1
|
Gupta H, Gupta A. Post-translational modifications of epigenetic modifier TIP60: their role in cellular functions and cancer. Epigenetics Chromatin 2025; 18:18. [PMID: 40186325 PMCID: PMC11969907 DOI: 10.1186/s13072-025-00572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/27/2025] [Indexed: 04/07/2025] Open
Abstract
TIP60 is a crucial lysine acetyltransferase protein that catalyzes the acetylation of histone and non-histone proteins. This enzyme plays a crucial role in maintaining genomic integrity, by participating in DNA damage repair, ensuring accurate chromosomal segregation, and regulating a myriad of cellular processes such as apoptosis, autophagy, and wound-induced cell migration. One of the primary mechanisms through which TIP60 executes these diverse cellular functions is via post-translational modifications (PTMs). Over the years, extensive studies have demonstrated the importance of PTMs in controlling protein functions. This review aims to summarize the findings on PTMs occurring on the TIP60 protein and their functional implications. We also discuss previously uncharacterized PTM sites identified on TIP60 and examine their relationship with cancer-associated mutations, with a particular focus on residues potentially modified by various PTMs, to understand the cause of deregulation of TIP60 in various cancers.
Collapse
Affiliation(s)
- Himanshu Gupta
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, deemed to be University, Delhi-NCR, 201314, Uttar Pradesh, India
| | - Ashish Gupta
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, deemed to be University, Delhi-NCR, 201314, Uttar Pradesh, India.
| |
Collapse
|
2
|
Gupta H, Singh A, Gupta A. Cancer-associated mutation at glycine 400 in TIP60 disrupt its phase separation property and catalytic activity resulting in compromised DNA damage repair function of the cell. Biochem Biophys Res Commun 2025; 753:151457. [PMID: 39965267 DOI: 10.1016/j.bbrc.2025.151457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025]
Abstract
TIP60 is a tumor suppressor with histone acetyltransferase (HAT) activity, playing a crucial role in regulating chromatin architecture by acetylating histones to enhance accessibility for other regulatory factors. Its function is vital for several key cellular processes, including DNA damage repair, apoptosis, and autophagy. While the downregulation of TIP60 has been associated with various cancers, the effects of naturally occurring mutations in TIP60 on its function in malignancies remain poorly understood. In this study, we explored how cancer-related mutations in TIP60 impact its structure and function. Several deleterious and destabilizing missense mutations were identified and analyzed for structural changes. Molecular dynamics simulations revealed alterations in protein conformational stability and radius of gyration due to these mutations, supported by significant changes in TIP60's solvent accessibility and intramolecular hydrogen bonding. Biochemical assays with recombinant proteins showed a loss of catalytic activity in the G400W mutant. Live cell imaging indicated abnormal localization of the G400W mutant within the nucleus. Additionally, we observed aberrant phase separation of TIP60 caused by the G400W mutation. Notably, the G400W mutation impairs TIP60's catalytic function, preventing effective DNA repair and leaving the genome vulnerable to further mutations. Our findings highlight cancer-associated mutations in TIP60 that may contribute to the molecular mechanisms underlying cancer initiation and progression.
Collapse
Affiliation(s)
- Himanshu Gupta
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Deemed to be University, Delhi-NCR, Uttar Pradesh, India, 201314
| | - Ashutosh Singh
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Deemed to be University, Delhi-NCR, Uttar Pradesh, India, 201314
| | - Ashish Gupta
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Deemed to be University, Delhi-NCR, Uttar Pradesh, India, 201314.
| |
Collapse
|
3
|
Bannik K, Sak A, Groneberg M, Stuschke M. Defining the role of Tip60 in the DNA damage response of glioma cell lines. Int J Radiat Biol 2024; 100:1622-1632. [PMID: 39361872 DOI: 10.1080/09553002.2024.2409668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024]
Abstract
PURPOSE Glioblastomas are resistant to conventional therapies, including radiotherapy. Our previous study proved that epigenetic regulation influences the radiation response of glioma cells. This study evaluated the role of the acetyltransferase Tip60 on the radiation response. MATERIAL AND METHODS Tip60 expression was down-regulated by transfecting specific siRNA's in A7 and MO59K cells with high and low expression of Tip60, respectively, and its effect on survival was assessed. DNA repair was analyzed by foci scoring (γH2AX, Rad51, 53BP1, pATM). The interaction of Tip60 with ATM and DNA-PK was investigated using the specific inhibitors KU55933 and NU7441, respectively. RESULTS Knockdown of Tip60 significantly (p < .001) reduced survival in both cell lines, but the effect was more pronounced in A7 cells. ATMi and DNA-PKi significantly reduced the surviving fraction following irradiation. However, no further effect of siTip60 on the radiosensitivity of ATMi treated A7 cells was observed. In contrast, DNA-PKi effectively enhanced the sensitizing effect of siTip60. Mechanistically, siTip60 reduced the number of initial Rad51 and ATM foci formation after irradiation and prevented their dissolution at 24 h. siTip60 had no impact on the formation of 53BP1 and γH2AX foci and did not further affect these end-points if combined with ATMi or DNA-PKi. CONCLUSIONS Downregulation of Tip60 enhances the radiation sensitivity of both glioma cells and markedly elevates the radiation sensitivity when combined with DNA-PKi. Therefore, treatment with DNA-PK inhibitors represents a promising approach to augment the radiation sensitivity of glioma cell lines with deficient Tip60 activity in a synergistic manner.
Collapse
Affiliation(s)
- K Bannik
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - A Sak
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - M Groneberg
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - M Stuschke
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| |
Collapse
|
4
|
Chen K, Wang L, Yu Z, Yu J, Ren Y, Wang Q, Xu Y. Structure of the human TIP60 complex. Nat Commun 2024; 15:7092. [PMID: 39154037 PMCID: PMC11330486 DOI: 10.1038/s41467-024-51259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Mammalian TIP60 is a multi-functional enzyme with histone acetylation and histone dimer exchange activities. It plays roles in diverse cellular processes including transcription, DNA repair, cell cycle control, and embryonic development. Here we report the cryo-electron microscopy structures of the human TIP60 complex with the core subcomplex and TRRAP module refined to 3.2-Å resolution. The structures show that EP400 acts as a backbone integrating the motor module, the ARP module, and the TRRAP module. The RUVBL1-RUVBL2 hexamer serves as a rigid core for the assembly of EP400 ATPase and YL1 in the motor module. In the ARP module, an ACTL6A-ACTB heterodimer and an extra ACTL6A make hydrophobic contacts with EP400 HSA helix, buttressed by network interactions among DMAP1, EPC1, and EP400. The ARP module stably associates with the motor module but is flexibly tethered to the TRRAP module, exhibiting a unique feature of human TIP60. The architecture of the nucleosome-bound human TIP60 reveals an unengaged nucleosome that is located between the core subcomplex and the TRRAP module. Our work illustrates the molecular architecture of human TIP60 and provides architectural insights into how this complex is bound by the nucleosome.
Collapse
Affiliation(s)
- Ke Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Li Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Jiali Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Qianmin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Zohourian N, Coll E, Dever M, Sheahan A, Burns-Lane P, Brown JAL. Evaluating the Cellular Roles of the Lysine Acetyltransferase Tip60 in Cancer: A Multi-Action Molecular Target for Precision Oncology. Cancers (Basel) 2024; 16:2677. [PMID: 39123405 PMCID: PMC11312108 DOI: 10.3390/cancers16152677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Precision (individualized) medicine relies on the molecular profiling of tumors' dysregulated characteristics (genomic, epigenetic, transcriptomic) to identify the reliance on key pathways (including genome stability and epigenetic gene regulation) for viability or growth, and then utilises targeted therapeutics to disrupt these survival-dependent pathways. Non-mutational epigenetic changes alter cells' transcriptional profile and are a key feature found in many tumors. In contrast to genetic mutations, epigenetic changes are reversable, and restoring a normal epigenetic profile can inhibit tumor growth and progression. Lysine acetyltransferases (KATs or HATs) protect genome stability and integrity, and Tip60 is an essential acetyltransferase due to its roles as an epigenetic and transcriptional regulator, and as master regulator of the DNA double-strand break response. Tip60 is commonly downregulated and mislocalized in many cancers, and the roles that mislocalized Tip60 plays in cancer are not well understood. Here we categorize and discuss Tip60-regulated genes, evaluate Tip60-interacting proteins based on cellular localization, and explore the therapeutic potential of Tip60-targeting compounds as epigenetic inhibitors. Understanding the multiple roles Tip60 plays in tumorigenesis will improve our understanding of tumor progression and will inform therapeutic options, including informing potential combinatorial regimes with current chemotherapeutics, leading to improvements in patient outcomes.
Collapse
Affiliation(s)
- Nazanin Zohourian
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Erin Coll
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Muiread Dever
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Anna Sheahan
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Petra Burns-Lane
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - James A. L. Brown
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
- Limerick Digital Cancer Research Centre (LDCRC), Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
6
|
Lee SY, Park J, Seo SB. Negative regulation of HDAC3 transcription by histone acetyltransferase TIP60 in colon cancer. Genes Genomics 2024; 46:871-879. [PMID: 38805168 PMCID: PMC11208239 DOI: 10.1007/s13258-024-01524-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Colon cancer is the third most common cancer globally. The expression of histone deacetylase 3 (HDAC3) is upregulated, whereas the expression of tat interactive protein, 60 kDa (TIP60) is downregulated in colon cancer. However, the relationship between HDAC3 and TIP60 in colon cancer has not been clearly elucidated. OBJECTIVE We investigated whether TIP60 could regulate the expression of HDAC3 and suppress colon cancer cell proliferation. METHODS RNA sequencing data (GSE108834) showed that HDAC3 expression was regulated by TIP60. Subsequently, we generated TIP60-knockdown HCT116 cells and examined the expression of HDAC3 by western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We examined the expression pattern of HDAC3 in various cancers using publicly available datasets. The promoter activity of HDAC3 was validated using a dual-luciferase assay, and transcription factors binding to HDAC3 were identified using GeneCards and Promo databases, followed by validation using chromatin immunoprecipitation-quantitative polymerase chain reaction. Cell proliferation and apoptosis were assessed using colony formation assays and fluorescence-activated cell sorting analysis of HCT116 cell lines. RESULTS In response to TIP60 knockdown, the expression level and promoter activity of HDAC3 increased. Conversely, when HDAC3 was downregulated by overexpression of TIP60, proliferation of HCT116 cells was inhibited and apoptosis was promoted. CONCLUSION TIP60 plays a crucial role in the regulation of HDAC3 transcription, thereby influencing cell proliferation and apoptosis in colon cancer. Consequently, TIP60 may function as a tumor suppressor by inhibiting HDAC3 expression in colon cancer cells.
Collapse
Affiliation(s)
- Seong Yun Lee
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Junyoung Park
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sang Beom Seo
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
7
|
Larue AEM, Atlasi Y. The epigenetic landscape in intestinal stem cells and its deregulation in colorectal cancer. Stem Cells 2024; 42:509-525. [PMID: 38597726 PMCID: PMC11177158 DOI: 10.1093/stmcls/sxae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Epigenetic mechanisms play a pivotal role in controlling gene expression and cellular plasticity in both normal physiology and pathophysiological conditions. These mechanisms are particularly important in the regulation of stem cell self-renewal and differentiation, both in embryonic development and within adult tissues. A prime example of this finely tuned epigenetic control is observed in the gastrointestinal lining, where the small intestine undergoes renewal approximately every 3-5 days. How various epigenetic mechanisms modulate chromatin functions in intestinal stem cells (ISCs) is currently an active area of research. In this review, we discuss the main epigenetic mechanisms that control ISC differentiation under normal homeostasis. Furthermore, we explore the dysregulation of these mechanisms in the context of colorectal cancer (CRC) development. By outlining the main epigenetic mechanisms contributing to CRC, we highlight the recent therapeutics development and future directions for colorectal cancer research.
Collapse
Affiliation(s)
- Axelle E M Larue
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, United Kingdom
| | - Yaser Atlasi
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, United Kingdom
| |
Collapse
|
8
|
Kisor KP, Ruiz DG, Jacobson MP, Barber DL. A role for pH dynamics regulating transcription factor DNA binding selectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595212. [PMID: 38826444 PMCID: PMC11142074 DOI: 10.1101/2024.05.21.595212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Intracellular pH (pHi) dynamics regulates diverse cell processes such as proliferation, dysplasia, and differentiation, often mediated by the protonation state of a functionally critical histidine residue in endogenous pH sensing proteins. How pHi dynamics can directly regulate gene expression and whether transcription factors can function as pH sensors has received limited attention. We tested the prediction that transcription factors with a histidine in their DNA binding domain (DBD) that forms hydrogen bonds with nucleotides can have pH-regulated activity, which is relevant to more than 85 transcription factors in distinct families, including FOX, KLF, SOX and MITF/Myc. Focusing on FOX family transcription factors, we used unbiased SELEX-seq to identify pH-dependent DNA binding motif preferences, then confirm pH-regulated binding affinities for FOXC2, FOXM1, and FOXN1 to a canonical FkhP DNA motif that are 2.5 to 7.5 greater at pH 7.0 compared with pH 7.5. For FOXC2, we also find greater activity for an FkhP motif at lower pHi in cells and that pH-regulated binding and activity are dependent on a conserved histidine (His122) in the DBD. RNA-seq with FOXC2 also reveals pH-dependent differences in enriched promoter motifs. Our findings identify pH-regulated transcription factor-DNA binding selectivity with relevance to how pHi dynamics can regulate gene expression for myriad cell behaviours.
Collapse
|
9
|
Prozzillo Y, Santopietro MV, Messina G, Dimitri P. Unconventional roles of chromatin remodelers and long non-coding RNAs in cell division. Cell Mol Life Sci 2023; 80:365. [PMID: 37982870 PMCID: PMC10661750 DOI: 10.1007/s00018-023-04949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 11/21/2023]
Abstract
The aim of this review article is to focus on the unconventional roles of epigenetic players (chromatin remodelers and long non-coding RNAs) in cell division, beyond their well-characterized functions in chromatin regulation during cell differentiation and development. In the last two decades, diverse experimental evidence has shown that subunits of SRCAP and p400/TIP60 chromatin remodeling complexes in humans relocate from interphase nuclei to centrosomes, spindle or midbody, with their depletion yielding an array of aberrant outcomes of mitosis and cytokinesis. Remarkably, this behavior is shared by orthologous subunits of the Drosophila melanogaster DOM/TIP60 complex, despite fruit flies and humans diverged over 700 million years ago. In short, the available data support the view that subunits of these complexes are a new class of moonlighting proteins, in that they lead a "double life": during the interphase, they function in chromatin regulation within the nucleus, but as the cell progresses through mitosis, they interact with established mitotic factors, thus becoming integral components of the cell division apparatus. By doing so, they contribute to ensuring the correct distribution of chromosomes in the two daughter cells and, when dysfunctional, can cause genomic instability, a condition that can trigger tumorigenesis and developmental diseases. Research over the past few years has unveiled a major contribution of long non-coding RNAs (lncRNAs) in the epigenetics regulation of gene expression which also impacts on cell division control. Here, we focus on possible structural roles of lncRNAs in the execution of cytokinesis: in particular, we suggest that specific classes of lncRNAs relocate to the midbody to form an architectural scaffold ensuring its proper assembly and function during abscission. Drawing attention to experimental evidence for non-canonical extranuclear roles of chromatin factors and lncRNAs has direct implications on important and novel aspects concerning both the epigenetic regulation and the evolutionary dynamics of cell division with a significant impact on differentiation, development, and diseases.
Collapse
Affiliation(s)
- Yuri Prozzillo
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | | | - Giovanni Messina
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy.
- Universita degli Studi di Milano-Bicocca, Piazza dell' Ateneo Nuovo, 1, 20126, Milano, Italy.
| | - Patrizio Dimitri
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
10
|
Shibahara D, Akanuma N, Kobayashi IS, Heo E, Ando M, Fujii M, Jiang F, Prin PN, Pan G, Wong K, Costa DB, Bararia D, Tenen DG, Watanabe H, Kobayashi SS. TIP60 is required for tumorigenesis in non-small cell lung cancer. Cancer Sci 2023; 114:2400-2413. [PMID: 36916958 PMCID: PMC10236639 DOI: 10.1111/cas.15785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Histone modifications play crucial roles in transcriptional activation, and aberrant epigenetic changes are associated with oncogenesis. Lysine (K) acetyltransferases 5 (TIP60, also known as KAT5) is reportedly implicated in cancer development and maintenance, although its function in lung cancer remains controversial. Here we demonstrate that TIP60 knockdown in non-small cell lung cancer cell lines decreased tumor cell growth, migration, and invasion. Furthermore, analysis of a mouse lung cancer model with lung-specific conditional Tip60 knockout revealed suppressed tumor formation relative to controls, but no apparent effects on normal lung homeostasis. RNA-seq and ChIP-seq analyses of inducible TIP60 knockdown H1975 cells relative to controls revealed transglutaminase enzyme (TGM5) as downstream of TIP60. Investigation of a connectivity map database identified several candidate compounds that decrease TIP60 mRNA, one that suppressed tumor growth in cell culture and in vivo. In addition, TH1834, a TIP60 acetyltransferase inhibitor, showed comparable antitumor effects in cell culture and in vivo. Taken together, suppression of TIP60 activity shows tumor-specific efficacy against lung cancer, with no overt effect on normal tissues. Our work suggests that targeting TIP60 could be a promising approach to treating lung cancer.
Collapse
Affiliation(s)
- Daisuke Shibahara
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Naoki Akanuma
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Department of PathologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Ikei S. Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Eunyoung Heo
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Department of Internal MedicineSMG‐SNU Boramae Medical CenterSeoulSouth Korea
| | - Mariko Ando
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Masanori Fujii
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Feng Jiang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Department of Genetics and Genomic SciencesTisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - P. Nicholas Prin
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Gilbert Pan
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Kwok‐Kin Wong
- Perlmutter Cancer CenterNYU Langone Medical CenterNew YorkNew YorkUSA
| | - Daniel B. Costa
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Deepak Bararia
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonMassachusettsUSA
| | - Daniel G. Tenen
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonMassachusettsUSA
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Hideo Watanabe
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Department of Genetics and Genomic SciencesTisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Susumu S. Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonMassachusettsUSA
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial CenterNational Cancer CenterKashiwaJapan
| |
Collapse
|
11
|
Chen C, Liu X, Chang CY, Wang HY, Wang RF. The Interplay between T Cells and Cancer: The Basis of Immunotherapy. Genes (Basel) 2023; 14:genes14051008. [PMID: 37239368 DOI: 10.3390/genes14051008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past decade, immunotherapy has emerged as one of the most promising approaches to cancer treatment. The use of immune checkpoint inhibitors has resulted in impressive and durable clinical responses in the treatment of various cancers. Additionally, immunotherapy utilizing chimeric antigen receptor (CAR)-engineered T cells has produced robust responses in blood cancers, and T cell receptor (TCR)-engineered T cells are showing promising results in the treatment of solid cancers. Despite these noteworthy advancements in cancer immunotherapy, numerous challenges remain. Some patient populations are unresponsive to immune checkpoint inhibitor therapy, and CAR T cell therapy has yet to show efficacy against solid cancers. In this review, we first discuss the significant role that T cells play in the body's defense against cancer. We then delve into the mechanisms behind the current challenges facing immunotherapy, starting with T cell exhaustion due to immune checkpoint upregulation and changes in the transcriptional and epigenetic landscapes of dysfunctional T cells. We then discuss cancer-cell-intrinsic characteristics, including molecular alterations in cancer cells and the immunosuppressive nature of the tumor microenvironment (TME), which collectively facilitate tumor cell proliferation, survival, metastasis, and immune evasion. Finally, we examine recent advancements in cancer immunotherapy, with a specific emphasis on T-cell-based treatments.
Collapse
Affiliation(s)
- Christina Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xin Liu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Che-Yu Chang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Helen Y Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
12
|
Kim SH, Park J, Park JW, Hahm JY, Yoon S, Hwang IJ, Kim KP, Seo SB. SET7-mediated TIP60 methylation is essential for DNA double-strand break repair. BMB Rep 2022; 55:541-546. [PMID: 35880433 PMCID: PMC9712704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is crucial for maintaining genomic integrity and is involved in numerous fundamental biological processes. Post-translational modifications by proteins play an important role in regulating DNA repair. Here, we report that the methyltransferase SET7 regulates HR-mediated DSB repair by methylating TIP60, a histone acetyltransferase and tumor suppressor involved in gene expression and protein stability. We show that SET7 targets TIP60 for methylation at K137, which facilitates DSB repair by promoting HR and determines cell viability against DNA damage. Interestingly, TIP60 demethylation is catalyzed by LSD1, which affects HR efficiency. Taken together, our findings reveal the importance of TIP60 methylation status by SET7 and LSD1 in the DSB repair pathway. [BMB Reports 2022; 55(11): 541-546].
Collapse
Affiliation(s)
- Song Hyun Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Junyoung Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Ja Young Hahm
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Seobin Yoon
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - In Jun Hwang
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Keun Pil Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea,Corresponding author. Tel: +82-2-820-5242; Fax: +82-2-822-4039; E-mail:
| |
Collapse
|
13
|
Fan J, Moreno AT, Baier AS, Loparo JJ, Peterson CL. H2A.Z deposition by SWR1C involves multiple ATP-dependent steps. Nat Commun 2022; 13:7052. [PMID: 36396651 PMCID: PMC9672302 DOI: 10.1038/s41467-022-34861-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Histone variant H2A.Z is a conserved feature of nucleosomes flanking protein-coding genes. Deposition of H2A.Z requires ATP-dependent replacement of nucleosomal H2A by a chromatin remodeler related to the multi-subunit enzyme, yeast SWR1C. How these enzymes use ATP to promote this nucleosome editing reaction remains unclear. Here we use single-molecule and ensemble methodologies to identify three ATP-dependent phases in the H2A.Z deposition reaction. Real-time analysis of single nucleosome remodeling events reveals an initial priming step that occurs after ATP addition that involves a combination of both transient DNA unwrapping from the nucleosome and histone octamer deformations. Priming is followed by rapid loss of histone H2A, which is subsequently released from the H2A.Z nucleosomal product. Surprisingly, rates of both priming and the release of the H2A/H2B dimer are sensitive to ATP concentration. This complex reaction pathway provides multiple opportunities to regulate timely and accurate deposition of H2A.Z at key genomic locations.
Collapse
Affiliation(s)
- Jiayi Fan
- grid.168645.80000 0001 0742 0364Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA ,grid.168645.80000 0001 0742 0364Interdisciplinary Graduate Program, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Andrew T. Moreno
- grid.38142.3c000000041936754XDepartment of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Alexander S. Baier
- grid.168645.80000 0001 0742 0364Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA ,grid.168645.80000 0001 0742 0364Medical Scientist Training Program, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Joseph J. Loparo
- grid.38142.3c000000041936754XDepartment of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Craig L. Peterson
- grid.168645.80000 0001 0742 0364Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| |
Collapse
|
14
|
Kim SH, Park J, Park JW, Hahm JY, Yoon S, Hwang IJ, Kim KP, Seo SB. SET7-mediated TIP60 methylation is essential for DNA double-strand break repair. BMB Rep 2022; 55:541-546. [PMID: 35880433 PMCID: PMC9712704 DOI: 10.5483/bmbrep.2022.55.11.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/23/2022] [Accepted: 07/05/2022] [Indexed: 08/13/2023] Open
Abstract
The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is crucial for maintaining genomic integrity and is involved in numerous fundamental biological processes. Post-translational modifications by proteins play an important role in regulating DNA repair. Here, we report that the methyltransferase SET7 regulates HR-mediated DSB repair by methylating TIP60, a histone acetyltransferase and tumor suppressor involved in gene expression and protein stability. We show that SET7 targets TIP60 for methylation at K137, which facilitates DSB repair by promoting HR and determines cell viability against DNA damage. Interestingly, TIP60 demethylation is catalyzed by LSD1, which affects HR efficiency. Taken together, our findings reveal the importance of TIP60 methylation status by SET7 and LSD1 in the DSB repair pathway. [BMB Reports 2022; 55(11): 541-546].
Collapse
Affiliation(s)
- Song Hyun Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Junyoung Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Ja Young Hahm
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Seobin Yoon
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - In Jun Hwang
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Keun Pil Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
15
|
Daks A, Fedorova O, Parfenyev S, Nevzorov I, Shuvalov O, Barlev NA. The Role of E3 Ligase Pirh2 in Disease. Cells 2022; 11:1515. [PMID: 35563824 PMCID: PMC9101203 DOI: 10.3390/cells11091515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
The p53-dependent ubiquitin ligase Pirh2 regulates a number of proteins involved in different cancer-associated processes. Targeting the p53 family proteins, Chk2, p27Kip1, Twist1 and others, Pirh2 participates in such cellular processes as proliferation, cell cycle regulation, apoptosis and cellular migration. Thus, it is not surprising that Pirh2 takes part in the initiation and progression of different diseases and pathologies including but not limited to cancer. In this review, we aimed to summarize the available data on Pirh2 regulation, its protein targets and its role in various diseases and pathological processes, thus making the Pirh2 protein a promising therapeutic target.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (O.F.); (S.P.); (I.N.); (O.S.)
| | | | | | | | | | - Nickolai A. Barlev
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (O.F.); (S.P.); (I.N.); (O.S.)
| |
Collapse
|
16
|
Shen L, Lee S, Joo JC, Hong E, Cui ZY, Jo E, Park SJ, Jang HJ. Chelidonium majus Induces Apoptosis of Human Ovarian Cancer Cells via ATF3-Mediated Regulation of Foxo3a by Tip60. J Microbiol Biotechnol 2022; 32:493-503. [PMID: 35283423 PMCID: PMC9628819 DOI: 10.4014/jmb.2109.09030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/16/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
Forkhead transcription factor 3a (Foxo3a) is believed to be a tumor suppressor as its inactivation leads to cell transformation and tumor development. However, further investigation is required regarding the involvement of the activating transcription factor 3 (ATF3)-mediated Tat-interactive protein 60 (Tip60)/Foxo3a pathway in cancer cell apoptosis. This study demonstrated that Chelidonium majus upregulated the expression of ATF3 and Tip60 and promoted Foxo3a nuclear translocation, ultimately increasing the level of Bcl-2-associated X protein (Bax) protein. ATF3 overexpression stimulated Tip60 expression, while ATF3 inhibition by siRNA repressed Tip60 expression. Furthermore, siRNA-mediated Tip60 inhibition significantly promoted Foxo3a phosphorylation, leading to blockade of Foxo3a translocation into the nucleus. Thus, we were able to deduce that ATF3 mediates the regulation of Foxo3a by Tip60. Moreover, siRNA-mediated Foxo3a inhibition suppressed the expression of Bax and subsequent apoptosis. Taken together, our data demonstrate that Chelidonium majus induces SKOV-3 cell death by increasing ATF3 levels and its downstream proteins Tip60 and Foxo3a. This suggests a potential therapeutic role of Chelidonium majus against ovarian cancer.
Collapse
Affiliation(s)
- Lei Shen
- Aerospace Center Hospital, Beijing 100049, P.R. China
| | - Soon Lee
- Division of Analytical Science, Korea Basic Science Institute, Daejeon 34133, Republic of Korea,Division of Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jong Cheon Joo
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Eunmi Hong
- Division of Analytical Science, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Zhen Yang Cui
- Rehabilitation Medicine College, Weifang Medical University, Weifang 261042, P.R. China
| | - Eunbi Jo
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Soo Jung Park
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Woosuk University, Jeonju 54987, Republic of Korea,
S.J. Park Phone: +82-63-220-8676 E-mail:
| | - Hyun-Jin Jang
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea,Corresponding authors H.J. Jang Phone: +42-860-4563 E-mail:
| |
Collapse
|
17
|
Lu J, He X, Zhang L, Zhang R, Li W. Acetylation in Tumor Immune Evasion Regulation. Front Pharmacol 2021; 12:771588. [PMID: 34880761 PMCID: PMC8645962 DOI: 10.3389/fphar.2021.771588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022] Open
Abstract
Acetylation is considered as one of the most common types of epigenetic modifications, and aberrant histone acetylation modifications are associated with the pathological process of cancer through the regulation of oncogenes and tumor suppressors. Recent studies have shown that immune system function and tumor immunity can also be affected by acetylation modifications. A comprehensive understanding of the role of acetylation function in cancer is essential, which may help to develop new therapies to improve the prognosis of cancer patients. In this review, we mainly discussed the functions of acetylase and deacetylase in tumor, immune system and tumor immunity, and listed the information of drugs targeting these enzymes in tumor immunotherapy.
Collapse
Affiliation(s)
- Jun Lu
- Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Xiang He
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.,Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| | - Lijuan Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ran Zhang
- Hunan Normal University School of Medicine, Changsha, China
| | - Wenzheng Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Mir US, Bhat A, Mushtaq A, Pandita S, Altaf M, Pandita TK. Role of histone acetyltransferases MOF and Tip60 in genome stability. DNA Repair (Amst) 2021; 107:103205. [PMID: 34399315 DOI: 10.1016/j.dnarep.2021.103205] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 01/23/2023]
Abstract
The accurate repair of DNA damage specifically the chromosomal double-strand breaks (DSBs) arising from exposure to physical or chemical agents, such as ionizing radiation (IR) and radiomimetic drugs is critical in maintaining genomic integrity. The DNA DSB response and repair is facilitated by hierarchical signaling networks that orchestrate chromatin structural changes specifically histone modifications which impact cell-cycle checkpoints through enzymatic activities to repair the broken DNA ends. Various histone posttranslational modifications such as phosphorylation, acetylation, methylation and ubiquitylation have been shown to play a role in DNA damage repair. Recent studies have provided important insights into the role of histone-specific modifications in sensing DNA damage and facilitating the DNA repair. Histone modifications have been shown to determine the pathway choice for repair of DNA DSBs. This review will summarize the role of important histone acetyltransferases MOF and Tip60 mediated acetylation in repair of DNA DSBs in eukaryotic cells.
Collapse
Affiliation(s)
- Ulfat Syed Mir
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, 181143, India
| | - Arjamand Mushtaq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Shruti Pandita
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India; Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| | - Tej K Pandita
- Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Idrissou M, Boisnier T, Sanchez A, Khoufaf FZH, Penault-Llorca F, Bignon YJ, Bernard-Gallon D. TIP60/P400/H4K12ac Plays a Role as a Heterochromatin Back-up Skeleton in Breast Cancer. Cancer Genomics Proteomics 2021; 17:687-694. [PMID: 33099470 DOI: 10.21873/cgp.20223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND/AIM In breast cancer, initiation of carcinogenesis leads to epigenetic dysregulation, which can lead for example to the loss of the heterochromatin skeleton SUV39H1/H3K9me3/HP1 or the supposed secondary skeleton TIP60/P400/H4K12ac/BRD (2/4), which allows the maintenance of chromatin integrity and plasticity. This study investigated the relationship between TIP60, P400 and H4K12ac and their implications in breast tumors. MATERIALS AND METHODS Seventy-seven patients diagnosed with breast cancer were included in this study. Chromatin immunoprecipitation (ChIP) assay was used to identify chromatin modifications. Western blot and reverse transcription and quantitative real-time PCR were used to determine protein and gene expression, respectively. RESULTS We verified the variation in H4K12ac enrichment and the co-localization of H4K12ac and TIP60 on the euchromatin and heterochromatin genes, respectively, by ChIP-qPCR and ChIP-reChIP, which showed an enrichment of H4K12ac on specific genes in tumors compared to the adjacent healthy tissue and a co-localization of H4K12ac with TIP60 in different breast tumor types. Furthermore, RNA and protein expression of TIP60 and P400 was investigated and overexpression of TIP60 and P400 mRNA was associated with tumor aggressiveness. CONCLUSION There is a potential interaction between H4K12ac and TIP60 in heterochromatin or euchromatin in breast tumors.
Collapse
Affiliation(s)
- Mouhamed Idrissou
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| | - Tiphanie Boisnier
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| | - Anna Sanchez
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| | - Fatma Zohra Houfaf Khoufaf
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| | - Frederique Penault-Llorca
- INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France.,Department of Biopathology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France .,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| |
Collapse
|
20
|
Abstract
Cancer is a complex disease characterized by loss of cellular homeostasis through genetic and epigenetic alterations. Emerging evidence highlights a role for histone variants and their dedicated chaperones in cancer initiation and progression. Histone variants are involved in processes as diverse as maintenance of genome integrity, nuclear architecture and cell identity. On a molecular level, histone variants add a layer of complexity to the dynamic regulation of transcription, DNA replication and repair, and mitotic chromosome segregation. Because these functions are critical to ensure normal proliferation and maintenance of cellular fate, cancer cells are defined by their capacity to subvert them. Hijacking histone variants and their chaperones is emerging as a common means to disrupt homeostasis across a wide range of cancers, particularly solid tumours. Here we discuss histone variants and histone chaperones as tumour-promoting or tumour-suppressive players in the pathogenesis of cancer.
Collapse
Affiliation(s)
| | - Dan Filipescu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
21
|
Martire S, Banaszynski LA. The roles of histone variants in fine-tuning chromatin organization and function. Nat Rev Mol Cell Biol 2020; 21:522-541. [PMID: 32665685 PMCID: PMC8245300 DOI: 10.1038/s41580-020-0262-8] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Histones serve to both package and organize DNA within the nucleus. In addition to histone post-translational modification and chromatin remodelling complexes, histone variants contribute to the complexity of epigenetic regulation of the genome. Histone variants are characterized by a distinct protein sequence and a selection of designated chaperone systems and chromatin remodelling complexes that regulate their localization in the genome. In addition, histone variants can be enriched with specific post-translational modifications, which in turn can provide a scaffold for recruitment of variant-specific interacting proteins to chromatin. Thus, through these properties, histone variants have the capacity to endow specific regions of chromatin with unique character and function in a regulated manner. In this Review, we provide an overview of recent advances in our understanding of the contribution of histone variants to chromatin function in mammalian systems. First, we discuss new molecular insights into chaperone-mediated histone variant deposition. Next, we discuss mechanisms by which histone variants influence chromatin properties such as nucleosome stability and the local chromatin environment both through histone variant sequence-specific effects and through their role in recruiting different chromatin-associated complexes. Finally, we focus on histone variant function in the context of both embryonic development and human disease, specifically developmental syndromes and cancer.
Collapse
Affiliation(s)
- Sara Martire
- Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laura A Banaszynski
- Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
22
|
|
23
|
Ocker M, Bitar SA, Monteiro AC, Gali-Muhtasib H, Schneider-Stock R. Epigenetic Regulation of p21 cip1/waf1 in Human Cancer. Cancers (Basel) 2019; 11:1343. [PMID: 31514410 PMCID: PMC6769618 DOI: 10.3390/cancers11091343] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
p21cip1/waf1 is a central regulator of cell cycle control and survival. While mutations are rare, it is commonly dysregulated in several human cancers due to epigenetic mechanisms influencing its transcriptional control. These mechanisms include promoter hypermethylation as well as additional pathways such as histone acetylation or methylation. The epigenetic regulators include writers, such as DNA methyltransferases (DNMTs); histone acetyltransferases (HATs) and histone lysine methyltransferases; erasers, such as histone deacetylases (HDACs); histone lysine demethylases [e.g., the Lysine Demethylase (KDM) family]; DNA hydroxylases; readers, such as the methyl-CpG-binding proteins (MBPs); and bromodomain-containing proteins, including the bromo- and extraterminal domain (BET) family. We further discuss the roles that long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) play in the epigenetic control of p21cip1/waf1 expression and its function in human cancers.
Collapse
Affiliation(s)
- Matthias Ocker
- Bayer AG, Translational Medicine Oncology, 13353 Berlin, Germany
- Department of Gastroenterology, CBF, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Samar Al Bitar
- Department of Biology, American University of Beirut, Beirut 110236, Lebanon
| | - Ana Carolina Monteiro
- Experimental Tumor Pathology, Institute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Hala Gali-Muhtasib
- Department of Biology, American University of Beirut, Beirut 110236, Lebanon
- Center for Drug Discovery, American University of Beirut, Beirut 110236, Lebanon
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, Institute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany.
- Experimental Tumor Pathology, FAU Erlangen-Nuremberg, Universitaetsstrasse 22, 91054 Erlangen, Germany.
| |
Collapse
|
24
|
Rajagopalan D, Tirado-Magallanes R, Bhatia SS, Teo WS, Sian S, Hora S, Lee KK, Zhang Y, Jadhav SP, Wu Y, Gan YH, Karnani N, Benoukraf T, Jha S. TIP60 represses activation of endogenous retroviral elements. Nucleic Acids Res 2019; 46:9456-9470. [PMID: 30053221 PMCID: PMC6182167 DOI: 10.1093/nar/gky659] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 07/11/2018] [Indexed: 01/09/2023] Open
Abstract
TIP60 is a lysine acetyltransferase and is known to be a haplo-insufficient tumor suppressor. TIP60 downregulation is an early event in tumorigenesis which has been observed in several cancer types including breast and colorectal cancers. However, the mechanism by which it regulates tumor progression is not well understood. In this study, we identified the role of TIP60 in the silencing of endogenous retroviral elements (ERVs). TIP60-mediated silencing of ERVs is dependent on BRD4. TIP60 and BRD4 positively regulate the expression of enzymes, SUV39H1 and SETDB1 and thereby, the global H3K9 trimethylation (H3K9me3) level. In colorectal cancer, we found that the loss of TIP60 de-represses retrotransposon elements genome-wide, which in turn activate the cellular response to pathogens, mediated by STING, culminating in an induction of Interferon Regulatory Factor 7 (IRF7) and associated inflammatory response. In summary, this study has identified a unique mechanism of ERV regulation in cancer cells mediated by TIP60 and BRD4 through regulation of histone H3 K9 trimethylation, and a new tumor suppressive role of TIP60 in vivo.
Collapse
Affiliation(s)
- Deepa Rajagopalan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | - Wen Shiun Teo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - Stephanie Sian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - Shainan Hora
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kwok Kin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - Yanzhou Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - Shweta Pradip Jadhav
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - Yonghui Wu
- Singapore Institute for Clinical Sciences, A* STAR, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Neerja Karnani
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Singapore Institute for Clinical Sciences, A* STAR, Singapore
| | - Touati Benoukraf
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - Sudhakar Jha
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
25
|
Ghanbari M, Safaralizadeh R, Mohammadi K. A Review on Important Histone Acetyltransferase (HAT) Enzymes as Targets for Cancer Therapy. CURRENT CANCER THERAPY REVIEWS 2019. [DOI: 10.2174/1573394714666180720152100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At the present time, cancer is one of the most lethal diseases worldwide. There are various factors involved in the development of cancer, including genetic factors, lifestyle, nutrition, and so on. Recent studies have shown that epigenetic factors have a critical role in the initiation and development of tumors. The histone post-translational modifications (PTMs) such as acetylation, methylation, phosphorylation, and other PTMs are important mechanisms that regulate the status of chromatin structure and this regulation leads to the control of gene expression. The histone acetylation is conducted by histone acetyltransferase enzymes (HATs), which are involved in transferring an acetyl group to conserved lysine amino acids of histones and consequently increase gene expression. On the basis of similarity in catalytic domains of HATs, these enzymes are divided into different groups such as families of GNAT, MYST, P300/CBP, SRC/P160, and so on. These enzymes have effective roles in apoptosis, signaling pathways, metastasis, cell cycle, DNA repair and other related mechanisms deregulated in cancer. Abnormal activation of HATs leads to uncontrolled amplification of cells and incidence of malignancy signs. This indicates that HAT might be an important target for effective cancer treatments, and hence there would be a need for further studies and designing of therapeutic drugs on this basis. In this study, we have reviewed the important roles of HATs in different human malignancies.
Collapse
Affiliation(s)
- Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Kiyanoush Mohammadi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
26
|
The H2A.Z histone variant integrates Wnt signaling in intestinal epithelial homeostasis. Nat Commun 2019; 10:1827. [PMID: 31015444 PMCID: PMC6478875 DOI: 10.1038/s41467-019-09899-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 04/02/2019] [Indexed: 12/27/2022] Open
Abstract
The Tip60/p400 chromatin-modifying complex, which is involved in the incorporation and post-translational modification of the H2A.Z histone variant, regulates cell proliferation and important signaling pathways, such as Wnt. Here, we study the involvement of H2A.Z in intestinal epithelial homeostasis, which is dependent on the finely-tuned equilibrium between stem cells renewal and differentiation, under the control of such pathway. We use cell models and inducible knock-out mice to study the impact of H2A.Z depletion on intestinal homeostasis. We show that H2A.Z is essential for the proliferation of human cancer and normal intestinal crypt cells and negatively controls the expression of a subset of differentiation markers, in cultured cells and mice. H2A.Z impairs the recruitment of the intestine-specific transcription factor CDX2 to chromatin, is itself a target of the Wnt pathway and thus, acts as an integrator for Wnt signaling in the control of intestinal epithelial cell fate and homeostasis. The histone variant, H2A.Z is known to regulate gene expression and cell proliferation. Here the authors show that H2A.Z has a central role in the control of intestinal epithelial homeostasis in mice, by preventing terminal differentiation of intestinal progenitors.
Collapse
|
27
|
Read JE, Cabrera-Sharp V, Offord V, Mirczuk SM, Allen SP, Fowkes RC, de Mestre AM. Dynamic changes in gene expression and signalling during trophoblast development in the horse. Reproduction 2018; 156:313-330. [PMID: 30306765 PMCID: PMC6170800 DOI: 10.1530/rep-18-0270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022]
Abstract
Equine chorionic girdle trophoblast cells play important endocrine and immune functions critical in supporting pregnancy. Very little is known about the genes and pathways that regulate chorionic girdle trophoblast development. Our aim was to identify genes and signalling pathways active in vivo in equine chorionic girdle trophoblast within a critical 7-days window. We exploited the late implantation of the equine conceptus to obtain trophoblast tissue. An Agilent equine 44K microarray was performed using RNA extracted from chorionic girdle and chorion (control) from equine pregnancy days 27, 30, 31 and 34 (n = 5), corresponding to the initiation of chorionic girdle trophoblast proliferation, differentiation and migration. Data were analysed using R packages limma and maSigPro, Ingenuity Pathway Analysis and DAVID and verified using qRT-PCR, promoter analysis, western blotting and migration assays. Microarray analysis showed gene expression (absolute log FC >2, FDR-adjusted P < 0.05) was rapidly and specifically induced in the chorionic girdle between days 27 and 34 (compared to day 27, day 30 = 116, day 31 = 317, day 34 = 781 genes). Pathway analysis identified 35 pathways modulated during chorionic girdle development (e.g. FGF, integrin, Rho GTPases, MAPK) including pathways that have limited description in mammalian trophoblast (e.g. IL-9, CD40 and CD28 signalling). Rho A and ERK/MAPK activity was confirmed as was a role for transcription factor ELF5 in regulation of the CGB promoter. The purity and accessibility of chorionic girdle trophoblast proved to be a powerful resource to identify candidate genes and pathways involved in early equine placental development.
Collapse
Affiliation(s)
- Jordan E Read
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| | - Victoria Cabrera-Sharp
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| | - Victoria Offord
- Research Support OfficeThe Royal Veterinary College, London, UK
| | - Samantha M Mirczuk
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| | - Steve P Allen
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| | - Robert C Fowkes
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| | - Amanda M de Mestre
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| |
Collapse
|
28
|
Lashgari A, Fauteux M, Maréchal A, Gaudreau L. Cellular Depletion of BRD8 Causes p53-Dependent Apoptosis and Induces a DNA Damage Response in Non-Stressed Cells. Sci Rep 2018; 8:14089. [PMID: 30237520 PMCID: PMC6147888 DOI: 10.1038/s41598-018-32323-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 09/06/2018] [Indexed: 12/30/2022] Open
Abstract
Regulation of the chromatin state is crucial for biological processes such as the regulation of transcription, DNA replication, and DNA damage repair. Here we show that knockdown of the BRD8 bromodomain protein – a subunit of the p400/Tip60 complex - leads to p21 induction, and concomitant cell cycle arrest in G1/S. We further demonstrate that the p53 transcriptional pathway is activated in BRD8-depleted cells, and this accounts for upregulation of not only p21 but also of pro-apoptotic genes, leading to subsequent apoptosis. Importantly, the DNA damage response (DDR) is induced upon BRD8 depletion, and DNA damage foci are detectable in BRD8-depleted cells under normal growth conditions. Consistently with an activated DDR, we find that in BRD8-depleted cells, the ATM-CHK2 DDR pathway is turned on but, CHK1 proteins levels are severely reduced and replication stress is detectable as enhanced replication protein A (RPA32) phosphorylation levels. Notably, acetylation of histone H4 at K16 (H4K16ac) is reduced in BRD8-depleted cells, suggesting that BRD8 may have a role in the recruitment and/or stabilization of the p400/Tip60 complex within chromatin, thereby facilitating DNA repair. Taken together, our results suggest that BRD8 is involved not only in p53-dependent gene suppression, but also in the maintenance of genome stability.
Collapse
Affiliation(s)
- Anahita Lashgari
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Myriam Fauteux
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Alexandre Maréchal
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Luc Gaudreau
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
29
|
Idrissou M, Rifaï K, Daures M, Penault-Llorca F, Bignon YJ, Bernard-Gallon D. Exciting History of Tip60 and Its Companions in Carcinogenesis Across the Heterochromatin Landscapes. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:626-628. [PMID: 30106669 DOI: 10.1089/omi.2018.0122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Mouhamed Idrissou
- 1 Department of Oncogenetics, Centre Jean Perrin , CBRV, Clermont-Ferrand, France .,2 INSERM U 1240-IMOST , Clermont-Ferrand, France
| | - Khaldoun Rifaï
- 1 Department of Oncogenetics, Centre Jean Perrin , CBRV, Clermont-Ferrand, France .,2 INSERM U 1240-IMOST , Clermont-Ferrand, France
| | - Marine Daures
- 1 Department of Oncogenetics, Centre Jean Perrin , CBRV, Clermont-Ferrand, France .,2 INSERM U 1240-IMOST , Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- 1 Department of Oncogenetics, Centre Jean Perrin , CBRV, Clermont-Ferrand, France .,3 Department of Biopathology, Centre Jean Perrin , Clermont-Ferrand, France
| | - Yves-Jean Bignon
- 1 Department of Oncogenetics, Centre Jean Perrin , CBRV, Clermont-Ferrand, France .,2 INSERM U 1240-IMOST , Clermont-Ferrand, France
| | - Dominique Bernard-Gallon
- 1 Department of Oncogenetics, Centre Jean Perrin , CBRV, Clermont-Ferrand, France .,2 INSERM U 1240-IMOST , Clermont-Ferrand, France
| |
Collapse
|
30
|
Rust K, Tiwari MD, Mishra VK, Grawe F, Wodarz A. Myc and the Tip60 chromatin remodeling complex control neuroblast maintenance and polarity in Drosophila. EMBO J 2018; 37:embj.201798659. [PMID: 29997178 DOI: 10.15252/embj.201798659] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 02/04/2023] Open
Abstract
Stem cells establish cortical polarity and divide asymmetrically to simultaneously maintain themselves and generate differentiating offspring cells. Several chromatin modifiers have been identified as stemness factors in mammalian pluripotent stem cells, but whether these factors control stem cell polarity and asymmetric division has not been investigated so far. We addressed this question in Drosophila neural stem cells called neuroblasts. We identified the Tip60 chromatin remodeling complex and its interaction partner Myc as regulators of genes required for neuroblast maintenance. Knockdown of Tip60 complex members results in loss of cortical polarity, symmetric neuroblast division, and premature differentiation through nuclear entry of the transcription factor Prospero. We found that aPKC is the key target gene of Myc and the Tip60 complex subunit Domino in regulating neuroblast polarity. Our transcriptome analysis further showed that Domino regulates the expression of mitotic spindle genes previously identified as direct Myc targets. Our findings reveal an evolutionarily conserved functional link between Myc, the Tip60 complex, and the molecular network controlling cell polarity and asymmetric cell division.
Collapse
Affiliation(s)
- Katja Rust
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany .,Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne, Germany.,Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August University Göttingen, Göttingen, Germany.,Department of Anatomy and OB-GYN/RS, University of California, San Francisco, San Francisco, CA, USA
| | - Manu D Tiwari
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany.,Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne, Germany.,Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August University Göttingen, Göttingen, Germany
| | - Vivek Kumar Mishra
- Department of Dermatology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Ferdi Grawe
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany
| | - Andreas Wodarz
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany .,Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne, Germany.,Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August University Göttingen, Göttingen, Germany
| |
Collapse
|
31
|
Jaiswal B, Gupta A. Modulation of Nuclear Receptor Function by Chromatin Modifying Factor TIP60. Endocrinology 2018; 159:2199-2215. [PMID: 29420715 DOI: 10.1210/en.2017-03190] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023]
Abstract
Nuclear receptors (NRs) are transcription factors that bind to specific DNA sequences known as hormone response elements located upstream of their target genes. Transcriptional activity of NRs can be modulated by binding of the compatible ligand and transient interaction with cellular coregulators, functioning either as coactivators or as corepressors. Many coactivator proteins possess intrinsic histone acetyltransferase (HAT) activity that catalyzes the acetylation of specific lysine residues in histone tails and loosens the histone-DNA interaction, thereby facilitating access of transcriptional factors to the regulatory sequences of the DNA. Tat interactive protein 60 (TIP60), a member of the Mof-Ybf2-Sas2-TIP60 family of HAT protein, is a multifunctional coregulator that controls a number of physiological processes including apoptosis, DNA damage repair, and transcriptional regulation. Over the last two decades or so, TIP60 has been extensively studied for its role as NR coregulator, controlling various aspect of steroid receptor functions. The aim of this review is to summarize the findings on the role of TIP60 as a coregulator for different classes of NRs and its overall functional implications. We also discuss the latest studies linking TIP60 to NR-associated metabolic disorders and cancers for its potential use as a therapeutic drug target in future.
Collapse
Affiliation(s)
- Bharti Jaiswal
- Department of Life Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Ashish Gupta
- Department of Life Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
32
|
Ghobashi AH, Kamel MA. Tip60: updates. J Appl Genet 2018; 59:161-168. [PMID: 29549519 DOI: 10.1007/s13353-018-0432-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/28/2018] [Accepted: 01/31/2018] [Indexed: 12/21/2022]
Abstract
The maintenance of genome integrity is essential for organism survival. Therefore, eukaryotic cells possess many DNA repair mechanisms in response to DNA damage. Acetyltransferase, Tip60, plays a central role in ATM and p53 activation which are involved in DNA repair. Recent works uncovered the roles of Tip60 in ATM and p53 activation and how Tip60 is recruited to double-strand break sites. Moreover, recent works have demonstrated the role of Tip60 in cancer progression. Here, we review the current understanding of how Tip60 activates both ATM and p53 in response to DNA damage and his new roles in tumorigenesis.
Collapse
Affiliation(s)
- Ahmed H Ghobashi
- Human Genetics Department, Medical Research Institute, Alexandria University, 165 El Horreya Street, Alexandria, Egypt.
| | - Maher A Kamel
- Biochemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
33
|
Hosseini A, Minucci S. Alterations of Histone Modifications in Cancer. EPIGENETICS IN HUMAN DISEASE 2018:141-217. [DOI: 10.1016/b978-0-12-812215-0.00006-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
34
|
Yang Y, Sun J, Chen T, Tao Z, Zhang X, Tian F, Zhou X, Lu D. Tat-interactive Protein-60KDA (TIP60) Regulates the Tumorigenesis of Lung Cancer In Vitro. J Cancer 2017; 8:2277-2281. [PMID: 28819431 PMCID: PMC5560146 DOI: 10.7150/jca.19677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023] Open
Abstract
Histone acetyltransferases (HATs) play vital functions in the tumorigenesis of many solid organ malignancies. We previously screened a human HATs cDNA library and identified Tat-interactive protein-60KDa (TIP60) as a candidate critical HATs in the origination of lung cancer. In this study, our data suggested that overexpression of TIP60 inhibited the cell viability of A549 and H1299 cells since day 2. Compared to the control group, the viability of these two lung cancer cells was inhibited by 25% and 19% at day 6 with the overexpression of TIP60. It increased by 36% and 26% when TIP60 was knockdown for 6 days. The invasion ability of these two cells was also restrained when TIP60 was overexpressed. While knockdown of TIP60 had the opposite effect. Inhibition of TIP60 significantly promoted the expression of molecules in AKT signaling pathway especially c-Myc. Furthermore, compared to paired tumor-adjacent tissue, lung cancer tumors had low expression of TIP60. Therefore, we concluded that TIP60 might inhibit the viability and invasion ability of lung cancer cells through down-regulation of AKT signaling pathway.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital (Tongji University), Shanghai 200433, China
| | - Jian Sun
- Department of General Surgery, the branch of Shanghai First People's Hospital, Shanghai 200081, China
| | - Ting Chen
- Department of Pharmacy, Xin-hua Hospital Affiliated to Medical School, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Zengyue Tao
- Department of General Surgery, the branch of Shanghai First People's Hospital, Shanghai 200081, China
| | - Xianwei Zhang
- Department of General Surgery, the branch of Shanghai First People's Hospital, Shanghai 200081, China
| | - Feng Tian
- Department of Pharmacy, the branch of Shanghai First People's Hospital, Shanghai 200081, China
| | - Xiao Zhou
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital (Tongji University), Shanghai 200433, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
35
|
Abstract
Two opposing enzyme classes regulate fundamental elements of genome maintenance, gene regulation and metabolism, either through addition of an acetyl moiety by histone acetyltransferases (HATs) or its removal by histone de-acetyltransferases (HDAC), and are exciting targets for drug development. Importantly, dysfunctional acetylation has been implicated in numerous diseases, including cancer. Within the HAT superfamily the MYST family holds particular interest, as its members are directly involved in the DNA damage response and repair pathways and crucially, several members have been shown to be down-regulated in common cancers (such as breast and prostate). In the present study we focus on the development of lysine (K) acetyltransferase inhibitors (KATi) targeting the MYST family member Tip60 (Kat5), an essential protein, designed or discovered through screening libraries. Importantly, Tip60 has been demonstrated to be significantly down-regulated in many cancers which urgently require new treatment options. We highlight current and future efforts employing these KATi as cancer treatments and their ability to synergize and enhance current cancer treatments. We investigate the different methods of KATi production or discovery, their mechanisms and their validation models. Importantly, the utility of KATi is based on a key concept: using KATi to abrogate the activity of an already down-regulated essential protein (effectively creating a lethal knockout) provides another innovative mechanism for targeting cancer cells, while significantly minimizing any off-target effects to normal cells. This approach, combined with the rapidly developing interest in KATi, suggests that KATi have a bright future for providing truly personalized therapies.
Collapse
|
36
|
Heo SG, Koh Y, Kim JK, Jung J, Kim HL, Yoon SS, Park JW. Identification of somatic mutations using whole-exome sequencing in Korean patients with acute myeloid leukemia. BMC MEDICAL GENETICS 2017; 18:23. [PMID: 28249600 PMCID: PMC5333433 DOI: 10.1186/s12881-017-0382-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 02/15/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a biologically and clinically heterogeneous cancer of the bone marrow that is characterized by the rapid growth of abnormal myeloid cells. METHODS We performed a mutational analysis to identify AML somatic mutations using the whole-exome sequencing data of 36 tumor-normal sample pairs from Korean patients with de novo AML. We explored the functional impact of the genes identified in the mutational analyses through an integrated Gene Ontology (GO) and pathway analysis. RESULTS A total of 11 genes, including NEFH (p = 6.27 × 10-13 and q = 1.18 × 10-8) and TMPRSS13 (p = 1.40 × 10-10 and q = 1.32 × 10-6), also demonstrated q values less than 0.1 in 36 Korean AML patients. Five out of the 11 novel genes have previously been reported to be associated with other cancers. Two gene mutations, CEBPA (p = 5.22 × 10-5) and ATXN3 (p = 9.75 × 10-4), showed statistical significance exclusively in the M2 and M3 subtypes of the French-American-British classifications, respectively. A total of 501 genes harbored 478 missense, 22 nonsense, 93 frameshift indels, and/or three stop codon deletions and these gene mutations significantly enriched GO terms for signal transduction (GO:0007165, p = 1.77 × 10-3), plasma membrane (GO:0005886, p = 3.07 × 10-4), and scaffold protein binding (GO:0097110, p = 8.65 × 10-4). The mitogen-activated protein kinase (hsa04010, 7.67 × 10-4) was the most enriched Kyoto Encyclopedia of Genes and Genomes pathway. CONCLUSIONS Morphological AML subtypes may in part reflect subtype specific patterns of genomic alterations. Following validation, future studies to evaluate the usefulness of these genes in genetic testing for the early diagnosis and prognostic prediction of AML patients would be worthwhile.
Collapse
Affiliation(s)
- Seong Gu Heo
- Department of Medical Genetics, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jong Kwang Kim
- Omics Core Lab., National Cancer Center, Goyang, Republic of Korea.,The Catholic University, Seoul, Republic of Korea
| | | | - Hyung-Lae Kim
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ji Wan Park
- Department of Medical Genetics, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea.
| |
Collapse
|
37
|
Pandey AK, Zhang Y, Zhang S, Li Y, Tucker-Kellogg G, Yang H, Jha S. TIP60-miR-22 axis as a prognostic marker of breast cancer progression. Oncotarget 2016; 6:41290-306. [PMID: 26512777 PMCID: PMC4747406 DOI: 10.18632/oncotarget.5636] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/12/2015] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are 22- to 24-nucleotide, small, non-coding RNAs that bind to the 3′UTR of target genes to control gene expression. Consequently, their dysregulation contributes to many diseases, including diabetes and cancer. miR-22 is up-regulated in numerous metastatic cancers and recent studies have suggested a role for miR-22 in promoting stemness and metastasis. TIP60 is a lysine acetyl-transferase reported to be down-regulated in cancer but the molecular mechanism of this reduction is still unclear. In this study, we identify TIP60 as a target of miR-22. We show a negative correlation in the expression of TIP60 and miR-22 in breast cancer patients, and show that low levels of TIP60 and high levels of miR-22 are associated with poor overall survival. Furthermore, pathway analysis using high miR-22/low TIP60 and low miR-22/high TIP60 breast cancer patient datasets suggests association of TIP60/miR-22 with epithelial-mesenchymal transition (EMT), a key alteration in progression of cancer cells. We show that blocking endogenous miR-22 can restore TIP60 levels, which in turn decreases the migration and invasion capacity of metastatic breast cancer cell line. These results provide mechanistic insight into TIP60 regulation and evidence for the utility of the combination of TIP60 and miR-22 as prognostic indicator of breast cancer progression.
Collapse
Affiliation(s)
- Amit Kumar Pandey
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yanzhou Zhang
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Siting Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Ying Li
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Greg Tucker-Kellogg
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sudhakar Jha
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
38
|
Abstract
SUMMARYEpigenetic changes are present in all human cancers and are now known to cooperate with genetic alterations to drive the cancer phenotype. These changes involve DNA methylation, histone modifiers and readers, chromatin remodelers, microRNAs, and other components of chromatin. Cancer genetics and epigenetics are inextricably linked in generating the malignant phenotype; epigenetic changes can cause mutations in genes, and, conversely, mutations are frequently observed in genes that modify the epigenome. Epigenetic therapies, in which the goal is to reverse these changes, are now one standard of care for a preleukemic disorder and form of lymphoma. The application of epigenetic therapies in the treatment of solid tumors is also emerging as a viable therapeutic route.
Collapse
Affiliation(s)
- Stephen B Baylin
- Cancer Biology Program, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287
| | - Peter A Jones
- Van Andel Research Institute, Grand Rapids, Michigan 49503
| |
Collapse
|
39
|
Gursoy-Yuzugullu O, House N, Price BD. Patching Broken DNA: Nucleosome Dynamics and the Repair of DNA Breaks. J Mol Biol 2016; 428:1846-60. [PMID: 26625977 PMCID: PMC4860187 DOI: 10.1016/j.jmb.2015.11.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/12/2015] [Accepted: 11/21/2015] [Indexed: 01/07/2023]
Abstract
The ability of cells to detect and repair DNA double-strand breaks (DSBs) is dependent on reorganization of the surrounding chromatin structure by chromatin remodeling complexes. These complexes promote access to the site of DNA damage, facilitate processing of the damaged DNA and, importantly, are essential to repackage the repaired DNA. Here, we will review the chromatin remodeling steps that occur immediately after DSB production and that prepare the damaged chromatin template for processing by the DSB repair machinery. DSBs promote rapid accumulation of repressive complexes, including HP1, the NuRD complex, H2A.Z and histone methyltransferases at the DSB. This shift to a repressive chromatin organization may be important to inhibit local transcription and limit mobility of the break and to maintain the DNA ends in close contact. Subsequently, the repressive chromatin is rapidly dismantled through a mechanism involving dynamic exchange of the histone variant H2A.Z. H2A.Z removal at DSBs alters the acidic patch on the nucleosome surface, promoting acetylation of the H4 tail (by the NuA4-Tip60 complex) and shifting the chromatin to a more open structure. Further, H2A.Z removal promotes chromatin ubiquitination and recruitment of additional DSB repair proteins to the break. Modulation of the nucleosome surface and nucleosome function during DSB repair therefore plays a vital role in processing of DNA breaks. Further, the nucleosome surface may function as a central hub during DSB repair, directing specific patterns of histone modification, recruiting DNA repair proteins and modulating chromatin packing during processing of the damaged DNA template.
Collapse
Affiliation(s)
- Ozge Gursoy-Yuzugullu
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02132, USA, T: 617 632-4946,
| | - Nealia House
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02132, USA, T: 617 632-4946,
| | - Brendan D Price
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02132, USA, T: 617 632-4946,
| |
Collapse
|
40
|
Yang HD, Kim PJ, Eun JW, Shen Q, Kim HS, Shin WC, Ahn YM, Park WS, Lee JY, Nam SW. Oncogenic potential of histone-variant H2A.Z.1 and its regulatory role in cell cycle and epithelial-mesenchymal transition in liver cancer. Oncotarget 2016; 7:11412-11423. [PMID: 26863632 PMCID: PMC4905482 DOI: 10.18632/oncotarget.7194] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/23/2016] [Indexed: 12/28/2022] Open
Abstract
H2A.Z is a highly conserved H2A variant, and two distinct H2A.Z isoforms, H2A.Z.1 and H2A.Z.2, have been identified as products of two non-allelic genes, H2AFZ and H2AFV. H2A.Z has been reported to be overexpressed in breast, prostate and bladder cancers, but most studies did not clearly distinguish between isoforms. One recent study reported a unique role for the H2A.Z isoform H2A.Z.2 as a driver of malignant melanoma. Here we first report that H2A.Z.1 plays a pivotal role in the liver tumorigenesis by selectively regulating key molecules in cell cycle and epithelial-mesenchymal transition (EMT). H2AFZ expression was significantly overexpressed in a large cohort of hepatocellular carcinoma (HCC) patients, and high expression of H2AFZ was significantly associated with their poor prognosis. H2A.Z.1 overexpression was demonstrated in a subset of human HCC and cell lines. H2A.Z.1 knockdown suppressed HCC cell growth by transcriptional deregulation of cell cycle proteins and caused apoptotic cell death of HCC cells. We also observed that H2A.Z.1 knockdown reduced the metastatic potential of HCC cells by selectively modulating epithelial-mesenchymal transition regulatory proteins such as E-cadherin and fibronectin. In addition, H2A.Z.1 knockdown reduced the in vivo tumor growth rate in a mouse xenograft model. In conclusion, our findings suggest the oncogenic potential of H2A.Z.1 in liver tumorigenesis and that it plays established role in accelerating cell cycle transition and EMT during hepatocarcinogenesis. This makes H2A.Z.1 a promising target in liver cancer therapy.
Collapse
Affiliation(s)
- Hee Doo Yang
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Pum-Joon Kim
- Department of Cardiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jung Woo Eun
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Qingyu Shen
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyung Seok Kim
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Woo Chan Shin
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Young Min Ahn
- Department of Kidney System, College of Oriental Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Won Sang Park
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jung Young Lee
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Suk Woo Nam
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Cancer Evolution Research Center, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
41
|
Grézy A, Chevillard-Briet M, Trouche D, Escaffit F. Control of genetic stability by a new heterochromatin compaction pathway involving the Tip60 histone acetyltransferase. Mol Biol Cell 2015; 27:599-607. [PMID: 26700317 PMCID: PMC4750920 DOI: 10.1091/mbc.e15-05-0316] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 12/18/2015] [Indexed: 02/02/2023] Open
Abstract
A new compaction pathway of mammalian pericentric heterochromatin is identified, which relies on H4K12ac by Tip60, probably followed by recruitment of BRD2, and therefore chromatin compaction, which can contribute to genetic stability. Pericentric heterochromatin is a highly compacted structure required for accurate chromosome segregation in mitosis. In mammals, it relies on methylation of histone H3K9 by Suv39H enzymes, which provides a docking site for HP1 proteins, therefore mediating heterochromatin compaction. Here we show that, when this normal compaction pathway is defective, the histone acetyltransferase Tip60 is recruited to pericentric heterochromatin, where it mediates acetylation of histone H4K12. Furthermore, in such a context, depletion of Tip60 leads to derepression of satellite transcription, decompaction of pericentric heterochromatin, and defects in chromosome segregation in mitosis. Finally, we show that depletion of BRD2, a double bromodomain–containing protein that binds H4K12ac, phenocopies the Tip60 depletion with respect to heterochromatin decompaction and defects in chromosome segregation. Taking the results together, we identify a new compaction pathway of mammalian pericentric heterochromatin relying on Tip60 that might be dependent on BRD2 recruitment by H4K12 acetylation. We propose that the underexpression of Tip60 observed in many human tumors can promote genetic instability via defective pericentric heterochromatin.
Collapse
Affiliation(s)
- Aude Grézy
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Center for Integrative Biology, Université de Toulouse, UPS and CNRS, F-31062 Toulouse, France
| | - Martine Chevillard-Briet
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Center for Integrative Biology, Université de Toulouse, UPS and CNRS, F-31062 Toulouse, France
| | - Didier Trouche
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Center for Integrative Biology, Université de Toulouse, UPS and CNRS, F-31062 Toulouse, France
| | - Fabrice Escaffit
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Center for Integrative Biology, Université de Toulouse, UPS and CNRS, F-31062 Toulouse, France
| |
Collapse
|
42
|
Judes G, Rifaï K, Ngollo M, Daures M, Bignon YJ, Penault-Llorca F, Bernard-Gallon D. A bivalent role of TIP60 histone acetyl transferase in human cancer. Epigenomics 2015; 7:1351-63. [PMID: 26638912 DOI: 10.2217/epi.15.76] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Acetylation is a major modification that is required for gene regulation, genome maintenance and metabolism. A dysfunctional acetylation plays an important role in several diseases, including cancer. A group of enzymes-lysine acetyltransferases are responsible for this modification and act in regulation of transcription as cofactors and by acetylation of histones and other proteins. Tip60, a member of MYST family, is expressed ubiquitously and is the acetyltransferase catalytic subunit of human NuA4 complex. This HAT has a well-characterized involvement in many processes, such as cellular signaling, DNA damage repair, transcriptional and cellular cycle. Aberrant lysine acetyltransferase functions promote or suppress tumorigenesis in different cancers such as colon, breast and prostate tumors. Therefore, Tip60 might be a potential and important therapeutic target in the cancer treatment; new histone acetyl transferase inhibitors were identified and are more selective inhibitors of Tip60.
Collapse
Affiliation(s)
- Gaëlle Judes
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Khaldoun Rifaï
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Marjolaine Ngollo
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Marine Daures
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France.,Centre Jean Perrin, Laboratory of Biopathology, 63011 Clermont-Ferrand, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| |
Collapse
|
43
|
Taty-Taty GC, Chailleux C, Quaranta M, So A, Guirouilh-Barbat J, Lopez BS, Bertrand P, Trouche D, Canitrot Y. Control of alternative end joining by the chromatin remodeler p400 ATPase. Nucleic Acids Res 2015; 44:1657-68. [PMID: 26578561 PMCID: PMC4770216 DOI: 10.1093/nar/gkv1202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022] Open
Abstract
Repair of DNA double-strand breaks occurs in a chromatin context that needs to be modified and remodeled to allow suitable access to the different DNA repair machineries. Of particular importance for the maintenance of genetic stability is the tight control of error-prone pathways, such as the alternative End Joining pathway. Here, we show that the chromatin remodeler p400 ATPase is a brake to the use of alternative End Joining. Using specific intracellular reporter susbstrates we observed that p400 depletion increases the frequency of alternative End Joining events, and generates large deletions following repair of double-strand breaks. This increase of alternative End Joining events is largely dependent on CtIP-mediated resection, indicating that it is probably related to the role of p400 in late steps of homologous recombination. Moreover, p400 depletion leads to the recruitment of poly(ADP) ribose polymerase (PARP) and DNA ligase 3 at DNA double-strand breaks, driving to selective killing by PARP inhibitors. All together these results show that p400 acts as a brake to prevent alternative End Joining-dependent genetic instability and underline its potential value as a clinical marker.
Collapse
Affiliation(s)
- Gemael-Cedrick Taty-Taty
- Université de Toulouse, UPS, LBCMCP, F-31062 Toulouse, France CNRS UMR5088, LBCMCP, F-31062 Toulouse, France
| | - Catherine Chailleux
- Université de Toulouse, UPS, LBCMCP, F-31062 Toulouse, France CNRS UMR5088, LBCMCP, F-31062 Toulouse, France
| | - Muriel Quaranta
- Université de Toulouse, UPS, LBCMCP, F-31062 Toulouse, France CNRS UMR5088, LBCMCP, F-31062 Toulouse, France
| | - Ayeong So
- Université Paris Sud, CNRS UMR8200, IGR, Villejuif, France
| | | | | | - Pascale Bertrand
- CEA DSV, UMR 967 CEA-INSERM-Université Paris Diderot-Université Paris Sud, Fontenay aux roses, France
| | - Didier Trouche
- Université de Toulouse, UPS, LBCMCP, F-31062 Toulouse, France CNRS UMR5088, LBCMCP, F-31062 Toulouse, France
| | - Yvan Canitrot
- Université de Toulouse, UPS, LBCMCP, F-31062 Toulouse, France CNRS UMR5088, LBCMCP, F-31062 Toulouse, France
| |
Collapse
|
44
|
Farria A, Li W, Dent SYR. KATs in cancer: functions and therapies. Oncogene 2015; 34:4901-13. [PMID: 25659580 PMCID: PMC4530097 DOI: 10.1038/onc.2014.453] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 12/12/2022]
Abstract
Post-translational acetylation of lysines is most extensively studied in histones, but this modification is also found in many other proteins and is implicated in a wide range of biological processes in both the cell nucleus and the cytoplasm. Like phosphorylation, acetylation patterns and levels are often altered in cancer, therefore small molecule inhibition of enzymes that regulate acetylation and deacetylation offers much potential for inhibiting cancer cell growth, as does disruption of interactions between acetylated residues and ‘reader’ proteins. For more than a decade now, histone deacetylase (HDAC) inhibitors have been investigated for their ability to increase acetylation and promote expression of tumor suppressor genes. However, emerging evidence suggests that acetylation can also promote cancer, in part by enhancing the functions of oncogenic transcription factors. In this review we focus on how acetylation of both histone and non-histone proteins may drive cancer, and we will discuss the implications of such changes on how patients are assigned to therapeutic agents. Finally, we will explore what the future holds in the design of small molecule inhibitors for modulation of levels or functions of acetylation states.
Collapse
Affiliation(s)
- A Farria
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Graduate School of Biomedical Sciences, University of Texas M.D Anderson Cancer Center Science Park, Smithville, Texas, USA
| | - W Li
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Graduate School of Biomedical Sciences, University of Texas M.D Anderson Cancer Center Science Park, Smithville, Texas, USA
| | - S Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Graduate School of Biomedical Sciences, University of Texas M.D Anderson Cancer Center Science Park, Smithville, Texas, USA
| |
Collapse
|
45
|
Gao C, Bourke E, Scobie M, Famme MA, Koolmeister T, Helleday T, Eriksson LA, Lowndes NF, Brown JAL. Rational design and validation of a Tip60 histone acetyltransferase inhibitor. Sci Rep 2014; 4:5372. [PMID: 24947938 PMCID: PMC4064327 DOI: 10.1038/srep05372] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/02/2014] [Indexed: 12/31/2022] Open
Abstract
Histone acetylation is required for many aspects of gene regulation, genome maintenance and metabolism and dysfunctional acetylation is implicated in numerous diseases, including cancer. Acetylation is regulated by histone acetyltransferases (HATs) and histone deacetylases and currently, few general HAT inhibitors have been described. We identified the HAT Tip60 as an excellent candidate for targeted drug development, as Tip60 is a key mediator of the DNA damage response and transcriptional co-activator. Our modeling of Tip60 indicated that the active binding pocket possesses opposite charges at each end, with the positive charges attributed to two specific side chains. We used structure based drug design to develop a novel Tip60 inhibitor, TH1834, to fit this specific pocket. We demonstrate that TH1834 significantly inhibits Tip60 activity in vitro and treating cells with TH1834 results in apoptosis and increased unrepaired DNA damage (following ionizing radiation treatment) in breast cancer but not control cell lines. Furthermore, TH1834 did not affect the activity of related HAT MOF, as indicated by H4K16Ac, demonstrating specificity. The modeling and validation of the small molecule inhibitor TH1834 represents a first step towards developing additional specific, targeted inhibitors of Tip60 that may lead to further improvements in the treatment of breast cancer.
Collapse
Affiliation(s)
- Chunxia Gao
- 1] School of Chemistry, National University of Ireland Galway, Galway, Ireland [2] Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden [3]
| | - Emer Bourke
- 1] Discipline of Pathology, School of Medicine, Clinical Science Institute, Costello Road, National University of Ireland Galway, Galway, Ireland [2]
| | - Martin Scobie
- 1] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden [2]
| | - Melina Arcos Famme
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Tobias Koolmeister
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Leif A Eriksson
- 1] School of Chemistry, National University of Ireland Galway, Galway, Ireland [2] Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden [3]
| | - Noel F Lowndes
- Genome Stability Laboratory, Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - James A L Brown
- 1] Genome Stability Laboratory, Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland [2] [3]
| |
Collapse
|
46
|
Hann SR. MYC cofactors: molecular switches controlling diverse biological outcomes. Cold Spring Harb Perspect Med 2014; 4:a014399. [PMID: 24939054 DOI: 10.1101/cshperspect.a014399] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The transcription factor MYC has fundamental roles in proliferation, apoptosis, tumorigenesis, and stem cell pluripotency. Over the last 30 years extensive information has been gathered on the numerous cofactors that interact with MYC and the target genes that are regulated by MYC as a means of understanding the molecular mechanisms controlling its diverse roles. Despite significant advances and perhaps because the amount of information learned about MYC is overwhelming, there has been little consensus on the molecular functions of MYC that mediate its critical biological roles. In this perspective, the major MYC cofactors that regulate the various transcriptional activities of MYC, including canonical and noncanonical transactivation and transcriptional repression, will be reviewed and a model of how these transcriptional mechanisms control MYC-mediated proliferation, apoptosis, and tumorigenesis will be presented. The basis of the model is that a variety of cofactors form dynamic MYC transcriptional complexes that can switch the molecular and biological functions of MYC to yield a diverse range of outcomes in a cell-type- and context-dependent fashion.
Collapse
Affiliation(s)
- Stephen R Hann
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2175
| |
Collapse
|
47
|
Rouquier S, Pillaire MJ, Cazaux C, Giorgi D. Expression of the microtubule-associated protein MAP9/ASAP and its partners AURKA and PLK1 in colorectal and breast cancers. DISEASE MARKERS 2014; 2014:798170. [PMID: 24876664 PMCID: PMC4022107 DOI: 10.1155/2014/798170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 03/25/2014] [Accepted: 04/14/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Colorectal and breast cancers are among the most common cancers worldwide. They result from a conjugated deficiency of gene maintenance and cell cycle control. OBJECTIVE We investigate the expression of the microtubule-associated protein MAP9/ASAP and its two partners AURKA and PLK1 in colorectal tumors as well as in ductal breast cancers. MATERIALS AND METHODS 26 colorectal cancer samples and adjacent normal tissues and 77 ductal breast cancer samples from grade I to grade III were collected. Real-time quantitative PCR was used to analyse the expression of MAP9, AURKA, and PLK1. Results. Expression of MAP9 is downregulated in colorectal cancer compared to normal tissues (P > 10(-3)), whereas those of AURKA and PLK1 are upregulated (P > 10(-4)). In ductal breast cancer, we found a grade-dependent increase of AURKA expression (P > 10(-3)), while the variations of expression of MAP9 and PLK1 are not significant (P > 0.2). CONCLUSIONS MAP9 downregulation is associated with colorectal malignancy and could be used as a disease marker and a new drug target, while AURKA and PLK1 are upregulated. In ductal breast cancer, AURKA overexpression is strongly associated with the tumor grade and is therefore of prognostic value for the progression of the disease.
Collapse
Affiliation(s)
- Sylvie Rouquier
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier, France
| | - Marie-Jeanne Pillaire
- Cancer Research Center of Toulouse, U1037, ERL5294, INSERM, CNRS and University Paul Sabatier, University of Toulouse, 205, route de Narbonne, 31077 Toulouse Cedex, France
| | - Christophe Cazaux
- Cancer Research Center of Toulouse, U1037, ERL5294, INSERM, CNRS and University Paul Sabatier, University of Toulouse, 205, route de Narbonne, 31077 Toulouse Cedex, France
| | - Dominique Giorgi
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier, France
| |
Collapse
|
48
|
Chevillard-Briet M, Quaranta M, Grézy A, Mattera L, Courilleau C, Philippe M, Mercier P, Corpet D, Lough J, Ueda T, Fukunaga R, Trouche D, Escaffit F. Interplay between chromatin-modifying enzymes controls colon cancer progression through Wnt signaling. Hum Mol Genet 2013; 23:2120-31. [PMID: 24287617 DOI: 10.1093/hmg/ddt604] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cancer progression is associated with epigenetic alterations, such as changes in DNA methylation, histone modifications or variants incorporation. The p400 ATPase, which can incorporate the H2A.Z variant, and the Tip60 histone acetyltransferase are interacting chromatin-modifying proteins crucial for the control of cell proliferation. We demonstrate here that Tip60 acts as a tumor suppressor in colon, since mice heterozygous for Tip60 are more susceptible to chemically induced preneoplastic lesions and adenomas. Strikingly, heterozygosity for p400 reverses the Tip60-dependent formation of preneoplastic lesions, uncovering for the first time pro-oncogenic functions for p400. By genome-wide analysis and using a specific inhibitor in vivo, we demonstrated that these effects are dependent on Wnt signaling which is antagonistically impacted by p400 and Tip60: p400 directly favors the expression of a subset of Wnt-target genes and regulators, whereas Tip60 prevents β-catenin acetylation and activation. Taken together, our data underline the physiopathological importance of interplays between chromatin-modifying enzymes in the control of cancer-related signaling pathways.
Collapse
|
49
|
Deubiquitination of Tip60 by USP7 determines the activity of the p53-dependent apoptotic pathway. Mol Cell Biol 2013; 33:3309-20. [PMID: 23775119 DOI: 10.1128/mcb.00358-13] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tip60 is an essential acetyltransferase required for acetylation of nucleosomal histones and other nonhistone proteins. Tip60 acetylates the p53 tumor suppressor at lysine 120 (K120), a modification essential for p53-dependent induction of PUMA and apoptosis. It is known that Tip60 is turned over in cells by the ubiquitin-proteasome system. However, the deubiquitinase activity for stabilizing Tip60 is unknown. Here we show that USP7 interacts with and deubiquitinates Tip60 both in vitro and in vivo. USP7 deubiquitinase activity is required for the stabilization of Tip60 in order to operate an effective p53-dependent apoptotic pathway in response to genotoxic stress. Inhibiting USP7 with the small-molecule inhibitor P22077 attenuates the p53-dependent apoptotic pathway by destabilizing Tip60. P22077, however, is still cytotoxic, and this is partly due to destabilization of Tip60.
Collapse
|
50
|
Hu R, Wang E, Peng G, Dai H, Lin SY. Zinc finger protein 668 interacts with Tip60 to promote H2AX acetylation after DNA damage. Cell Cycle 2013; 12:2033-41. [PMID: 23777805 DOI: 10.4161/cc.25064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Many tumor suppressors play an important role in the DNA damage pathway. Zinc finger protein 668 (ZNF668) has recently been identified as one of the potential tumor suppressors in breast cancer, but its function in DNA damage response is unknown. Herein, we report that ZNF668 is a regulator of DNA repair. ZNF668 knockdown impairs cell survival after DNA damage without affecting the ATM/ATR DNA-damage signaling cascade. However, recruitment of repair proteins to DNA lesions is decreased. In response to IR, ZNF668 knockdown reduces Tip60-H2AX interaction and impairs IR-induced histone H2AX hyperacetylation, thus impairing chromatin relaxation. Impaired chromatin relaxation causes decreased recruitment of repair proteins to DNA lesions, defective homologous recombination (HR) repair and impaired cell survival after IR. In addition, ZNF668 knockdown decreased RPA phosphorylation and its recruitment to DNA damage foci in response to UV. In both IR and UV damage responses, chromatin relaxation counteracted the impaired loading of repair proteins and DNA repair defects in ZNF668-deficient U2OS cells, indicating that impeded chromatin accessibility at sites of DNA breaks caused the DNA repair defects observed in the absence of ZNF668. Our findings suggest that ZNF668 is a key molecule that links chromatin relaxation with DNA damage response in DNA repair control.
Collapse
Affiliation(s)
- Ruozhen Hu
- Department of Systems Biology; The University of Texas MD Anderson Cancer Center; Houston, TX, USA
| | | | | | | | | |
Collapse
|