat diet. Eur J Appl Physiol 2011; 111:2743-52. [PMID: 21404070 DOI: 10.1007/s00421-011-1892-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 02/25/2011] [Indexed: 11/26/2022]
Abstract
Exercise improves high-fat diet (HFD)-induced skeletal muscle insulin resistance, but the mechanism is unresolved. This study aims to explore whether the improvement in response to exercise is associated with mTOR/S6K1 signaling and whether the signaling changes are muscle-specific. Male SD rats (150-180 g) were used for this study. After the experimental period, 6 weeks of exercise improved HFD-impaired intraperitoneal glucose tolerance and insulin-stimulated 2-deoxyglucose uptake in soleus (SOL) and extensor digitorum longus (EDL) muscles. Furthermore, 6 weeks of the HFD resulted in a reduced type I fiber ratio of SOL, an increased type I ratio of EDL, and a reduced fiber size of EDL, whereas exercise increased type I fiber ratio of SOL as well as type I fiber cross-sectional areas of EDL. However, the HFD had a main effect on basal cytosolic phosphorylation of S6K1 on Thr(389) content in SOL, which was also influenced by a significant interaction between the diet and exercise in EDL. Exercise had no direct effect on the basal phosphorylation of Akt on Ser(473), mTOR on Ser(2448), S6K1 on Thr(389) content in SOL. On the contrary, exercise prevented HFD-induced decrease in basal phosphorylation of S6K1 on Thr(389) content in EDL. These results indicate that 6 weeks of HFD and exercise lead to alterations in fiber type shift, fiber size, and basal phosphorylation of S6K1 on Thr(389) content in a muscle-specific pattern. Exercise prevents HFD-induced skeletal muscle insulin resistance, which is not associated with a reduced basal phosphorylation of mTOR/S6K1 alteration in the muscles.
Collapse
Affiliation(s)
- Bagen Liao
- Department of Sports Medicine, Guangzhou Sports University, Guangzhou Dadao 1268, Guangzhou, 510076, China.
| | | |
Collapse
|
19
|
Naples SP, Borengasser SJ, Rector RS, Uptergrove GM, Morris EM, Mikus CR, Koch LG, Britton SL, Ibdah JA, Thyfault JP. Skeletal muscle mitochondrial and metabolic responses to a high-fat diet in female rats bred for high and low aerobic capacity. Appl Physiol Nutr Metab 2010; 35:151-62. [PMID: 20383225 DOI: 10.1139/h09-139] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rats selected artificially to be low-capacity runners (LCR) possess a metabolic syndrome phenotype that is worsened by a high-fat diet (HFD), whereas rats selected to be high-capacity runners (HCR) are protected against HFD-induced obesity and insulin resistance. This study examined whether protection against, or susceptibility to, HFD-induced insulin resistance in the HCR-LCR strains is associated with contrasting metabolic adaptations in skeletal muscle. HCR and LCR rats (generation 20; n = 5-6; maximum running distance approximately 1800 m vs. approximately 350 m, respectively (p < 0.0001)) were divided into HFD (71.6% energy from fat) or normal chow (NC) (16.7% energy from fat) groups for 7 weeks (from 24 to 31 weeks of age). Skeletal muscle (red gastrocnemius) mitochondrial-fatty acid oxidation (FAO), mitochondrial-enzyme activity, mitochondrial-morphology, peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha), and peroxisome proliferator-activated receptor delta (PPARdelta) expression and insulin sensitivity (intraperitoneal glucose tolerance tests) were measured. The HFD caused increased adiposity and reduced insulin sensitivity only in the LCR and not the HCR strain. Isolated mitochondria from the HCR skeletal muscle displayed a 2-fold-higher rate of FAO on NC, but both groups increased FAO following HFD. PGC-1alpha mRNA expression and superoxide dismutase activity were significantly reduced with the HFD in the LCR rats, but not in the HCR rats. PPARdelta expression did not differ between strains or dietary conditions. These results do not provide a clear connection between protection of insulin sensitivity and HFD-induced adaptive changes in mitochondrial function or transcriptional responses but do not dismiss the possibility that elevated mitochondrial FAO in the HCR may play a protective role.
Collapse
Affiliation(s)
- Scott P Naples
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fillmore N, Jacobs DL, Mills DB, Winder WW, Hancock CR. Chronic AMP-activated protein kinase activation and a high-fat diet have an additive effect on mitochondria in rat skeletal muscle. J Appl Physiol (1985) 2010; 109:511-20. [PMID: 20522731 DOI: 10.1152/japplphysiol.00126.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Factors that stimulate mitochondrial biogenesis in skeletal muscle include AMP-activated protein kinase (AMPK), calcium, and circulating free fatty acids (FFAs). Chronic treatment with either 5-aminoimidazole-4-carboxamide riboside (AICAR), a chemical activator of AMPK, or increasing circulating FFAs with a high-fat diet increases mitochondria in rat skeletal muscle. The purpose of this study was to determine whether the combination of chronic chemical activation of AMPK and high-fat feeding would have an additive effect on skeletal muscle mitochondria levels. We treated Wistar male rats with a high-fat diet (HF), AICAR injections (AICAR), or a high-fat diet and AICAR injections (HF + AICAR) for 6 wk. At the end of the treatment period, markers of mitochondrial content were examined in white quadriceps, red quadriceps, and soleus muscles, predominantly composed of unique muscle-fiber types. In white quadriceps, there was a cumulative effect of treatments on long-chain acyl-CoA dehydrogenase, cytochrome c, and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) protein, as well as on citrate synthase and beta-hydroxyacyl-CoA dehydrogenase (beta-HAD) activity. In contrast, no additive effect was noted in the soleus, and in the red quadriceps only beta-HAD activity increased additively. The additive increase of mitochondrial markers observed in the white quadriceps may be explained by a combined effect of two separate mechanisms: high-fat diet-induced posttranscriptional increase in PGC-1alpha protein and AMPK-mediated increase in PGC-1alpha protein via a transcriptional mechanism. These data show that chronic chemical activation of AMPK and a high-fat diet have a muscle type specific additive effect on markers of fatty acid oxidation, the citric acid cycle, the electron transport chain, and transcriptional regulation.
Collapse
Affiliation(s)
- Natasha Fillmore
- Department of Physiology and Developmental Biology, Birgham Young University, Provo, UT 84602, USA
| | | | | | | | | |
Collapse
|
21
|
Van den Broek NMA, Ciapaite J, De Feyter HMML, Houten SM, Wanders RJA, Jeneson JAL, Nicolay K, Prompers JJ. Increased mitochondrial content rescues
in vivo
muscle oxidative capacity in long‐term high‐fat‐diet‐fed rats. FASEB J 2009; 24:1354-64. [DOI: 10.1096/fj.09-143842] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- N. M. A. Van den Broek
- Biomedical NMRDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - J. Ciapaite
- Biomedical NMRDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - H. M. M. L. De Feyter
- Department of Diagnostic RadiologyMagnetic Resonance Research CenterYale University School of MedicineNew HavenConnecticutUSA
| | - S. M. Houten
- Laboratory Genetic Metabolic DiseasesDepartments of Pediatrics and Clinical ChemistryAcademic Medical CenterAmsterdamThe Netherlands
| | - R. J. A. Wanders
- Laboratory Genetic Metabolic DiseasesDepartments of Pediatrics and Clinical ChemistryAcademic Medical CenterAmsterdamThe Netherlands
| | - J. A. L. Jeneson
- Biomedical NMRDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - K. Nicolay
- Biomedical NMRDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - J. J. Prompers
- Biomedical NMRDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
22
|
Koo HY, Miyashita M, Cho BHS, Nakamura MT. Replacing dietary glucose with fructose increases ChREBP activity and SREBP-1 protein in rat liver nucleus. Biochem Biophys Res Commun 2009; 390:285-9. [PMID: 19799862 DOI: 10.1016/j.bbrc.2009.09.109] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 09/24/2009] [Indexed: 10/20/2022]
Abstract
Diets high in fructose cause hypertriglyceridemia and insulin resistance in part due to simultaneous induction of gluconeogenic and lipogenic genes in liver. We investigated the mechanism underlying the unique pattern of gene induction by dietary fructose. Male Sprague-Dawley rats (n=6 per group) were meal-fed (4h/d) either 63% (w/w) glucose or 63% fructose diet. After two weeks, animals were killed at the end of the last meal. Nuclear SREBP-1 was 2.2 times higher in fructose-fed rats than glucose-fed rats. Nuclear FoxO1 was elevated 1.7 times in fructose group, but did not reach significance (P=0.08). Unexpectedly, no difference was observed in nuclear ChREBP between two groups. However, ChREBP DNA binding was 3.9x higher in fructose-fed animals without an increase in xylulose-5-phospate, a proposed ChREBP activator. In conclusion, the gene induction by dietary fructose is likely to be mediated in part by simultaneously increased ChREBP activity, SREBP-1 and possibly FoxO1 protein in nucleus.
Collapse
Affiliation(s)
- Hyun-Young Koo
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
23
|
Bigrigg JK, Heigenhauser GJF, Inglis JG, LeBlanc PJ, Peters SJ. Carbohydrate refeeding after a high-fat diet rapidly reverses the adaptive increase in human skeletal muscle PDH kinase activity. Am J Physiol Regul Integr Comp Physiol 2009; 297:R885-91. [PMID: 19625693 DOI: 10.1152/ajpregu.90604.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pyruvate dehydrogenase (PDH) regulates oxidative carbohydrate disposal in skeletal muscle and is downregulated by reversible phosphorylation catalyzed by PDH kinase (PDK). Previous work has demonstrated increased PDK activity and PDK4 expression in human skeletal muscle following a high-fat low-carbohydrate (HF) diet, which leads to decreased PDH in the active form (PDHa activity) and carbohydrate oxidation. The purpose of this study was to examine the time course of changes in PDK and PDHa activities with refeeding of carbohydrates after an HF diet in human skeletal muscle. Healthy male volunteers (n = 8) consumed a standardized 3-day Pre-diet with the same energy content as their habitual diet, followed by a eucaloric 6-day HF diet (Pre-diet: 50:30:20%; HF diet: 5:75:20%; carbohydrate/fat/protein). Muscle biopsies were taken before and after the HF diet and at 45 min and 3 h after carbohydrate refeeding with a single high-glycemic index carbohydrate meal (88:5:7% carbohydrate/fat/protein) representing approximately one third of the individual subject's habitual energy intake. PDK activity increased from 0.08 +/- 0.01 Pre- to 0.25 +/- 0.02 min (P < 0.001) Post-HF diet, and decreased with carbohydrate refeeding to 0.17 +/- 0.05 (P = 0.014) and 0.11 +/- 0.01 min (P = 0.006) at 45 min and 3 h, respectively. PDHa decreased from 0.89 +/- 0.20 to 0.32 +/- 0.05 (P = 0.007) mmol x min(-1) x kg wet wt(-1) following the HF diet, and was increased transiently with refeeding at 45 min, but returned to lower values by 3 h (P = 0.025 compared with Pre). The potential mechanism(s) for this attenuation of PDHa activity remains unclear. These data demonstrate that in human skeletal muscle, the adaptive increase in PDK activity following an HF diet is rapidly reversed to Pre-diet activity levels within 45 min to 3 h, and this is accompanied by a short-term increase in PDHa activity.
Collapse
Affiliation(s)
- J Kent Bigrigg
- Faculty of Applied Health Sciences, Brock Univ., St. Catharines, ON, Canada L2S 3A1
| | | | | | | | | |
Collapse
|
24
|
McAinch AJ, Cameron-Smith D. Adiponectin decreases pyruvate dehydrogenase kinase 4 gene expression in obese- and diabetic-derived myotubes. Diabetes Obes Metab 2009; 11:721-8. [PMID: 19527483 DOI: 10.1111/j.1463-1326.2009.01042.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM To investigate the effects of globular adiponectin (gAd) on gene expression and whether these effects are mediated through 3',5'-cyclic monophosphate-activated protein kinase in skeletal muscle myotubes obtained from lean, obese and obese diabetic individuals. METHODS Rectus abdominus muscle biopsies were obtained from surgical patients to establish primary skeletal muscle cell cultures. Three distinct primary cell culture groups were established (lean, obese and obese diabetic; n = 7 in each group). Once differentiated, these cultures were then exposed to gAd or 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) for 6 h. RESULTS Stimulation with gAd decreased pyruvate dehydrogenase kinase 4 (PDK4) gene expression in the obese and diabetic samples (p < or = 0.05) and increased cytochrome c oxidase (COX) subunit 4 (COXIV) gene expression in the myotubes derived from lean individuals only (p < 0.05). AICAR treatment also decreased PDK4 gene expression in the obese- and diabetic-derived myotubes (p < or = 0.05) and increased the gene expression of the mitochondrial gene, COXIII, in the lean-derived samples only (p < 0.05). CONCLUSIONS This study demonstrated distinct disparity between myotubes derived from lean compared with obese and obese diabetic individuals following gAd and AICAR treatment. Further understanding of the regulation of PDK4 in obese and diabetic skeletal muscle and its interaction with adiponectin signalling is required as this appears to be an important early molecular event in these disease states that may improve blood glucose control and metabolic flux.
Collapse
Affiliation(s)
- A J McAinch
- School of Biomedical and Health Sciences, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia.
| | | |
Collapse
|
25
|
Holloszy JO. Skeletal muscle "mitochondrial deficiency" does not mediate insulin resistance. Am J Clin Nutr 2009; 89:463S-6S. [PMID: 19056574 DOI: 10.3945/ajcn.2008.26717c] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Patients with type 2 diabetes, insulin-resistant obese individuals, and insulin-resistant offspring of patients with diabetes have approximately 30% less mitochondria in their skeletal muscles than age-matched healthy controls. It has been hypothesized that this "deficiency" of mitochondria mediates insulin resistance by impairing the ability of muscle to oxidize fatty acids (FAs). However, a 30% decrease in mitochondria should not impair the ability of muscle to oxidize FAs because the capacity of muscle to oxidize substrate is far in excess of what is needed to supply energy in the basal state, ie, in resting muscle. In pathologic states in which mitochondrial content/function is so severely impaired as to limit substrate oxidation in resting muscle, glucose uptake and insulin action are actually enhanced. Recent studies have shown that feeding rodents high-fat diets and raising FA concentrations results in muscle insulin resistance despite an increase muscle mitochondria that enhances the capacity for fat oxidation. Furthermore, it was recently shown that skeletal muscle mitochondrial capacity for oxidative phosphorylation in Asian Indians with type 2 diabetes is the same as in nondiabetic Indians and higher than in healthy European Americans. In light of this evidence, it seems highly unlikely that "mitochondrial deficiency" causes muscle insulin resistance.
Collapse
Affiliation(s)
- John O Holloszy
- Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
26
|
Hancock CR, Han DH, Chen M, Terada S, Yasuda T, Wright DC, Holloszy JO. High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci U S A 2008; 105:7815-20. [PMID: 18509063 PMCID: PMC2409421 DOI: 10.1073/pnas.0802057105] [Citation(s) in RCA: 398] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Indexed: 11/18/2022] Open
Abstract
It has been hypothesized that insulin resistance is mediated by a deficiency of mitochondria in skeletal muscle. In keeping with this hypothesis, high-fat diets that cause insulin resistance have been reported to result in a decrease in muscle mitochondria. In contrast, we found that feeding rats high-fat diets that cause muscle insulin resistance results in a concomitant gradual increase in muscle mitochondria. This adaptation appears to be mediated by activation of peroxisome proliferator-activated receptor (PPAR)delta by fatty acids, which results in a gradual, posttranscriptionally regulated increase in PPAR gamma coactivator 1alpha (PGC-1alpha) protein expression. Similarly, overexpression of PPARdelta results in a large increase in PGC-1alpha protein in the absence of any increase in PGC-1alpha mRNA. We interpret our findings as evidence that raising free fatty acids results in an increase in mitochondria by activating PPARdelta, which mediates a posttranscriptional increase in PGC-1alpha. Our findings argue against the concept that insulin resistance is mediated by a deficiency of muscle mitochondria.
Collapse
Affiliation(s)
- Chad R. Hancock
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dong-Ho Han
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - May Chen
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Shin Terada
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Toshihiro Yasuda
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - David C. Wright
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - John O. Holloszy
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
27
|
Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver. Biochim Biophys Acta Mol Basis Dis 2008; 1782:341-8. [PMID: 18346472 DOI: 10.1016/j.bbadis.2008.02.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/06/2008] [Accepted: 02/15/2008] [Indexed: 12/17/2022]
Abstract
Dietary fructose has been suspected to contribute to development of metabolic syndrome. However, underlying mechanisms of fructose effects are not well characterized. We investigated metabolic outcomes and hepatic expression of key regulatory genes upon fructose feeding under well defined conditions. Rats were fed a 63% (w/w) glucose or fructose diet for 4 h/day for 2 weeks, and were killed after feeding or 24-hour fasting. Liver glycogen was higher in the fructose-fed rats, indicating robust conversion of fructose to glycogen through gluconeogenesis despite simultaneous induction of genes for de novo lipogenesis and increased liver triglycerides. Fructose feeding increased mRNA of previously unidentified genes involved in macronutrient metabolism including fructokinase, aldolase B, phosphofructokinase-1, fructose-1,6-bisphosphatase and carbohydrate response element binding protein (ChREBP). Activity of glucose-6-phosphate dehydrogenase, a key enzyme for ChREBP activation, remained elevated in both fed and fasted fructose groups. In the fasted liver, the fructose group showed lower non-esterified fatty acids, triglycerides and microsomal triglyceride transfer protein mRNA, suggesting low VLDL synthesis even though plasma VLDL triglycerides were higher. In conclusion, fructose feeding induced a broader range of genes than previously identified with simultaneous increase in glycogen and triglycerides in liver. The induction may be in part mediated by ChREBP.
Collapse
|
28
|
Garcia-Roves P, Huss JM, Han DH, Hancock CR, Iglesias-Gutierrez E, Chen M, Holloszy JO. Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle. Proc Natl Acad Sci U S A 2007; 104:10709-13. [PMID: 17548828 PMCID: PMC1965577 DOI: 10.1073/pnas.0704024104] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Indexed: 12/29/2022] Open
Abstract
A number of studies have reported that a high-fat diet induces increases in mitochondrial fatty acid oxidation enzymes in muscle. In contrast, in two recent studies raising plasma free fatty acids (FFA) resulted in a decrease in mitochondria. In this work, we reevaluated the effects of raising FFA on muscle mitochondrial biogenesis and capacity for fat oxidation. Rats were fed a high-fat diet and given daily injections of heparin to raise FFA. This treatment induced an increase in mitochondrial biogenesis in muscle, as evidenced by increases in mitochondrial enzymes of the fatty acid oxidation pathway, citrate cycle, and respiratory chain, with an increase in the capacity to oxidize fat, as well as an increase in mitochondrial DNA copy number. Raising FFA also resulted in an increase in binding of peroxisome proliferator-activated receptor (PPAR) delta to the PPAR response element on the carnitine palmitoyltransferase 1 promoter. We interpret our results as evidence that raising FFA induces an increase in mitochondrial biogenesis in muscle by activating PPARdelta.
Collapse
Affiliation(s)
- Pablo Garcia-Roves
- Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Janice M. Huss
- Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dong-Ho Han
- Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Chad R. Hancock
- Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Eduardo Iglesias-Gutierrez
- Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - May Chen
- Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - John O. Holloszy
- Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
29
|
Helge JW, Bentley D, Schjerling P, Willer M, Gibala MJ, Franch J, Tapia-Laliena MA, Daugaard JR, Andersen JL. Four weeks one-leg training and high fat diet does not alter PPARalpha protein or mRNA expression in human skeletal muscle. Eur J Appl Physiol 2007; 101:105-14. [PMID: 17530276 DOI: 10.1007/s00421-007-0479-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2006] [Indexed: 12/01/2022]
Abstract
UNLABELLED Fatty acid metabolism is influenced by training and diet with exercise training mediating this through activation of nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARalpha) in skeletal muscle. This study investigated the effect of training and high fat or normal diet on PPARalpha expression in human skeletal muscle. Thirteen men trained one leg (T) four weeks (31.5 h in total), while the other leg (UT) served as control. During the 4 weeks six subjects consumed high fat (FAT) diet and seven subjects maintained a normal (CHO) diet. Biopsies were obtained from vastus lateralis muscle in both legs before and after training. After the biopsy, one-leg extension exercise was performed in random order with both legs 30 min at 95% of workload max. A training effect was evident as citrate synthase activity increased (P < 0.05) by 15% in the trained, but not the control leg in both groups. During exercise respiratory exchange ratio was lower in FAT (0.86 +/- 0.01, 0.83 +/- 0.01, mean +/- SEM) than CHO (0.96 +/- 0.02, 0.94 +/- 0.03) and in UT than T legs, respectively. The PPARalpha protein (144 +/- 44, 104 +/- 28, 79 +/- 15, 79 +/- 14, % of pre level) and PPARalpha mRNA (69 +/- [2, 2], 78 +/- [7, 6], 92 +/- [22, 18], 106 +/- [21, 18], % of pre level, geometric mean +/- SEM) expression remained unchanged by diet and training in FAT (UT, T) and CHO (UT, T), respectively. After the training and diet CS, HAD, PPARalpha, UCP2, UCP3 and mFABP mRNA content remained unchanged, whereas GLUT4 mRNA was lower in both groups and LDHA mRNA was lower (P < 0.05) only in FAT. IN CONCLUSION 4 weeks one leg knee extensor training did not affect PPARalpha protein or mRNA expression. Furthermore, higher fat oxidation during exercise after fat rich diet was not accompanied by an increased PPARalpha protein or mRNA expression after 4 weeks.
Collapse
Affiliation(s)
- J W Helge
- Copenhagen Muscle Research Centre, Department Medical Physiology, Panum Institute building 12, University of Copenhagen, Blegdamsvej 3, 2200 N, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
McCarty MF. Up-regulation of PPARγ coactivator-1α as a strategy for preventing and reversing insulin resistance and obesity. Med Hypotheses 2005; 64:399-407. [PMID: 15607577 DOI: 10.1016/j.mehy.2004.03.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 03/21/2004] [Indexed: 12/25/2022]
Abstract
Excessive accumulation of triglycerides and certain fatty acid derivatives in skeletal muscle and other tissues appears to mediate many of the adverse effects of insulin resistance syndrome. Although fatty diets and obesity can promote such accumulation, deficient capacity for fatty acid oxidation can also contribute in this regard. Indeed, in subjects who are insulin resistant, diabetic, and/or obese, fatty acid oxidation by skeletal muscle tends to be inefficient, reflecting decreased expression of mitochondria and mitochondrial enzymes in muscle. This phenomenon is not corrected by weight loss, is not simply reflective of subnormal physical activity, and is also seen in lean first-degree relatives of diabetics; thus, it appears to be primarily attributable to genetic factors. Recent studies indicate that decreased expression of PPARgamma coactivator-1alpha (PGC-1alpha), a "master switch" which induces mitochondrial biogenesis by supporting the transcriptional activity of the nuclear respiratory factors, may largely account for the diminished oxidative capacity of subjects prone to insulin resistance. Thus, feasible measures which up-regulate PGC-1alpha may be useful for preventing and treating insulin resistance and obesity. These may include exercise training, metformin and other agents which stimulate AMP-activated kinase, high-dose biotin, and PPARdelta agonists. Drugs which are specific agonists for PPARdelta show remarkable efficacy in rodent models of insulin resistance, diabetes, and obesity, and are currently being evaluated clinically. Phytanic acid, a branched-chain fatty acid found in omnivore diets, can also activate PPARdelta, and thus should be examined with respect to its impact on mitochondrial biogenesis and insulin sensitivity.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Ave., Encinitas, CA 92024, USA.
| |
Collapse
|
32
|
Peters SJ, LeBlanc PJ. Metabolic aspects of low carbohydrate diets and exercise. Nutr Metab (Lond) 2004; 1:7. [PMID: 15507161 PMCID: PMC524355 DOI: 10.1186/1743-7075-1-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 09/30/2004] [Indexed: 01/30/2023] Open
Abstract
Following a low carbohydrate diet, there is a shift towards more fat and less carbohydrate oxidation to provide energy to skeletal muscle, both at rest and during exercise. This review summarizes recent work on human skeletal muscle carbohydrate and fat metabolic adaptations to a low carbohydrate diet, focusing mainly on pyruvate dehydrogenase and pyruvate dehydrogenase kinase, and how these changes relate to the capacity for carbohydrate oxidation during exercise.
Collapse
Affiliation(s)
- Sandra J Peters
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada L2S 3A1
| | - Paul J LeBlanc
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada L2S 3A1
| |
Collapse
|