1
|
Guo G, Wang W, Tu M, Zhao B, Han J, Li J, Pan Y, Zhou J, Ma W, Liu Y, Sun T, Han X, An Y. Deciphering adipose development: Function, differentiation and regulation. Dev Dyn 2024; 253:956-997. [PMID: 38516819 DOI: 10.1002/dvdy.708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024] Open
Abstract
The overdevelopment of adipose tissues, accompanied by excess lipid accumulation and energy storage, leads to adipose deposition and obesity. With the increasing incidence of obesity in recent years, obesity is becoming a major risk factor for human health, causing various relevant diseases (including hypertension, diabetes, osteoarthritis and cancers). Therefore, it is of significance to antagonize obesity to reduce the risk of obesity-related diseases. Excess lipid accumulation in adipose tissues is mediated by adipocyte hypertrophy (expansion of pre-existing adipocytes) or hyperplasia (increase of newly-formed adipocytes). It is necessary to prevent excessive accumulation of adipose tissues by controlling adipose development. Adipogenesis is exquisitely regulated by many factors in vivo and in vitro, including hormones, cytokines, gender and dietary components. The present review has concluded a comprehensive understanding of adipose development including its origin, classification, distribution, function, differentiation and molecular mechanisms underlying adipogenesis, which may provide potential therapeutic strategies for harnessing obesity without impairing adipose tissue function.
Collapse
Affiliation(s)
- Ge Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wanli Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiali Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yanbing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wen Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| |
Collapse
|
2
|
Zhang L, Zhang L, Chen H, Xu X. The Interplay Between Cytokines and MicroRNAs to Regulate Metabolic Disorders. J Interferon Cytokine Res 2024; 44:337-348. [PMID: 39082185 DOI: 10.1089/jir.2024.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Metabolic disorders represent significant public health challenges worldwide. Emerging evidence suggests that cytokines and microRNAs (miRNAs) play crucial roles in the pathogenesis of metabolic disorders by regulating various metabolic processes, including insulin sensitivity, lipid metabolism, and inflammation. This review provides a comprehensive overview of the intricate interplay between cytokines and miRNAs in the context of metabolic disorders, including obesity, type 2 diabetes, and cardiovascular diseases. We discuss how dysregulation of cytokine-miRNA networks contributes to the development and progression of metabolic disorders and explore the therapeutic potential of targeting these interactions for disease management.
Collapse
Affiliation(s)
- Li Zhang
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, China
| | - Li Zhang
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, China
| | - Huan Chen
- Department of Clinical Laboratory, Wuhan Institute of Technology Hospital, Wuhan Institute of Technology, Wuhan, China
| | - Xiangyong Xu
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, China
| |
Collapse
|
3
|
Rahman MA, Islam MM, Ripon MAR, Islam MM, Hossain MS. Regulatory Roles of MicroRNAs in the Pathogenesis of Metabolic Syndrome. Mol Biotechnol 2024; 66:1599-1620. [PMID: 37393414 DOI: 10.1007/s12033-023-00805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
Metabolic syndrome refers to a group of several disease conditions together with high glucose triglyceride levels, high blood pressure, lower high-density lipoprotein level, and large waist circumference. About 400 million people worldwide, one-third of the Euro-American population and 27% Chinese population over age 50 have it. microRNAs, an abundant novel class of endogenous small, non-coding RNAs in eukaryotic cells, act as negative controllers of gene expression by promoting either degradation/translational repression of target messenger RNA. More than 2000 microRNAs in the human genome have been identified and they are implicated in various biological & pathophysiological processes, including glucose homeostasis, inflammatory response, and angiogenesis. Destruction of microRNAs has a crucial role in the pathogenesis of obesity, cardiovascular disease, and diabetes. Recently the discovery of circulating microRNAs in human serum may help to promote metabolic crosstalk between organs and serves as a novel approach for the identification of various diseases, like Type 2 diabetes & atherosclerosis. In this review, we will discuss the most recent and up-to-date research on the pathophysiology and histopathology of metabolic syndrome besides their historical background and epidemiological highlight. As well as search the methodologies employed in this field of research and the potential role of microRNAs as novel biomarkers and therapeutic targets for metabolic syndrome in the human body. Furthermore, the significance of microRNAs in promising strategies, like stem cell therapy, which holds enormous promise for regenerative medicine in the treatment of metabolic disorders will also be discussed.
Collapse
Affiliation(s)
- Md Abdur Rahman
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Mahmodul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Abdur Rahman Ripon
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Monirul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
- Bangladesh Obesity Research Network (BORN), Noakhali, 3814, Bangladesh.
| |
Collapse
|
4
|
Giammona A, Di Franco S, Lo Dico A, Stassi G. The miRNA Contribution in Adipocyte Maturation. Noncoding RNA 2024; 10:35. [PMID: 38921832 PMCID: PMC11206860 DOI: 10.3390/ncrna10030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Mesenchymal stem cells, due to their multipotent ability, are considered one of the best candidates to be used in regenerative medicine. To date, the most used source is represented by the bone marrow, despite the limited number of cells and the painful/invasive procedure for collection. Therefore, the scientific community has investigated many alternative sources for the collection of mesenchymal stem cells, with the adipose tissue representing the best option, given the abundance of mesenchymal stem cells and the easy access. Although adipose mesenchymal stem cells have recently been investigated for their multipotency, the molecular mechanisms underlying their adipogenic potential are still unclear. In this scenario, this communication is aimed at defining the role of miRNAs in adipogenic potential of adipose-derived mesenchymal stem cells via real-time PCR. Even if preliminary, our data show that cell culture conditions affect the expression of specific miRNA involved in the adipogenic potential of mesenchymal stem cells. The in vitro/in vivo validation of these results could pave the way for novel therapeutic strategies in the field of regenerative medicine. In conclusion, our research highlights how specific cell culture conditions can modulate the adipogenic potential of adipose mesenchymal stem cells through the regulation of specific miRNAs.
Collapse
Affiliation(s)
- Alessandro Giammona
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), 20054 Segrate, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Laboratory of Cellular and Molecular Pathophysiology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy;
| | - Simone Di Franco
- Laboratory of Cellular and Molecular Pathophysiology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy;
| | - Alessia Lo Dico
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), 20054 Segrate, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Giorgio Stassi
- Laboratory of Cellular and Molecular Pathophysiology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
5
|
Engin AB, Engin A. MicroRNAs as Epigenetic Regulators of Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:595-627. [PMID: 39287866 DOI: 10.1007/978-3-031-63657-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In obesity, the process of adipogenesis largely determines the number of adipocytes in body fat depots. Adipogenesis is regulated by several adipocyte-selective micro-ribonucleic acids (miRNAs) and transcription factors that modulate adipocyte proliferation and differentiation. However, some miRNAs block the expression of master regulators of adipogenesis. Since the specific miRNAs display different expressions during adipogenesis, in mature adipocytes and permanent obesity, their use as biomarkers or therapeutic targets is feasible. Upregulated miRNAs in persistent obesity are downregulated during adipogenesis. Moreover, some of the downregulated miRNAs in obese individuals are upregulated in mature adipocytes. Induction of adipocyte stress and hypertrophy leads to the release of adipocyte-derived exosomes (AdEXs) that contain the cargo molecules, miRNAs. miRNAs are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. While each miRNA targets multiple messenger RNAs (mRNAs), which may coordinate or antagonize each other's functions, several miRNAs are dysregulated in other tissues during obesity-related comorbidities. Deletion of the miRNA-processing enzyme DICER in pro-opiomelanocortin-expressing cells results in obesity, which is characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism, and alterations in the pituitary-adrenal axis. In recent years, RNA-based therapeutical approaches have entered clinical trials as novel therapies against overweight and its complications. Development of lipid droplets, macrophage accumulation, macrophage polarization, tumor necrosis factor receptor-associated factor 6 activity, lipolysis, lipotoxicity, and insulin resistance are effectively controlled by miRNAs. Thereby, miRNAs as epigenetic regulators are used to determine the new gene transcripts and therapeutic targets.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
6
|
Zhang JY, Ren CQ, Cao YN, Ren Y, Zou L, Zhou C, Peng LX. Role of MicroRNAs in Dietary Interventions for Obesity and Obesity-Related Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14396-14412. [PMID: 37782460 DOI: 10.1021/acs.jafc.3c03042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Obesity and related metabolic syndromes pose a serious threat to human health and quality of life. A proper diet is a safe and effective strategy to prevent and control obesity, thus maintaining overall health. However, no consensus exists on the connotations of proper diet, and it is attributed to various factors, including "nutritional dark matter" and the "matrix effect" of food. Accumulating evidence confirms that obesity is associated with the in vivo levels of miRNAs, which serve as potential markers and regulatory targets for obesity onset and progression; food-derived miRNAs can regulate host obesity by targeting the related genes or gut microbiota across the animal kingdom. Host miRNAs mediate food nutrient-gut microbiota-obesity interactions. Thus, miRNAs are important correlates of diet and obesity onset. This review outlines the recent findings on miRNA-mediated food interventions for obesity, thereby elucidating their potential applications. Overall, we provide new perspectives and views on the evaluation of dietary nutrition, which may bear important implications for dietary control and obesity prevention.
Collapse
Affiliation(s)
- Ji-Yue Zhang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Chao-Qin Ren
- Aba Teachers University, Wenchuan, Sichuan 623002, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Chuang Zhou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| |
Collapse
|
7
|
Ru W, Zhang S, Liu J, Liu W, Huang B, Chen H. Non-Coding RNAs and Adipogenesis. Int J Mol Sci 2023; 24:9978. [PMID: 37373126 PMCID: PMC10298535 DOI: 10.3390/ijms24129978] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Adipogenesis is regarded as an intricate network in which multiple transcription factors and signal pathways are involved. Recently, big efforts have focused on understanding the epigenetic mechanisms and their involvement in the regulation of adipocyte development. Multiple studies investigating the regulatory role of non-coding RNAs (ncRNAs) in adipogenesis have been reported so far, especially lncRNA, miRNA, and circRNA. They regulate gene expression at multiple levels through interactions with proteins, DNA, and RNA. Exploring the mechanism of adipogenesis and developments in the field of non-coding RNA may provide a new insight to identify therapeutic targets for obesity and related diseases. Therefore, this article outlines the process of adipogenesis, and discusses updated roles and mechanisms of ncRNAs in the development of adipocytes.
Collapse
Affiliation(s)
- Wenxiu Ru
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (W.R.); (W.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China;
| | - Sihuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China;
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China;
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (W.R.); (W.L.)
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China;
| | - Hong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (W.R.); (W.L.)
| |
Collapse
|
8
|
Elkhawaga SY, Ismail A, Elsakka EGE, Doghish AS, Elkady MA, El-Mahdy HA. miRNAs as cornerstones in adipogenesis and obesity. Life Sci 2023; 315:121382. [PMID: 36639051 DOI: 10.1016/j.lfs.2023.121382] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023]
Abstract
In recent decades, obesity has extensively emerged to the level of pandemics. It's significantly associated with serious co-morbidities that could decrease life quality and even life expectancy. Obesity has several determinants, such as age, sex, endocrine, and genetic factors. The miRNAs have emerged as genetic factors affecting obesity. The miRNAs are small noncoding nucleic acids that can modify gene expression and hence, control biological processes. The miRNAs can greatly affect many biological processes in obesity, such as adipogenesis, lipid metabolism, and homeostasis. As a result, the entry of miRNAs in obesity therapeutic approaches has been strongly advised as miRNAs mimics, inhibitors, and stimulators. Hence, this review aims to point out a summarized and updated overview of miRNAs and their roles in obesity and its included processes, such as adipogenesis and lipid metabolism. Besides, we also review recent applications of miRNAs as a treatment approach for obesity.
Collapse
Affiliation(s)
- Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| |
Collapse
|
9
|
PPARα in the Epigenetic Driver Seat of NAFLD: New Therapeutic Opportunities for Epigenetic Drugs? Biomedicines 2022; 10:biomedicines10123041. [PMID: 36551797 PMCID: PMC9775974 DOI: 10.3390/biomedicines10123041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing epidemic and the most common cause of chronic liver disease worldwide. It consists of a spectrum of liver disorders ranging from simple steatosis to NASH which predisposes patients to further fibrosis, cirrhosis and even hepatocarcinoma. Despite much research, an approved treatment is still lacking. Finding new therapeutic targets has therefore been a main priority. Known as a main regulator of the lipid metabolism and highly expressed in the liver, the nuclear receptor peroxisome proliferator-activated receptor-α (PPARα) has been identified as an attractive therapeutic target. Since its expression is silenced by DNA hypermethylation in NAFLD patients, many research strategies have aimed to restore the expression of PPARα and its target genes involved in lipid metabolism. Although previously tested PPARα agonists did not ameliorate the disease, current research has shown that PPARα also interacts and regulates epigenetic DNMT1, JMJD3, TET and SIRT1 enzymes. Moreover, there is a growing body of evidence suggesting the orchestrating role of epigenetics in the development and progression of NAFLD. Therefore, current therapeutic strategies are shifting more towards epigenetic drugs. This review provides a concise overview of the epigenetic regulation of NAFLD with a focus on PPARα regulation and highlights recently identified epigenetic interaction partners of PPARα.
Collapse
|
10
|
Ma L, Gilani A, Yi Q, Tang L. MicroRNAs as Mediators of Adipose Thermogenesis and Potential Therapeutic Targets for Obesity. BIOLOGY 2022; 11:1657. [PMID: 36421371 PMCID: PMC9687157 DOI: 10.3390/biology11111657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 07/30/2023]
Abstract
Obesity is a growing health problem worldwide, associated with an increased risk of multiple chronic diseases. The thermogenic activity of brown adipose tissue (BAT) correlates with leanness in adults. Understanding the mechanisms behind BAT activation and the process of white fat "browning" has important implications for developing new treatments to combat obesity. MicroRNAs (miRNAs) are small transcriptional regulators that control gene expression in various tissues, including adipose tissue. Recent studies show that miRNAs are involved in adipogenesis and adipose tissue thermogenesis. In this review, we discuss recent advances in the role of miRNAs in adipocyte thermogenesis and obesity. The potential for miRNA-based therapies for obesity and recommendations for future research are highlighted, which may help provide new targets for treating obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Lunkun Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ankit Gilani
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou 646099, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
11
|
Gholami M, Zoughi M, Larijani B, Abdollahzadeh R, Taslimi R, Rahmani Z, Kazemeini A, Behboo R, Razi F, Bastami M, Hasani‐Ranjbar S, Amoli MM. The role of inflammatory miRNA-mRNA interactions in PBMCs of colorectal cancer and obesity patients. Immun Inflamm Dis 2022; 10:e702. [PMID: 36301024 PMCID: PMC9609448 DOI: 10.1002/iid3.702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction Inflammation is a critical hallmark in obesity and colorectal cancer (CRC). This study aimed to investigate effective microRNA (miRNA)–messenger RNA (mRNA) interactions on inflammatory networks involved in obesity and CRC. Methods The literature searches were applied to identify genes expression reported on peripheral blood mononuclear cells (PBMCs) and/or blood of CRC subjects and to find inflammatory miRNA in blood samples. Furthermore, bioinformatics analysis was utilized to find inflammatory miRNA:mRNA interactions of the genes. Finally, a case‐control study was set to investigate the expression of LAMC1 and GNB3 genes besides miR‐10b, miR‐506‐3p, miR‐150‐5p, and miR‐124‐3p in CRC and control subjects. Results The expression of LAMC1 gene in healthy control groups was associated with body mass index (BMI) (p < .05). The level of miR‐10b (p < .001), miR‐506 (p < .001), and miR‐124 (p <. 001) were significantly increased in PBMCs of CRC patients, while they were not associated with BMI. The level of miR‐150 was associated with BMI in healthy subjects (p < .05). Conclusions The changes in the level of miR‐506 and miR‐124 in CRC patients may be associated with the regulatory role of these miRNAs on LAMC1 expression. The LAMC1 may be related to BMI, however, more observational studies on other populations are needed.
Collapse
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran,Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Marziyeh Zoughi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Rasoul Abdollahzadeh
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Reza Taslimi
- Department of Gastroenterology, Imam Khomeini HospitalTehran University of Medical SciencesTehranIran
| | - Zeinab Rahmani
- Department of Gastroenterology, Imam Khomeini HospitalTehran University of Medical SciencesTehranIran
| | - Alireza Kazemeini
- Department of General Surgery, Imam Khomeini Hospital, School of MedicineTehran University of Medical SciencesTehranIran
| | - Roobic Behboo
- Hazrate Rasoole Akram HospitalIran University of Medical ScienceTehranIran
| | - Farideh Razi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular‐Cellular sciences instituteTehran University of Medical SciencesTehranIran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Shirin Hasani‐Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Mahsa M. Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
12
|
Polat SHB, Dariyerli ND. A Physiological Approach to Inflammatory Markers in Obesity. Biomark Med 2022. [DOI: 10.2174/9789815040463122010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obesity is one of the most critical health problems all over the world; it is
associated with metabolic dysfunction and overnutrition. Changes in the physiological
function of adipose tissue, leading to altered secretion of adipocytokines, inflammatory
mediators release, and chronic low-grade inflammation, are seen in obesity.
Macrophages, neutrophils, CD4+ and CD8+ T cells, B cells, natural killer T (NKT)
cells, eosinophils, mast cells, and adipocytes are involved in the inflammatory response
that occurs during obesity. Various inflammatory markers are released from these cells.
In this chapter, we will mention inflammatory mechanisms and markers of obesity.
Collapse
|
13
|
Heo Y, Kim H, Lim J, Choi SS. Adipocyte differentiation between obese and lean conditions depends on changes in miRNA expression. Sci Rep 2022; 12:11543. [PMID: 35798800 PMCID: PMC9262987 DOI: 10.1038/s41598-022-15331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Adipogenesis is the process by which precursor cells, preadipocytes (preACs), differentiate into adipocytes (ACs). Here, we investigated differentially expressed miRNAs (DEMs) between the two conditions to understand the regulatory role of miRNAs in altering adipogenesis-related mRNAs. A total of 812 and 748 DEMs were obtained in lean and obese conditions, respectively. The up- and downregulated DEMs were highly concordant with each other in both lean and obese conditions; however, DEMs related to adipogenesis in obese conditions were more strongly downregulated than DEMs related to adipogenesis in lean conditions. There were more obese-specific downregulated DEMs than lean-specific downregulated DEMs; in contrast, there were more lean-specific upregulated DEMs than obese-specific upregulated DEMs. Approximately 45% of DEMs were mapped to the list of miRNA-target mRNA pairs when DEMs were matched to the experimentally validated list of miRNA-target mRNA information of miRTarBase. Many of the target mRNAs were differentially expressed genes (DEGs) with functions in processes such as inflammatory responses and fat metabolism. In particular, a total of 25 miRNAs that target three upregulated adipogenesis-associated inflammatory genes (IL-6, TNF-α, and IL-1β) were commonly altered during adipogenesis. Taken together, our study reveals the types of adipogenesis-related miRNAs that are altered and the degree to which they influence healthy or pathogenic adipogenesis.
Collapse
Affiliation(s)
- Yerim Heo
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea
| | - Hyunjung Kim
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea
| | - Jiwon Lim
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea.
| |
Collapse
|
14
|
Altınkılıç EM, Bayrakdar S, Seymen Karabulut G, Haliloğlu B, Attar R. The role of circulating miRNAs in leptin resistance in obese children. J Pediatr Endocrinol Metab 2022; 35:761-766. [PMID: 35452574 DOI: 10.1515/jpem-2022-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/30/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Leptin resistance is one of the important causes of obesity in children. Besides known causes of leptin resistance like mutations in leptin and leptin receptor genes, overexpression of SOCS3 in arcuate nucleus is a potential cause of leptin resistance. We aimed to determine the effects of circulating miRNAs on leptin resistance in obese children by targeting SOCS3 pathway. METHODS miRNAs potentially targeting SOCS3 were determined by using online target prediction databases. Polymorphisms in miRNA target sequences were determined by using online genome browsers. miRNA expression levels of obese (n=35) and non-obese (n=30) children were determined by qPCR method, genotyping were performed by real-time PCR method and serum leptin, leptin receptor and SOCS3 levels were measured by ELISA method. RESULTS miRNA profiling have shown that serum miR-218-5p levels are significantly (p<0.05) increased in accordance with serum leptin levels in obese children. CONCLUSIONS In this study we used target prediction methods for evaluating potential miRNAs which may involve in development of leptin resistance. We have shown that miR-218-5p might be taking part in leptin resistance in obese children.
Collapse
Affiliation(s)
- Emre Murat Altınkılıç
- Department of Molecular Medicine, Health Sciences Institude, Yeditepe University, Istanbul, Turkey
| | - Selami Bayrakdar
- Department of Pediatric Endocrinology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Gülcan Seymen Karabulut
- Department of Pediatric Endocrinology, İstanbul Ümraniye Training and Research Hospital University of Health Sciences, İstanbul, Turkey
| | - Belma Haliloğlu
- Department of Pediatric Endocrinology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Rukset Attar
- Department of Obstetrics and Gynecology, School of Medicine, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
15
|
Steiner BM, Berry DC. The Regulation of Adipose Tissue Health by Estrogens. Front Endocrinol (Lausanne) 2022; 13:889923. [PMID: 35721736 PMCID: PMC9204494 DOI: 10.3389/fendo.2022.889923] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Obesity and its' associated metabolic diseases such as type 2 diabetes and cardiometabolic disorders are significant health problems confronting many countries. A major driver for developing obesity and metabolic dysfunction is the uncontrolled expansion of white adipose tissue (WAT). Specifically, the pathophysiological expansion of visceral WAT is often associated with metabolic dysfunction due to changes in adipokine secretion profiles, reduced vascularization, increased fibrosis, and enrichment of pro-inflammatory immune cells. A critical determinate of body fat distribution and WAT health is the sex steroid estrogen. The bioavailability of estrogen appears to favor metabolically healthy subcutaneous fat over visceral fat growth while protecting against changes in metabolic dysfunction. Our review will focus on the role of estrogen on body fat partitioning, WAT homeostasis, adipogenesis, adipocyte progenitor cell (APC) function, and thermogenesis to control WAT health and systemic metabolism.
Collapse
Affiliation(s)
| | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
16
|
Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int J Mol Sci 2022; 23:ijms23020786. [PMID: 35054972 PMCID: PMC8775991 DOI: 10.3390/ijms23020786] [Citation(s) in RCA: 612] [Impact Index Per Article: 204.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic syndrome (MetS) forms a cluster of metabolic dysregulations including insulin resistance, atherogenic dyslipidemia, central obesity, and hypertension. The pathogenesis of MetS encompasses multiple genetic and acquired entities that fall under the umbrella of insulin resistance and chronic low-grade inflammation. If left untreated, MetS is significantly associated with an increased risk of developing diabetes and cardiovascular diseases (CVDs). Given that CVDs constitute by far the leading cause of morbidity and mortality worldwide, it has become essential to investigate the role played by MetS in this context to reduce the heavy burden of the disease. As such, and while MetS relatively constitutes a novel clinical entity, the extent of research about the disease has been exponentially growing in the past few decades. However, many aspects of this clinical entity are still not completely understood, and many questions remain unanswered to date. In this review, we provide a historical background and highlight the epidemiology of MetS. We also discuss the current and latest knowledge about the histopathology and pathophysiology of the disease. Finally, we summarize the most recent updates about the management and the prevention of this clinical syndrome.
Collapse
|
17
|
Silveira A, Gomes J, Roque F, Fernandes T, de Oliveira EM. MicroRNAs in Obesity-Associated Disorders: The Role of Exercise Training. Obes Facts 2022; 15:105-117. [PMID: 35051942 PMCID: PMC9021631 DOI: 10.1159/000517849] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/09/2021] [Indexed: 11/19/2022] Open
Abstract
Obesity is a worldwide epidemic affecting over 13% of the adult population and is defined by an excess of body fat that predisposes comorbidities. It is considered a multifactorial disease in which environmental and genetic factors interact, and it is a risk marker for cardiovascular disease. Lifestyle modifications remain the mainstay of treatment for obesity based on adequate diet and physical exercise. In addition, obesity is related to cardiovascular and skeletal muscle disorders, such as cardiac hypertrophy, microvascular rarefaction, and skeletal muscle atrophy. The discovery of obesity-involved molecular pathways is an important step to improve both the prevention and management of this disease. MicroRNAs (miRNAs) are a class of gene regulators which bind most commonly, but not exclusively, to the 3'-untranslated regions of messenger RNAs of protein-coding genes and negatively regulate their expression. Considerable effort has been made to identify miRNAs and target genes that predispose to obesity. Besides their intracellular function, recent studies have demonstrated that miRNAs can be exported or released by cells and circulate within the blood in a remarkably stable form. The discovery of circulating miRNAs opens up intriguing possibilities for the use of circulating miRNA patterns as biomarkers for obesity and cardiovascular diseases. The aim of this review is to provide an overview of the recent discoveries of the role played by miRNAs in the obese phenotype and associated comorbidities. Furthermore, we will discuss the role of exercise training on regulating miRNAs, indicating the mechanisms related to these alterations.
Collapse
Affiliation(s)
- Andre Silveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - João Gomes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernanda Roque
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
- *Tiago Fernandes,
| | - Edilamar Menezes de Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
- **Edilamar Menezes de Oliveira,
| |
Collapse
|
18
|
Takahashi K, Jia H, Takahashi S, Kato H. Comprehensive miRNA and DNA Microarray Analyses Reveal the Response of Hepatic miR-203 and Its Target Gene to Protein Malnutrition in Rats. Genes (Basel) 2021; 13:genes13010075. [PMID: 35052415 PMCID: PMC8774329 DOI: 10.3390/genes13010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/25/2022] Open
Abstract
Adequate protein nutrition is essential for good health. Effects of protein malnutrition in animals have been widely studied at the mRNA level with the development of DNA microarray technology. Although microRNAs (miRNAs) have attracted attention for their function in regulating gene expression and have been studied in several disciplines, fewer studies have clarified the effects of protein malnutrition on miRNA alterations. The present study aimed to elucidate the relationship between protein malnutrition and miRNAs. Six-week old Wistar male rats were fed a control diet (20% casein) or a low-protein diet (5% casein) for two weeks, and their livers were subjected to both DNA microarray and miRNA array analysis. miR-203 was downregulated and its putative target Hadhb (hydroxyacyl-CoA dehydrogenase β subunit), known to regulate β-oxidation of fatty acids, was upregulated by the low-protein diet. In an in vitro experiment, miR-203 or its inhibitor were transfected in HepG2 cells, and the pattern of Hadhb expression was opposite to that of miR-203 expression. In addition, to clarifying the hepatic miRNA profile in response to protein malnutrition, these results showed that a low-protein diet increased Hadhb expression through downregulation of miR-203 and induced β-oxidation of fatty acids.
Collapse
|
19
|
Yosef T, Ibrahim WA, Matboli M, Swilam AA, El-Nakeep S. New stem cell autophagy surrogate diagnostic biomarkers in early-stage hepatocellular carcinoma in Egypt: A pilot study. World J Hepatol 2021; 13:2137-2149. [PMID: 35070014 PMCID: PMC8727222 DOI: 10.4254/wjh.v13.i12.2137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/21/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Stem cell autophagy disruption is responsible for the development of hepatocellular carcinoma (HCC). Many non-coding RNAs are linked to the activation and inhibition of certain genes. The SQSTM1 gene controls stem cell autophagy as shown in previous studies. The upregulation of SQSTM1 is associated with the inhibition of autophagy in cancerous stem cells in patients with HCC. AIM To determine whether serum microRNA, hsa-miR-519d, is linked to SQSTM1 gene and whether they could be used as diagnostic biomarkers for early-stage HCC. METHODS In silico analysis was performed to determine the most correlated genes of autophagy with microRNAs. SQSTM1 and hsa-miR-519d were validated through this pilot clinical study. This study included 50 Egyptian participants, who were classified into three subgroups: Group 1 included 34 patients with early-stage HCC, Group 2 included 11 patients with chronic liver disease, and Group 3 (control) included 5 healthy subjects. All patients were subjected to full laboratory investigations, including viral markers and alpha-fetoprotein (AFP), abdominal ultrasound, and clinical assessment with the Child-Pugh score calculation. Besides, the patients with HCC underwent triphasic computed tomography with contrast to diagnose and determine the tumor site, size, and number. Quantitative real-time polymerase chain reaction was used to assess hsa-miR-519d-3p and SQSTM1 in the serum of all the study participants. RESULTS Hsa-miR-519d-3p was significantly upregulated in patients with HCC compared with those with chronic liver disease and healthy subjects with an area under the curve (AUC) of 0.939, with cutoff value 8.34, sensitivity of 91.2%, and specificity of 81.8%. SQSTM1 was upregulated with an AUC of 0.995, with cutoff value 7.89, sensitivity of 97.1%, and specificity of 100%. AFP significantly increased in patients with HCC with an AUC of 0.794, with cutoff value 7.30 ng/mL, sensitivity of 76.5%, and specificity of 72.7%. CONCLUSION This study is the first to show a direct relation between SQSTM1 and hsa-miR-519d-3p; they are both upregulated in HCC. Thus, they could be used as surrogate diagnostic markers for stem cell autophagy disturbance in early-stage HCC.
Collapse
Affiliation(s)
- Tarek Yosef
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| | - Wesam Ahmed Ibrahim
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| | - Marwa Matboli
- Department of Biochemistry, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| | - Amina Ahmed Swilam
- Department of Internal Medicine, Health Affair Directorate, Ministry of Health and Population, Cairo 11591, Egypt
| | - Sarah El-Nakeep
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt.
| |
Collapse
|
20
|
Nilsson E, Vavakova M, Perfilyev A, Säll J, Jansson PA, Poulsen P, Esguerra JLS, Eliasson L, Vaag A, Göransson O, Ling C. Differential DNA Methylation and Expression of miRNAs in Adipose Tissue From Twin Pairs Discordant for Type 2 Diabetes. Diabetes 2021; 70:2402-2418. [PMID: 34315727 DOI: 10.2337/db20-0324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/21/2021] [Indexed: 11/13/2022]
Abstract
The prevalence of type 2 diabetes (T2D) is increasing worldwide, but current treatments have limitations. miRNAs may play a key role in the development of T2D and can be targets for novel therapies. Here, we examined whether T2D is associated with altered expression and DNA methylation of miRNAs using adipose tissue from 14 monozygotic twin pairs discordant for T2D. Four members each of the miR-30 and let-7-families were downregulated in adipose tissue of subjects with T2D versus control subjects, which was confirmed in an independent T2D case-control cohort. Further, DNA methylation of five CpG sites annotated to gene promoters of differentially expressed miRNAs, including miR-30a and let-7a-3, was increased in T2D versus control subjects. Luciferase experiments showed that increased DNA methylation of the miR-30a promoter reduced its transcription in vitro. Silencing of miR-30 in adipocytes resulted in reduced glucose uptake and TBC1D4 phosphorylation; downregulation of genes involved in demethylation and carbohydrate/lipid/amino acid metabolism; and upregulation of immune system genes. In conclusion, T2D is associated with differential DNA methylation and expression of miRNAs in adipose tissue. Downregulation of the miR-30 family may lead to reduced glucose uptake and altered expression of key genes associated with T2D.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adipose Tissue/metabolism
- Adipose Tissue/pathology
- Aged
- Animals
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/pathology
- Case-Control Studies
- Cells, Cultured
- Cohort Studies
- DNA Methylation
- Denmark
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diseases in Twins/genetics
- Female
- Gene Expression
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/pathology
- Gigantism/genetics
- Gigantism/pathology
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/pathology
- Humans
- Intellectual Disability/genetics
- Intellectual Disability/pathology
- Male
- Mice
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Sweden
- Twins, Monozygotic/genetics
Collapse
Affiliation(s)
- Emma Nilsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Magdalena Vavakova
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
- Diabetes, Metabolism and Endocrinology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Johanna Säll
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Per-Anders Jansson
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Jonathan Lou S Esguerra
- Islet Cell Exocytosis Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Allan Vaag
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Olga Göransson
- Diabetes, Metabolism and Endocrinology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
21
|
Porcuna J, Mínguez-Martínez J, Ricote M. The PPARα and PPARγ Epigenetic Landscape in Cancer and Immune and Metabolic Disorders. Int J Mol Sci 2021; 22:ijms221910573. [PMID: 34638914 PMCID: PMC8508752 DOI: 10.3390/ijms221910573] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-modulated nuclear receptors that play pivotal roles in nutrient sensing, metabolism, and lipid-related processes. Correct control of their target genes requires tight regulation of the expression of different PPAR isoforms in each tissue, and the dysregulation of PPAR-dependent transcriptional programs is linked to disorders, such as metabolic and immune diseases or cancer. Several PPAR regulators and PPAR-regulated factors are epigenetic effectors, including non-coding RNAs, epigenetic enzymes, histone modifiers, and DNA methyltransferases. In this review, we examine advances in PPARα and PPARγ-related epigenetic regulation in metabolic disorders, including obesity and diabetes, immune disorders, such as sclerosis and lupus, and a variety of cancers, providing new insights into the possible therapeutic exploitation of PPAR epigenetic modulation.
Collapse
|
22
|
Smolka C, Schlösser D, Hohnloser C, Bemtgen X, Jänich C, Schneider L, Martin J, Pfeifer D, Moser M, Hasselblatt P, Bode C, Grundmann S, Pankratz F. MiR-100 overexpression attenuates high fat diet induced weight gain, liver steatosis, hypertriglyceridemia and development of metabolic syndrome in mice. Mol Med 2021; 27:101. [PMID: 34488621 PMCID: PMC8422764 DOI: 10.1186/s10020-021-00364-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Diet-induced obesity can result in the development of a diverse spectrum of cardiovascular and metabolic diseases, including type 2 diabetes, dyslipidemia, non-alcoholic liver steatosis and atherosclerotic disease. MicroRNAs have been described to be important regulators of metabolism and disease development. METHODS In the current study, we investigated the effects of ubiquitous miR-100 overexpression on weight gain and the metabolic phenotype in a newly generated transgenic mouse strain under normal chow and high fat diet and used microarray expression analysis to identify new potential target genes of miR-100. RESULTS While transgenic overexpression of miR-100 did not significantly affect weight and metabolism under a normal diet, miR-100 overexpressing mice showed a reduced weight gain under a high fat diet compared to wildtype mice, despite an equal calorie intake. This was accompanied by less visceral and subcutaneous fat development and lover serum LDL cholesterol. In addition, transgenic miR-100 mice were more glucose tolerant and insulin sensitive and demonstrated increased energy expenditure under high fat diet feeding. A comprehensive gene expression profiling revealed the differential expression of several genes involved in lipid storage- and metabolism, among them CD36 and Cyp4A14. Our data showed a direct regulation of CD36 by miR-100, leading to a reduced fatty acid uptake in primary hepatocytes overexpressing miR-100 and the downregulation of several downstream mediators of lipid metabolism such as ACC1, FABP4, FAS and PPARγ in the liver. CONCLUSIONS Our findings demonstrate a protective role of miR-100 in high fat diet induced metabolic syndrome and liver steatosis, partially mediated by the direct repression of CD36 and attenuation of hepatic lipid storage, implicating miR-100 as a possible therapeutic target in liver steatosis.
Collapse
Affiliation(s)
- Christian Smolka
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Delia Schlösser
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Catherine Hohnloser
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Xavier Bemtgen
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Caterina Jänich
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Schneider
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julien Martin
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Moser
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Hasselblatt
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Grundmann
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Pankratz
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
23
|
Mechanisms linking endoplasmic reticulum (ER) stress and microRNAs to adipose tissue dysfunction in obesity. Crit Rev Biochem Mol Biol 2021; 56:455-481. [PMID: 34182855 DOI: 10.1080/10409238.2021.1925219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over accumulation of lipids in adipose tissue disrupts metabolic homeostasis by affecting cellular processes. Endoplasmic reticulum (ER) stress is one such process affected by obesity. Biochemical and physiological alterations in adipose tissue due to obesity interfere with adipose ER functions causing ER stress. This is in line with increased irregularities in other cellular processes such as inflammation and autophagy, affecting overall metabolic integrity within adipocytes. Additionally, microRNAs (miRNAs), which can post-transcriptionally regulate genes, are differentially modulated in obesity. A better understanding and identification of such miRNAs could be used as novel therapeutic targets to fight against diseases. In this review, we discuss ways in which ER stress participates as a common molecular process in the pathogenesis of obesity-associated metabolic disorders. Moreover, our review discusses detailed underlying mechanisms through which ER stress and miRNAs contribute to metabolic alteration in adipose tissue in obesity. Hence, identifying mechanistic involvement of miRNAs-ER stress cross-talk in regulating adipose function during obesity could be used as a potential therapeutic approach to combat chronic diseases, including obesity.
Collapse
|
24
|
Catanzaro G, Filardi T, Sabato C, Vacca A, Migliaccio S, Morano S, Ferretti E. Tissue and circulating microRNAs as biomarkers of response to obesity treatment strategies. J Endocrinol Invest 2021; 44:1159-1174. [PMID: 33111214 PMCID: PMC8124039 DOI: 10.1007/s40618-020-01453-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Obesity, characterized by an increased amount of adipose tissue, is a metabolic chronic alteration which has reached pandemic proportion. Lifestyle changes are the first line therapy for obesity and a large variety of dietary approaches have demonstrated efficacy in promoting weight loss and improving obesity-related metabolic alterations. Besides diet and physical activity, bariatric surgery might be an effective therapeutic strategy for morbid obese patients. Response to weight-loss interventions is characterised by high inter-individual variability, which might involve epigenetic factors. microRNAs have critical roles in metabolic processes and their dysregulated expression has been reported in obesity. AIM The aim of this review is to provide a comprehensive overview of current studies evaluating changes in microRNA expression in obese patients undergoing lifestyle interventions or bariatric surgery. RESULTS A considerable number of studies have reported a differential expression of circulating microRNAs before and after various dietary and bariatric surgery approaches, identifying several candidate biomarkers of response to weight loss. Significant changes in microRNA expression have been observed at a tissue level as well, with entirely different patterns between visceral and subcutaneous adipose tissue. Interestingly, relevant differences in microRNA expression have emerged between responders and non-responders to dietary or surgical interventions. A wide variety of dysregulated microRNA target pathways have also been identified, helping to understand the pathophysiological mechanisms underlying obesity and obesity-related metabolic diseases. CONCLUSIONS Although further research is needed to draw firm conclusions, there is increasing evidence about microRNAs as potential biomarkers for weight loss and response to intervention strategies in obesity.
Collapse
Affiliation(s)
- G Catanzaro
- Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - T Filardi
- Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - C Sabato
- Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - A Vacca
- Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - S Migliaccio
- Department of Movement, Human and Health Sciences, "Foro Italico" University of Rome, Rome, Italy
| | - S Morano
- Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - E Ferretti
- Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| |
Collapse
|
25
|
Adipocyte, Immune Cells, and miRNA Crosstalk: A Novel Regulator of Metabolic Dysfunction and Obesity. Cells 2021; 10:cells10051004. [PMID: 33923175 PMCID: PMC8147115 DOI: 10.3390/cells10051004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity is characterized as a complex and multifactorial excess accretion of adipose tissue (AT) accompanied with alterations in the immune response that affects virtually all age and socioeconomic groups around the globe. The abnormal accumulation of AT leads to several metabolic diseases, including nonalcoholic fatty liver disorder (NAFLD), low-grade inflammation, type 2 diabetes mellitus (T2DM), cardiovascular disorders (CVDs), and cancer. AT is an endocrine organ composed of adipocytes and immune cells, including B-Cells, T-cells and macrophages. These immune cells secrete various cytokines and chemokines and crosstalk with adipokines to maintain metabolic homeostasis and low-grade chronic inflammation. A novel form of adipokines, microRNA (miRs), is expressed in many developing peripheral tissues, including ATs, T-cells, and macrophages, and modulates the immune response. miRs are essential for insulin resistance, maintaining the tumor microenvironment, and obesity-associated inflammation (OAI). The abnormal regulation of AT, T-cells, and macrophage miRs may change the function of different organs including the pancreas, heart, liver, and skeletal muscle. Since obesity and inflammation are closely associated, the dysregulated expression of miRs in inflammatory adipocytes, T-cells, and macrophages suggest the importance of miRs in OAI. Therefore, in this review article, we have elaborated the role of miRs as epigenetic regulators affecting adipocyte differentiation, immune response, AT browning, adipogenesis, lipid metabolism, insulin resistance (IR), glucose homeostasis, obesity, and metabolic disorders. Further, we will discuss a set of altered miRs as novel biomarkers for metabolic disease progression and therapeutic targets for obesity.
Collapse
|
26
|
Sundrani DP, Karkhanis AR, Joshi SR. Peroxisome Proliferator-Activated Receptors (PPAR), fatty acids and microRNAs: Implications in women delivering low birth weight babies. Syst Biol Reprod Med 2021; 67:24-41. [PMID: 33719831 DOI: 10.1080/19396368.2020.1858994] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Low birth weight (LBW) babies are associated with neonatal morbidity and mortality and are at increased risk for noncommunicable diseases (NCDs) in later life. However, the molecular determinants of LBW are not well understood. Placental insufficiency/dysfunction is the most frequent etiology for fetal growth restriction resulting in LBW and placental epigenetic processes are suggested to be important regulators of pregnancy outcome. Early life exposures like altered maternal nutrition may have long-lasting effects on the health of the offspring via epigenetic mechanisms like DNA methylation and microRNA (miRNA) regulation. miRNAs have been recognized as major regulators of gene expression and are known to play an important role in placental development. Angiogenesis in the placenta is known to be regulated by transcription factor peroxisome proliferator-activated receptor (PPAR) which is activated by ligands such as long-chain-polyunsaturated fatty acids (LCPUFA). In vitro studies in different cell types indicate that fatty acids can influence epigenetic mechanisms like miRNA regulation. We hypothesize that maternal fatty acid status may influence the miRNA regulation of PPAR genes in the placenta in women delivering LBW babies. This review provides an overview of miRNAs and their regulation of PPAR gene in the placenta of women delivering LBW babies.Abbreviations: AA - Arachidonic Acid; Ago2 - Argonaute2; ALA - Alpha-Linolenic Acid; ANGPTL4 - Angiopoietin-Like Protein 4; C14MC - Chromosome 14 miRNA Cluster; C19MC - Chromosome 19 miRNA Cluster; CLA - Conjugated Linoleic Acid; CSE - Cystathionine γ-Lyase; DHA - Docosahexaenoic Acid; EFA - Essential Fatty Acids; E2F3 - E2F transcription factor 3; EPA - Eicosapentaenoic Acid; FGFR1 - Fibroblast Growth Factor Receptor 1; GDM - Gestational Diabetes Mellitus; hADMSCs - Human Adipose Tissue-Derived Mesenchymal Stem Cells; hBMSCs - Human Bone Marrow Mesenchymal Stem Cells; HBV - Hepatitis B Virus; HCC - Hepatocellular Carcinoma; HCPT - Hydroxycamptothecin; HFD - High-Fat Diet; Hmads - Human Multipotent Adipose-Derived Stem; HSCS - Human Hepatic Stellate Cells; IUGR - Intrauterine Growth Restriction; LA - Linoleic Acid; LBW - Low Birth Weight; LCPUFA - Long-Chain Polyunsaturated Fatty Acids; MEK1 - Mitogen-Activated Protein Kinase 1; MiRNA - MicroRNA; mTOR - Mammalian Target of Rapamycin; NCDs - NonCommunicable Diseases; OA - Oleic Acid; PASMC - Pulmonary Artery Smooth Muscle Cell; PLAG1 - Pleiomorphic Adenoma Gene 1; PPAR - Peroxisome Proliferator-Activated Receptor; PPARα - PPAR alpha; PPARγ - PPAR gamma; PPARδ - PPAR delta; pre-miRNA - precursor miRNA; RISC - RNA-Induced Silencing Complex; ROS - Reactive Oxygen Species; SAT - Subcutaneous Adipose Tissue; WHO - World Health Organization.
Collapse
Affiliation(s)
- Deepali P Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Aishwarya R Karkhanis
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| |
Collapse
|
27
|
Wang L, Shang C, Pan H, Yang H, Zhu H, Gong F. MicroRNA Expression Profiles in the Subcutaneous Adipose Tissues of Morbidly Obese Chinese Women. Obes Facts 2021; 14:1-15. [PMID: 33550286 PMCID: PMC7983571 DOI: 10.1159/000511772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Obesity is a main global health issue and an outstanding cause of morbidity and mortality. Exploring miRNA profiling may help further studies on obesity. METHODS Three morbidly obese and 5 normal-weight Chinese women were enrolled in the microarray testing group. Abdominal subcutaneous adipose tissue (SAT) samples were excised. Total RNAs including miRNAs were extracted. Affymetrix GeneChip miRNA 4.0 Array was used to compare the expression profiles of miRNAs between the 2 groups. Two algorithms, miRanda and TargetScan, were used to predict target messenger RNAs (mRNAs). Bioinformatics analysis was then done based on the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The sample sizes were further expanded to 8 morbidly obese and 9 normal-weight subjects, and quantitative real-time PCR (qRT-PCR) was utilized to verify the expression of differential miRNAs and target genes. RESULTS As per the microarray assay, 58 miRNAs were differentially expressed in the SAT from the morbidly obese and normal-weight groups (Fold >4, p < 0.01, FDR <0.05); 54 of these were downregulated and 4 were upregulated in morbidly obese subjects. A total of 1,333 target genes were jointly predicted by miRanda and TargetScan. Further bioinformatics analysis showed that the differential miRNAs were involved in 269 significant biological functions and 89 significant signaling pathways. The validation experiment by qRT-PCR showed that the expression levels of miRNA-143-5p, miRNA-143-3p, miRNA-145-5p, and let-7a-5p were downregulated in morbidly obese subjects, consistent with the microarray detection. High-mobility group A2 (HMGA2), a target gene of the downregulated miRNA let-7a-5p, was first found to be upregulated 3.19-fold in the SAT of morbidly obese Chinese women when compared to normal-weight controls. CONCLUSIONS MiRNA downregulation is a hallmark of intact SAT in a morbidly obese state. Transcription (DNA-dependent), small-molecule metabolic processes, the MAPK signaling pathway, and cancer-related pathways may play important roles in the occurrence and development of obesity. For the first time, we proved that HMGA2, a target gene of let-7a-5p, is upregulated in the SAT of morbidly obese Chinese women.
Collapse
Affiliation(s)
- Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chen Shang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,
| |
Collapse
|
28
|
Ghafouri-Fard S, Taheri M. The expression profile and role of non-coding RNAs in obesity. Eur J Pharmacol 2020; 892:173809. [PMID: 33345852 DOI: 10.1016/j.ejphar.2020.173809] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Latest years have experienced a dramatic upsurge in the knowledge about the function of non-coding transcripts in the determination of diverse human phenotypes including obesity. Several miRNAs and lncRNAs participate in the regulation of metabolic pathways leading to obesity. Several lncRNAs such as Mist, lincIRS2, lncRNA-p5549, H19, GAS5 and SNHG9 have been shown to be down-regulated in adipose tissues or other biological samples in the obese human or animal subjects. On the other hand, Meg3, Plnc1, Blnc1, AC092834.1, TINCR and PVT1 are among up-regulated lncRNAs in the obese subjects. Tens of miRNAs have differential expression between obese and non-obese subjects or between mature adipocytes and pre-adipocytes. Understanding the molecular mechanism of involvement of non-coding RNAs in the pathobiology of obesity would simplify design of therapeutic choices for protecting against obesity and its related comorbidities. We explain the available literature on the function of these transcripts in the pathobiology of obesity.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Bta-miR-376a Targeting KLF15 Interferes with Adipogenesis Signaling Pathway to Promote Differentiation of Qinchuan Beef Cattle Preadipocytes. Animals (Basel) 2020; 10:ani10122362. [PMID: 33321855 PMCID: PMC7763857 DOI: 10.3390/ani10122362] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Intramuscular fat (IMF) is a quality index associated with the taste and juiciness of meat. The deposition of IMF is affected by genetic and non-genetic factors, such as age, slaughter location, gender of the animal, and diet. Micro-ribonucleic acids (miRNA) are transcriptional regulators involved in adipogenesis, but the specific role of miR-376a in regulation of bovine adipocytes remains unknown. Our findings indicated that miR-376a was a potential negative regulator of bovine adipocyte differentiation. A bta-miR-376a mimic inhibited mRNA and protein expression of the marker genes, CDK1, CDK2, PCNA, C/EBPα, FAS, and PPAR γ, and significantly reduced ratios (%) of S-phase cells, the number of cells stained with 5-ethynyl-2'-deoxyuridine, and adipocyte proliferation. Oil red O staining and triglyceride content analysis also confirmed that bta-miR-376a was involved in adipocyte differentiation. Luciferase activities confirmed that Krüppel-like transcription factor 15 (KLF15) was a direct target gene of bta-miR-376a, and that KLF15 was a key transcription factor in adipogenesis. Therefore, bta-miR-376a might be a target for increasing beef IMF.
Collapse
|
30
|
Qiang J, Tao F, Bao W, He J, Li X, Chen J, Xu P. Responses of functional miRNA-mRNA regulatory modules to a high-fat diet in the liver of hybrid yellow catfish (Pelteobagrus fulvidraco × P. vachelli). Genomics 2020; 113:1207-1220. [PMID: 33309769 DOI: 10.1016/j.ygeno.2020.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Accepted: 12/06/2020] [Indexed: 01/28/2023]
Abstract
Fatty liver disease is common in cultured yellow catfish as a result of high fat contents in feeds. However, little is known about the mechanism by which the excessive deposition of liver fat causes fatty liver disease. Hybrid yellow catfish (Pelteobagrus fulvidraco♀ × P. vachelli♂) were fed a high-fat diet (HFD) or a normal-fat diet (NFD) for 60 days. Compared with the NFD group, the HFD group showed lower growth performance, higher hepatosomatic and viscerosomatic indexes, increased hepatic triglyceride and cholesterol contents, and more and larger lipid droplets in liver tissue. Whole transcriptome mRNA libraries and microRNA libraries from fish in the NFD and HFD groups were constructed by high-throughput sequencing. Twelve miRNAs were differentially expressed (DE) between the HFD and NFD groups. Seven negatively correlated DE miRNA-DE mRNA pairs were selected, and the expression patterns of both were confirmed using qRT-PCR. Hybrid yellow catfish showed mediated oxidative degradation of liver glucose and fatty acid peroxidation, regulation of antioxidant enzyme activity, and various immune and inflammatory responses to fat deposition and stress. These findings have important biological significance for protecting the liver against stress, as well as economic significance for establishing healthy aquaculture conditions.
Collapse
Affiliation(s)
- Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Fanyi Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Wenjin Bao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Jie He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Xiahong Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Jude Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| |
Collapse
|
31
|
Dyleva YA, Gruzdeva OV. [MicroRNA and obesity. A modern view of the problem (review of literature).]. Klin Lab Diagn 2020; 65:411-417. [PMID: 32762178 DOI: 10.18821/0869-2084-2020-65-7-411-417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The incidence of obesity is steadily increasing worldwide, reaching the epidemic. Obesity is associated with cardiometabolic diseases through the complex interactions between genetics and epigenetics predisposition, the environment, diet, and lifestyle. However, the molecular mechanisms and factors influencing these processes are not fully known. MicroRNAs are a new class of important regulatory determinants in many biological and pathological processes. There is increasing evidence of the role of miRNAs in the regulation of the functional activity of adipose tissue and the development of obesity. A change in the expression of MicroRNAs can lead to changes in the activity of genes that control a number of biological processes, including inflammation, lipid metabolism, and adipogenesis. Understanding the role of miRNAs in the regulation of adipogenesis and the development of obesity will establish therapeutic targets for the development of new and effective drugs, which will lead to a breakthrough in the fight against obesity and related diseases. This review presents current data on the role of miRNAs in the regulation of the functional activity of adipose tissue, including adipogenesis of white, beige and brown adipocytes, as well as the prerequisites for using miRNAs as biomarkers of obesity and the possibility of therapeutic use.
Collapse
Affiliation(s)
- Yu A Dyleva
- Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, 650002, Kemerovo, Russian Federation
| | - O V Gruzdeva
- Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, 650002, Kemerovo, Russian Federation
| |
Collapse
|
32
|
Agrimi J, Baroni C, Anakor E, Lionetti V. Perioperative Heart-Brain Axis Protection in Obese Surgical Patients: The Nutrigenomic Approach. Curr Med Chem 2020; 27:258-281. [PMID: 30324875 DOI: 10.2174/0929867325666181015145225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/01/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The number of obese patients undergoing cardiac and noncardiac surgery is rapidly increasing because they are more prone to concomitant diseases, such as diabetes, thrombosis, sleep-disordered breathing, cardiovascular and cerebrovascular disorders. Even if guidelines are already available to manage anesthesia and surgery of obese patients, the assessment of the perioperative morbidity and mortality from heart and brain disorders in morbidly obese surgical patients will be challenging in the next years. The present review will recapitulate the new mechanisms underlying the Heart-brain Axis (HBA) vulnerability during the perioperative period in healthy and morbidly obese patients. Finally, we will describe the nutrigenomics approach, an emerging noninvasive dietary tool, to maintain a healthy body weight and to minimize the HBA propensity to injury in obese individuals undergoing all types of surgery by personalized intake of plant compounds that may regulate the switch from health to disease in an epigenetic manner. Our review provides current insights into the mechanisms underlying HBA response in obese surgical patients and how they are modulated by epigenetically active food constituents.
Collapse
Affiliation(s)
- Jacopo Agrimi
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Carlotta Baroni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ekene Anakor
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,UOS Anesthesiology, Fondazione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
33
|
Bracht JR, Vieira‐Potter VJ, De Souza Santos R, Öz OK, Palmer BF, Clegg DJ. The role of estrogens in the adipose tissue milieu. Ann N Y Acad Sci 2019; 1461:127-143. [DOI: 10.1111/nyas.14281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Orhan K. Öz
- Department of RadiologyUniversity of Texas Southwestern Medical Center Dallas Texas
| | - Biff F. Palmer
- Department of MedicineUniversity of Texas Southwestern Medical Center Dallas Texas
| | - Deborah J. Clegg
- College of Nursing and Health ProfessionsDrexel University Philadelphia Pennsylvania
| |
Collapse
|
34
|
Manoel Alves J, Handerson Gomes Teles R, do Valle Gomes Gatto C, Muñoz VR, Regina Cominetti M, Garcia de Oliveira Duarte AC. Mapping Research in the Obesity, Adipose Tissue, and MicroRNA Field: A Bibliometric Analysis. Cells 2019; 8:E1581. [PMID: 31817583 PMCID: PMC6952878 DOI: 10.3390/cells8121581] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Recent studies have investigated the control of adipose tissue expansion and inflammatory process by microRNAs (miRNAs). These two processes are of great interest because both are associated with obesity and metabolic syndrome. However, despite the great relevance of the role of miRNAs in obesity and adipose tissue, no qualitative and quantitative analysis on the subject has been performed. Thus, we aimed to examine global research activity and current trends with respect to the interaction between obesity, adipose tissue and miRNAs through a bibliometric analysis. This research was performed on the Scopus database for publications containing miRNA, obesity, and adipose tissue keyword combinations. In total, 898 articles were analyzed and the most frequently occurring keywords were selected and clustered into three well-defined groups. As a result, first group of keywords pointed to the research area on miRNAs expressed in obesity-associated diseases. The second group demonstrated the regulation of the adipogenesis process by miRNAs, while the third group highlighted brown adipose tissue and thermogenesis as one of the latest global research trends related to the theme. The studies selected in this paper describe the expression and performance of different miRNAs in obesity and comorbidities. Most studies have focused on identifying miRNAs and signaling pathways associated with obesity, type 2 diabetes mellitus, and cardiovascular disease. Thus, the miRNA profile for these diseases may be used as biomarkers and therapeutic targets in the prevention and treatment of obesity-associated diseases.
Collapse
Affiliation(s)
- João Manoel Alves
- Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Ramon Handerson Gomes Teles
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil; (R.H.G.T.); (M.R.C.)
| | - Camila do Valle Gomes Gatto
- Laboratory of Biochemistry and Molecular Biology of Exercise, University of São Paulo (USP), São Paulo 05508-030, SP, Brazil;
| | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira 13484-350, SP, Brazil;
| | - Márcia Regina Cominetti
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil; (R.H.G.T.); (M.R.C.)
| | | |
Collapse
|
35
|
The Effect of MicroRNA-331-3p on Preadipocytes Proliferation and Differentiation and Fatty Acid Accumulation in Laiwu Pigs. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9287804. [PMID: 31886267 PMCID: PMC6914919 DOI: 10.1155/2019/9287804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/03/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023]
Abstract
Objective The proliferation and differentiation of preadipocytes are regulated by microRNAs (miRNAs), hormones, and other factors. This study aimed to investigate the effects of miR-331-3p on the proliferation and differentiation of preadipocytes in addition to fatty acid metabolism. Methods Preadipocytes were transfected with miR-331-3p mimics, miR-NC, or miR-331-3p inhibitor to explore its effect on cell proliferation and fatty acid accumulation. Furthermore, preadipocytes were transfected with pre-miR-331-3p, pcDNA3.1(+), or miR-331-3p inhibitor to explore its effect on differentiation. Results It was observed that miR-331-3p could inhibit preadipocytes proliferation. Furthermore, miR-331-3p was highly expressed during cellular differentiation and appeared to promote the process. In addition, dual fluorescein analysis showed that dihydrolipoamide S-succinyltransferase (DLST) is a target gene of miR-331-3p, and overexpression of miR-331-3p could regulate the metabolism of fatty acids in the citrate pyruvate cycle by targeting DLST expression. Conclusion In summary, these findings indicated that miR-331-3p exerts contrasting effects on the processes of fat deposition.
Collapse
|
36
|
Gholami M, Larijani B, Zahedi Z, Mahmoudian F, Bahrami S, Omran SP, Saadatian Z, Hasani-Ranjbar S, Taslimi R, Bastami M, Amoli MM. Inflammation related miRNAs as an important player between obesity and cancers. J Diabetes Metab Disord 2019; 18:675-692. [PMID: 31890692 PMCID: PMC6915181 DOI: 10.1007/s40200-019-00459-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
The growing trend in addition to their burden, prevalence, and death has made obesity and cancer two of the most concerning diseases worldwide. Obesity is an important risk factor for common types of cancers where the risk of some cancers is directly related to the obesity. Various inflammatory mechanisms and increased level of pro-inflammatory cytokines have been investigated in many previous studies, which play key roles in the pathophysiology and development of both of these conditions. On the other hand, in the recent years, many studies have individually focused on the biomarker's role and therapeutic targeting of microRNAs (miRNAs) in different types of cancers and obesity including newly discovered small noncoding RNAs (sncRNAs) which regulate gene expression and RNA silencing. This study is a comprehensive review of the main inflammation related miRNAs in obesity/obesity related traits. For the first time, the main roles of miRNAs in obesity related cancers have been discussed in response to the question raised in the following hypothesis; do the main inflammatory miRNAs link obesity with obesity-related cancers regarding their role as biomarkers? Graphical abstractConceptual design of inflammatory miRNAs which provide link between obesity and cancers.
Collapse
Affiliation(s)
- Morteza Gholami
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhila Zahedi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mahmoudian
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Parvizi Omran
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, 5th floor, Shariati Hospital, North Kargar Ave, Tehran, Iran
| | - Zahra Saadatian
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Hasani-Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Taslimi
- Department of Gastroenterology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa M. Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, 5th floor, Shariati Hospital, North Kargar Ave, Tehran, Iran
| |
Collapse
|
37
|
MicroRNA-150 Modulates Adipogenic Differentiation of Adipose-Derived Stem Cells by Targeting Notch3. Stem Cells Int 2019; 2019:2743047. [PMID: 31781236 PMCID: PMC6875317 DOI: 10.1155/2019/2743047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/25/2019] [Indexed: 01/30/2023] Open
Abstract
MicroRNAs (miRNAs) influence stem cell functions, including mobilization, proliferation, and differentiation. miR-150 is abundantly expressed in monocytes. Knockdown of miR-150 promotes bone marrow stem cell migration. The role of miR-150 in adipose-derived stem cells (ADSCs) is unclear. In this study, the effects of miR-150 on adipogenic differentiation and proliferation of ADSCs were investigated. ADSCs were isolated from the inguinal adipose tissue of wild-type (WT) and miR-150 knockout (KO) mice and were induced for adipogenic differentiation. The miR-150 level was detected by real-time PCR. ADSCs were transfected by miR-150 or small-interfering RNA (siRNA) of Notch3. MTT assay and colony formation assay were performed in miR-150 knockdown and control ADSCs. Real-time PCR showed that miR-150 was expressed in ADSCs. miR-150 knockdown significantly decreased the capacity of adipogenic differentiation of ADSCs, as compared with their counterparts from WT mice. It is intriguing that the overexpression of miR-150 significantly increased C/EBPα and PPAR-γ expression and lipid formation in ADSCs with adipogenic induction. Overexpression of miR-150 significantly decreased Notch3 expression in ADSCs compared with the control groups. Furthermore, Notch3 inhibition promoted the adipogenic differentiation in ADSCs. miR-150 also suppressed proliferation potential and the expression of Nanog in ADSCs. In summary, this study demonstrates, for the first time, that miR-150 promotes adipogenic differentiation and inhibits proliferation of ADSCs. miR-150 regulates adipogenic differentiation of ADSCs, likely mediated by the downregulation of Notch3.
Collapse
|
38
|
Li D, Liu Y, Gao W, Han J, Yuan R, Zhang M, Pang W. Inhibition of miR-324-5p increases PM20D1-mediated white and brown adipose loss and reduces body weight in juvenile mice. Eur J Pharmacol 2019; 863:172708. [PMID: 31568785 DOI: 10.1016/j.ejphar.2019.172708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
Obesity is a serious public health problem characterized by abnormal or excessive fat accumulation, which is caused by an energy imbalance between calories consumed and calories expended. MiRNAs have been involved in the regulation of occurrence and progression of obesity. This study aims to investigate the role of miR-324-5p in regulating the adipose tissue mass and preliminarily probe into its effect on progression of obesity. MiR-324-5p was upregulated in the epididymal white adipose tissues (eWAT), inguinal white adipose tissues (iWAT) and brown adipose tissues (BAT) of the mice fed with high fat diet (HFD). Under room temperature (RT) or thermoneutrality (TN) condition, when tail intravenously injected with miR-324-5p antagomir (anta-miR-324-5p), the fat mass and total weight of mice were both significantly suppressed. The suppressive effect was more distinct under TN than RT. The weight of iWAT and BAT were both inhibited by anta-miR-324-5p under TN. Moreover, PM20D1 was a direct target gene of miR-324-5p. In primary iWAT cells, the expression of PM20D1 was significantly increased by anta-miR-324-5p, whereas decreased by the miR-324-5p mimic. Furthermore, anta-miR-324-5p noticeably increased the cellular oxygen consumption in primary BAT and iWAT cells. Our findings indicated that inhibition of miR-324-5p increased PM20D1-mediated fat consumption and reduced body weight in mice, suggesting that miR-324-5p may be a novel therapeutic target against obesity.
Collapse
Affiliation(s)
- Dandan Li
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Yang Liu
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Wei Gao
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Jiakai Han
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Rongrong Yuan
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Mengdi Zhang
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Wuyan Pang
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China.
| |
Collapse
|
39
|
Yang L, Gao Q, Lv F, Guo M, Zhao D. miR‑519d‑3p promotes TGFβ/Smad mediated postoperative epidural scar formation via suppression of BAMBI. Mol Med Rep 2019; 20:3901-3909. [PMID: 31485673 DOI: 10.3892/mmr.2019.10630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 03/13/2018] [Indexed: 11/05/2022] Open
Abstract
To investigate the role of microRNA (miR)‑519d‑3p in postoperative epidural scar formation and its regulation of the bone morphogenetic protein and activin membrane‑bound inhibitor (BAMBI), miR‑519d‑3p and BAMBI expression levels in the lumbar disc of patients who had undergone laminectomy were detected with reverse transcription‑quantitative polymerase chain reaction and western blotting. The results demonstrated that miR‑519d‑3p expression was significantly increased, whereas BAMBI expression was sharply reduced in the lumbar discs of patients suffering from epidural scars. Subsequently, the miR‑519d‑3p mimic was transfected into primary fibroblasts isolated from epidural scar tissues. Flow cytometric and Cell Countin Kit‑8 analyses indicated that overexpression of miR‑519d‑3p promoted the proliferation of fibroblasts, the production of tumor necrosis factor‑α and interleukin (IL)‑1α, and the expression of type I collagen (col I), α‑smooth muscle actin (α‑SMA) and fibronectin (FN). Downregulation of miR‑519d‑3p by the miR‑519d‑3p antagomir transfection had the opposite effect. Bioinformatics and luciferase reporter gene analyses demonstrated that BAMBI is a target gene of miR‑519d‑3p: miR‑519d‑3p directly binds to the 3'‑untranslated region of BAMBI mRNA and suppressed BAMBI protein expression. Finally, the pcDNA‑BAMBI vector and BAMBI small interfering RNA were respectively transfected into primary fibroblasts to overexpress and knockdown the BAMBI gene. It was demonstrated that BAMBI overexpression suppressed fibroblast proliferation, TNF‑α and IL‑1α production, and the expression of col I, α‑SMA and FN proteins, whereas, BAMBI knockdown had the opposite effect. In conclusion, it was noted that BAMBI is a target of miR‑519d‑3p and miR‑519d‑3p promotes transforming growth factor β/mothers against decapentaplegic homolog 9‑mediated postoperative epidural scar formation via suppression of BAMBI.
Collapse
Affiliation(s)
- Longbiao Yang
- Department of Orthopaedics, Central Hospital of Zibo Mining Refco Group Ltd., Zibo, Shandong 255120, P.R. China
| | - Qingyuan Gao
- Department of Orthopaedics, Central Hospital of Zibo Mining Refco Group Ltd., Zibo, Shandong 255120, P.R. China
| | - Feng Lv
- Department of Orthopaedics, Central Hospital of Zibo Mining Refco Group Ltd., Zibo, Shandong 255120, P.R. China
| | - Min Guo
- Department of Geriatrics, Central Hospital of Zibo Mining Refco Group Ltd., Zibo, Shandong 255120, P.R. China
| | - Dong Zhao
- Department of Orthopaedics, Central Hospital of Zibo Mining Refco Group Ltd., Zibo, Shandong 255120, P.R. China
| |
Collapse
|
40
|
Landrier JF, Derghal A, Mounien L. MicroRNAs in Obesity and Related Metabolic Disorders. Cells 2019; 8:cells8080859. [PMID: 31404962 PMCID: PMC6721826 DOI: 10.3390/cells8080859] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
Metabolic disorders are characterized by the inability to properly use and/or store energy. The burdens of metabolic disease, such as obesity or diabetes, are believed to arise through a complex interplay between genetics and epigenetics predisposition, environment and nutrition. Therefore, understanding the molecular mechanisms for the onset of metabolic disease will provide new insights for prevention and treatment. There is growing concern about the dysregulation of micro-RNAs (miRNAs) in metabolic diseases. MiRNAs are short non-coding RNA molecules that post-transcriptionally repress the expression of genes by binding to untranslated regions and coding sequences of the target mRNAs. This review aims to provide recent data about the potential involvement of miRNAs in metabolic diseases, particularly obesity and type 2 diabetes.
Collapse
Affiliation(s)
| | - Adel Derghal
- Aix Marseille Univ, INSERM, INRA, C2VN, 13005 Marseille, France
| | - Lourdes Mounien
- Aix Marseille Univ, INSERM, INRA, C2VN, 13005 Marseille, France.
| |
Collapse
|
41
|
Seiri P, Abi A, Soukhtanloo M. PPAR-γ: Its ligand and its regulation by microRNAs. J Cell Biochem 2019; 120:10893-10908. [PMID: 30770587 DOI: 10.1002/jcb.28419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 01/24/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily. PPARs are categorized into three subtypes, PPARα, β/δ, and γ, encoded by different genes, expressed in diverse tissues and participate in various biological functions and can be activated by their metabolic derivatives in the body or dietary fatty acids. The PPAR-γ also takes parts in the regulation of energy balance, lipoprotein metabolism, insulin sensitivity, oxidative stress, and inflammatory signaling. It has been implicated in the pathology of numerous diseases including obesity, diabetes, atherosclerosis, and cancers. Among various cellular and molecular targets that are able to regulate PPAR-γ and its underlying pathways, microRNAs (miRNAs) appeared as important regulators. Given that the deregulation of these molecules via targeting PPAR-γ could affect initiation and progression of various diseases, identification of miRNAs that affects PPAR-γ could contribute to the better understanding of roles of PPAR-γ in various biological and pathological conditions. Here, we have summarized the function and various ligands of PPAR-γ and have highlighted various miRNAs involved in the regulation of PPAR-γ.
Collapse
Affiliation(s)
- Parvaneh Seiri
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Abi
- Department of Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Obesity, Insulin Resistance, and Colorectal Cancer: Could miRNA Dysregulation Play A Role? Int J Mol Sci 2019; 20:ijms20122922. [PMID: 31207998 PMCID: PMC6628223 DOI: 10.3390/ijms20122922] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Obesity is associated with insulin resistance and low-grade inflammation. Insulin resistance is a risk factor for cancer. A recent chapter in epigenetics is represented by microRNAs (miRNAs), which post-transcriptionally regulate gene expression. Dysregulated miRNA profiles have been associated with diseases including obesity and cancer. Herein we report dysregulated miRNAs in obesity both in animal models and in humans, and we also document dysregulated miRNAs in colorectal cancer (CRC), as example of an obesity-related cancer. Some of the described miRNAs are found to be similarly dysregulated both in obesity, insulin resistance (IR), and CRC. Thus, we present miRNAs as a potential molecular link between obesity and CRC onset and development, giving a new perspective on the role of miRNAs in obesity-associated cancers.
Collapse
|
43
|
Giardina S, Hernández-Alonso P, Díaz-López A, Salas-Huetos A, Salas-Salvadó J, Bulló M. Changes in circulating miRNAs in healthy overweight and obese subjects: Effect of diet composition and weight loss. Clin Nutr 2019; 38:438-443. [PMID: 29233588 DOI: 10.1016/j.clnu.2017.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/20/2017] [Accepted: 11/19/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNA molecules that can play an important role in several chronic metabolic conditions, including obesity. However, to date little is known about how they are regulated. Weight loss induced by surgical procedures has been effective at modulating specific circulating miRNAs, but the effect of energy-restricted diets with different macronutrient compositions on circulating miRNAs is not well understood. The objective of the present analysis was to explore the effect of three energy-restricted diets of different macronutrient composition and carbohydrate quality on plasma miRNA levels. METHODS The GLYNDIET study is a 6-month, parallel, randomized clinical trial conducted on overweight and obese subjects who were randomized to one of three different dietary intervention groups: i) a moderate-carbohydrate and low glycemic index diet (LGI), ii) a moderate-carbohydrate and high glycemic index diet (HGI), and iii) a low-fat and high glycemic index diet (LF). We assessed the genome-wide circulating miRNA profile in a subsample of eight randomly selected participants. A total of 8 miRNAs (miR-411, miR-432, miR-99b, miR-340, miR-423, miR-361, let-7c) were differently quantified according to diet intervention, and were therefore longitudinally validated in 103 participants before and after the energy-restricted diets. RESULTS Circulating miR-361 levels were lower in the LGI group than in the HGI group, even after adjusting for differences in weight loss. The intra-group analyses demonstrated a significant down-regulation of all miRNAs screened in our study subjects after the LGI intervention. Similarly, miR-139 and miR-340 were down-regulated after the HGI intervention, while miR-139, miR-432 and miR-423 were down-regulated after the low-fat diet. Changes in circulating miR-139 and let-7c were significantly associated with changes in lipid profile and insulin resistance. CONCLUSION An energy-restricted low-glycemic index diet down-regulates circulating miRNA-361 more than an energy-restricted high-glycemic index, regardless of the magnitude of the weight loss.
Collapse
Affiliation(s)
- S Giardina
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - P Hernández-Alonso
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A Díaz-López
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A Salas-Huetos
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - J Salas-Salvadó
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - M Bulló
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
44
|
Gasparotto AS, Borges DO, Sassi MGM, Milani A, Rech DL, Terres M, Ely PB, Ramos MJ, Meihnardt NG, Mattevi VS. Differential expression of miRNAs related to angiogenesis and adipogenesis in subcutaneous fat of obese and nonobese women. Mol Biol Rep 2019; 46:965-973. [PMID: 30565074 DOI: 10.1007/s11033-018-4553-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023]
Abstract
To disclose the mechanisms surrounding obesity, we selected microRNAs (miRNAs) that target genes involved in adipogenesis, angiogenesis, and inflammation and compared their expression levels in the subcutaneous adipose tissue of 40 obese and nonobese women. Mature miRNAs were extracted from subcutaneous adipose tissue samples that were collected during surgery and quantified by real-time polymerase chain reaction. miR-16 was overexpressed in the nonobese group (n-expression ratio = - 151.1; P < 0.001). Furthermore, the expression levels of two other miRNAs were significantly correlated with waist circumference in nonobese women (miR-27b, r = 0.453; P = 0.027 and miR-424-5p, r = 0.502, P = 0.014). Central and total subcutaneous adipose tissue thicknesses were correlated with miR-424-5p levels (r = 0.506, P = 0.034 and r = 0.475, P = 0.046, respectively) in the nonobese group. In the obese group, miR-424-5p expression was correlated with body mass index (r = 0.582, P = 0.018). miR-16 and miR-424 have shown correlations with body-fat-mass-related parameters. Because these miRNAs have vascular endothelial growth factor (VEGF) and its receptors as target genes, they may be involved in the alterations of angiogenesis observed in obesity. In addition, higher levels of miR-27 and miR-424 were correlated with higher fat depot measurements in nonobese women. These results highlight the importance of miRNA expression in subcutaneous adipose tissue and encourage further investigation of miRNAs as prognostic markers.
Collapse
Affiliation(s)
- Aline S Gasparotto
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245 - Centro Histórico, Porto Alegre, RS, 90050-170, Brazil.
| | - Diego O Borges
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245 - Centro Histórico, Porto Alegre, RS, 90050-170, Brazil
| | - Marina G M Sassi
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245 - Centro Histórico, Porto Alegre, RS, 90050-170, Brazil
| | - Adriana Milani
- Irmandade Santa Casa de Misericórdia de Porto Alegre, Rua Professor Annes Dias, 295 - Centro Histórico, Porto Alegre, RS, 90020-090, Brazil
| | - Darwin L Rech
- Irmandade Santa Casa de Misericórdia de Porto Alegre, Rua Professor Annes Dias, 295 - Centro Histórico, Porto Alegre, RS, 90020-090, Brazil
| | - Marcia Terres
- Irmandade Santa Casa de Misericórdia de Porto Alegre, Rua Professor Annes Dias, 295 - Centro Histórico, Porto Alegre, RS, 90020-090, Brazil
| | - Pedro B Ely
- Irmandade Santa Casa de Misericórdia de Porto Alegre, Rua Professor Annes Dias, 295 - Centro Histórico, Porto Alegre, RS, 90020-090, Brazil
| | - Mauricio J Ramos
- Hospital Nossa Senhora da Conceição, Avenida Francisco Trein, 596 - Cristo Redentor, Porto Alegre, RS, 91350-200, Brazil
| | - Nelson G Meihnardt
- Hospital Nossa Senhora da Conceição, Avenida Francisco Trein, 596 - Cristo Redentor, Porto Alegre, RS, 91350-200, Brazil
| | - Vanessa S Mattevi
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245 - Centro Histórico, Porto Alegre, RS, 90050-170, Brazil
| |
Collapse
|
45
|
MicroRNAs and other non-coding RNAs in adipose tissue and obesity: emerging roles as biomarkers and therapeutic targets. Clin Sci (Lond) 2019; 133:23-40. [PMID: 30606812 DOI: 10.1042/cs20180890] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023]
Abstract
Obesity is a metabolic condition usually accompanied by insulin resistance (IR), type 2 diabetes (T2D), and dyslipidaemia, which is characterised by excessive fat accumulation and related to white adipose tissue (WAT) dysfunction. Enlargement of WAT is associated with a transcriptional alteration of coding and non-coding RNAs (ncRNAs). For many years, big efforts have focused on understanding protein-coding RNAs and their involvement in the regulation of adipocyte physiology and subsequent role in obesity. However, diverse findings have suggested that a dysfunctional adipocyte phenotype in obesity might be also dependent on specific alterations in the expression pattern of ncRNAs, such as miRNAs. The aim of this review is to update current knowledge on the physiological roles of miRNAs and other ncRNAs in adipose tissue function and their potential impact on obesity. Therefore, we examined their regulatory role on specific WAT features: adipogenesis, adipokine secretion, inflammation, glucose metabolism, lipolysis, lipogenesis, hypoxia and WAT browning. MiRNAs can be released to body fluids and can be transported (free or inside microvesicles) to other organs, where they might trigger metabolic effects in distant tissues, thus opening new possibilities to a potential use of miRNAs as biomarkers for diagnosis, prognosis, and personalisation of obesity treatment. Understanding the role of miRNAs also opens the possibility of using these molecules on individualised dietary strategies for precision weight management. MiRNAs should be envisaged as a future therapeutic approach given that miRNA levels could be modulated by synthetic molecules (f.i. miRNA mimics and inhibitors) and/or specific nutrients or bioactive compounds.
Collapse
|
46
|
Lo PK, Wolfson B, Zhou Q. Adipogenesis and Noncoding RNAs. HANDBOOK OF NUTRITION, DIET, AND EPIGENETICS 2019:623-645. [DOI: 10.1007/978-3-319-55530-0_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
47
|
Exercise Training-Induced Changes in MicroRNAs: Beneficial Regulatory Effects in Hypertension, Type 2 Diabetes, and Obesity. Int J Mol Sci 2018; 19:ijms19113608. [PMID: 30445764 PMCID: PMC6275070 DOI: 10.3390/ijms19113608] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that regulate gene expression post-transcriptionally. They are involved in the regulation of physiological processes, such as adaptation to physical exercise, and also in disease settings, such as systemic arterial hypertension (SAH), type 2 diabetes mellitus (T2D), and obesity. In SAH, microRNAs play a significant role in the regulation of key signaling pathways that lead to the hyperactivation of the renin-angiotensin-aldosterone system, endothelial dysfunction, inflammation, proliferation, and phenotypic change in smooth muscle cells, and the hyperactivation of the sympathetic nervous system. MicroRNAs are also involved in the regulation of insulin signaling and blood glucose levels in T2D, and participate in lipid metabolism, adipogenesis, and adipocyte differentiation in obesity, with specific microRNA signatures involved in the pathogenesis of each disease. Many studies report the benefits promoted by exercise training in cardiovascular diseases by reducing blood pressure, glucose levels, and improving insulin signaling and lipid metabolism. The molecular mechanisms involved, however, remain poorly understood, especially regarding the participation of microRNAs in these processes. This review aimed to highlight microRNAs already known to be associated with SAH, T2D, and obesity, as well as their possible regulation by exercise training.
Collapse
|
48
|
Abstract
During the last decades, research on adipose tissues has spread in parallel with the extension of obesity. Several observations converged on the idea that adipose tissues are organized in a large organ with endocrine and plastic properties. Two parenchymal components: white (WATs) and brown adipose tissues (BATs) are contained in subcutaneous and visceral compartments. Although both have endocrine properties, their function differs: WAT store lipids to allow intervals between meals, BAT burns lipids for thermogenesis. In spite of these opposite functions, they share the ability for reciprocal reversible transdifferentiation to tackle special physiologic needs. Thus, chronic need for thermogenesis induces browning and chronic positive energy balance induce whitening. Lineage tracing and data from explant studies strongly suggest other remodeling properties of this organ. During pregnancy and lactation breast WAT transdifferentiates into milk-secreting glands, composed by cells with abundant cytoplasmic lipids (pink adipocytes) and in the postlactation period pink adipocytes transdifferentiate back into WAT and BAT. The plastic properties of mature adipocytes are supported also by a liposecretion process in vitro where adult cell in culture transdifferentiate to differentiated fibroblast-like elements able to give rise to different phenotypes (rainbow adipocytes). In addition, the inflammasome system is activated in stressed adipocytes from obese adipose tissue. These adipocytes die and debris are reabsorbed by macrophages inducing a chronic low-grade inflammation, potentially contributing to insulin resistance and T2 diabetes. Thus, the plastic properties of this organ could open new therapeutic perspectives in the obesity-related metabolic disease and in breast pathologies. © 2018 American Physiological Society. Compr Physiol 8:1357-1431, 2018.
Collapse
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
49
|
曾 烨, 刘 洁, 陈 志, 郑 思, 张 汉, 周 珏. [Over-expression of miR-519d alters gene expression profiles of cervical cancer SiHa cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:794-799. [PMID: 33168510 PMCID: PMC6765531 DOI: 10.3969/j.issn.1673-4254.2018.07.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the alterations in gene expression profiles of cervical cancer cell line SiHa over-expressing miR-519d. METHODS SiHa cells were transfected with a miR-519d mimic or a negative control (NC) and the changes in gene expression profiles were examined using NimbleGen human gene expression microarray. Bioinformatics approaches based on the microarray data were used to identify the targeted genes of miR-519d. Real-time quantitative PCR was employed to confirm the expression of the potential target genes. RESULTS A total of 5172 genes were found to be differentially expressed in SiHa cells over-expressing miR-519d, including 2476 up-regulated and 2796 down-regulated genes. We identified 164 potential target genes of miR-519d, and their functions were predicted using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analysis, and STRING database and pSTIING were used to search the key nodes in the protein-protein interactions and transcriptional regulatory networks in cancer. Real-time quantitative PCR confirmed the differential expressions of several candidate target genes. CONCLUSIONS Over-expression of miR-519d alters gene expression profiles in SiHa cells. The 164 target genes of miR-519d we identified may provide insights into the role of miR-519d in cervical tumorigenesis.
Collapse
Affiliation(s)
- 烨 曾
- 南方医科大学 南方医院口腔科,广东 广州 510515Department of Stomatology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - 洁 刘
- 南方医科大学 南方医院妇产科,广东 广州 510515Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 志超 陈
- 南方医科大学 基础医学院生物化学与分子生物学教研室,广东 广州 510515Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - 思荣 郑
- 南方医科大学 基础医学院生物化学与分子生物学教研室,广东 广州 510515Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - 汉荣 张
- 南方医科大学 基础医学院生物化学与分子生物学教研室,广东 广州 510515Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - 珏宇 周
- 南方医科大学 基础医学院生物化学与分子生物学教研室,广东 广州 510515Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
50
|
Tao YF, Qiang J, Bao JW, Li HX, Yin GJ, Xu P, Chen DJ. miR-205-5p negatively regulates hepatic acetyl-CoA carboxylase β mRNA in lipid metabolism of Oreochromis niloticus. Gene 2018; 660:1-7. [DOI: 10.1016/j.gene.2018.03.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 03/11/2018] [Accepted: 03/20/2018] [Indexed: 01/18/2023]
|