1
|
Lazzer S, Gatti A, D’Alleva M, Mari L, Zaccaron S, Stafuzza J, Rejc E, Bondesan A, Caroli D, Frigerio F, Abbruzzese L, Ventura E, Grugni G, Sartorio A. Comparison of Body Composition, Basal Metabolic Rate and Metabolic Outcomes of Adults with Prader-Willi Syndrome and Age- and BMI-Matched Patients with Essential Obesity. J Clin Med 2025; 14:2646. [PMID: 40283476 PMCID: PMC12027937 DOI: 10.3390/jcm14082646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/27/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: This study compared metabolic syndrome (MetS) features in patients with Prader-Willi syndrome (PWS) to those in age-, BMI-, and gender-matched subjects with essential obesity (EOB). Methods: Thirty-two PWS patients (23 females, 9 males; median age 31.6 years; BMI 42.0 kg/m2) underwent several assessments, including anthropometric measurements, body composition via bio-impedance analysis, basal metabolic rate (BMR) using indirect calorimetry, and blood sampling. Results: Their data were compared to a matched EOB group (23 females, 9 males; median age 31.4 years; BMI 43.5 kg/m2). The study groups (PWS and EOB) were subsequently divided into two subgroups based on the International Diabetes Federation criteria for the definition of MetS. Results showed that individuals with PWS had significantly lower (p < 0.001) body weight (BW, -20.9%), height (-8.9%), fat-free mass (FFM, -23.5%), and fat mass (FM, -19.2%) in absolute terms compared to EOB subjects. However, the relative percentages of FFM and FM were similar. Absolute BMR was 25.5% (p < 0.001) lower in the PWS group; however, this difference disappeared when adjusted for FFM or body weight (BW). Metabolic outcomes were broadly similar between the groups, except for higher fasting glucose (+7.3%) and HbA1c levels (+7.9%), and lower fasting insulin (-29.0%) in PWS patients. Conclusions: Moreover, PWS subjects exhibited higher total cholesterol (+9.6%) and HDL-cholesterol (+19.8%), suggesting a more favourable lipid profile and no extra risk beyond severe obesity.
Collapse
Affiliation(s)
- Stefano Lazzer
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.D.); (L.M.); (S.Z.); (J.S.); (E.R.)
- School of Sport Sciences, University of Udine, 33100 Udine, Italy
| | - Alessandro Gatti
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
- National PhD Programme in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Mattia D’Alleva
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.D.); (L.M.); (S.Z.); (J.S.); (E.R.)
- School of Sport Sciences, University of Udine, 33100 Udine, Italy
| | - Lara Mari
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.D.); (L.M.); (S.Z.); (J.S.); (E.R.)
- School of Sport Sciences, University of Udine, 33100 Udine, Italy
| | - Simone Zaccaron
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.D.); (L.M.); (S.Z.); (J.S.); (E.R.)
- School of Sport Sciences, University of Udine, 33100 Udine, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Jacopo Stafuzza
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.D.); (L.M.); (S.Z.); (J.S.); (E.R.)
- School of Sport Sciences, University of Udine, 33100 Udine, Italy
| | - Enrico Rejc
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.D.); (L.M.); (S.Z.); (J.S.); (E.R.)
- School of Sport Sciences, University of Udine, 33100 Udine, Italy
| | - Adele Bondesan
- Experimental Laboratory for Auxo-Endocrinological Research, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 28824 Piancavallo-Verbania, Italy; (A.B.); (D.C.); (F.F.); (G.G.); (A.S.)
| | - Diana Caroli
- Experimental Laboratory for Auxo-Endocrinological Research, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 28824 Piancavallo-Verbania, Italy; (A.B.); (D.C.); (F.F.); (G.G.); (A.S.)
| | - Francesca Frigerio
- Experimental Laboratory for Auxo-Endocrinological Research, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 28824 Piancavallo-Verbania, Italy; (A.B.); (D.C.); (F.F.); (G.G.); (A.S.)
| | - Laura Abbruzzese
- Division of Auxology, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 28824 Piancavallo-Verbania, Italy;
| | - Enrica Ventura
- Division of Eating and Nutrition Disorders, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 28824 Piancavallo-Verbania, Italy;
| | - Graziano Grugni
- Experimental Laboratory for Auxo-Endocrinological Research, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 28824 Piancavallo-Verbania, Italy; (A.B.); (D.C.); (F.F.); (G.G.); (A.S.)
| | - Alessandro Sartorio
- Experimental Laboratory for Auxo-Endocrinological Research, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 28824 Piancavallo-Verbania, Italy; (A.B.); (D.C.); (F.F.); (G.G.); (A.S.)
| |
Collapse
|
2
|
Holmes TL, Chabronova A, Denning C, James V, Peffers MJ, Smith JGW. Footprints in the Sno: investigating the cellular and molecular mechanisms of SNORD116. Open Biol 2025; 15:240371. [PMID: 40101781 PMCID: PMC11919532 DOI: 10.1098/rsob.240371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/11/2025] [Accepted: 02/04/2025] [Indexed: 03/20/2025] Open
Abstract
The small nucleolar RNA (snoRNA) SNORD116 is a small non-coding RNA of interest across multiple biomedical fields of research. Much of the investigation into SNORD116 has been undertaken in the context of the congenital disease Prader-Willi syndrome, wherein SNORD116 expression is lost. However, emerging evidence indicates wider roles in various disease and tissue contexts such as cellular growth, metabolism and signalling. Nevertheless, a conclusive mechanism of action for SNORD116 remains to be established. Here, we review the key findings from these investigations, with the aim of identifying common elements from which to elucidate potential targets and mechanisms of SNORD116. A key recurring element identified is disruption to the insulin/IGF-1 and PI3K/mTOR signalling pathways, contributing to many of the phenotypes associated with SNORD116 modulation explored in this review.
Collapse
Affiliation(s)
- Terri L. Holmes
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, NorfolkNR4 7UQ, UK
| | - Alzbeta Chabronova
- Department of Musculoskeletal Ageing Science, University of Liverpool, Liverpool, UK
| | - Chris Denning
- Department of Stem Cell Biology, University of Nottingham, Nottingham, UK
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Mandy J. Peffers
- Department of Musculoskeletal Ageing Science, University of Liverpool, Liverpool, UK
| | - James G. W. Smith
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, NorfolkNR4 7UQ, UK
| |
Collapse
|
3
|
Pascut D, Giraudi PJ, Banfi C, Ghilardi S, Tiribelli C, Bondesan A, Caroli D, Grugni G, Sartorio A. Characterization of Circulating Protein Profiles in Individuals with Prader-Willi Syndrome and Individuals with Non-Syndromic Obesity. J Clin Med 2024; 13:5697. [PMID: 39407757 PMCID: PMC11476631 DOI: 10.3390/jcm13195697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Prader-Willi syndrome (PWS) is a rare genetic disorder characterized by distinctive physical, cognitive, and behavioral manifestations, coupled with profound alterations in appetite regulation, leading to severe obesity and metabolic dysregulation. These clinical features arise from disruptions in neurodevelopment and neuroendocrine regulation, yet the molecular intricacies of PWS remain incompletely understood. Methods: This study aimed to comprehensively profile circulating neuromodulatory factors in the serum of 53 subjects with PWS and 34 patients with non-syndromic obesity, utilizing a proximity extension assay with the Olink Target 96 neuro-exploratory and neurology panels. The ANOVA p-values were adjusted for multiple testing using the Benjamani-Hochberg method. Protein-protein interaction networks were generated in STRING V.12. Corrplots were calculated with R4.2.2 by using the Hmisc, Performance Analytics, and Corrplot packages Results: Our investigation explored the potential genetic underpinnings of the circulating protein signature observed in PWS, revealing intricate connections between genes in the PWS critical region and the identified circulating proteins associated with impaired oxytocin, NAD metabolism, and sex-related neuromuscular impairment involving, CD38, KYNU, NPM1, NMNAT1, WFIKKN1, and GDF-8/MSTN. The downregulation of CD38 in individuals with PWS (p < 0.01) indicates dysregulation of oxytocin release, implicating pathways associated with NAD metabolism in which KYNU and NMNAT1 are involved and significantly downregulated in PWS (p < 0.01 and p < 0.05, respectively). Sex-related differences in the circulatory levels of WFIKKN1 and GDF-8/MSTN (p < 0.05) were also observed. Conclusions: This study highlights potential circulating protein biomarkers associated with impaired oxytocin, NAD metabolism, and sex-related neuromuscular impairment in PWS individuals with potential clinical implications.
Collapse
Affiliation(s)
- Devis Pascut
- Fondazione Italiana Fegato—ONLUS, Liver Cancer Unit, 34149 Trieste, Italy;
| | - Pablo José Giraudi
- Fondazione Italiana Fegato—ONLUS, Metabolic Liver Disease Unit, 34149 Trieste, Italy
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (C.B.)
| | - Stefania Ghilardi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (C.B.)
| | - Claudio Tiribelli
- Fondazione Italiana Fegato—ONLUS, Liver Cancer Unit, 34149 Trieste, Italy;
- Fondazione Italiana Fegato—ONLUS, Metabolic Liver Disease Unit, 34149 Trieste, Italy
| | - Adele Bondesan
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy; (A.B.); (G.G.); (A.S.)
| | - Diana Caroli
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy; (A.B.); (G.G.); (A.S.)
| | - Graziano Grugni
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy; (A.B.); (G.G.); (A.S.)
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy; (A.B.); (G.G.); (A.S.)
| |
Collapse
|
4
|
Pau M, Cerfoglio S, Capodaglio P, Marrone F, Grugni G, Porta M, Leban B, Galli M, Cimolin V. Cyclogram-based evaluation of inter-limb gait symmetry in Prader-Willi Syndrome. Gait Posture 2024; 112:167-172. [PMID: 38805861 DOI: 10.1016/j.gaitpost.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/13/2023] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Prader-Willi syndrome (PWS) is characterized by a complex clinical condition, whose typical features lead to impaired motor and functional skills. To date, limited data is available as regards symmetry of gait in PWS. RESEARCH QUESTION The aim of this study was to characterize lower-limb asymmetry during gait in a group of Prader-Willi Syndrome (PWS) individuals by using the synchronized cyclograms and to compare it with those of two different control groups, a normal-weight group and an obese group. METHODS A total of 18 PWS, 30 normal weight (NW) and 28 obese individuals (OG) matched for age, sex and height were assessed via 3D gait analysis. Gait spatio-temporal parameters were computed together with angle-angle diagrams, characterized in terms of their geometric features (i.e. area, orientation, and trend symmetry index). RESULTS Individuals with PWS exhibit reduced speed, stride length and cadence and increased duration of both stance and double support phase than the other groups. OG was characterized by the same pattern when compared to NW. With respect to inter-limb symmetry, individuals with PWS exhibited significantly larger cyclogram areas at hip joint with respect to the other two groups (203.32 degrees2 vs. 130.73 degrees2 vs. 111.59 degrees2) and significantly higher orientation angle (4.17° vs. 2.11° vs. 1.22°) and Trend Symmetry (3.72 vs. 2.02 vs. 1.21) with respect to the other two groups at knee joint; no differences were found at ankle joint. Both individuals with PWS and those of OG exhibited reduced ROM at knee and ankle joints with respect with normal weight, but no statistically significant differences were observed between PWS and OG. SIGNIFICANCE The obtained results may provide novel and useful insights to understand better the impairments in motor control associated with this pathological state, supporting clinics in the identification of the best rehabilitation program for this rare pathological state, aimed to improve stability and motor control.
Collapse
Affiliation(s)
- Massimiliano Pau
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari 09123, Italy
| | - Serena Cerfoglio
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy; Orthopaedic Rehabilitation Unit and Research Laboratory in Biomechanics, Rehabilitation and Ergonomics, San Giuseppe Hospital, IRCCS Istituto Auxologico Italiano, Strada Luigi Cadorna 90, Piancavallo 28824, Italy
| | - Paolo Capodaglio
- Orthopaedic Rehabilitation Unit and Research Laboratory in Biomechanics, Rehabilitation and Ergonomics, San Giuseppe Hospital, IRCCS Istituto Auxologico Italiano, Strada Luigi Cadorna 90, Piancavallo 28824, Italy; Department of Surgical Sciences, Physical Medicine and Rehabilitation, University of Turin, Turin 10126 , Italy
| | - Flavia Marrone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy; Department of of Mechanical Engineering, Politecnico di Milano, via La Masa 1, Milano 20156, Italy
| | - Graziano Grugni
- Unit of Auxology, San Giuseppe Hospital, IRCCS Istituto Auxologico Italiano, Strada Luigi Cadorna 90, Piancavallo 28824, Italy
| | - Micaela Porta
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari 09123, Italy
| | - Bruno Leban
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari 09123, Italy
| | - Manuela Galli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Veronica Cimolin
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy; Orthopaedic Rehabilitation Unit and Research Laboratory in Biomechanics, Rehabilitation and Ergonomics, San Giuseppe Hospital, IRCCS Istituto Auxologico Italiano, Strada Luigi Cadorna 90, Piancavallo 28824, Italy.
| |
Collapse
|
5
|
Rigamonti AE, Polledri E, Favero C, Caroli D, Bondesan A, Grugni G, Mai S, Cella SG, Fustinoni S, Sartorio A. Metabolomic profiling of Prader-Willi syndrome compared with essential obesity. Front Endocrinol (Lausanne) 2024; 15:1386265. [PMID: 38812813 PMCID: PMC11133515 DOI: 10.3389/fendo.2024.1386265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Prader-Willi syndrome (PWS) is a rare disease, which shows a peculiar clinical phenotype, including obesity, which is different from essential obesity (EOB). Metabolomics might represent a valuable tool to reveal the biochemical mechanisms/pathways underlying clinical differences between PWS and EOB. The aim of the present (case-control, retrospective) study was to determine the metabolomic profile that characterizes PWS compared to EOB. Methods A validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) targeted metabolomic approach was used to measure a total of 188 endogenous metabolites in plasma samples of 32 patients with PWS (F/M = 23/9; age: 31.6 ± 9.2 years; body mass index [BMI]: 42.1 ± 7.0 kg/m2), compared to a sex-, age- and BMI-matched group of patients with EOB (F/M = 23/9; age: 31.4 ± 6.9 years; BMI: 43.5 ± 3.5 kg/m2). Results Body composition in PWS was different when compared to EOB, with increased fat mass and decreased fat-free mass. Glycemia and HDL cholesterol were higher in patients with PWS than in those with EOB, while insulinemia was lower, as well as heart rate. Resting energy expenditure was lower in the group with PWS than in the one with EOB, a difference that was missed after fat-free mass correction. Carrying out a series of Tobit multivariable linear regressions, adjusted for sex, diastolic blood pressure, and C reactive protein, a total of 28 metabolites was found to be associated with PWS (vs. non-PWS, i.e., EOB), including 9 phosphatidylcholines (PCs) ae, 5 PCs aa, all PCs aa, 7 lysoPCs a, all lysoPCs, 4 acetylcarnitines, and 1 sphingomyelin, all of which were higher in PWS than EOB. Conclusions PWS exhibits a specific metabolomic profile when compared to EOB, suggesting a different regulation of some biochemical pathways, fundamentally related to lipid metabolism.
Collapse
Affiliation(s)
| | - Elisa Polledri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Chiara Favero
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Diana Caroli
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Piancavallo-Verbania, Italy
| | - Adele Bondesan
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Piancavallo-Verbania, Italy
| | - Graziano Grugni
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Piancavallo-Verbania, Italy
| | - Stefania Mai
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Laboratory of Metabolic Research, Piancavallo-Verbania, Italy
| | - Silvano G. Cella
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Piancavallo-Verbania, Italy
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Milan, Italy
| |
Collapse
|
6
|
Voltan C, Concer F, Pecoraro L, Pietrobelli A, Piacentini G, Zaffanello M. Exploring the Complex Interplay of Obesity, Allergic Diseases, and Sleep-Disordered Breathing in Children. CHILDREN (BASEL, SWITZERLAND) 2024; 11:595. [PMID: 38790590 PMCID: PMC11120164 DOI: 10.3390/children11050595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
This narrative review study investigates the correlations between obesity, allergies, and sleep-disordered breathing in pediatric populations. Searches for pertinent articles were conducted on the Medline PubMed Advanced Search Builder, Scopus, and Web of Science databases from unlimited to April 2024. Sleep-disordered breathing causes repeated upper airway obstructions, leading to apneas and restless sleep. Childhood obesity, which affects around 20% of children, is often associated with sleep-disordered breathing and allergies such as asthma and allergic rhinitis. It is distinguished between diet-induced obesity (resulting from excess of diet and physical inactivity) and genetic obesity (such as is seen in Down syndrome and Prader-Willi syndrome). In children with diet-induced obesity, chronic inflammation linked to weight can worsen allergies and increase the risk and severity of asthma and rhinitis. Furthermore, the nasal congestion typical of rhinitis can contribute to upper respiratory tract obstruction and obstructive sleep apnea. A vicious circle is created between asthma and sleep-disordered breathing: uncontrolled asthma and sleep-disordered breathing can worsen each other. In children with genetic obesity, despite alterations in the immune system, fewer allergies are observed compared to the broader population. The causes of this reduced allergenicity are unclear but probably involve genetic, immunological, and environmental factors. Additional research is necessary to elucidate the underlying mechanisms. The present narrative review study emphasizes the importance of jointly evaluating and managing allergies, obesity, and obstructive sleep apnea in children considering their close interconnection.
Collapse
Affiliation(s)
| | | | | | | | | | - Marco Zaffanello
- Pediatric Clinic, Department of Surgery, Dentistry, Gynecology and Pediatrics, University of Verona, 37129 Verona, Italy (A.P.)
| |
Collapse
|
7
|
Madeo SF, Zagaroli L, Vandelli S, Calcaterra V, Crinò A, De Sanctis L, Faienza MF, Fintini D, Guazzarotti L, Licenziati MR, Mozzillo E, Pajno R, Scarano E, Street ME, Wasniewska M, Bocchini S, Bucolo C, Buganza R, Chiarito M, Corica D, Di Candia F, Francavilla R, Fratangeli N, Improda N, Morabito LA, Mozzato C, Rossi V, Schiavariello C, Farello G, Iughetti L, Salpietro V, Salvatoni A, Giordano M, Grugni G, Delvecchio M. Endocrine features of Prader-Willi syndrome: a narrative review focusing on genotype-phenotype correlation. Front Endocrinol (Lausanne) 2024; 15:1382583. [PMID: 38737552 PMCID: PMC11082343 DOI: 10.3389/fendo.2024.1382583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Prader-Willi syndrome (PWS) is a complex genetic disorder caused by three different types of molecular genetic abnormalities. The most common defect is a deletion on the paternal 15q11-q13 chromosome, which is seen in about 60% of individuals. The next most common abnormality is maternal disomy 15, found in around 35% of cases, and a defect in the imprinting center that controls the activity of certain genes on chromosome 15, seen in 1-3% of cases. Individuals with PWS typically experience issues with the hypothalamic-pituitary axis, leading to excessive hunger (hyperphagia), severe obesity, various endocrine disorders, and intellectual disability. Differences in physical and behavioral characteristics between patients with PWS due to deletion versus those with maternal disomy are discussed in literature. Patients with maternal disomy tend to have more frequent neurodevelopmental problems, such as autistic traits and behavioral issues, and generally have higher IQ levels compared to those with deletion of the critical PWS region. This has led us to review the pertinent literature to investigate the possibility of establishing connections between the genetic abnormalities and the endocrine disorders experienced by PWS patients, in order to develop more targeted diagnostic and treatment protocols. In this review, we will review the current state of clinical studies focusing on endocrine disorders in individuals with PWS patients, with a specific focus on the various genetic causes. We will look at topics such as neonatal anthropometry, thyroid issues, adrenal problems, hypogonadism, bone metabolism abnormalities, metabolic syndrome resulting from severe obesity caused by hyperphagia, deficiencies in the GH/IGF-1 axis, and the corresponding responses to treatment.
Collapse
Affiliation(s)
- Simona F. Madeo
- Department of Medical and Surgical Sciences for Mother, Children and Adults, Pediatric Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Zagaroli
- Department of Pediatrics, University of L’Aquila, L’Aquila, Italy
| | - Sara Vandelli
- Department of Medical and Surgical Sciences for Mother, Children and Adults, Post-Graduate School of Pediatrics, University of Modena and Reggio Emilia, Modena, Italy
| | - Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, Milano, Italy
| | - Antonino Crinò
- Center for Rare Diseases and Congenital Defects, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Luisa De Sanctis
- Pediatric Endocrinology, Regina Margherita Children Hospital – Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Bari, Italy
| | - Danilo Fintini
- Prader Willi Reference Center, Endocrinology and Diabetology Unit, Pediatric University Department, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Laura Guazzarotti
- Pediatric Endocrinology Unit, University Hospital of Padova, Padova, Italy
| | - Maria Rosaria Licenziati
- Neuro-endocrine Diseases and Obesity Unit, Department of Neurosciences, Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Enza Mozzillo
- Department of Translational and Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Roberta Pajno
- Pediatric Unit, IRCCS San Raffaele Institute, Milan, Italy
| | - Emanuela Scarano
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maria E. Street
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Malgorzata Wasniewska
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
- Pediatric Unit, Gaetano Martino University Hospital of Messina, Messina, Italy
| | - Sarah Bocchini
- Prader Willi Reference Center, Endocrinology and Diabetology Unit, Pediatric University Department, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Carmen Bucolo
- Pediatric Unit, IRCCS San Raffaele Institute, Milan, Italy
| | - Raffaele Buganza
- Pediatric Endocrinology, Regina Margherita Children Hospital – Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Mariangela Chiarito
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Bari, Italy
| | - Domenico Corica
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
- Pediatric Unit, Gaetano Martino University Hospital of Messina, Messina, Italy
| | - Francesca Di Candia
- Department of Translational and Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | | | - Nadia Fratangeli
- Division of Auxology, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Verbania, Italy
| | - Nicola Improda
- Neuro-endocrine Diseases and Obesity Unit, Department of Neurosciences, Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | | | - Chiara Mozzato
- Child and Women Health Department, University of Padova, Padova, Italy
| | - Virginia Rossi
- Pediatric Department, Buzzi Children’s Hospital, Milano, Italy
| | | | - Giovanni Farello
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Lorenzo Iughetti
- Department of Medical and Surgical Sciences for Mother, Children and Adults, Pediatric Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | | | - Mara Giordano
- Laboratory of Genetics, Struttura Complessa a Direzione Universitaria (SCDU) Biochimica Clinica, Ospedale Maggiore della Carità, Novara, Italy
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Graziano Grugni
- Division of Auxology, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Verbania, Italy
| | - Maurizio Delvecchio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
8
|
Adeva-Andany MM, Domínguez-Montero A, Adeva-Contreras L, Fernández-Fernández C, Carneiro-Freire N, González-Lucán M. Body Fat Distribution Contributes to Defining the Relationship between Insulin Resistance and Obesity in Human Diseases. Curr Diabetes Rev 2024; 20:e160823219824. [PMID: 37587805 DOI: 10.2174/1573399820666230816111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/28/2023] [Accepted: 05/31/2023] [Indexed: 08/18/2023]
Abstract
The risk for metabolic and cardiovascular complications of obesity is defined by body fat distribution rather than global adiposity. Unlike subcutaneous fat, visceral fat (including hepatic steatosis) reflects insulin resistance and predicts type 2 diabetes and cardiovascular disease. In humans, available evidence indicates that the ability to store triglycerides in the subcutaneous adipose tissue reflects enhanced insulin sensitivity. Prospective studies document an association between larger subcutaneous fat mass at baseline and reduced incidence of impaired glucose tolerance. Case-control studies reveal an association between genetic predisposition to insulin resistance and a lower amount of subcutaneous adipose tissue. Human peroxisome proliferator-activated receptorgamma (PPAR-γ) promotes subcutaneous adipocyte differentiation and subcutaneous fat deposition, improving insulin resistance and reducing visceral fat. Thiazolidinediones reproduce the effects of PPAR-γ activation and therefore increase the amount of subcutaneous fat while enhancing insulin sensitivity and reducing visceral fat. Partial or virtually complete lack of adipose tissue (lipodystrophy) is associated with insulin resistance and its clinical manifestations, including essential hypertension, hypertriglyceridemia, reduced HDL-c, type 2 diabetes, cardiovascular disease, and kidney disease. Patients with Prader Willi syndrome manifest severe subcutaneous obesity without insulin resistance. The impaired ability to accumulate fat in the subcutaneous adipose tissue may be due to deficient triglyceride synthesis, inadequate formation of lipid droplets, or defective adipocyte differentiation. Lean and obese humans develop insulin resistance when the capacity to store fat in the subcutaneous adipose tissue is exhausted and deposition of triglycerides is no longer attainable at that location. Existing adipocytes become large and reflect the presence of insulin resistance.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Alberto Domínguez-Montero
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | | | - Carlos Fernández-Fernández
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Natalia Carneiro-Freire
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Manuel González-Lucán
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| |
Collapse
|
9
|
Pascut D, Giraudi PJ, Banfi C, Ghilardi S, Tiribelli C, Bondesan A, Caroli D, Minocci A, Grugni G, Sartorio A. Proteome profiling identifies circulating biomarkers associated with hepatic steatosis in subjects with Prader-Willi syndrome. Front Endocrinol (Lausanne) 2023; 14:1254778. [PMID: 38034016 PMCID: PMC10684934 DOI: 10.3389/fendo.2023.1254778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Prader-Willi syndrome (PWS) is a rare genetic disorder characterized by loss of expression of paternal chromosome 15q11.2-q13 genes. Individuals with PWS exhibit unique physical, endocrine, and metabolic traits associated with severe obesity. Identifying liver steatosis in PWS is challenging, despite its lower prevalence compared to non-syndromic obesity. Reliable biomarkers are crucial for the early detection and management of this condition associated with the complex metabolic profile and cardiovascular risks in PWS. Methods Circulating proteome profiling was conducted in 29 individuals with PWS (15 with steatosis, 14 without) using the Olink Target 96 metabolism and cardiometabolic panels. Correlation analysis was performed to identify the association between protein biomarkes and clinical variables, while the gene enrichment analysis was conducted to identify pathways linked to deregulated proteins. Receiver operating characteristic (ROC) curves assessed the discriminatory power of circulating protein while a logistic regression model evaluated the potential of a combination of protein biomarkers. Results CDH2, CTSO, QDPR, CANT1, ALDH1A1, TYMP, ADGRE, KYAT1, MCFD, SEMA3F, THOP1, TXND5, SSC4D, FBP1, and CES1 exhibited a significant differential expression in liver steatosis, with a progressive increase from grade 1 to grade 3. FBP1, CES1, and QDPR showed predominant liver expression. The logistic regression model, -34.19 + 0.85 * QDPR*QDPR + 0.75 * CANT1*TYMP - 0.46 * THOP1*ALDH1A, achieved an AUC of 0.93 (95% CI: 0.63-0.99), with a sensitivity of 93% and specificity of 80% for detecting steatosis in individuals with PWS. These biomarkers showed strong correlations among themselves and were involved in an interconnected network of 62 nodes, related to seven metabolic pathways. They were also significantly associated with cholesterol, LDL, triglycerides, transaminases, HbA1c, FLI, APRI, and HOMA, and showed a negative correlation with HDL levels. Conclusion The biomarkers identified in this study offer the potential for improved patient stratification and personalized therapeutic protocols.
Collapse
Affiliation(s)
- Devis Pascut
- Liver Cancer Unit, Fondazione Italiana Fegato - ONLUS, Trieste, Italy
| | - Pablo J. Giraudi
- Metabolic Liver Disease Unit, Fondazione Italiana Fegato - ONLUS, Trieste, Italy
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics, and Network analysis, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Stefania Ghilardi
- Unit of Functional Proteomics, Metabolomics, and Network analysis, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Claudio Tiribelli
- Liver Cancer Unit, Fondazione Italiana Fegato - ONLUS, Trieste, Italy
- Metabolic Liver Disease Unit, Fondazione Italiana Fegato - ONLUS, Trieste, Italy
| | - Adele Bondesan
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Piancavallo-Verbania, Italy
| | - Diana Caroli
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Piancavallo-Verbania, Italy
| | - Alessandro Minocci
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Division of Metabolic Diseases, Piancavallo-Verbania, Italy
| | - Graziano Grugni
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Piancavallo-Verbania, Italy
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Division of Auxology, Piancavallo-Verbania, Italy
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-endocrinological Research, Piancavallo-Verbania, Italy
| |
Collapse
|
10
|
Grugni G, Sartorio A, Soranna D, Zambon A, Grugni L, Zampino G, Crinò A. Long-term effects of GH therapy in adult patients with Prader-Willi syndrome: a longitudinal study. Front Endocrinol (Lausanne) 2023; 14:1198616. [PMID: 37305037 PMCID: PMC10250587 DOI: 10.3389/fendo.2023.1198616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Prader-Willi syndrome (PWS) is a complex disorder resulting from the failure of expression of paternal alleles in the PWS region of chromosome 15. The PWS phenotype resembles that observed in the classic non-PWS GH deficiency (GHD), including short stature, excessive fat mass, and reduced muscle mass. To date, a small number of studies on the long-term effects of GH treatment are available in adult subjects with PWS. Methods In this longitudinal study, 12 obese subjects with PWS (GHD/non-GHD 6/6) were treated for a median of 17 years, with a median GH dose of 0.35 mg/day. The median age was 27.1 years. Anthropometric, body composition, hormonal, biochemical, and blood pressure variables were analyzed in all subjects. Results Waist circumference was significantly lower at the end of the treatment period (p-value=0.0449), while body mass index (BMI) did not differ significantly. Compared to the baseline, a highly significant reduction of Fat Mass % (FM%) was observed (p-value=0.0005). IGF-I SDS values significantly increased during GH therapy (p-value=0.0005). A slight impairment of glucose homeostasis was observed after GH therapy, with an increase in the median fasting glucose levels, while insulin, HOMA-IR, and HbA1c values remained unchanged. Considering GH secretory status, both subjects with and without GHD showed a significant increase in IGF-I SDS and a reduction of FM% after GH therapy (p-value= 0.0313 for all). Discussion Our results indicate that long-term GH treatment has beneficial effects on body composition and body fat distribution in adults with PWS associated with obesity. However, the increase in glucose values during GH therapy should be considered, and continuous surveillance of glucose metabolism is mandatory during long-term GH therapy, especially in subjects with obesity.
Collapse
Affiliation(s)
- Graziano Grugni
- Division of Auxology, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Piancavallo-Verbania, Italy
| | - Alessandro Sartorio
- Experimental Laboratory for Auxo-Endocrinological Research, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Davide Soranna
- Biostatistics Unit, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Antonella Zambon
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy
| | - Lucia Grugni
- School of Medicine and Surgery, University of Tor Vergata, Rome, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Congenital Defects, Fondazione Policlinico Universitario A. Gemelli - Research Institute, Rome, Italy
| | - Antonino Crinò
- Center for Rare Diseases and Congenital Defects, Fondazione Policlinico Universitario A. Gemelli - Research Institute, Rome, Italy
| |
Collapse
|
11
|
Comparison of Body Composition, Muscle Strength and Cardiometabolic Profile in Children with Prader-Willi Syndrome and Non-Alcoholic Fatty Liver Disease: A Pilot Study. Int J Mol Sci 2022; 23:ijms232315115. [PMID: 36499438 PMCID: PMC9739027 DOI: 10.3390/ijms232315115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Syndromic and non-syndromic obesity conditions in children, such as Prader-Willi syndrome (PWS) and non-alcoholic fatty liver disease (NAFLD), both lower quality of life and increase risk for chronic health complications, which further increase health service utilization and cost. In a pilot observational study, we compared body composition and muscle strength in children aged 7−18 years with either PWS (n = 9), NAFLD (n = 14), or healthy controls (n = 16). Anthropometric and body composition measures (e.g., body weight, circumferences, skinfolds, total/segmental composition, and somatotype), handgrip strength, six minute-walk-test (6MWT), physical activity, and markers of liver and cardiometabolic dysfunction (e.g., ALT, AST, blood pressure, glucose, insulin, and lipid profile) were measured using standard procedures and validated tools. Genotyping was determined for children with PWS. Children with PWS had reduced lean body mass (total/lower limb mass), lower handgrip strength, 6MWT and increased sedentary activity compared to healthy children or those with NAFLD (p < 0.05). Children with PWS, including those of normal body weight, had somatotypes consistent with relative increased adiposity (endomorphic) and reduced skeletal muscle robustness (mesomorphic) when compared to healthy children and those with NAFLD. Somatotype characterizations were independent of serum markers of cardiometabolic dysregulation but were associated with increased prevalence of abnormal systolic and diastolic blood pressure Z-scores (p < 0.05). Reduced lean body mass and endomorphic somatotypes were associated with lower muscle strength/functionality and sedentary lifestyles, particularly in children with PWS. These findings are relevant as early detection of deficits in muscle strength and functionality can ensure effective targeted treatments that optimize physical activity and prevent complications into adulthood.
Collapse
|
12
|
Chao Y, Gao L, Wang X, Cai Y, Shu Y, Zou X, Qin Y, Hu C, Dai Y, Zhu M, Shen Z, Zou C. Dysregulated adipose tissue expansion and impaired adipogenesis in Prader-Willi syndrome children before obesity-onset. Metabolism 2022; 136:155295. [PMID: 36007622 DOI: 10.1016/j.metabol.2022.155295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Prader-Willi syndrome (PWS) is a rare genetic imprinting disorder resulting from the expression loss of genes on the paternally inherited chromosome 15q11-13. Early-onset life-thriving obesity and hyperphagia represent the clinical hallmarks of PWS. The noncoding RNA gene SNORD116 within the minimal PWS genetic lesion plays a critical role in the pathogenesis of the syndrome. Despite advancements in understanding the genetic basis for PWS, the pathophysiology of obesity development in PWS remains largely uncharacterized. Here, we aimed to investigate the signatures of adipose tissue development and expansion pathways and associated adipose biology in PWS children without obesity-onset at an early stage, mainly from the perspective of the adipogenesis process, and further elucidate the underlying molecular mechanisms. METHODS We collected inguinal (subcutaneous) white adipose tissues (ingWATs) from phase 1 PWS and healthy children with normal weight aged from 6 M to 2 Y. Adipose morphology and histological characteristics were assessed. Primary adipose stromal vascular fractions (SVFs) were isolated, cultured in vitro, and used to determine the capacity and function of white and beige adipogenic differentiation. High-throughput RNA-sequencing (RNA-seq) was performed in adipose-derived mesenchymal stem cells (AdMSCs) to analyze transcriptome signatures in PWS subjects. Transient repression of SNORD116 was conducted to evaluate its functional relevance in adipogenesis. The changes in alternative pre-mRNA splicing were investigated in PWS and SNORD116 deficient cells. RESULTS In phase 1 PWS children, impaired white adipose tissue (WAT) development and unusual fat expansion occurred long before obesity onset, which was characterized by the massive enlargement of adipocytes accompanied by increased apoptosis. White and beige adipogenesis programs were impaired and differentiated adipocyte functions were disturbed in PWS-derived SVFs, despite increased proliferation capacity, which were consistent with the results of RNA-seq analysis of PWS AdMSCs. We also experimentally validated disrupted beige adipogenesis in adipocytes with transient SNORD116 downregulation. The transcript and protein levels of PPARγ, the adipogenesis master regulator, were significantly lower in PWS than in control AdMSCs as well as in SNORD116 deficient AdMSCs/adipocytes than in scramble (Scr) cells, resulting in the inhibited adipogenic program. Additionally, through RNA-seq, we observed aberrant transcriptome-wide alterations in alternative RNA splicing patterns in PWS cells mediated by SNORD116 loss and specifically identified a changed PRDM16 gene splicing profile in vitro. CONCLUSIONS Imbalance in the WAT expansion pathway and developmental disruption are primary defects in PWS displaying aberrant adipocyte hypertrophy and impaired adipogenesis process, in which SNORD116 deficiency plays a part. Our findings suggest that dysregulated adiposity specificity existing at an early phase is a potential pathological mechanism exacerbating hyperphagic obesity onset in PWS. This mechanistic evidence on adipose biology in young PWS patients expands knowledge regarding the pathogenesis of PWS obesity and may aid in developing a new therapeutic strategy targeting disturbed adipogenesis and driving AT plasticity to combat abnormal adiposity and associated metabolic disorders for PWS patients.
Collapse
Affiliation(s)
- Yunqi Chao
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Lei Gao
- Department of Urology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Xiangzhi Wang
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Yuqing Cai
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Yingying Shu
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Xinyi Zou
- Zhejiang University City College, Hangzhou 310015, Zhejiang, China
| | - Yifang Qin
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Chenxi Hu
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Yangli Dai
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Mingqiang Zhu
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Zheng Shen
- Lab Center, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Chaochun Zou
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China.
| |
Collapse
|
13
|
Pugliese G, Barrea L, Sanduzzi Zamparelli A, de Alteriis G, Laudisio D, Muscogiuri G, Canora A, Bocchino M, Colao A, Savastano S. Body composition and obstructive sleep apnoea assessment in adult patients with Prader-Willi syndrome: a case control study. J Endocrinol Invest 2022; 45:1967-1975. [PMID: 35723851 PMCID: PMC9463306 DOI: 10.1007/s40618-022-01831-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/29/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION In Prader-Willi syndrome (PWS) adult patients, sleep-breathing disorders, especially obstructive sleep apnoea syndrome (OSAS), are very common, whose missed or delayed diagnosis can contribute to further increase cardiovascular morbidity and mortality. PURPOSE The aim of this cross-sectional study was to evaluate differences in sleep-breathing parameters obtained by overnight cardiorespiratory polygraphy in 13 adult PWS patients and 13 individuals with non-syndromic obesity as controls matched by age, sex, and BMI. METHODS In all subjects' anthropometric parameters, body composition using bioimpedance analysis and overnight cardiorespiratory monitoring parameters were obtained. RESULTS Ten (76.9%) PWS patients were diagnosed with OSAS, most notably nine (69.2%) and one PWS (7.7%) with mild and severe OSAS, respectively. Compared with the control group, PWS patients had evidence of higher apnoea-hypopnea index (AHI) (p = 0.04) and oxyhaemoglobin desaturation index (ODI) (p = 0.009). However, no differences were found between the two groups regarding OSAS categories or diagnosis of nocturnal respiratory failure. In the PWS group, there were no significant correlations among AHI, ODI and hypoxemia index (T90) and anthropometric measurements, fat mass (FM), and FM percentage (%). Conversely, in the control group, the sleep-related respiratory indices evaluated correlated positively with BMI, waist circumference, FM and FM%. CONCLUSIONS This study confirmed that AHI and ODI indices were worse in PWS than in age, sex and BMI-matched controls. The lack of their significant association with the anthropometric parameters and FM supported the existence of PWS-related mechanisms in OSAS pathophysiology that are independent of visceral obesity and FM.
Collapse
Affiliation(s)
- G. Pugliese
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università “Federico II” di Napoli, Via Sergio Pansini, 5, 80131 Naples, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università “Federico II” di Napoli, Via Sergio Pansini, 5, Naples, Italy
| | - L. Barrea
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università “Federico II” di Napoli, Via Sergio Pansini, 5, Naples, Italy
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Naples, Italy
| | - A. Sanduzzi Zamparelli
- Dipartimento di Pneumologia, Ospedale di Alta Specializzazione ‘V. Monaldi’, Università “Federico II” di Napoli, Naples, Italy
- Cattedra Unesco “Educazione alla Salute e allo Sviluppo Sostenibile”, Università “Federico II” di Napoli, Naples, Italy
| | - G. de Alteriis
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università “Federico II” di Napoli, Via Sergio Pansini, 5, 80131 Naples, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università “Federico II” di Napoli, Via Sergio Pansini, 5, Naples, Italy
| | - D. Laudisio
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università “Federico II” di Napoli, Via Sergio Pansini, 5, 80131 Naples, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università “Federico II” di Napoli, Via Sergio Pansini, 5, Naples, Italy
| | - G. Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università “Federico II” di Napoli, Via Sergio Pansini, 5, 80131 Naples, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università “Federico II” di Napoli, Via Sergio Pansini, 5, Naples, Italy
| | - A. Canora
- Dipartimento di Pneumologia, Ospedale di Alta Specializzazione ‘V. Monaldi’, Università “Federico II” di Napoli, Naples, Italy
| | - M. Bocchino
- Dipartimento di Pneumologia, Ospedale di Alta Specializzazione ‘V. Monaldi’, Università “Federico II” di Napoli, Naples, Italy
| | - A. Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università “Federico II” di Napoli, Via Sergio Pansini, 5, 80131 Naples, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università “Federico II” di Napoli, Via Sergio Pansini, 5, Naples, Italy
- Cattedra Unesco “Educazione alla Salute e allo Sviluppo Sostenibile”, Università “Federico II” di Napoli, Naples, Italy
| | - S. Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università “Federico II” di Napoli, Via Sergio Pansini, 5, 80131 Naples, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università “Federico II” di Napoli, Via Sergio Pansini, 5, Naples, Italy
| |
Collapse
|
14
|
Impact of Deprivation on Obesity in Children with PWS. J Clin Med 2022; 11:jcm11082255. [PMID: 35456348 PMCID: PMC9031951 DOI: 10.3390/jcm11082255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Our study aimed to evaluate the social deprivation score in families with a child with Prader-Willi syndrome (PWS) and analyze its impact on the occurrence of obesity in the affected child. We included 147 children with PWS followed in our reference center with Evaluation of the Deprivation and Inequalities of Health in Healthcare Centres by the EPICES score. Deprivation (EPICES ≥ 30) was found in 25.9% of the population. Compared with the non-obese children, children with obesity had more deprived families, 50.0 vs. 18.0% (p = 0.0001); were older, with a median of 10.1 vs. 6.0 years (p = 0.0006); were less frequently treated with growth hormone (GH), 80.6 vs. 91.9% (p = 0.07). The mothers of obese children were more frequently obese, 46.9 vs. 13.3% (p < 0.0001), and achieved high study levels less frequently (≥Bac+2), 40.9 vs. 70.1% (p = 0.012). The multivariate logistic regression indicated that age, living in a deprived family, and having a mother with overweight/obesity were significantly associated with an increased risk of obesity (respectively, OR = 3.31 (1.26−8.73) and OR = 6.76 (2.36−19.37)). The same risk factors of obesity observed in the general population were found in children with PWS. Families at risk, including social deprivation, will require early identification and a reinforced approach to prevent obesity.
Collapse
|
15
|
Butler MG, Miller BS, Romano A, Ross J, Abuzzahab MJ, Backeljauw P, Bamba V, Bhangoo A, Mauras N, Geffner M. Genetic conditions of short stature: A review of three classic examples. Front Endocrinol (Lausanne) 2022; 13:1011960. [PMID: 36339399 PMCID: PMC9634554 DOI: 10.3389/fendo.2022.1011960] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Noonan, Turner, and Prader-Willi syndromes are classical genetic disorders that are marked by short stature. Each disorder has been recognized for several decades and is backed by extensive published literature describing its features, genetic origins, and optimal treatment strategies. These disorders are accompanied by a multitude of comorbidities, including cardiovascular issues, endocrinopathies, and infertility. Diagnostic delays, syndrome-associated comorbidities, and inefficient communication among the members of a patient's health care team can affect a patient's well-being from birth through adulthood. Insufficient information is available to help patients and their multidisciplinary team of providers transition from pediatric to adult health care systems. The aim of this review is to summarize the clinical features and genetics associated with each syndrome, describe best practices for diagnosis and treatment, and emphasize the importance of multidisciplinary teams and appropriate care plans for the pediatric to adult health care transition.
Collapse
Affiliation(s)
- Merlin G. Butler
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
- *Correspondence: Merlin G. Butler,
| | - Bradley S. Miller
- Pediatric Endocrinology, University of Minnesota Masonic Children’s Hospital, Minneapolis, MN, United States
| | - Alicia Romano
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Judith Ross
- Department of Pediatrics, Nemours Children’s Health, Wilmington, DE, United States
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Philippe Backeljauw
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Vaneeta Bamba
- Division of Endocrinology, Children’s Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Amrit Bhangoo
- Pediatric Endocrinology, Children's Health of Orange County (CHOC) Children’s Hospital, Orange, CA, United States
| | - Nelly Mauras
- Division of Endocrinology, Nemours Children’s Health, Jacksonville, FL, United States
| | - Mitchell Geffner
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
16
|
Grugni G, Fanolla A, Lupi F, Longhi S, Saezza A, Sartorio A, Radetti G. Parameters of Glucose Homeostasis in the Recognition of the Metabolic Syndrome in Young Adults with Prader-Willi Syndrome. J Clin Med 2021; 10:jcm10235635. [PMID: 34884336 PMCID: PMC8658712 DOI: 10.3390/jcm10235635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
To verify the accuracy of different indices of glucose homeostasis in recognizing the metabolic syndrome in a group of adult patients with Prader–Willi syndrome (PWS), 102 PWS patients (53 females/49 males), age ±SD 26.9 ± 7.6 yrs, Body Mass Index (BMI) 35.7 ± 10.7, were studied. The following indices were assessed in each subject during an oral glucose tolerance test (OGTT): 1 h (>155 mg/dL) and 2 h (140–199 mg/dL) glucose levels, the oral disposition index (ODI), the insulinogenic index (IGI), the insulin resistance (HOMA-IR) were evaluated at baseline, 1 h and 2 h. Although minor differences among indices were found, according to the ROC analysis, no index performed better in recognizing MetS. Furthermore, the diagnostic threshold levels changed over the years and therefore the age-related thresholds were calculated. The easily calculated HOMA-IR at baseline may be used to accurately diagnose MetS, thus avoiding more complicated procedures.
Collapse
Affiliation(s)
- Graziano Grugni
- Experimental Laboratory for Auxo-Endocrinological Research & Division of Auxology, Istituto Auxologico Italiano, IRCCS, 28824 Verbania, Italy; (A.S.); (A.S.)
- Correspondence: ; Tel.: +39-03-2351-4247; Fax: +39-03-2351-4230
| | - Antonio Fanolla
- Observatory for Health Provincial Government South Tyrol, 39100 Bolzano, Italy;
| | - Fiorenzo Lupi
- Department of Pediatrics, Regional Hospital of Bolzano, 39100 Bolzano, Italy; (F.L.); (S.L.)
| | - Silvia Longhi
- Department of Pediatrics, Regional Hospital of Bolzano, 39100 Bolzano, Italy; (F.L.); (S.L.)
| | - Antonella Saezza
- Experimental Laboratory for Auxo-Endocrinological Research & Division of Auxology, Istituto Auxologico Italiano, IRCCS, 28824 Verbania, Italy; (A.S.); (A.S.)
| | - Alessandro Sartorio
- Experimental Laboratory for Auxo-Endocrinological Research & Division of Auxology, Istituto Auxologico Italiano, IRCCS, 28824 Verbania, Italy; (A.S.); (A.S.)
| | | |
Collapse
|
17
|
Clerc A, Coupaye M, Mosbah H, Pinto G, Laurier V, Mourre F, Merrien C, Diene G, Poitou C, Tauber M. Diabetes Mellitus in Prader-Willi Syndrome: Natural History during the Transition from Childhood to Adulthood in a Cohort of 39 Patients. J Clin Med 2021; 10:jcm10225310. [PMID: 34830599 PMCID: PMC8625265 DOI: 10.3390/jcm10225310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) affects 20% of patients with Prader-Willi syndrome (PWS), with many cases diagnosed during the transition period. Our aim was to describe the natural history of T2DM in patients with PWS before the age of 25 years and to develop screening and preventive strategies. Thirty-nine patients followed in the French PWS Reference Center were included (median age 25.6 years [23.7; 31.7]). Twenty-one had been treated with growth hormone (GH), fifteen had not, and three had an unknown status. The median age at T2DM diagnosis was 16.8 years (11–24) and the median BMI was 39 kg/m2 [34.6; 45], with 34/35 patients living with obesity. The patients displayed frequent psychiatric (48.3% hospitalization,) and metabolic (56.4% hypertriglyceridemia,) comorbidities and a parental history of T2DM (35.7%) or overweight (53.6%) compared to the PWS general population. There was no difference in BMI and metabolic complications between the GH-treated and non-GH-treated groups at T2DM diagnosis. Patients with PWS who develop early T2DM have severe obesity, a high frequency of psychiatric and metabolic disorders, and a family history of T2DM and overweight. These results underline the need for early identification of patients at risk, prevention of obesity, and repeated blood glucose monitoring during the transition period.
Collapse
Affiliation(s)
- Alice Clerc
- Centre de Référence Maladies Rares (PRADORT, Syndrome de Prader-Willi et Autres Formes Rares d’Obésité avec Troubles du Comportement Alimentaire), Service d’Endocrinologie, Obésités, Maladies Osseuses, Génétique et Gynécologie Médicale, Hôpital des Enfants, 31059 Toulouse, France; (A.C.); (G.D.)
| | - Muriel Coupaye
- Assistance Publique-Hôpitaux de Paris, Centre de Référence Maladies Rares (PRADORT, Syndrome de Prader-Willi et Autres Formes Rares d’Obésité avec Troubles du Comportement Alimentaire), Service de Nutrition, Hôpital Pitié-Salpêtrière, 75013 Paris, France; (M.C.); (H.M.); (C.P.)
| | - Héléna Mosbah
- Assistance Publique-Hôpitaux de Paris, Centre de Référence Maladies Rares (PRADORT, Syndrome de Prader-Willi et Autres Formes Rares d’Obésité avec Troubles du Comportement Alimentaire), Service de Nutrition, Hôpital Pitié-Salpêtrière, 75013 Paris, France; (M.C.); (H.M.); (C.P.)
| | - Graziella Pinto
- Assistance Publique-Hôpitaux de Paris, Service d’Endocrinologie, Gynécologie et Diabétologie Pédiatrique, Hôpital Necker-Enfants Malades, 75743 Paris, France;
| | - Virginie Laurier
- Assistance Publique-Hôpitaux de Paris, Centre de Référence Maladies Rares (PRADORT, Syndrome de Prader-Willi et Autres Formes Rares d’Obésité avec Troubles du Comportement Alimentaire), Hôpital Marin d’Hendaye, 64701 Hendaye, France; (V.L.); (F.M.); (C.M.)
| | - Fabien Mourre
- Assistance Publique-Hôpitaux de Paris, Centre de Référence Maladies Rares (PRADORT, Syndrome de Prader-Willi et Autres Formes Rares d’Obésité avec Troubles du Comportement Alimentaire), Hôpital Marin d’Hendaye, 64701 Hendaye, France; (V.L.); (F.M.); (C.M.)
| | - Christine Merrien
- Assistance Publique-Hôpitaux de Paris, Centre de Référence Maladies Rares (PRADORT, Syndrome de Prader-Willi et Autres Formes Rares d’Obésité avec Troubles du Comportement Alimentaire), Hôpital Marin d’Hendaye, 64701 Hendaye, France; (V.L.); (F.M.); (C.M.)
| | - Gwenaëlle Diene
- Centre de Référence Maladies Rares (PRADORT, Syndrome de Prader-Willi et Autres Formes Rares d’Obésité avec Troubles du Comportement Alimentaire), Service d’Endocrinologie, Obésités, Maladies Osseuses, Génétique et Gynécologie Médicale, Hôpital des Enfants, 31059 Toulouse, France; (A.C.); (G.D.)
- Inserm UMR 1295—CERPOP (Centre d’Epidémiologie et de Recherche en Santé des POPulations), Équipe SPHERE (Santé Périnatale, Pédiatrique et des Adolescents: Approche Épidémiologique et Évaluative), Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Christine Poitou
- Assistance Publique-Hôpitaux de Paris, Centre de Référence Maladies Rares (PRADORT, Syndrome de Prader-Willi et Autres Formes Rares d’Obésité avec Troubles du Comportement Alimentaire), Service de Nutrition, Hôpital Pitié-Salpêtrière, 75013 Paris, France; (M.C.); (H.M.); (C.P.)
- UMRS 1269, Faculté de Médecine Sorbonne Université, INSERM, Nutrition et Obésité: Approches Systémiques «NutriOmics», 75006 Paris, France
| | - Maithé Tauber
- Centre de Référence Maladies Rares (PRADORT, Syndrome de Prader-Willi et Autres Formes Rares d’Obésité avec Troubles du Comportement Alimentaire), Service d’Endocrinologie, Obésités, Maladies Osseuses, Génétique et Gynécologie Médicale, Hôpital des Enfants, 31059 Toulouse, France; (A.C.); (G.D.)
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291—CNRS UMR5051—Université Toulouse III, 31062 Toulouse, France
- Correspondence:
| |
Collapse
|
18
|
Patients with PWS and related syndromes display differentially methylated regions involved in neurodevelopmental and nutritional trajectory. Clin Epigenetics 2021; 13:159. [PMID: 34389046 PMCID: PMC8361855 DOI: 10.1186/s13148-021-01143-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022] Open
Abstract
Background Prader–Willi syndrome is a rare genetic neurodevelopmental disorder caused by a paternal deficiency of maternally imprinted gene expression located in the chromosome 15q11–q13 region. Previous studies have demonstrated that several classes of neurodevelopmental disorders can be attributed to either over- or under-expression of specific genes that may lead to impairments in neuronal generation, differentiation, maturation and growth. Epigenetic changes that modify gene expression have been highlighted in these disorders. One recent study focused on epigenetic analysis and compared patients with PWS with patients with other imprinting disorders. No study, however, has yet focused on epigenetics in patients with PWS specifically by comparing the mutations associated with this syndrome. Objective This study investigated the epigenetic modifications in patients with PWS and patients with PWS-related disorders caused by inactivation of two genes of the PWS chromosomal region, SNORD116 and MAGEL2. Our approach also aimed to compare the epigenetic modifications in PWS and PWS-related disorders. Methods We compared genome-wide methylation analysis (GWAS) in seven blood samples from patients with PWS phenotype (five with deletions of the PWS locus, one with a microdeletion of SNORD116 and one with a frameshift mutation of MAGEL2 presenting with Schaaf–Yang syndrome), as well as two control patients. Controls were infants that had been studied for suspicion of genetic diseases that was not confirmed by the genetic analysis and the clinical follow-up. Results The analysis identified 29,234 differentially methylated cytosines, corresponding to 5,308 differentially methylated regions (DMRs), which matched with 2,280 genes. The DMRs in patients with PWS were associated with neurodevelopmental pathways, endocrine dysfunction and social and addictive processes consistent with the key features of the PWS phenotype. In addition, the separate analysis for the SNORD116 and MAGEL2 deletions revealed that the DMRs associated with the SNORD116 microdeletion were found in genes implicated in metabolic pathways and nervous system development, whereas MAGEL2 mutations mostly concerned genes involved in macromolecule biosynthesis. Conclusion The PWS is associated with epigenetic modifications with differences in SNORD116 and MAGEL2 mutations, which seem to be relevant to the different associated phenotypes.
Collapse
|
19
|
Pellikaan K, Rosenberg AGW, Davidse K, Kattentidt-Mouravieva AA, Kersseboom R, Bos-Roubos AG, Grootjen LN, Damen L, van den Berg SAA, van der Lely AJ, Hokken-Koelega ACS, de Graaff LCG. Effects of Childhood Multidisciplinary Care and Growth Hormone Treatment on Health Problems in Adults with Prader-Willi Syndrome. J Clin Med 2021; 10:jcm10153250. [PMID: 34362034 PMCID: PMC8347981 DOI: 10.3390/jcm10153250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a complex hypothalamic disorder. Features of PWS include hyperphagia, hypotonia, intellectual disability, and pituitary hormone deficiencies. The combination of growth hormone treatment and multidisciplinary care (GHMDc) has greatly improved the health of children with PWS. Little is known about the effects of childhood GHMDc on health outcomes in adulthood. We retrospectively collected clinical data of 109 adults with PWS. Thirty-nine had received GHMDc during childhood and adolescence (GHMDc+ group) and sixty-three had never received growth hormone treatment (GHt) nor multidisciplinary care (GHMDc− group). Our systematic screening revealed fewer undetected health problems in the GHMDc+ group (10%) than in the GHMDc− group (84%). All health problems revealed in the GHMDc+ group had developed between the last visit to the paediatric and the first visit to the adult clinic and/or did not require treatment. Mean BMI and the prevalence of diabetes mellitus type 2 were significantly lower in the GHMDc+ group compared to the GHMDc− group. As all patients who received GHt were treated in a multidisciplinary setting, it is unknown which effects are the result of GHt and which are the result of multidisciplinary care. However, our data clearly show that the combination of both has beneficial effects. Therefore, we recommend continuing GHMDc after patients with PWS have reached adult age.
Collapse
Affiliation(s)
- Karlijn Pellikaan
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands; (K.P.); (A.G.W.R.); (K.D.); (S.A.A.v.d.B.); (A.J.v.d.L.)
- Department of Internal Medicine, Division of Endocrinology, Center for Adults with Rare Genetic Syndromes, Erasmus Medical Center, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands; (L.N.G.); (L.D.); (A.C.S.H.-K.)
- Academic Centre for Growth Disorders, Erasmus Medical Center, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Anna G. W. Rosenberg
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands; (K.P.); (A.G.W.R.); (K.D.); (S.A.A.v.d.B.); (A.J.v.d.L.)
- Department of Internal Medicine, Division of Endocrinology, Center for Adults with Rare Genetic Syndromes, Erasmus Medical Center, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands; (L.N.G.); (L.D.); (A.C.S.H.-K.)
- Academic Centre for Growth Disorders, Erasmus Medical Center, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Kirsten Davidse
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands; (K.P.); (A.G.W.R.); (K.D.); (S.A.A.v.d.B.); (A.J.v.d.L.)
- Department of Internal Medicine, Division of Endocrinology, Center for Adults with Rare Genetic Syndromes, Erasmus Medical Center, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands; (L.N.G.); (L.D.); (A.C.S.H.-K.)
- Academic Centre for Growth Disorders, Erasmus Medical Center, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands
| | | | - Rogier Kersseboom
- Stichting Zuidwester, 3241 LB Middelharnis, The Netherlands; (A.A.K.-M.); (R.K.)
| | - Anja G. Bos-Roubos
- Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, 5803 AC Venray, The Netherlands;
| | - Lionne N. Grootjen
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands; (L.N.G.); (L.D.); (A.C.S.H.-K.)
- Academic Centre for Growth Disorders, Erasmus Medical Center, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Centre—Sophia Children’s Hospital, 3015 GD Rotterdam, The Netherlands
- Dutch Growth Research Foundation, 3016 AH Rotterdam, The Netherlands
| | - Layla Damen
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands; (L.N.G.); (L.D.); (A.C.S.H.-K.)
- Academic Centre for Growth Disorders, Erasmus Medical Center, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Centre—Sophia Children’s Hospital, 3015 GD Rotterdam, The Netherlands
- Dutch Growth Research Foundation, 3016 AH Rotterdam, The Netherlands
| | - Sjoerd A. A. van den Berg
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands; (K.P.); (A.G.W.R.); (K.D.); (S.A.A.v.d.B.); (A.J.v.d.L.)
- Department of Clinical Chemistry, Erasmus Medical Center, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Aart J. van der Lely
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands; (K.P.); (A.G.W.R.); (K.D.); (S.A.A.v.d.B.); (A.J.v.d.L.)
| | - Anita C. S. Hokken-Koelega
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands; (L.N.G.); (L.D.); (A.C.S.H.-K.)
- Academic Centre for Growth Disorders, Erasmus Medical Center, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Centre—Sophia Children’s Hospital, 3015 GD Rotterdam, The Netherlands
- Dutch Growth Research Foundation, 3016 AH Rotterdam, The Netherlands
| | - Laura C. G. de Graaff
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands; (K.P.); (A.G.W.R.); (K.D.); (S.A.A.v.d.B.); (A.J.v.d.L.)
- Department of Internal Medicine, Division of Endocrinology, Center for Adults with Rare Genetic Syndromes, Erasmus Medical Center, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands; (L.N.G.); (L.D.); (A.C.S.H.-K.)
- Academic Centre for Growth Disorders, Erasmus Medical Center, University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-6188-43010
| |
Collapse
|
20
|
Mele C, Crinò A, Fintini D, Mai S, Convertino A, Bocchini S, Di Paolo P, Grugni G, Aimaretti G, Scacchi M, Marzullo P. Angiopoietin-like 8 (ANGPTL8) as a potential predictor of NAFLD in paediatric patients with Prader-Willi Syndrome. J Endocrinol Invest 2021; 44:1447-1456. [PMID: 33067796 PMCID: PMC8195791 DOI: 10.1007/s40618-020-01444-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/06/2020] [Indexed: 01/15/2023]
Abstract
PURPOSE Angiopoietin-like 8 (ANGPTL8) is a liver- and adipose tissue-produced protein that predicts non-alcoholic fatty liver disease (NAFLD) and altered metabolic homeostasis in the general population as well as in persons with common and genetic obesity, including the Prader-Willi syndrome (PWS). However, its metabolic correlate in paediatric patients with respect to PWS is unknown. METHODS This cross-sectional study investigated circulating ANGPTL8 and adipocytokines levels in 28 PWS and 28 age-, sex- and BMI-matched children and adolescents (age, 7.0-17.8y) in relation to NAFLD and metabolic homeostasis assessed by OGTT, paediatric metabolic index (PMI) and fatty liver index (FLI), liver ultrasonography (US), as well as dual-energy X-ray absorptiometry (DEXA) for analysis of fat (FM) and fat-free mass (FFM). RESULTS At the set level of significance, PWS children showed lower values of FFM (p < 0.01) but healthier insulin profiles (p < 0.01) and PMI values (p < 0.05) than matched controls. By US, the prevalence of NAFLD was similar between groups but less severe in PWS than controls. Analysis of ANGPTL8 levels showed no difference between groups, yet only in PWS ANGPTL8 levels were associated with ALT levels, FLI values and NAFLD. In stepwise multivariable regression analysis on merged data, ANGPTL8 levels were independently predicted by BMI SDS, leptin levels and NAFLD. CONCLUSION ANGPTL8 levels are similar in PWS and controls and, overall, they are directly associated with the presence and severity of NAFLD in patients with PWS.
Collapse
Affiliation(s)
- C Mele
- Division of Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Division of General Medicine, Istituto Auxologico Italiano, IRCCS, San Giuseppe Hospital, Piancavallo, Verbania, Italy
| | - A Crinò
- Reference Center for Prader-Willi Syndrome, Bambino Gesù Children's Hospital, Research Institute, Palidoro (Rome), Italy
| | - D Fintini
- Reference Center for Prader-Willi Syndrome, Bambino Gesù Children's Hospital, Research Institute, Palidoro (Rome), Italy
| | - S Mai
- Laboratory of Metabolic Research, Istituto Auxologico Italiano, IRCCS, San Giuseppe Hospital, Piancavallo, Verbania, Italy
| | - A Convertino
- Reference Center for Prader-Willi Syndrome, Bambino Gesù Children's Hospital, Research Institute, Palidoro (Rome), Italy
| | - S Bocchini
- Reference Center for Prader-Willi Syndrome, Bambino Gesù Children's Hospital, Research Institute, Palidoro (Rome), Italy
| | - P Di Paolo
- Radiology Unit, Bambino Gesù Children's Hospital, Research Institute, Palidoro (Rome), Italy
| | - G Grugni
- Division of Auxology and Metabolic Diseases, Istituto Auxologico Italiano, IRCCS, San Giuseppe Hospital, Piancavallo, Verbania, Italy
| | - G Aimaretti
- Division of Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - M Scacchi
- Division of General Medicine, Istituto Auxologico Italiano, IRCCS, San Giuseppe Hospital, Piancavallo, Verbania, Italy
| | - P Marzullo
- Division of Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.
- Division of General Medicine, Istituto Auxologico Italiano, IRCCS, San Giuseppe Hospital, Piancavallo, Verbania, Italy.
| |
Collapse
|
21
|
Tauber M, Hoybye C. Endocrine disorders in Prader-Willi syndrome: a model to understand and treat hypothalamic dysfunction. Lancet Diabetes Endocrinol 2021; 9:235-246. [PMID: 33647242 DOI: 10.1016/s2213-8587(21)00002-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
Prader-Willi syndrome is a rare genetic neurodevelopmental disorder resulting from the loss of expression of maternally imprinted genes located in the paternal chromosomal region, 15q11-13. Impaired hypothalamic development and function is the cause of most of the phenotypes comprising the developmental trajectory of Prader-Willi syndrome: from anorexia at birth to excessive weight gain preceding hyperphagia, and early severe obesity with hormonal deficiencies, behavioural problems, and dysautonomia. Growth hormone deficiency, hypogonadism, hypothyroidism, premature adrenarche, corticotropin deficiency, precocious puberty, and glucose metabolism disorders are the main endocrine dysfunctions observed. Additionally, as a result of hypothalamic dysfunction, oxytocin and ghrelin systems are impaired in most patients. Standard pituitary and gonadal hormone replacement therapies are required. In this Review, we discuss Prader-Willi syndrome as a model of hypothalamic dysfunction, and provide a comprehensive description of the accumulated knowledge on genetics, pathophysiology, and treatment approaches of this rare disorder.
Collapse
Affiliation(s)
- Maithé Tauber
- Centre de Référence du Syndrome de Prader-Willi, Hôpital des Enfants, Toulouse, France; Axe Pédiatrique du CIC 9302/INSERM, Hôpital des Enfants, Toulouse, France; Institut Toulousain des Maladies Infectieuses et Inflammatoires, INSERM UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse, France, France; International Prader-Willi Syndrome Organisation, Cambridge, UK.
| | - Charlotte Hoybye
- International Prader-Willi Syndrome Organisation, Cambridge, UK; Department of Endocrinology, Karolinska University Hospital and Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
22
|
Frixou M, Vlek D, Lucas-Herald AK, Keir L, Kyriakou A, Shaikh MG. The use of growth hormone therapy in adults with Prader-Willi syndrome: A systematic review. Clin Endocrinol (Oxf) 2021; 94:645-655. [PMID: 33296095 DOI: 10.1111/cen.14372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/16/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Despite clear benefits in the management of children with Prader-Willi syndrome (PWS), the role of growth hormone (GH) in adults is unclear. The aim of this study was to conduct a systematic review to evaluate the effects of GH on body composition, bone health and cardiovascular health in adults with PWS. DESIGN A systematic computerized literature search of the PubMed database was conducted by two independent reviewers. Inclusion criteria were individuals over the age of 16 years with a genetic diagnosis of PWS who had received GH therapy, together with assessment of body composition, bone health or cardiovascular health. RESULTS Twenty full-text papers met the inclusion criteria, encompassing 364 unique patients. No differences in body mass index (BMI) were noted, although 2 studies reported increased BMI after GH cessation. Data demonstrated statistically significant increases in lean body mass and reductions in percentage fat mass. Studies reported inconsistent effects of GH on cholesterol and echocardiography parameters. No studies reported differences in bone mineral density, although one reported improved bone geometry. Minor adverse events including pretibial oedema, headache and transient impaired glucose tolerance were reported in 7 studies. CONCLUSIONS These data suggest that GH is safe and well tolerated in adults with PWS, with evidence of improvement in body composition. Further longitudinal studies are still required to investigate the effects of GH on bone and cardiovascular health. Where GH is used in adults with PWS, this should be managed by a specialist multidisciplinary team with regular monitoring initiated.
Collapse
Affiliation(s)
- Mikaela Frixou
- Developmental Endocrinology Research Group, Royal Hospital for Children, University of Glasgow, Glasgow, UK
| | - Diane Vlek
- Developmental Endocrinology Research Group, Royal Hospital for Children, University of Glasgow, Glasgow, UK
| | - Angela K Lucas-Herald
- Developmental Endocrinology Research Group, Royal Hospital for Children, University of Glasgow, Glasgow, UK
| | - Lindsay Keir
- Developmental Endocrinology Research Group, Royal Hospital for Children, University of Glasgow, Glasgow, UK
| | - Andreas Kyriakou
- Developmental Endocrinology Research Group, Royal Hospital for Children, University of Glasgow, Glasgow, UK
| | - M Guftar Shaikh
- Developmental Endocrinology Research Group, Royal Hospital for Children, University of Glasgow, Glasgow, UK
| |
Collapse
|
23
|
Pamukoff DN, Holmes SC, Shumski EJ, Garcia SA, Rubin DA. Plantar Flexor Function in Adults with and without Prader-Willi Syndrome. Med Sci Sports Exerc 2021; 52:2189-2197. [PMID: 32936593 DOI: 10.1249/mss.0000000000002361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Prader-Willi Syndrome (PWS) is a form of congenital obesity characterized by excessive body fat, hypotonia, muscle weakness, and physical/cognitive disability. However, the sources of muscle dysfunction and their contribution to mobility are unclear. The purposes of this study were to 1) compare plantar flexor function between adults with and without PWS; and 2) to examine the relationship between plantar flexor function and gait speed in adults with PWS. METHODS Participants included 10 adults with PWS, 10 adults without PWS and with obesity, and 10 adults without PWS and without obesity (matched on age and sex). Plantar flexor function was assessed using isokinetic dynamometry (peak torque [PT], early/late rate of torque development [RTD]), Hoffman reflex (H/M ratio), ultrasound imaging (cross-sectional area [CSA], echo intensity, pennation angle, and fascicle length), and peak propulsive force and plantar flexor moment during gait. Outcomes were compared between groups using one-way MANOVA. Associations between plantar flexor outcomes and gait speed were assessed using Pearson correlation in the PWS group. RESULTS Adults with PWS had lower absolute and normalized early RTD, and lower H/M ratio than controls with and without obesity; lower absolute PT and late RTD than controls with obesity (all P < 0.05). Cross-sectional area, propulsive force, and plantarflexor moment were lower, and echo intensity was higher, in adults with PWS compared with controls without obesity (all P < 0.05). Greater absolute PT (r = 0.64), absolute early RTD (r = 0.62), absolute late RTD (r = 0.64), gastrocnemii CSA (r = 0.55), and propulsive force (r = 0.58) were associated with faster gait speed (all P < 0.05). CONCLUSIONS Adults with PWS have impaired plantar flexor function likely attributable to reduced neuromuscular function and altered muscle morphology, which are associated with slower gait speeds.
Collapse
Affiliation(s)
- Derek N Pamukoff
- Department of Kinesiology, California State University, Fullerton, CA
| | - Skylar C Holmes
- Department of Kinesiology, University of Massachusetts, Amherst, MA
| | - Eric J Shumski
- Department of Kinesiology, California State University, Fullerton, CA
| | - Steven A Garcia
- School of Kinesiology, University of Michigan, Ann Arbor, MI
| | - Daniela A Rubin
- Department of Kinesiology, California State University, Fullerton, CA
| |
Collapse
|
24
|
Gait strategy and body composition in patients with Prader-Willi syndrome. Eat Weight Disord 2021; 26:115-124. [PMID: 31797332 DOI: 10.1007/s40519-019-00825-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022] Open
Abstract
PURPOSE Individuals with Prader-Willi syndrome (PWS) exhibit reduced lean body mass and increased fat-lean mass ratio when compared with individuals of normal weight and obese ones. Thus, research on the association of functional limitations during gait and body composition may be of great importance from a rehabilitative viewpoint. In particular, the aim of this study was to compare the gait profile of persons with PWS to that of unaffected individuals and to see if a relationship exists between gait profile and body composition in individuals with PWS. METHODS Eighteen individuals with PWS and 20 unaffected individuals (Healthy Group: HG) were assessed. Their gait pattern was quantified with 3D-Gait Analysis (3D-GA). Overall body weight, lean and fat masses were measured by dual-energy X-ray absorptiometry. RESULTS Individuals with PWS were found to be characterized by a significantly different (p < 0.05) gait pattern with respect to healthy controls in terms of both kinematic and kinetic parameters. No correlations were found between kinematic parameters and overall mass and lean/fat mass, while some parameters associated with ground reaction force were found to be significantly correlated with overall mass, lean mass and fat mass. Significant regression models were obtained, including impact and propulsive force and loading rate. CONCLUSION Our data suggest that in individuals with PWS, gait is influenced by the overall and lean body mass. Thus, therapeutic strategies should target both weight reduction and lean mass increase to optimize gait, minimize articular stress, and reduce the risk of repetitive strain on the lower limbs. LEVEL OF EVIDENCE Level III: Case-control analytic study.
Collapse
|
25
|
A pro-inflammatory phenotype is associated with behavioural traits in children with Prader-Willi syndrome. Eur Child Adolesc Psychiatry 2021; 30:899-908. [PMID: 32495042 PMCID: PMC8140962 DOI: 10.1007/s00787-020-01568-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
Abstract
Several lines of evidence indicate that immune-inflammatory alterations are widely observed in various mental disorders. Genetic syndromes with high risk of psychiatric disorders may constitute a model for studies investigating this phenomenon. One of such genetically determined neurodevelopmental disorders is the Prader-Willi syndrome (PWS). Therefore, we aimed to profile a broad panel of immune-inflammatory markers in patients with PWS, taking into account co-morbid psychopathology. Participants were 20 children with PWS, and 20 healthy children matched for age, sex and body mass index. Behavioural symptoms and co-occurring psychopathological symptoms were assessed using the Child Behaviour Checklist (CBCL). We found significantly elevated levels of interleukin (IL)-1β and IL-13 in patients with PWS. There were significant positive correlations between the levels of IL-1β and scores of the following externalizing and internalizing CBCL domains: withdrawn/depressed, social problems, thought problems, attention problems, delinquent and aggressive behaviour in PWS children. Moreover, higher levels of IL-13 were associated with more severe psychopathology in terms of social and attention problems as well as delinquent and aggressive behaviour. Our findings imply that subclinical inflammation, observed as elevated IL-1β and IL-13 levels, appears only in PWS patients and is correlated to several psychopathological symptoms.
Collapse
|
26
|
Damen L, Grootjen LN, Donze SH, Juriaans AF, de Graaff LCG, van der Velden JAEM, Hokken-Koelega ACS. Three years of growth hormone treatment in young adults with Prader-Willi Syndrome previously treated with growth hormone in childhood: Effects on glucose homeostasis and metabolic syndrome. Clin Endocrinol (Oxf) 2020; 93:439-448. [PMID: 32609902 DOI: 10.1111/cen.14274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 11/29/2022]
Abstract
CONTEXT Growth hormone (GH) has been approved for children with Prader-Willi syndrome (PWS) and significantly improves body composition in adults with PWS. Adults with PWS are predisposed to develop impaired glucose tolerance (IGT) and diabetes mellitus type 2 (DMT2). Continuation of GH maintains body composition, but GH is known to induce insulin resistance, which might affect glucose homeostasis. Studies on long-term effects of GH treatment in adults are very limited. OBJECTIVE To investigate effects of 3 years of GH treatment on glucose homeostasis and prevalence of metabolic syndrome (MS) in adults with PWS. DESIGN Open-label, prospective study. PATIENTS 43 young adults with PWS. SETTING Dutch PWS Reference Center. MAIN OUTCOME MEASURES Glucose and insulin during oral glucose tolerance test. RESULTS Estimated mean (95% CI) fasting glucose and insulin levels remained stable during 3 years of GH treatment. Glucose being 4.6 (4.4-4.8) mmol/l at start and 4.7 (4.6-4.9) mmol/l after 3 years (P = .07); insulin being 59.5 (45.2-75.8) pmol/l and 56.7 (45.2-69.6) pmol/l resp. (P = .72). Sex, ethnicity and fat mass percentage were significantly associated with fasting glucose levels, while IGF-I or GH-dose were not. Blood pressure, lipids and prevalence of MS remained stable during 3 years of GH. IGT prevalence was variable over time, six patients had IGT at start and eleven after 3 years of GH. One patient developed DMT2. However, prevalence of IGT or DMT2 was not significantly higher after 3 years than at study start. CONCLUSIONS Three years of GH treatment in adults with PWS does not impair glucose homeostasis and does not lead to an increased prevalence of DMT2.
Collapse
Affiliation(s)
- Layla Damen
- Dutch Growth Research Foundation, Rotterdam, The Netherlands
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
- Academic Center for Rare Growth Disorders, Erasmus University Medical Center, Rotterdam, the Netherlands
- Dutch Reference Center for Prader-Willi Syndrome, The Netherlands
| | - Lionne N Grootjen
- Dutch Growth Research Foundation, Rotterdam, The Netherlands
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
- Academic Center for Rare Growth Disorders, Erasmus University Medical Center, Rotterdam, the Netherlands
- Dutch Reference Center for Prader-Willi Syndrome, The Netherlands
| | - Stephany H Donze
- Dutch Growth Research Foundation, Rotterdam, The Netherlands
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
- Academic Center for Rare Growth Disorders, Erasmus University Medical Center, Rotterdam, the Netherlands
- Dutch Reference Center for Prader-Willi Syndrome, The Netherlands
| | - Alicia F Juriaans
- Dutch Growth Research Foundation, Rotterdam, The Netherlands
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
- Academic Center for Rare Growth Disorders, Erasmus University Medical Center, Rotterdam, the Netherlands
- Dutch Reference Center for Prader-Willi Syndrome, The Netherlands
| | - Laura C G de Graaff
- Academic Center for Rare Growth Disorders, Erasmus University Medical Center, Rotterdam, the Netherlands
- Dutch Reference Center for Prader-Willi Syndrome, The Netherlands
- Internal medicine, Division of Endocrinology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Janielle A E M van der Velden
- Dutch Reference Center for Prader-Willi Syndrome, The Netherlands
- Department of Pediatrics, Subdivision of Endocrinology, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Anita C S Hokken-Koelega
- Dutch Growth Research Foundation, Rotterdam, The Netherlands
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
- Academic Center for Rare Growth Disorders, Erasmus University Medical Center, Rotterdam, the Netherlands
- Dutch Reference Center for Prader-Willi Syndrome, The Netherlands
| |
Collapse
|
27
|
Growth Trajectories in Genetic Subtypes of Prader-Willi Syndrome. Genes (Basel) 2020; 11:genes11070736. [PMID: 32630716 PMCID: PMC7397071 DOI: 10.3390/genes11070736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 11/25/2022] Open
Abstract
Prader–Willi syndrome (PWS) is a rare disorder caused by the loss of expression of genes on the paternal copy of chromosome 15q11-13. The main molecular subtypes of PWS are the deletion of 15q11-13 and non-deletion, and differences in neurobehavioral phenotype are recognized between the subtypes. This study aimed to investigate growth trajectories in PWS and associations between PWS subtype (deletion vs. non-deletion) and height, weight and body mass index (BMI). Growth data were available for 125 individuals with PWS (63 males, 62 females), of which 72 (57.6%) had the deletion subtype. There was a median of 28 observations per individual (range 2–85), producing 3565 data points distributed from birth to 18 years of age. Linear mixed models with cubic splines, subject-specific random effects and an autoregressive correlation structure were used to model the longitudinal growth data whilst accounting for the nature of repeated measures. Height was similar for males in both PWS subtypes, with non-deletion females being shorter than deletion females for older ages. Weight and BMI were estimated to be higher in the deletion subtype compared to the non-deletion subtype, with the size of difference increasing with advancing age for weight. These results suggest that individuals with deletion PWS are more prone to obesity.
Collapse
|
28
|
Olsson LM, Poitou C, Tremaroli V, Coupaye M, Aron-Wisnewsky J, Bäckhed F, Clément K, Caesar R. Gut microbiota of obese subjects with Prader-Willi syndrome is linked to metabolic health. Gut 2020; 69:1229-1238. [PMID: 31611297 PMCID: PMC7306984 DOI: 10.1136/gutjnl-2019-319322] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The gut microbiota has been implicated in the aetiology of obesity and associated comorbidities. Patients with Prader-Willi syndrome (PWS) are obese but partly protected against insulin resistance. We hypothesised that the gut microbiota of PWS patients differs from that of non-genetically obese controls and correlate to metabolic health. Therefore, here we used PWS as a model to study the role of gut microbiota in the prevention of metabolic complications linked to obesity. DESIGN We conducted a case-control study with 17 adult PWS patients and 17 obese subjects matched for body fat mass index, gender and age. The subjects were metabolically characterised and faecal microbiota was profiled by 16S ribosomal RNA gene sequencing. The patients' parents were used as a non-obese control group. Stool samples from two PWS patients and two obese controls were used for faecal microbiota transplantations in germ-free mice to examine the impact of the microbiota on glucose metabolism. RESULTS The composition of the faecal microbiota in patients with PWS differed from that of obese controls, and was characterised by higher phylogenetic diversity and increased abundance of several taxa such as Akkermansia, Desulfovibrio and Archaea, and decreased abundance of Dorea. Microbial taxa prevalent in the PWS microbiota were associated with markers of insulin sensitivity. Improved insulin resistance of PWS was partly transmitted by faecal microbiota transplantations into germ-free mice. CONCLUSION The gut microbiota of PWS patients is similar to that of their non-obese parents and might play a role for the protection of PWS patients from metabolic complications.
Collapse
Affiliation(s)
- Lisa M Olsson
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christine Poitou
- INSERM, Nutrition and obesities; systemic approaches (NutriOmics) research Unit, Sorbonne Universite, Paris, Île-de-France, France
- Assistance Publique-Hôpitaux de Paris, Reference Center for Rare Diseases (Prader-Willi Syndrome), Nutrition Department, University Hospital Pitié Salpêtrière, Paris, Île-de-France, France
| | - Valentina Tremaroli
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Muriel Coupaye
- Assistance Publique-Hôpitaux de Paris, Reference Center for Rare Diseases (Prader-Willi Syndrome), Nutrition Department, University Hospital Pitié Salpêtrière, Paris, Île-de-France, France
| | - Judith Aron-Wisnewsky
- INSERM, Nutrition and obesities; systemic approaches (NutriOmics) research Unit, Sorbonne Universite, Paris, Île-de-France, France
- Assistance Publique-Hôpitaux de Paris, Reference Center for Rare Diseases (Prader-Willi Syndrome), Nutrition Department, University Hospital Pitié Salpêtrière, Paris, Île-de-France, France
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karine Clément
- INSERM, Nutrition and obesities; systemic approaches (NutriOmics) research Unit, Sorbonne Universite, Paris, Île-de-France, France
- Assistance Publique-Hôpitaux de Paris, Reference Center for Rare Diseases (Prader-Willi Syndrome), Nutrition Department, University Hospital Pitié Salpêtrière, Paris, Île-de-France, France
| | - Robert Caesar
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
29
|
Damen L, Donze SH, Kuppens RJ, Bakker NE, de Graaff LCG, van der Velden JAEM, Hokken-Koelega ACS. Three years of growth hormone treatment in young adults with Prader-Willi syndrome: sustained positive effects on body composition. Orphanet J Rare Dis 2020; 15:163. [PMID: 32580778 PMCID: PMC7313113 DOI: 10.1186/s13023-020-01440-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In children with Prader-Willi syndrome (PWS), the benefits of growth hormone treatment are well established. Several one-year studies have shown that growth hormone is also beneficial for adults with PWS, improving body composition. However, little is known about the longer-term effects. This study investigated the effects on body composition in adult patients with PWS during 3 years of growth hormone therapy in a dose of 0.33 mg/m2/day. METHODS Open-label, prospective study in 43 young adults with PWS with a median (IQR) age of 19.0 (17.5 to 20.7) years. Fat mass percentage SDS and lean body mass SDS were measured annually by DXA. RESULTS Estimated mean (95% CI) fat mass percentage SDS decreased during the three-year study from 2.1 (1.9 to 2.3) SDS at start to 1.9 (1.8 to 2.1) SDS, p = 0.012, while lean body mass SDS remained stable at - 2.1 (- 2.4 to - 1.8) SDS at start to - 1.9 (- 2.3 to - 1.6) after 3 years, p = 0.15. Fasting glucose and insulin remained similar during the three-year study, glucose being 4.6 (4.4 to 4.8) mmol/l at start and 4.6 (4.5 to 4.7) mmol/l after 3 years of growth hormone, p = 0.93 and insulin being 59.5 (42.2 to 81.5) pmol/l and 55.0 (42.4 to 69.2) pmol/l, resp., p = 0.54. There were no growth hormone-related adverse events during the study. CONCLUSIONS Three years of growth hormone treatment in young adults with PWS maintains the positive effects on body composition attained during childhood. Thus, adults with PWS benefit from longer-term growth hormone treatment. TRIAL REGISTRATION EudraCT, EudraCT number 2011-001313-14. Registered 17 October 2012.
Collapse
Affiliation(s)
- Layla Damen
- Dutch Growth Research Foundation, Rotterdam, The Netherlands. .,Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands.
| | - Stephany H Donze
- Dutch Growth Research Foundation, Rotterdam, The Netherlands.,Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Renske J Kuppens
- Dutch Growth Research Foundation, Rotterdam, The Netherlands.,Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Nienke E Bakker
- Dutch Growth Research Foundation, Rotterdam, The Netherlands.,Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Laura C G de Graaff
- Internal Medicine, Division of Endocrinology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Janielle A E M van der Velden
- Department of Pediatrics, Subdivision of Endocrinology, Radboud University Medical Center-Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Anita C S Hokken-Koelega
- Dutch Growth Research Foundation, Rotterdam, The Netherlands.,Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| |
Collapse
|
30
|
Radetti G, Fanolla A, Lupi F, Sartorio A, Grugni G. Accuracy of Different Indexes of Body Composition and Adiposity in Identifying Metabolic Syndrome in Adult Subjects with Prader-Willi Syndrome. J Clin Med 2020; 9:E1646. [PMID: 32486250 PMCID: PMC7356766 DOI: 10.3390/jcm9061646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 01/21/2023] Open
Abstract
(1) Objective: To compare the accuracy of different indexes of adiposity and/or body composition in identifying metabolic syndrome (MetS) in adult patients suffering from Prader‒Willi syndrome (PWS). (2) Study Design: One hundred and twenty PWS patients (69 females and 51 males), aged 29.1 ± 9.4 years, body mass index (BMI) 36.7 ± 9.9, were evaluated. The following indexes were assessed in each subject: body mass index (BMI), fat-free mass index (FFMI), fat mass index (FMI), tri-ponderal mass index (TMI), waist-to-height ratio (WtHR) and the body mass fat index (BMFI), which adjusts the BMI for the percentage of body fat and waist circumference. Thereafter, a threshold value adjusted for age and sex, which could identify MetS, was calculated for each index. (3) Results: A significant correlation was found among all indexes (p < 0.0001 for all). However, when the area under the curve (AUC) was compared, BMFI performed better than FMI (p < 0.05) and BMI better than TMI (p < 0.05), but only in females. (4) Conclusions: Besides small differences, all the indexes taken into consideration seem to have the same ability to identify MetS in adults with PWS. Consequently, the most easily calculated index, i.e., BMI, should be considered as the best choice. The use of thresholds appropriate for sex and age can further improve its accuracy.
Collapse
Affiliation(s)
- Giorgio Radetti
- Marienklinik, Via Claudia De Medici, 2, 39100 Bolzano, Italy
| | - Antonio Fanolla
- Observatory for Health Provincial Government, 39100 Bolzano, South Tyrol, Italy;
| | - Fiorenzo Lupi
- Department of Pediatrics, Regional Hospital of Bolzano, 39100 Bolzano, Italy;
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research & Division of Auxology, 28824 Piancavallo (VB), Italy; (A.S.); (G.G.)
| | - Graziano Grugni
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research & Division of Auxology, 28824 Piancavallo (VB), Italy; (A.S.); (G.G.)
| |
Collapse
|
31
|
Barrea L, Muscogiuri G, Pugliese G, Aprano S, de Alteriis G, Di Somma C, Colao A, Savastano S. The Sun's Vitamin in Adult Patients Affected by Prader-Willi Syndrome. Nutrients 2020; 12:E1132. [PMID: 32316673 PMCID: PMC7230761 DOI: 10.3390/nu12041132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a genetic disorder characterized by hyperphagia with progressive, severe obesity, and an increased risk of obesity-related comorbidities in adult life. Although low dietary vitamin D intake and low 25-hydroxy vitamin D (25OHD) levels are commonly reported in PWS in the context of bone metabolism, the association of low 25OHD levels with fat mass has not been extensively evaluated in PWS adults. The aims of this study were to investigate the following in PWS adults: (1) 25OHD levels and the dietary vitamin D intake; (2) associations among 25OHD levels with anthropometric measurements and fat mass; (3) specific cut-off values for body mass index (BMI) and fat mass predictive of the 25OHD levels. In this cross-sectional, single-center study we enrolled 30 participants, 15 PWS adults (age 19-41 years and 40% males) and 15 control subjects matched by age, sex, and BMI from the same geographical area (latitude 40° 49' N; elevation 17 m). Fat mass was assessed using a bioelectrical impedance analysis (BIA) phase-sensitive system. The 25OHD levels were determined by a direct competitive chemiluminescence immunoassay. Dietary vitamin D intake data was collected by three-day food records. The 25OHD levels in the PWS adults were constantly lower across all categories of BMI and fat mass compared with their obese counterpart. The 25OHD levels were negatively associated with BMI (p = 0.04), waist circumference (p = 0.03), fat mass (p = 0.04), and dietary vitamin D intake (p < 0.001). During multiple regression analysis, dietary vitamin D intake was entered at the first step (p < 0.001), thus explaining 84% of 25OHD level variability. The threshold values of BMI and fat mass predicting the lowest decrease in the 25OHD levels were found at BMI ≥ 42 kg/m2 (p = 0.01) and fat mass ≥ 42 Kg (p = 0.003). In conclusion, our data indicate that: (i) 25OHD levels and dietary vitamin D intake were lower in PWS adults than in the control, independent of body fat differences; (ii) 25OHD levels were inversely associated with BMI, waist circumference, and fat mass, but low dietary vitamin D intake was the major determinant of low vitamin D status in these patients; (iii) sample-specific cut-off values of BMI and fat mass might help to predict risks of the lowest 25OHD level decreases in PWS adults. The presence of trained nutritionists in the integrated care teams of PWS adults is strongly suggested in order to provide an accurate nutritional assessment and tailored vitamin D supplementations.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (G.M.); (G.P.); (S.A.); (G.d.A.); (C.D.S.); (A.C.); (S.S.)
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (G.M.); (G.P.); (S.A.); (G.d.A.); (C.D.S.); (A.C.); (S.S.)
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Gabriella Pugliese
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (G.M.); (G.P.); (S.A.); (G.d.A.); (C.D.S.); (A.C.); (S.S.)
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Sara Aprano
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (G.M.); (G.P.); (S.A.); (G.d.A.); (C.D.S.); (A.C.); (S.S.)
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Giulia de Alteriis
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (G.M.); (G.P.); (S.A.); (G.d.A.); (C.D.S.); (A.C.); (S.S.)
| | - Carolina Di Somma
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (G.M.); (G.P.); (S.A.); (G.d.A.); (C.D.S.); (A.C.); (S.S.)
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (G.M.); (G.P.); (S.A.); (G.d.A.); (C.D.S.); (A.C.); (S.S.)
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco “Educazione alla salute e allo sviluppo sostenibile”, University Federico II, 80138 Naples, Italy
| | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (G.M.); (G.P.); (S.A.); (G.d.A.); (C.D.S.); (A.C.); (S.S.)
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
32
|
Circulating microRNA Associated to Different Stages of Liver Steatosis in Prader-Willi Syndrome and Non-Syndromic Obesity. J Clin Med 2020; 9:jcm9041123. [PMID: 32295264 PMCID: PMC7230920 DOI: 10.3390/jcm9041123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Prader-Willi syndrome (PWS) is a rare and poorly characterized disease. Recent genomic and transcriptomic studies contributed to elucidate the molecular bases of the syndrome. In this study, we characterized the expression of circulating miRNAs in patients with PWS compared to those with non-syndromic obesity in association with liver steatosis. METHODS MiRNAs were studied by qRT-PCR in serum samples from 30 PWS and 30 non-syndromic obese subjects. RESULTS MiRNA expression was associated with the presence of the syndrome and to the grade of liver steatosis. MiR-122-5p, miR-151a, miR-92a-3p were up-regulated in obese (4.38-fold, p < 0.01; 2.72-fold, p < 0.05; 1.34-fold p < 0.05, respectively) and were able to differentiate obese from PWS (AUC = 0.81, sens/spec 78/71%). When stratifying groups according to the presence of steatosis, the expression of miR-151a-5p, miR-92a-3p, miR-106b-5p, and miR-93-5p were lower in PWS with steatosis grade 1. Within the group with steatosis grade 1, miR-151a-5p was significantly distinguished PWS from obese (AUC = 0.85, sens/spec 80/85%) and the combination of miR-106b-5p and miR-93-5p showed higher performances in discriminating different grades of steatosis in PWS (AUC = 0.84, sens/spec 93/74%). CONCLUSIONS MiRNAs represent a tool to better classify and characterize PWS, providing new information about the clinical picture and the extent of steatosis.
Collapse
|
33
|
Hirsch HJ, Gross-Tsur V, Sabag Y, Nice S, Genstil L, Benarroch F, Constantini N. Myokine levels after resistance exercise in young adults with Prader-Willi syndrome (PWS). Am J Med Genet A 2019; 182:115-121. [PMID: 31692257 DOI: 10.1002/ajmg.a.61391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 12/30/2022]
Abstract
Individuals with PWS require marked caloric restriction and daily exercise to prevent morbid obesity. Lower energy expenditure, hypotonia, decreased muscle mass, and cognitive impairment make exercise challenging for this population. Exercise guidelines include resistance training as an important component. Myokine responses to resistance exercise may mediate beneficial metabolic effects. We aimed to determine if young PWS adults can perform a resistance exercise program and to measure myokine responses in PWS versus age- and BMI-matched controls. Each group included 11 participants (7M/4F). Ages and BMI for PWS and controls were 30.7 ± 4.6 versus 30.1 ± 4.3 years and 28.3 ± 4.3 versus 28.2 ± 4.2 kg/m2 , respectively. Glucose, creatine kinase (CK), lactate, and myokines were measured before, after, 30, and 60 min after completing eight resistance exercises. Myokines were assayed using a multiplex myokine panel (Merck Millipore). CK was lower in PWS versus controls (62 ± 16 vs.322 ± 100 U/L, p < .04). Peak lactate was 3.7 ± 0.7 in PWS versus 7.3 ± 0.7 mmol/Lin controls (p < .001). The increase in interleukin-6 was similar in PWS and controls (41 ± 16% and 35 ± 10%, respectively). Pre- and post-exercise levels of the six myokines assayed showed no consistent differences between the PWS and control participants. PWS young adults are capable of performing resistance/strength-building exercise. The lower CK and peak lactate levels in PWS may reflect decreased muscle mass in this population. Further studies are needed to determine optimal exercise regimens and assess the role of myokines incontributing to the metabolic phenotype of PWS.
Collapse
Affiliation(s)
- Harry J Hirsch
- Multidisciplinary Prader-Willi Syndrome Clinic, Neuropediatric Unit, Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Varda Gross-Tsur
- Multidisciplinary Prader-Willi Syndrome Clinic, Neuropediatric Unit, Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel.,The Hebrew University School of Medicine, Jerusalem, Israel
| | - Yanir Sabag
- The Hebrew University School of Medicine, Jerusalem, Israel
| | - Shachar Nice
- Heidi Rothberg Sport Medicine Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Larry Genstil
- Multidisciplinary Prader-Willi Syndrome Clinic, Neuropediatric Unit, Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Fortu Benarroch
- Multidisciplinary Prader-Willi Syndrome Clinic, Neuropediatric Unit, Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel.,The Hebrew University School of Medicine, Jerusalem, Israel.,Herman Dana Division of Child and Adolescent Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Naama Constantini
- The Hebrew University School of Medicine, Jerusalem, Israel.,Heidi Rothberg Sport Medicine Center, Shaare Zedek Medical Center, Jerusalem, Israel
| |
Collapse
|
34
|
Bedogni G, Grugni G, Tringali G, Tamini S, Marzullo P, Sartorio A. Assessment of fat-free mass from bioelectrical impedance analysis in men and women with Prader-Willi syndrome: cross-sectional study. Int J Food Sci Nutr 2019; 70:645-649. [PMID: 30714438 DOI: 10.1080/09637486.2018.1554623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have recently shown that population-specific formulae are required to estimate fat-free mass (FFM) from bioelectrical impedance analysis (BIA) in obese women with Prader-Willi syndrome (PWS) matched by age and percent fat mass (FM) to non-PWS women. The present cross-sectional study was aimed at developing generalised BIA equations that could be used in PWS subjects independently of sex and FM. We used dual-energy X-ray absorptiometry to measure FFM and BIA to measure whole-body impedance at 50 kHz (Z50) in 34 women and 21 men with PWS. The impedance index, that is, height (cm)2/Z50 (Ω), explained 77% (BCa-bootstrapped 95% CI 65 to 85%) of the variance of FFM with a root mean squared error of the estimate of 3.7 kg (BCa-bootstrapped 95% CI 3.2 to 4.5 kg). BIA can be used to estimate FFM in obese and non-obese PWS men and women by means of population-specific equations.
Collapse
Affiliation(s)
- Giorgio Bedogni
- a Clinical Epidemiology Unit , Liver Research Center , Basovizza , Trieste , Italy.,b International Center for the Assessment of Nutritional Status (ICANS), University of Milano , Milano , Italy
| | - Graziano Grugni
- c Istituto Auxologico Italiano, IRCCS, Division of Auxology and Metabolic Diseases, Piancavallo (VB) , Italy
| | - Gabriella Tringali
- d Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-Endocrinological Research , Milano and Piancavallo (VB) , Italy
| | - Sofia Tamini
- d Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-Endocrinological Research , Milano and Piancavallo (VB) , Italy
| | - Paolo Marzullo
- e Istituto Auxologico Italiano, IRCCS, Division of General Medicine, Piancavallo (VB) , Italy.,f Department of Translational Medicine , University of Piemonte Orientale , Novara , Italy
| | - Alessandro Sartorio
- c Istituto Auxologico Italiano, IRCCS, Division of Auxology and Metabolic Diseases, Piancavallo (VB) , Italy.,d Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-Endocrinological Research , Milano and Piancavallo (VB) , Italy
| |
Collapse
|
35
|
Pascut D, Tamini S, Bresolin S, Giraudi P, Basso G, Minocci A, Tiribelli C, Grugni G, Sartorio A. Differences in circulating microRNA signature in Prader-Willi syndrome and non-syndromic obesity. Endocr Connect 2018; 7:1262-1274. [PMID: 30352401 PMCID: PMC6240145 DOI: 10.1530/ec-18-0329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
Abstract
Prader-Willi syndrome (PWS) represents the most common genetic-derived obesity disorder caused by the loss of expression of genes located on the paternal chromosome 15q11.2-q13. The PWS phenotype shows peculiar physical, endocrine and metabolic characteristics compared to those observed in non-syndromic essential obesity. Since miRNAs have now a well-established role in many molecular pathways, including regulatory networks related to obesity, this pilot study was aimed to characterize the expression of circulating miRNAs in PWS compared to essential obesity. The circulating miRNome of 10 PWS and 10 obese subjects, adequately matched for age, BMI and sex, was profiled throughout Genechip miRNA 4.0 microarray analysis. We identified 362 out of 2578 mature miRNAs to be expressed in serum of the studied population. The circulating miRNA signature significantly characterising the two populations include 34 differently expressed RNAs. Among them, miR-24-3p, miR-122 and miR-23a-3p highly differ between the two groups with a FC >10 in obese compared to PWS. In the obese subjects, miR-7107-5p, miR-6880-3p, miR-6793-3p and miR-4258 were associated to the presence of steatosis. A different signature of miRNAs significantly distinguished PWS with steatosis from PWS without steatosis, involving miR-619-5p, miR-4507, miR-4656, miR-7847-3p and miR-6782-5p. The miRNA target GO enrichment analysis showed the different pathway involved in these two different forms of obesity. Although the rarity of PWS actually represents a limitation to the availability of large series, the present study provides novel hints on the molecular pathogenesis of syndromic and non-syndromic obesity.
Collapse
Affiliation(s)
- Devis Pascut
- Fondazione Italiana Fegato – ONLUS, Trieste, Italy
| | - Sofia Tamini
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Piancavallo (VB), Italy
| | - Silvia Bresolin
- Laboratory of Onco-Hematology, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | | | - Giuseppe Basso
- Laboratory of Onco-Hematology, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Alessandro Minocci
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Piancavallo (VB), Italy
- Division of Metabolic Diseases, Istituto Auxologico Italiano, IRCCS, Piancavallo (VB), Italy
| | | | - Graziano Grugni
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Piancavallo (VB), Italy
- Division of Auxology, Istituto Auxologico Italiano, IRCCS, Piancavallo (VB), Italy
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Piancavallo (VB), Italy
- Division of Metabolic Diseases, Istituto Auxologico Italiano, IRCCS, Piancavallo (VB), Italy
- Division of Auxology, Istituto Auxologico Italiano, IRCCS, Piancavallo (VB), Italy
| |
Collapse
|
36
|
Woods SG, Knehans A, Arnold S, Dionne C, Hoffman L, Turner P, Baldwin J. The associations between diet and physical activity with body composition and walking a timed distance in adults with Prader-Willi syndrome. Food Nutr Res 2018; 62:1343. [PMID: 29942245 PMCID: PMC6010474 DOI: 10.29219/fnr.v62.1343] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 12/01/2022] Open
Abstract
Background Research on aging in Prader–Willi syndrome (PWS) is limited, although people with PWS are living longer. Individuals with PWS present with high fat mass, low lean mass, and low levels of physical activity (PA). Previous reports in children and young adults with PWS show inadequate nutrient intake and body fat percentage indicating obesity. Previous studies in PWS rarely included individuals beyond young adulthood, especially studies conducted in the United States. This study includes adults from 18 to 62 years of age, and includes 19 of the estimated 60 adult individuals with PWS in Oklahoma. Because individuals with PWS are living longer, information must be provided on aging with PWS. This study is a report of the initial data for a planned longitudinal study on aging with PWS. Objective Determine associations between body composition, diet, PA, and a timed walk for adults with PWS, and to assess adequacy of dietary intake for those individuals aging with PWS. Design This cross-sectional investigation determined dietary habits, PA, and body composition of adults with PWS, and tested associations between these variables. Results Participants ranged in age from 18 to 62 years. They had healthier body composition, at 26.8% body fat, than previously reported. Mean body mass index (BMI) was in the overweight range at 26.7. Those who consumed higher amounts of fat (as a percent of total kilocalories) had statistically significant lower body fat percentage, but this may simply reflect that individuals with lower body fat percentages felt freer to consume fat. Mean steps taken per day was 7631.7 steps but only 16% of participants met healthy PA recommendations despite participating in daily structured exercise. All participants’ diets met Dietary Guidelines for macronutrient distribution, but 80% were deficient in calcium, 100% were deficient in dietary vitamin D, and 87% were deficient in fiber. Sample size was small, so it was difficult to reach statistical significance, despite seeing clinical significance. Conclusions Recommend working toward healthy PA recommendations for all age groups by decreasing time in sedentary activity. Recommend increasing vitamin A and D fortified dairy products and high-fiber foods, and consider dietary supplementation, especially for calcium, vitamin D, and fiber.
Collapse
Affiliation(s)
- Susan G Woods
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Allen Knehans
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sandra Arnold
- Department of Rehabilitation Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Carol Dionne
- Department of Rehabilitation Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Leah Hoffman
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peggy Turner
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jonathan Baldwin
- Department of Medical Imaging and Radiation Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
37
|
Xu M, Zhang Y, von Deneen KM, Zhu H, Gao J. Brain structural alterations in obese children with and without Prader-Willi Syndrome. Hum Brain Mapp 2017; 38:4228-4238. [PMID: 28543989 PMCID: PMC6866858 DOI: 10.1002/hbm.23660] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a genetic imprinting disorder that is mainly characterized by hyperphagia and childhood obesity. Previous neuroimaging studies revealed that there is a significant difference in brain activation patterns between obese children with and without PWS. However, whether there are differences in the brain structure of obese children with and without PWS remains elusive. In the current study, we used T1-weighted and diffusion tensor magnetic resonance imaging to investigate alterations in the brain structure, such as the cortical volume and white matter integrity, in relation to this eating disorder in 12 children with PWS, 18 obese children without PWS (OB) and 18 healthy controls. Compared with the controls, both the PWS and OB groups exhibited alterations in cortical volume, with similar deficit patterns in 10 co-varying brain regions in the bilateral dorsolateral and medial prefrontal cortices, right anterior cingulate cortex, and bilateral temporal lobe. The white matter integrities of the above regions were then examined with an analysis method based on probabilistic tractography. The PWS group exhibited distinct changes in the reduced fractional anisotropy of white matter fibers connected to the co-varying regions, whereas the OB group did not. Our findings indicated that PWS and OB share similar gray matter alterations that are responsible for the development of eating disorders. Additionally, the distinct white matter alterations might explain the symptoms associated with food intake in PWS, including excessive hyperphagia and constant hunger. Hum Brain Mapp 38:4228-4238, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mingze Xu
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijing100871China
- Department of Biomedical EngineeringPeking UniversityBeijing100871China
| | - Yi Zhang
- Center for Brain Imaging, Xidian UniversityXi'an710071China
- Department of Psychiatry & McKnight Brain InstituteUniversity of FloridaGainesvilleFlorida32610
| | - Karen M. von Deneen
- Center for Brain Imaging, Xidian UniversityXi'an710071China
- Department of Psychiatry & McKnight Brain InstituteUniversity of FloridaGainesvilleFlorida32610
| | - Huaiqiu Zhu
- Department of Biomedical EngineeringPeking UniversityBeijing100871China
| | - Jia‐Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijing100871China
- Beijing City Key Lab for Medical Physics and EngineeringInstitution of Heavy Ion Physics, School of Physics, Peking UniversityBeijing100871China
- McGovern Institute for Brian Research, Peking UniversityBeijing100871China
- Shenzhen Institute of NeuroscienceShenzhen518057China
| |
Collapse
|
38
|
Cimolin V, Cau N, Galli M, Santovito C, Grugni G, Capodaglio P. Gait initiation and termination strategies in patients with Prader-Willi syndrome. J Neuroeng Rehabil 2017; 14:44. [PMID: 28535762 PMCID: PMC5442593 DOI: 10.1186/s12984-017-0257-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/16/2017] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Gait Initiation (GI) is a functional task representing one of the first voluntary destabilizing behaviours observed in the development of a locomotor pattern as the whole body centre of mass transitions from a large to a small base of support. Conversely, Gait Termination (GT) consists in the transition from walking to standing which, in everyday life, is a very common movement. Compared to normal walking, it requires higher control of postural stability. For a safe GT, the forward movement of the body has to be slowed down to achieve a stable upright position. Stability requirements have to be fulfilled for safe GT. In individuals with Prader-Willi syndrome (PWS), excessive body weight negatively affects the movement, such as walking and posture, but there are no experimental studies about GI and GT in these individuals. The aim of this study was to quantitatively characterise the strategy of patients with PWS during GI and GT using parameters obtained by the Center of Pressure (CoP) track. METHODS Twelve patients with PWS, 20 obese (OG) and 19 healthy individuals (HG) were tested using a force platform during the GI and GT tasks. CoP plots were divided into different phases, and duration, length and velocity of the CoP trace in these phases were calculated and compared for each task. RESULTS As for GI, the results showed a significant reduction of the task duration and lower velocity and CoP length parameters in PWS, compared to OG and HG. In PWS, those parameters were reduced to a higher degree with respect to the OG. During GT, longer durations, similar to OG, were observed in PWS than HG. Velocity is reduced when compared to OG and HG, especially in medio-lateral direction and in the terminal part of GT. CONCLUSIONS From these data, GI appears to be a demanding task in most of its sub-phases for PWS individuals, while GT seems to require caution only towards the end of the task. Breaking the cycle of gait into the phases of GI and GT and implementing specific exercises focusing on weight transfer and foot clearance during the transition phase from the steady condition to gait will possibly improve the effectiveness of rehabilitation and fall and injury prevention.
Collapse
Affiliation(s)
- Veronica Cimolin
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Nicola Cau
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Manuela Galli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
- IRCCS “San Raffaele Pisana”, Tosinvest Sanità, Rome, Italy
| | - Cristina Santovito
- Orthopaedic Rehabilitation Unit and Clinical Lab for Gait Analysis and Posture, Ospedale San Giuseppe, Istituto Auxologico Italiano, IRCCS, Via Cadorna 90, I-28824 Piancavallo (VB), Italy
| | - Graziano Grugni
- Unit of Auxology, Ospedale San Giuseppe, Istituto Auxologico Italiano, IRCCS, Via Cadorna 90, I-28824 Piancavallo (VB), Italy
| | - Paolo Capodaglio
- Orthopaedic Rehabilitation Unit and Clinical Lab for Gait Analysis and Posture, Ospedale San Giuseppe, Istituto Auxologico Italiano, IRCCS, Via Cadorna 90, I-28824 Piancavallo (VB), Italy
| |
Collapse
|
39
|
Orsso CE, Mackenzie M, Alberga AS, Sharma AM, Richer L, Rubin DA, Prado CM, Haqq AM. The use of magnetic resonance imaging to characterize abnormal body composition phenotypes in youth with Prader-Willi syndrome. Metabolism 2017; 69:67-75. [PMID: 28285653 DOI: 10.1016/j.metabol.2017.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Magnetic resonance imaging (MRI) provides detailed assessment of body composition compartments. No studies have employed state-of-the-art MRI methods to accurately examine abdominal adipose tissue (AT) and skeletal muscle in youth with Prader-Willi syndrome (PWS). Therefore, this study aimed to describe AT distribution and skeletal muscle in the abdominal region of youth with PWS using MRI. METHODS Anthropometric measures and whole-abdominal T1-weighted MRI were performed in sixteen (5 males and 11 females) youth diagnosed with PWS, and seventeen (10 males and 7 females) youth who did not have PWS (controls). Volume of subcutaneous, visceral, intermuscular, and total AT, and skeletal muscle in the abdominal region were quantified using a semiautomatic procedure. Results were summarized using median and interquartile range (IQR, 25th-75th), and ANCOVA test was used (with age and sex as covariates) to examine differences in body composition compartments between PWS and control group. RESULTS PWS group had similar age (10.5, 6.6-13.9 vs. 12.8, 10.0-14.4years; P=0.14) and BMI z-score (0.5, 0.2-1.3 vs. 0.2, -0.3 to 1.0; P=0.33) when compared with controls. Significant differences were observed in absolute volumes of total AT (PWS: 4.1, 2.0-6.6L; control: 2.9, 2.0-4.5L; P=0.01), subcutaneous AT (PWS: 2.8, 1.4-4.8L; control: 1.8, 1.1-3.2L; P=0.01), and intermuscular AT (PWS: 0.3, 0.1-0.4L; control: 0.3, 0.2-0.3L; P<0.005). Visceral AT/subcutaneous AT was lower in PWS (0.4, 0.3-0.5) compared to controls (0.5, 0.4-0.6), P=0.01. In addition, skeletal muscle volume was lower in PWS (1.5, 1.0-2.6L) compared to controls (3.1, 1.6-3.9L), P=0.03. Ratios of abdominal AT compartments to skeletal muscle were all higher in PWS compared to controls (all P<0.005). CONCLUSIONS PWS youth have greater abdominal adiposity, particularly subcutaneous AT and intermuscular AT, and lower volume of skeletal muscle compared to controls. The decreased ratio of visceral AT/subcutaneous AT in youth with PWS suggests an improved metabolic profile for the level of adiposity present; however, elevated ratios of AT to skeletal muscle suggest a sarcopenic obesity-like phenotype, which could lead to worse health outcomes.
Collapse
Affiliation(s)
- Camila E Orsso
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-002 Li Ka Shing Centre, Edmonton, AB, Canada T6G 2E1; Department of Pediatrics, University of Alberta, 11405-87 Avenue, Edmonton, AB, Canada T6G 2R3
| | - Michelle Mackenzie
- Department of Pediatrics, University of Alberta, 11405-87 Avenue, Edmonton, AB, Canada T6G 2R3
| | - Angela S Alberga
- Department of Exercise Science, Concordia University, 7141 Sherbrooke Street West, Office SP-165.06, Montreal, QB, Canada H4B1R6
| | - Arya M Sharma
- Department of Medicine, 1-116 Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | - Lawrence Richer
- Department of Pediatrics, University of Alberta, 11405-87 Avenue, Edmonton, AB, Canada T6G 2R3
| | - Daniela A Rubin
- Department of Kinesiology, California State University, Fullerton, 800 N. State College Blvd, CA 92834, USA
| | - Carla M Prado
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-002 Li Ka Shing Centre, Edmonton, AB, Canada T6G 2E1
| | - Andrea M Haqq
- Department of Pediatrics, University of Alberta, 11405-87 Avenue, Edmonton, AB, Canada T6G 2R3.
| |
Collapse
|
40
|
Dobrescu AI, Chirita-Emandi A, Andreescu N, Farcas S, Puiu M. Does the Genetic Cause of Prader-Willi Syndrome Explain the Highly Variable Phenotype? MAEDICA 2016; 11:191-197. [PMID: 28694852 PMCID: PMC5486159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Prader-Willi syndrome (PWS) is characterized by extensive clinical and genetic variability caused by lack of expression of imprinted genes of the chromosomal region 15q11.2-q13. The genotye-phenotype correlation has not been yet fully elucidated. AIM To analyze these correlations in order to determine the role of specifi c geneic alterations in the development of clinical symptoms in PWS. MATERIAL AND METHOD We retrospectively analyzed data routinely collected as part of the clinical care of 52 patients with clinical suspicion of PWS. FISH test was performed in all patients; in case of negative results, methylation test was performed. RESULT PWS was confi rmed in 35 patients that were divided in two groups according to the genetic cause of PWS: group A-21 patients with 15q11-q13 region deletion, mean age at evaluation 8.1 years (SD= 5.6) and mean of clinical score 9.4 ± 1.8; group B-14 patients with positive methylation test, with mean age at evaluation 6.7 years (SD= 4.6) and mean of clinical score 10.1 ± 1.9. Facial dysmorphism and neonatal hypotonia were present in all evaluated patients; while, higher frequency of major and minor PWS criteria were noted in the group A. Onset of hyperphagia, was around the age of 2 years in most patients, however one patient from group B had normal eating behavior and normal weight beyond age 5 years. CONCLUSION In our study, the various genotypes did not seem to explain the diff erence in phenotype in PWS patients. We found a delayed time until diagnosis in these patients, although all had neonatal hypotonia and other suggestive phenotypic features, underlining once more the need for increased awareness of this syndrome, as well as easier accessibility to genetic counseling.
Collapse
Affiliation(s)
- Andreea-Iulia Dobrescu
- Department of Genetics, "Victor Babes" University of Medicine and Pharmacy Timisoara, Romania
| | - Adela Chirita-Emandi
- Department of Genetics, "Victor Babes" University of Medicine and Pharmacy Timisoara, Romania
| | - Nicoleta Andreescu
- Department of Genetics, "Victor Babes" University of Medicine and Pharmacy Timisoara, Romania
| | - Simona Farcas
- Department of Genetics, "Victor Babes" University of Medicine and Pharmacy Timisoara, Romania
| | - Maria Puiu
- Department of Genetics, "Victor Babes" University of Medicine and Pharmacy Timisoara, Romania
| |
Collapse
|
41
|
Physiological adaptation after a 12-week physical activity program for patients with Prader-Willi syndrome: two case reports. J Med Case Rep 2016; 10:181. [PMID: 27339289 PMCID: PMC4917947 DOI: 10.1186/s13256-016-0966-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/02/2016] [Indexed: 02/08/2023] Open
Abstract
Background Physical activity programs are a powerful tool against several diseases including obesity and their comorbidities. Prader–Willi syndrome is the most common genetic disease associated with obesity, and brings with it behavioral and emotional problems that need complex management. Research into the effect of physical activity programs on Prader–Willi syndrome is limited and it is frequently argued that if a physical activity program is too complex, the participants are more likely to drop out. Therefore, in this study, we assessed the physiological adaptation effect of a physical activity program with increasing complexity and load, in a boy and a girl with Prader–Willi syndrome by assessing changes in lipid profile, body composition, and physical fitness parameters. Case presentation Case 1 was an 11-year-old girl, mixed race (brown), with an intelligence quotient of 68, 52.0 % body fat, and a body mass index of 45.3 kg/m2. The Prader–Willi syndrome diagnosis was made when she was 5-years old and was found to be due to an imprinting genomic defect. Case 2 was a 14-year-old boy, mixed race (brown), with an intelligence quotient of 74, 48.8 % body fat, and a body mass index of 37.3 kg/m2. The diagnosis was made when he was 10-years old and was found to be caused by gene deletion. Both participants presented physical characteristics and behavior problems typical of Prader–Willi syndrome. Case 2 presented high blood pressure, high cholesterol and sleep apnea and had to use continuous positive airway pressure to sleep. Both participants were assessed for 12 weeks (three times a week) using a physical activity program designed to improve strength and muscle hypertrophy. The work load was progressively adjusted as necessary and new exercises were added to the program. Prior to the program, the participants’ parents received instructions about managing problem behavior and advice about nutrition. Conclusions After physical activity program several health markers assessed by biological tests and parental report had improved in both participants. The participants positively accepted the adaptations made to the physical activity program during the study. More studies are necessary to assess the benefits of physical activity in the Prader–Willi syndrome population.
Collapse
|
42
|
Ho AL, Sussman ES, Pendharkar AV, Azagury DE, Bohon C, Halpern CH. Deep brain stimulation for obesity: rationale and approach to trial design. Neurosurg Focus 2016; 38:E8. [PMID: 26030708 DOI: 10.3171/2015.3.focus1538] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Obesity is one of the most serious public health concerns in the US. While bariatric surgery has been shown to be successful for treatment of morbid obesity for those who have undergone unsuccessful behavioral modification, its associated risks and rates of relapse are not insignificant. There exists a neurological basis for the binge-like feeding behavior observed in morbid obesity that is believed to be due to dysregulation of the reward circuitry. The authors present a review of the evidence of the neuroanatomical basis for obesity, the potential neural targets for deep brain stimulation (DBS), as well as a rationale for DBS and future trial design. Identification of an appropriate patient population that would most likely benefit from this type of therapy is essential. There are also significant cost and ethical considerations for such a neuromodulatory intervention designed to alter maladaptive behavior. Finally, the authors present a consolidated set of inclusion criteria and study end points that should serve as the basis for any trial of DBS for obesity.
Collapse
Affiliation(s)
| | | | | | | | - Cara Bohon
- 3Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Casey H Halpern
- 1Departments of Neurosurgery.,3Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
43
|
Vismara L, Cimolin V, Galli M, Grugni G, Ancillao A, Capodaglio P. Osteopathic Manipulative Treatment improves gait pattern and posture in adult patients with Prader–Willi syndrome. INT J OSTEOPATH MED 2016. [DOI: 10.1016/j.ijosm.2015.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Bedogni G, Grugni G, Tringali G, Marazzi N, Sartorio A. Does segmental body composition differ in women with Prader-Willi syndrome compared to women with essential obesity? J Endocrinol Invest 2015; 38:957-61. [PMID: 25840793 DOI: 10.1007/s40618-015-0266-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Subjects with Prader-Willi syndrome (PWS) have a higher fat mass and a lower fat-free mass compared to subjects with essential obesity. However, few data are presently available on the segmental body composition (BC) of PWS subjects. AIM To evaluate whether women with PWS and women with essential obesity, matched for age and percent body fat, differ in segmental fat distribution and surrogate markers of cardiometabolic disease (CMD). SUBJECTS AND METHODS 35 women with PWS and 50 women with essential obesity were matched for age and percent body fat using coarsened exact matching. BC was measured by dual-energy X-ray absorptiometry. Oral glucose tolerance testing and measurements of cholesterol, triglycerides, C-reactive protein, and blood pressure were performed. Comparisons between PWS and obese women were performed using generalized linear models. RESULTS Trunk fat was lower in PWS than in obese women on both absolute [-7.3 (95% confidence interval -9.4 to -5.2) kg] and relative [-4.1 (-6.9 to -1.4)% of body fat] grounds. PWS and obese women had similar surrogate markers of CMD, with the exception of HDL-cholesterol, which was higher in PWS women. CONCLUSION Trunk fat is lower in obese women with PWS than in those with essential obesity. Surrogate markers of CMD are, however, mostly similar in the two groups.
Collapse
Affiliation(s)
- G Bedogni
- Clinical Epidemiology Unit, Liver Research Center, Building Q, AREA Science Park, Strada Statale 14 km 163.5, 34012, Basovizza, Trieste, Italy,
| | | | | | | | | |
Collapse
|
45
|
Davies JR, Humby T, Dwyer DM, Garfield AS, Furby H, Wilkinson LS, Wells T, Isles AR. Calorie seeking, but not hedonic response, contributes to hyperphagia in a mouse model for Prader-Willi syndrome. Eur J Neurosci 2015; 42:2105-13. [PMID: 26040449 PMCID: PMC4949663 DOI: 10.1111/ejn.12972] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/29/2015] [Accepted: 05/29/2015] [Indexed: 12/25/2022]
Abstract
Prader–Willi syndrome (PWS) is a neurodevelopmental disorder caused by deletion or inactivation of paternally expressed imprinted genes on human chromosome 15q11‐q13, the most recognised feature of which is hyperphagia. This is thought to arise as a consequence of abnormalities in both the physiological drive for food and the rewarding properties of food. Although a number of mouse models for PWS exist, the underlying variables dictating maladaptive feeding remain unknown. Here, feeding behaviour in a mouse model in which the imprinting centre (IC) of the syntenic PWS interval has been deleted (PWSICdel mice) is characterised. It is demonstrated that PWSICdel mice show hyperghrelinaemia and increased consumption of food both following overnight fasting and when made more palatable with sucrose. However, hyperphagia in PWSICdel mice was not accompanied by any changes in reactivity to the hedonic properties of palatable food (sucrose or saccharin), as measured by lick‐cluster size. Nevertheless, overall consumption by PWSICdel mice for non‐caloric saccharin in the licking test was significantly reduced. Combined with converging findings from a continuous reinforcement schedule, these data indicate that PWSICdel mice show a marked heightened sensitivity to the calorific value of food. Overall, these data indicate that any impact of the rewarding properties of food on the hyperphagia seen in PWSICdel mice is driven primarily by calorie content and is unlikely to involve hedonic processes. This has important implications for understanding the neural systems underlying the feeding phenotype of PWS and the contribution of imprinted genes to abnormal feeding behaviour more generally.
Collapse
Affiliation(s)
- Jennifer R Davies
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK.,School of Medicine, Cardiff University, Cardiff, UK
| | - Trevor Humby
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK.,School of Psychology, Cardiff University, Cardiff, UK
| | - Dominic M Dwyer
- School of Psychology, Cardiff University, Cardiff, UK.,School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | | | - Hannah Furby
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK.,School of Medicine, Cardiff University, Cardiff, UK.,School of Biosciences, Cardiff University, Cardiff, UK
| | - Lawrence S Wilkinson
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK.,School of Medicine, Cardiff University, Cardiff, UK.,School of Psychology, Cardiff University, Cardiff, UK
| | - Timothy Wells
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Anthony R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ, UK.,School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
46
|
Marzullo P, Marcassa C, Minocci A, Campini R, Eleuteri E, Gondoni LA, Aimaretti G, Sartorio A, Scacchi M, Grugni G. Long-term echocardiographic and cardioscintigraphic effects of growth hormone treatment in adults with Prader-Willi syndrome. J Clin Endocrinol Metab 2015; 100:2106-14. [PMID: 25710568 DOI: 10.1210/jc.2015-1063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
CONTEXT In Prader-Willi syndrome (PWS), an altered GH secretion has been related to reduced cardiac mass and systolic function compared to controls. OBJECTIVE The objective was to evaluate the cardiovascular response to a 4-year GH therapy in adult PWS patients. STUDY PARTICIPANTS Study participants were nine severely obese PWS adults (three females, six males) and 13 age-, gender-, and body mass index-matched obese controls. METHODS In an open-label prospective study, assessment of endocrine parameters and metabolic outcome, whole-body and abdominal fat scans, echocardiography, and radionuclide angiography in unstimulated and dobutamine-stimulated conditions were conducted at baseline and after 1 and 4 years of GH treatment. RESULTS GH treatment increased IGF-1 (P < .0001), decreased C-reactive protein levels (P < .05), improved visceral fat mass (P < .05), and achieved near-significant changes of fat and fat-free body mass in PWS patients. Left ventricle mass indexed by fat mass increased significantly after 1 and 4 years of GH therapy (P < .05) without evident abnormalities of diastolic function, while a trend toward a reduction of the ejection fraction was documented by echocardiography (P = .054). Radionuclide angiography revealed stable values throughout the study of both the left and right ventricle ejection fractions, although this was accompanied by a statistically nonsignificant reduction of the left ventricle filling rate. A positive association between lean body mass and left ventricle ejection fraction was evident during the study (P < .05). CONCLUSIONS GH therapy increased the cardiac mass of PWS adults without causing overt abnormalities of systolic and diastolic function. Although the association between lean mass and left ventricle ejection fraction during GH therapy corroborates a favorable systemic outcome of long-term GH treatment in adults with PWS, subtle longitudinal modifications of functional parameters advocate appropriate cardiac monitoring in the long-term therapeutic strategy for PWS.
Collapse
Affiliation(s)
- Paolo Marzullo
- Departments of General Medicine (P.M., M.S.), Metabolic Rehabilitation (A.M., A.S.), Cardiac Rehabilitation (L.A.G.), and Auxology (A.S., G.G.), Ospedale San Giuseppe, Instituto di Ricovero e Cura a Carattere Scientifico Istituto Auxologico Italiano, I-28921 Verbania, Italy; Departments of Cardiology (C.M., E.E.) and Nuclear Medicine (R.C.), Fondazione Salvatore Maugeri, I-27100 Veruno, Italy; and Department of Translational Medicine (P.M., G.A.), Università del Piemonte Orientale, I-28100 Novara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ostergaard JR. Phenotype of a child with Angelman syndrome born to a woman with Prader-Willi syndrome. Am J Med Genet A 2015; 167A:2138-44. [PMID: 25832033 DOI: 10.1002/ajmg.a.37080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/12/2015] [Indexed: 11/10/2022]
Abstract
This report describes the phenotype, from early childhood to adolescence, of a girl with Angelman syndrome (AS) born following a maternal transmission of a germline paternal 15q11.2-q13 deletion. During early childhood, she showed a typical AS phenotype, such as jerky movements, poor sleep, high voltage electroencephalography pattern, epilepsy, and a severe developmental disability. As she grew older, indications of phenotypical traits similar to Prader-Willi syndrome (PWS) appeared, in particular hyperphagic behavior and a body fat distribution similar to that reported in PWS. She generally showed cheerful AS behavior and had the characteristic outbursts of laughter, but her attitude to other people did not reflect the usual shared enjoyment of interaction seen in children with AS. In unfamiliar surroundings, she withdrew socially, similar to children with PWS, and her insistence on the same, rigid routines was similar to behavior patterns in PWS. The dysmorphic facial features that characterize AS were blurred in adolescence. The specified features that this AS patient had in common with PWS were hardly incidental and, if verified by upcoming case reports of children born to women with a paternal 15q11.2-q13 deletion, they may show new aspects of genetic imprinting.
Collapse
Affiliation(s)
- John R Ostergaard
- Department of Pediatrics, Centre for Rare Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
48
|
Ho AL, Sussman ES, Zhang M, Pendharkar AV, Azagury DE, Bohon C, Halpern CH. Deep Brain Stimulation for Obesity. Cureus 2015; 7:e259. [PMID: 26180683 PMCID: PMC4494510 DOI: 10.7759/cureus.259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 12/20/2022] Open
Abstract
Obesity is now the third leading cause of preventable death in the US, accounting for 216,000 deaths annually and nearly 100 billion dollars in health care costs. Despite advancements in bariatric surgery, substantial weight regain and recurrence of the associated metabolic syndrome still occurs in almost 20-35% of patients over the long-term, necessitating the development of novel therapies. Our continually expanding knowledge of the neuroanatomic and neuropsychiatric underpinnings of obesity has led to increased interest in neuromodulation as a new treatment for obesity refractory to current medical, behavioral, and surgical therapies. Recent clinical trials of deep brain stimulation (DBS) in chronic cluster headache, Alzheimer's disease, and depression and obsessive-compulsive disorder have demonstrated the safety and efficacy of targeting the hypothalamus and reward circuitry of the brain with electrical stimulation, and thus provide the basis for a neuromodulatory approach to treatment-refractory obesity. In this study, we review the literature implicating these targets for DBS in the neural circuitry of obesity. We will also briefly review ethical considerations for such an intervention, and discuss genetic secondary-obesity syndromes that may also benefit from DBS. In short, we hope to provide the scientific foundation to justify trials of DBS for the treatment of obesity targeting these specific regions of the brain.
Collapse
Affiliation(s)
- Allen L Ho
- Department of Neurosurgery, Stanford University School of Medicine
| | - Eric S Sussman
- Department of Neurosurgery, Stanford School of Medicine/Stanford University Medical Center
| | - Michael Zhang
- Department of Neurosurgery, Stanford University School of Medicine
| | | | - Dan E Azagury
- Department of Surgery, Stanford School of Medicine/Stanford University Medical Center
| | - Cara Bohon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University Medical Center
| |
Collapse
|
49
|
Longhi S, Grugni G, Gatti D, Spinozzi E, Sartorio A, Adami S, Fanolla A, Radetti G. Adults with Prader-Willi syndrome have weaker bones: effect of treatment with GH and sex steroids. Calcif Tissue Int 2015; 96:160-6. [PMID: 25577526 DOI: 10.1007/s00223-014-9949-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/23/2014] [Indexed: 11/25/2022]
Abstract
Obesity has been considered to have a protective effect against the risk of fractures in adults. However, a high frequency of fracture is described in obese adults with Prader-Willi syndrome. To evaluate bone geometry, density and strength in a group of adult obese patients with Prader-Willi syndrome (PWS) and to examine the modulating effect on bone of treatment with growth hormone (GH) and sex steroids. This was a cross-sectional study performed in 41 (17 males, 24 females) obese subjects with genetically confirmed PWS, aged 29.4 ± 8.6 years. Forty-six healthy subjects (22 males and 24 females) served as controls. Digitalized X-rays were evaluated at the level of the 2nd metacarpal bone to assess bone geometry, i.e. cross-sectional area (CSA), cortical area (CA), medullary area (MA), metacarpal index (MI) and bone strength evaluated as bending breaking resistance index (BBRI). DEXA was also used to evaluate body composition and bone mineral density (total body, lumbar spine and femoral neck). PWS subjects, after adjusting for height and bone size, had a reduced CSA, CA and BBRI, while bone density was not different. GH treatment had a positive effect and sex steroids a negative effect on bone size and strength. PWS subjects showed a reduced bone size at the metacarpus leading to a reduced strength, while bone density was appropriate for size. GH treatment improves bone geometry but not bone density. Bone strength was significantly reduced in PWS patients who did not receive GH and had been treated with sex steroids.
Collapse
Affiliation(s)
- Silvia Longhi
- Department of Paediatrics, Regional Hospital Bolzano, L. Boehler 5, 39100, Bolzano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lafortuna CL, Minocci A, Capodaglio P, Gondoni LA, Sartorio A, Vismara L, Rizzo G, Grugni G. Skeletal muscle characteristics and motor performance after 2-year growth hormone treatment in adults with prader-willi syndrome. J Clin Endocrinol Metab 2014; 99:1816-24. [PMID: 24471571 DOI: 10.1210/jc.2013-3607] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CONTEXT In adults with Prader-Willi syndrome (PWS), abnormal body composition with decreased lean body mass and skeletal muscle (SM) volume has been related to altered GH secretion and may possibly contribute to greatly reduced motor capacity. OBJECTIVE The scope of the study was to test the hypothesis that GH treatment has favorable effects on SM characteristics and motor performance in adults with PWS. DESIGN, SETTING, AND PARTICIPANTS Fifteen obese PWS subjects (nine males and six females; age range, 19-35 y; body mass index, 37.7-59.9 kg/m(2)) were investigated before and after 12 (GH12) and 24 (GH24) months of GH treatment. MAIN OUTCOME MEASURES SM cross-sectional area and SM attenuation were determined with computed tomography at the lumbar and midthigh levels. Maximal isometric handgrip strength and isokinetic knee extension peak torque were measured. Motor performance was evaluated with different indoor walking tests, whereas exercise endurance was assessed with a treadmill incremental test to exhaustion. RESULTS A condition of severe GH deficiency was found in six patients (40%). GH treatment significantly increased lean body mass (GH12, P < .05; GH24, P < .05), reduced percentage of body fat (GH12, P < .05; GH24, P < .05), and augmented SM cross-sectional area and SM attenuation of both lumbar (GH12, P < .01; GH24, P < .001) and thigh muscles (GH24, P < .05). Handgrip strength increased by 7% at GH12 (P < .05) and by 13% at GH24 (P < .001). Peak torque of knee extension extrapolated at zero angular velocity was significantly higher at GH24 (P < .01), and exercise endurance rose by 13% (P < .05) and 17% (P < .05) before exhaustion at GH12 and GH24, respectively, whereas no change was detected with walking tests. No significant difference in the response to GH treatment was detected between patients with and without GH deficiency. CONCLUSION Long-term GH treatment in adult PWS patients improves body composition and muscle size and quality and increases muscle strength and exercise tolerance independently from the GH secretory status.
Collapse
Affiliation(s)
- Claudio L Lafortuna
- Istituto di Bioimmagini e Fisiologia Molecolare del Consiglio Nazionale delle Ricerche (C.L.L., G.R.), 20090 Segrate, Milano, Italy; and Departments of Recupero e Riabilitazione Funzionale (A.M., A.S.), Riabilitazione Osteoarticolare (P.C., L.V.), Riabilitazione Cardiologica (L.A.G.), and Auxologia (G.G., A.S.), Ospedale San Giuseppe, Istituto Auxologico Italiano, Instituto di Ricovero e Cura a Carattere Scientifico, 28824 Piancavallo, Verbania, Italy
| | | | | | | | | | | | | | | |
Collapse
|