1
|
MĂĄrquez-Mendoza JM, Baranda-Ăvila N, Lizano M, Langley E. Micro-RNAs targeting the estrogen receptor alpha involved in endocrine therapy resistance in breast cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167783. [PMID: 40057206 DOI: 10.1016/j.bbadis.2025.167783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
Endocrine therapy resistance (ETR) in breast cancer (BC) is a multicausal phenomenon with diverse alterations in the tumor cell interactome. Within these alterations, non-coding RNAs (ncRNAs) such as micro-RNAs (miRNAs) modulate the expression of tumor suppressor genes and proto-oncogenes, such as the ESR1 gene encoding estrogen receptor alpha (ERÎą). This work aims to review the effects of miRNAs targeting ERÎą mRNA and their mechanisms related to ETR in BC. A thorough review of the literature and an in silico study were carried out to elucidate the involvement of each miRNA, thus contributing to the understanding of ETR in BC.
Collapse
Affiliation(s)
- J M MĂĄrquez-Mendoza
- Programa de Doctorado en Ciencias BiomĂŠdicas, Instituto de Investigaciones BiomĂŠdicas, Universidad Nacional AutĂłnoma de MĂŠxico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - N Baranda-Ăvila
- Unidad de InvestigaciĂłn BiomĂŠdica en CĂĄncer, SubdirecciĂłn de InvestigaciĂłn BĂĄsica, Instituto Nacional de CancerologĂa, Mexico City 14080, Mexico
| | - M Lizano
- Unidad de InvestigaciĂłn BiomĂŠdica en CĂĄncer, SubdirecciĂłn de InvestigaciĂłn BĂĄsica, Instituto Nacional de CancerologĂa, Mexico City 14080, Mexico; Departamento de Medicina GenĂłmica y ToxicologĂa Ambiental, Instituto de Investigaciones BiomĂŠdicas, Universidad Nacional AutĂłnoma de MĂŠxico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - E Langley
- Unidad de InvestigaciĂłn BiomĂŠdica en CĂĄncer, SubdirecciĂłn de InvestigaciĂłn BĂĄsica, Instituto Nacional de CancerologĂa, Mexico City 14080, Mexico.
| |
Collapse
|
2
|
Jeong SJ, Lee KH, Cho JY. Comparative epigenomics to clinical trials in human breast cancer and canine mammary tumor. Anim Cells Syst (Seoul) 2025; 29:12-30. [PMID: 40115961 PMCID: PMC11924266 DOI: 10.1080/19768354.2025.2477024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
Epigenetics and epigenomics are captivating fields of molecular biology, dedicated to the exploration of heritable alterations in gene expression and cellular phenotypes, which transpire devoid of any discernible modifications to the fundamental DNA sequence. This intricate regulatory apparatus encompasses multiple mechanisms, prominently featuring DNA methylation, histone modifications, and the involvement of non-coding RNA molecules in pivotal roles. To achieve a comprehensive grasp of these diverse mechanisms, it is imperative to conduct research employing animal models as proxies for human studies. Since experimental animal models like mice and rats struggle to replicate the diverse environmental conditions experienced by humans, this review focuses on comparing common epigenetic alterations in naturally occurring tumors in canine models, which share the human environment, with those in humans. Through this, we emphasize the importance of an epigenetic regulation in the comparative medical approach to a deeper understanding of cancers and further development of cancer treatments. Additionally, we elucidate epigenetic modifications pertinent to specific developmental stages, the ageing process, and the progression of various diseases.
Collapse
Affiliation(s)
- Su-Jin Jeong
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Wollborn L, Webber JW, Alimena S, Mishra S, Sussman CB, Comrie CE, Packard DG, Williams M, Russell T, Fendler W, Chowdhury D, Elias KM. Effects of Clinical Covariates on Serum miRNA Expression among Women without Ovarian Cancer. Cancer Epidemiol Biomarkers Prev 2025; 34:385-393. [PMID: 38780899 PMCID: PMC11873719 DOI: 10.1158/1055-9965.epi-23-1355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/26/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Serum miRNAs are potential biomarkers for ovarian cancer; however, many factors may influence miRNA expression. To understand potential confounders in miRNA analysis, we examined how sociodemographic factors and comorbidities, including known ovarian cancer risk factors, influence serum miRNA levels in women without ovarian cancer. METHODS Data from 1,576 women from the Mass General Brigham Biobank collected between 2012 and 2019, excluding subjects previously or subsequently diagnosed with ovarian cancer, were examined. Using a focused panel of 179 miRNA probes optimized for serum profiling, miRNA expression was measured by flow cytometry using the Abcam FirePlex assay and correlated with subjects' electronic medical records. RESULTS The study population broadly reflected the New England population. The median age of subjects was 49 years, 34% were current or prior smokers, 33% were obese (body mass index > 30 kg/m2), 49% were postmenopausal, and 11% had undergone prior bilateral oophorectomy. Significant differences in miRNA expression were observed among ovarian risk factors such as age, obesity, menopause, BRCA1 or BRCA2 germline mutations, or existence of breast cancer in family history. Additionally, miRNA expression was significantly altered by prior bilateral oophorectomy, hypertension, and hypercholesterolemia. Other variables, such as smoking; parity; age at menarche; hormonal replacement therapy; oral contraception; breast, endometrial, or colon cancer; and diabetes, were not associated with significant changes in the panel when corrected for multiple testing. CONCLUSIONS Serum miRNA expression patterns are significantly affected by patient demographics, exposure history, and medical comorbidities. IMPACT Understanding confounders in serum miRNA expression is important for refining clinical assays for cancer screening.
Collapse
Affiliation(s)
- Laura Wollborn
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Reproductive Biology, Brigham and Womenâs Hospital, Boston, Massachusetts
| | - James W. Webber
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Reproductive Biology, Brigham and Womenâs Hospital, Boston, Massachusetts
| | - Stephanie Alimena
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Reproductive Biology, Brigham and Womenâs Hospital, Boston, Massachusetts
| | - Sudhanshu Mishra
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Reproductive Biology, Brigham and Womenâs Hospital, Boston, Massachusetts
| | | | | | | | | | | | - Wojciech Fendler
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biostatistics and Translational Medicine, Medical University of ĹĂłdĹş, ĹĂłdĹş, Poland
| | - Dipanjan Chowdhury
- Harvard Medical School, Boston, Massachusetts
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kevin M. Elias
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Reproductive Biology, Brigham and Womenâs Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
4
|
Mohammadloo A, Asgari Y, Esmaeili-Bandboni A, Mazloomi MA, Ghasemi SF, Ameri S, Miri SR, Hamzelou S, Mahmoudi HR, Veisi-Malekshahi Z. The Potential of Circulating miR-193b, miR-146b-3p and miR-483-3p as Noninvasive Biomarkers in Cutaneous Melanoma Patients. Mol Biotechnol 2024; 66:2830-2840. [PMID: 37934389 DOI: 10.1007/s12033-023-00893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/04/2023] [Indexed: 11/08/2023]
Abstract
Melanoma is a destructive skin disease with few therapeutic options in the developed stage and therefore there is a critical need for reliable biomarkers for early diagnosis. In this context, microRNAs could play an important role as diagnostic biomarkers. Three datasets with accession numbers GSE31568, GSE61741 and GSE20994 were downloaded from the Gene Expression Omnibus (GEO) database. MATLAB software was used to analyze differentially expressed miRNAs between cutaneous melanoma plasma samples and normal plasma samples (control). Plasma levels of miR-193b, miR-146b-3p and miR-483-3p were evaluated by the RT-PCR method. Furthermore, linear regression followed by receiver operating characteristic analyses was performed to estimate whether selected plasma miRNAs were able to distinguish between cases and controls. Finally, the data were analyzed by unpaired Mann-Whitney U test using Graph pad prism 8 computer software. Specifically, miR-193b and miR-146b-3p were downregulated in the plasma of melanoma patients compared with control groups which were decreased 5âĂâ10 6 -fold in miR-193b and 58-fold in miR-146b-3p, while miR-483-3p was upregulated 3.5-fold. After receiver operating characteristic (ROC) curve analysis, miR-193b with the most area under the curve (AUC: 1.00, 95% confidence interval 1.00-1.00, pâ<â0.0001) had the best discriminatory power, and miR-146b-3p had the large area under the curve (AUC: 0.96, 95% confidence interval 0.96-1.00, pâ<â0.0001) and consequently the high discriminatory power. Between these three miRNAs, miR-193b and miR-146b-3p had a high capacity to distinguish between melanoma patients and control groups that are appropriate to be applied in melanoma diagnosis as an early and noninvasive method.
Collapse
Affiliation(s)
- Atefeh Mohammadloo
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aghil Esmaeili-Bandboni
- Department of Medical Biotechnology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
- Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Ali Mazloomi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Fatemeh Ghasemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Ameri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Shahin Hamzelou
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mahmoudi
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ziba Veisi-Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Choudhury AR, Nagesh AM, Gupta S, Chaturvedi PK, Kumar N, Sandeep K, Pandey D. MicroRNA signature of stromal-epithelial interactions in prostate and breast cancers. Exp Cell Res 2024; 441:114171. [PMID: 39029573 DOI: 10.1016/j.yexcr.2024.114171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Stromal-epithelial communication is an absolute necessity when it comes to the morphogenesis and pathogenesis of solid tissues, including the prostate and breast. So far, signalling pathways of several growth factors have been investigated. Besides such chemical factors, non-coding RNAs such as miRNAs have recently gained much interest because of their variety and complexity of action. Prostate and breast tissues being highly responsive to steroid hormones such as androgen and estrogen, respectively, it is not surprising that a huge set of available literature critically investigated the interplay between such hormones and miRNAs, especially in carcinogenesis. This review showcases our effort to highlight hormonally-related miRNAs that also somehow perturb the regular stromal-epithelial interactions during carcinogenesis in the prostate and breast. In future, we look forward to exploring how hormonal changes in the tissue microenvironment bring about miRNA-mediated changes in stromal-epithelial interactome in carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- Ankit Roy Choudhury
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India; Department of Biology, Philipps University, Marburg, Germany
| | - A Muni Nagesh
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | - Surabhi Gupta
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Neeraj Kumar
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | - Kumar Sandeep
- Department of Preventive Oncology, Dr. Bhim Rao Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Pandey
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
6
|
Fadl J, Aljuhani RA, Albog YH, Khraisat AF, Alsubaie KA. Role of microRNA in Sex Steroid Hormones Signaling and Its Effect in Regulation of Endometrial, Ovarian, and Cervical Cancer: A Literature Review. Cureus 2024; 16:e54773. [PMID: 38523927 PMCID: PMC10961145 DOI: 10.7759/cureus.54773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Worldwide, in 2020, an estimated 417,367 people were diagnosed with uterine cancer. Endometrial cancer accounts for more than 90% of all uterine cancers. The 15th most frequent cancer overall and the sixth most frequent cancer in women is endometrial cancer. Global ovarian cancer Incidence was diagnosed estimated at 313,959 new cases worldwide in 2020. Cervical cancer is the fourth most common malignancy in women worldwide. It has been demonstrated that sex steroid hormones (SSHs) have an essential role in regulating the susceptibility of cancer to cytotoxic therapy. Dysregulation of DNA repair contributes to genomic instability, aberrant cell survival, and cancer development as well as therapy resistance. Several crucial DNA repair components have been discovered to interact with the three main SSHs: androgen, estrogen, and progesterone. MicroRNA (miRNA) dysregulation has been associated with aberrant sex steroid hormone signaling as well as an increased risk of endometrial, cervical, and ovarian cancer. The expression of estrogen and progesterone receptors is modulated by a number of miRNAs, and it has been demonstrated that the miRNA expression profile may predict the way a patient would respond to hormone therapy. Additionally, particular miRNAs have been linked to the control of genes involved in signaling pathways connected to hormones. Recent research has shown that miRNAs can modify hormone signaling pathways and affect the expression of sex steroid hormone receptors. Our goal in this literature review is to present an overview of current knowledge regarding the role of miRNAs in cancers regulated by sex steroid hormone pathways, as well as to identify particular miRNA targets for hormonal therapy.
Collapse
Affiliation(s)
- Jina Fadl
- Obstetrics and Gynaecology, Batterjee Medical College, Jeddah, SAU
| | | | - Yusef H Albog
- Obstetrics and Gynaecology, Batterjee Medical College, Jeddah, SAU
| | - Ayda F Khraisat
- Obstetrics and Gynaecology, Batterjee Medical College, Jeddah, SAU
| | | |
Collapse
|
7
|
Al-Kabariti AY, Abbas MA. Progress in the Understanding of Estrogen Receptor Alpha Signaling in Triple-Negative Breast Cancer: Reactivation of Silenced ER-Îą and Signaling through ER-Îą36. Mol Cancer Res 2023; 21:1123-1138. [PMID: 37462782 DOI: 10.1158/1541-7786.mcr-23-0321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 11/02/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive tumor that accounts for approximately 15% of total breast cancer cases. It is characterized by poor prognosis and high rate of recurrence compared to other types of breast cancer. TNBC has a limited range of treatment options that include chemotherapy, surgery, and radiation due to the absence of estrogen receptor alpha (ER-Îą) rendering hormonal therapy ineffective. However, possible targets for improving the clinical outcomes in TNBC exist, such as targeting estrogen signaling through membranous ER-Îą36 and reactivating silenced ER-Îą. It has been shown that epigenetic drugs such as DNA methyltransferase and histone deacetylase inhibitors can restore the expression of ER-Îą. This reactivation of ER-Îą, presents a potential strategy to re-sensitize TNBC to hormonal therapy. Also, this review provides up-to-date information related to the direct involvement of miRNA in regulating the translation of ER-Îą mRNA. Specific epi-miRNAs can regulate ER-Îą expression indirectly by post-transcriptional targeting of mRNAs of enzymes that are involved in DNA methylation and histone deacetylation. Furthermore, ER-Îą36, an alternative splice variant of ER-Îą66, is highly expressed in ER-negative breast tumors and activates MAPK/ERK pathway, promoting cell proliferation, escaping apoptosis, and enhancing metastasis. In the future, these recent advances may be helpful for researchers working in the field to obtain novel treatment options for TNBC, utilizing epigenetic drugs and epi-miRNAs that regulate ER-Îą expression. Also, there is some evidence to suggest that drugs that decrease the expression of ER-Îą36 may be effective in treating TNBC.
Collapse
Affiliation(s)
- Aya Y Al-Kabariti
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
- Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman, Jordan
| | - Manal A Abbas
- Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman, Jordan
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
8
|
Kober P, Mossakowska BJ, Rusetska N, Baluszek S, Grecka E, KonopiĹski R, Matyja E, OziÄbĹo A, Mandat T, Bujko M. Epigenetic Downregulation of Hsa-miR-193b-3p Increases Cyclin D1 Expression Level and Cell Proliferation in Human Meningiomas. Int J Mol Sci 2023; 24:13483. [PMID: 37686289 PMCID: PMC10487813 DOI: 10.3390/ijms241713483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Meningiomas are common intracranial tumors in adults. Abnormal microRNA (miRNA) expression plays a role in their pathogenesis. Change in miRNA expression level can be caused by impaired epigenetic regulation of miRNA-encoding genes. We found the genomic region covering the MIR193B gene to be DNA hypermethylated in meningiomas based on analysis of genome-wide methylation (HumanMethylation450K Illumina arrays). Hypermethylation of MIR193B was also confirmed via bisulfite pyrosequencing. Both hsa-miR-193b-3p and hsa-miR-193b-5p are downregulated in meningiomas. Lower expression of hsa-miR-193b-3p and higher MIR193B methylation was observed in World Health Organization (WHO) grade (G) II/III tumors as compared to GI meningiomas. CCND1 mRNA was identified as a target of hsa-miR-193b-3p as further validated using luciferase reporter assay in IOMM-Lee meningioma cells. IOMM-Lee cells transfected with hsa-miR-193b-3p mimic showed a decreased cyclin D1 level and lower cell viability and proliferation, confirming the suppressive nature of this miRNA. Cyclin D1 protein expression (immunoreactivity) was higher in atypical than in benign meningiomas, accordingly to observations of lower hsa-miR-193b-3p levels in GII tumors. The commonly observed hypermethylation of MIR193B in meningiomas apparently contributes to the downregulation of hsa-miR-193b-3p. Since hsa-miR-193b-3p regulates proliferation of meningioma cells through negative regulation of cyclin D1 expression, it seems to be an important tumor suppressor in meningiomas.
Collapse
Affiliation(s)
- Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Beata Joanna Mossakowska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Natalia Rusetska
- Department of Experimental Immunology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland (R.K.)
| | - Szymon Baluszek
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Emilia Grecka
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Ryszard KonopiĹski
- Department of Experimental Immunology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland (R.K.)
| | - Ewa Matyja
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Artur OziÄbĹo
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Tomasz Mandat
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| |
Collapse
|
9
|
LĂź J, Zhao Q, Guo Y, Li D, Xie H, Liu C, Hu X, Liu S, Hou Z, Wei X, Zheng D, Pestell RG, Yu Z. Regulation of ERÎą-dependent breast cancer metastasis by a miR-29a signaling. J Exp Clin Cancer Res 2023; 42:93. [PMID: 37081505 PMCID: PMC10116798 DOI: 10.1186/s13046-023-02665-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/07/2023] [Indexed: 04/22/2023] Open
Abstract
Malignant breast cancer (BC) remains incurable mainly due to the cancer cell metastasis, which is mostly related to the status of Estrogen receptor alpha (ERÎą). However, our understanding of the mechanisms through which ERÎą regulates cancer cell metastasis remains limited. Here we identified a miR-29a-PTEN-AKT axis as a downstream signaling pathway of ERÎą governing breast cancer progression and metastasis. Two estrogen response element (ERE) half sites were identified in the promoter and enhancer regions of miR-29a, which mediated transcriptional regulation of miR-29a by ERÎą. Low level of miR-29a showed association with reduced metastasis and better survival in ERÎą+âluminal subtype of BC. In contrast, high level of miR-29a was detected in ERÎą-Â triple negative breast cancer (TNBC) in association with distant metastasis and poor survival. miR-29a overexpression in BC tumors increased the number of circulating tumor cells and promoted lung metastasis in mice. Targeted knockdown of miR-29a in TNBC cells in vitro or administration of a nanotechnology-based anti-miR-29a delivery in TNBC tumor-bearing mice in vivo suppressed cellular invasion, EMT and lung metastasis. PTEN was identified as a direct target of miR-29a, inducing EMT and metastasis via AKT signaling. A small molecular inhibitor of AKT attenuated miR-29a-induced EMT. These findings demonstrate a novel mechanism responsible for ERÎą-regulated breast cancer metastasis, and reveal the combination of ERÎą status and miR-29a levels as a new risk indicator in BC.
Collapse
Affiliation(s)
- Jinhui LĂź
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Qian Zhao
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yuefan Guo
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Danni Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Heying Xie
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Jinzhou Medical University, Liaoning, China
| | - Cuicui Liu
- Fudan University Shanghai Cancer Center, Shanghai Cancer Hospital, Shanghai, 201321, China
| | - Xin Hu
- Fudan University Shanghai Cancer Center, Shanghai Cancer Hospital, Shanghai, 201321, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center, Shanghai Cancer Hospital, Shanghai, 201321, China
| | - Zhaoyuan Hou
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xunbin Wei
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Deyou Zheng
- Departments of Genetics, Neurology, and Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10462, USA
| | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, and Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
- The Wistar Cancer Center, Philadelphia, PA, 19107, USA
| | - Zuoren Yu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
10
|
Zhou H, He Y, Huang Y, Li R, Zhang H, Xia X, Xiong H. Comprehensive analysis of prognostic value, immune implication and biological function of CPNE1 in clear cell renal cell carcinoma. Front Cell Dev Biol 2023; 11:1157269. [PMID: 37077419 PMCID: PMC10106647 DOI: 10.3389/fcell.2023.1157269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Background: Elevated expression of Copine-1 (CPNE1) has been proved in various cancers; however, the underlying mechanisms by which it affects clear cell renal cell carcinoma (ccRCC) are unclear.Methods: In this study, we applied multiple bioinformatic databases to analyze the expression and clinical significance of CPNE1 in ccRCC. Co-expression analysis and functional enrichment analysis were investigated by LinkedOmics, cBioPortal and Metascape. The relationships between CPNE1 and tumor immunology were explored using ESTIMATE and CIBERSORT method. In vitro experiments, CCK-8, wound healing, transwell assays and western blotting were conducted to investigate the effects of gain- or loss-of-function of CPNE1 in ccRCC cells.Results: The expression of CPNE1 was notably elevated in ccRCC tissues and cells, and significantly correlated with grade, invasion range, stage and distant metastasis. KaplanâMeier and Cox regression analysis displayed that CPNE1 expression was an independent prognostic factor for ccRCC patients. Functional enrichment analysis revealed that CPNE1 and its co-expressed genes mainly regulated cancer-related and immune-related pathways. Immune correlation analysis showed that CPNE1 expression was significantly related to immune and estimate scores. CPNE1 expression was positively related to higher infiltrations of immune cells, such as CD8+ T cells, plasma cells and regulatory T cells, exhibited lower infiltrations of neutrophils. Meanwhile, elevated expression of CPNE1 was characterized by high immune infiltration levels, increased expression levels of CD8+ T cell exhaustion markers (CTLA4, PDCD1 and LAG3) and worse response to immunotherapy. In vitro functional studies demonstrated that CPNE1 promoted proliferation, migration and invasion of ccRCC cells through EGFR/STAT3 pathway.Conclusion: CPNE1 is a reliable clinical predictor for the prognosis of ccRCC and promotes proliferation and migration by activating EGFR/STAT3 signaling. Moreover, CPNE1 significantly correlates with immune infiltration in ccRCC.
Collapse
Affiliation(s)
- Haiting Zhou
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yi He
- Department of Orthopedics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohui Xia
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Huihua Xiong,
| |
Collapse
|
11
|
Abbate JM, Arfuso F, Riolo K, Capparucci F, Brunetti B, Lanteri G. Epigenetics in Canine Mammary Tumors: Upregulation of miR-18a and miR-18b Oncogenes Is Associated with Decreased ERS1 Target mRNA Expression and ERÎą Immunoexpression in Highly Proliferating Carcinomas. Animals (Basel) 2023; 13:ani13061086. [PMID: 36978627 PMCID: PMC10044548 DOI: 10.3390/ani13061086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The expression of miRNAs is one of the main epigenetic mechanisms responsible for the regulation of gene expression in mammals, and in cancer, miRNAs participate by regulating the expression of protein-coding cancer-associated genes. In canine mammary tumors (CMTs), the ESR1 gene encodes for ERÎą, and represents a major target gene for miR-18a and miR-18b, previously found to be overexpressed in mammary carcinomas. A loss in ERÎą expression in CMTs is commonly associated with poor prognosis, and it is noteworthy that the downregulation of the ESR1 would appear to be more epigenetic than genetic in nature. In this study, the expression of ESR1 mRNA in formalin-fixed, paraffin-embedded (FFPE) canine mammary tumors (CMTs) was evaluated and compared with the expression levels of miR18a and miR18b, both assessed via RT-qPCR. Furthermore, the possible correlation between the miRNA expression data and the immunohistochemical prognostic factors (ERÎą immunoexpression; Ki67 proliferative index) was explored. A total of twenty-six FFPE mammary samples were used, including 22 CMTs (7 benign; 15 malignant) and four control samples (three normal mammary glands and one case of lobular hyperplasia). The obtained results demonstrate that miR-18a and miR-18b are upregulated in malignant CMTs, negatively correlating with the expression of target ESR1 mRNA. Of note, the upregulation of miRNAs strictly reflects the progressive loss of ERÎą immunoexpression and increased tumor cell proliferation as measured using the Ki67 index. The results suggest a central role of miR-18a and miR-18b in the pathophysiology of canine mammary tumors as potential epigenetic mechanisms involved in ERÎą downregulation. Moreover, as miRNA expression reflects ERÎą protein status and a high proliferative index, miR-18a and miR-18b may represent promising biomarkers with prognostic value. More detailed investigations on a larger number of cases are needed to better understand the influence of these miRNAs in canine mammary tumors.
Collapse
Affiliation(s)
- Jessica Maria Abbate
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy
| | - Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy
| | - Kristian Riolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Polo Universitario Papardo, 98166 Messina, Italy
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Polo Universitario Papardo, 98166 Messina, Italy
| | - Barbara Brunetti
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - Giovanni Lanteri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Polo Universitario Papardo, 98166 Messina, Italy
| |
Collapse
|
12
|
Treeck O, Haerteis S, Ortmann O. Non-Coding RNAs Modulating Estrogen Signaling and Response to Endocrine Therapy in Breast Cancer. Cancers (Basel) 2023; 15:cancers15061632. [PMID: 36980520 PMCID: PMC10046587 DOI: 10.3390/cancers15061632] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The largest part of human DNA is transcribed into RNA that does not code for proteins. These non-coding RNAs (ncRNAs) are key regulators of protein-coding gene expression and have been shown to play important roles in health, disease and therapy response. Today, endocrine therapy of ERÎą-positive breast cancer (BC) is a successful treatment approach, but resistance to this therapy is a major clinical problem. Therefore, a deeper understanding of resistance mechanisms is important to overcome this resistance. An increasing amount of evidence demonstrate that ncRNAs affect the response to endocrine therapy. Thus, ncRNAs are considered versatile biomarkers to predict or monitor therapy response. In this review article, we intend to give a summary and update on the effects of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) on estrogen signaling in BC cells, this pathway being the target of endocrine therapy, and their role in therapy resistance. For this purpose, we reviewed articles on these topics listed in the PubMed database. Finally, we provide an assessment regarding the clinical use of these ncRNA types, particularly their circulating forms, as predictive BC biomarkers and their potential role as therapy targets to overcome endocrine resistance.
Collapse
Affiliation(s)
- Oliver Treeck
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
- Correspondence:
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
13
|
Erturk E, Enes Onur O, Akgun O, Tuna G, Yildiz Y, Ari F. Mitochondrial miRNAs (MitomiRs): Their potential roles in breast and other cancers. Mitochondrion 2022; 66:74-81. [PMID: 35963496 DOI: 10.1016/j.mito.2022.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 11/15/2022]
Abstract
Breast cancer is the most common cancer in women worldwide. MicroRNAs (miRNAs) are non-coding RNAs that are involved in the post-transcriptional regulation of gene expression. Although miRNAs mainly act in the cytoplasm, they can be found in the mitochondrial compartment of the cell. These miRNAs called "MitomiR", they can change mitochondrial functions by regulating proteins at the mitochondrial level and cause cancer. In this review, we have aimed to explain miRNA biogenesis, transport pathways to mitochondria, and summarize mitomiRs that have been shown to play an important role in mitochondrial function, especially in the initiation and progression of breast cancer.
Collapse
Affiliation(s)
- Elif Erturk
- Bursa Uludag University, Vocational School of Health Services, 16059, Bursa, Turkey
| | - Omer Enes Onur
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Oguzhan Akgun
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Gonca Tuna
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Yaren Yildiz
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Ferda Ari
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey.
| |
Collapse
|
14
|
Predictors of fulvestrant long-term benefit in hormone receptor-positive/HER2 negative advanced breast cancer. Sci Rep 2022; 12:12789. [PMID: 35896637 PMCID: PMC9329443 DOI: 10.1038/s41598-022-16409-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022] Open
Abstract
We retrospectively investigated in women treated with fulvestrant for HR+/HER2 negative advanced breast cancer clinical, pathological and molecular features associated with long-term benefit from treatment defined as being progression-free at 18Â months. Specifically, we analyzed on formalin-fixed paraffin-embedded tumor samples ESR1 and PI3KCA mutations and miRNAs profiles. 59 patients were evaluable (median age of 67 years, range 32-92). 18-month PFS rate was 27%; the lack of visceral metastases significantly predicted the likelihood of being progression-free at 18Â months, while PI3KCA mutations, found in 36% of patients, were not associated with 18-month PFS. As of miRNAs, miR-549a, miR-644a, miR-16-5p were negatively while let-7c-5p was positively associated with 18-month PFS. In addition, miR-520d-3p and miR-548g-3p values were significantly lower while miR-603, miR-181a-5p and miR-199a-miR-199b-3p values were significantly higher in patients achieving 18-month PFS. In silico analysis of targets modulated by these two latter groups of miRNAs show that in patients achieving 18-month PFS the Hippo and Wnt signaling pathways were predicted to be upregulated while endocrine resistance was potentially repressed by miR-603, miR-181a-5p and miR-199a-miR-199b-3p. Our results provide additional clues on the molecular mechanisms involved in fulvestrant activity and resistance. Underlying pathways should be further elucidated and confirmed in larger cohorts.
Collapse
|
15
|
Associations between the Levels of Estradiol-, Progesterone-, and Testosterone-Sensitive MiRNAs and Main Clinicopathologic Features of Breast Cancer. J Pers Med 2021; 12:jpm12010004. [PMID: 35055320 PMCID: PMC8779432 DOI: 10.3390/jpm12010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the existing advances in the diagnosis and treatment of breast cancer (BC), the search for markers associated with the clinicopathological features of BC is still in demand. MiRNAs (miRs) have potential as markers, since a change in the miRNA expression profile accompanies the initiation and progression of malignant diseases. The receptors for estrogen, androgen, and progesterone (ER, AR, and PR) play an important role in breast carcinogenesis. Therefore, to search for miRNAs that may function as markers in BC, using bioinformatic analysis and the literature data, we selected 13 miRNAs whose promoter regions contain binding sites for ER or AR, or putative binding sites for ER, AR, and PR. We quantified their expression in MCF-7 cells treated with estradiol, progesterone, or testosterone. The levels of miRNAs sensitive to one or more of these hormones were quantified in BC samples (n = 196). We discovered that high expression levels of miR-190b in breast tumor tissue indicate a positive ER status, and miR-423 and miR-200b levels differ between patients with and without HER2 amplification. The miR-193b, -423, -190a, -324, and -200b levels were associated with tumor size or lymph node status in BC patients, but the presence of these associations depended on the status and expression level of ER, PR, HER2, and Ki-67. We also found that miR-21 expression depends on HER2 expression in ER- and/or PR-positive BC. The levels of miRNA were significantly different between HER2 0 and HER2 1+ tumors (p = 0.027), and between HER2 0 and HER2 2+, 3+ tumors (p = 0.005).
Collapse
|
16
|
Andreeva OE, Sorokin DV, Mikhaevich EI, Bure IV, Shchegolev YY, Nemtsova MV, Gudkova MV, Scherbakov AM, Krasilânikov MA. Towards Unravelling the Role of ERÎą-Targeting miRNAs in the Exosome-Mediated Transferring of the Hormone Resistance. Molecules 2021; 26:molecules26216661. [PMID: 34771077 PMCID: PMC8588049 DOI: 10.3390/molecules26216661] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 01/09/2023] Open
Abstract
Hormone therapy is one of the most effective breast cancer treatments, however, its application is limited by the progression of hormonal resistance, both primary or acquired. The development of hormonal resistance is caused either by an irreversible block of hormonal signalling (suppression of the activity or synthesis of hormone receptors), or by activation of oestrogen-independent signalling pathways. Recently the effect of exosome-mediated intercellular transfer of hormonal resistance was revealed, however, the molecular mechanism of this effect is still unknown. Here, the role of exosomal miRNAs (microRNAs) in the transferring of hormonal resistance in breast cancer cells has been studied. The methods used in the work include extraction, purification and RNAseq of miRNAs, transfection of miRNA mimetics, immunoblotting, reporter analysis and the MTT test. Using MCF7 breast cancer cells and MCF7/T tamoxifen-resistant sub-line, we have found that some miRNAs, suppressors of oestrogen receptor signalling, are overexpressed in the exosomes of the resistant breast cancer cells. The multiple (but not single) transfection of one of the identified miRNA, miR-181a-2, into oestrogen-dependent MCF7 cells induced the irreversible tamoxifen resistance associated with the continuous block of the oestrogen receptor signalling and the activation of PI3K/Akt pathway. We suppose that the miRNAs-ERÎą suppressors may act as trigger agents inducing the block of oestrogen receptor signalling and breast cancer cell transition to an aggressive oestrogen-independent state.
Collapse
Affiliation(s)
- Olga E. Andreeva
- Department of Experimental Tumour Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 115522 Moscow, Russia; (O.E.A.); (D.V.S.); (E.I.M.); (Y.Y.S.); (M.V.G.); (M.A.K.)
| | - Danila V. Sorokin
- Department of Experimental Tumour Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 115522 Moscow, Russia; (O.E.A.); (D.V.S.); (E.I.M.); (Y.Y.S.); (M.V.G.); (M.A.K.)
| | - Ekaterina I. Mikhaevich
- Department of Experimental Tumour Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 115522 Moscow, Russia; (O.E.A.); (D.V.S.); (E.I.M.); (Y.Y.S.); (M.V.G.); (M.A.K.)
| | - Irina V. Bure
- Laboratory of Medical Genetics, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (I.V.B.); (M.V.N.)
| | - Yuri Y. Shchegolev
- Department of Experimental Tumour Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 115522 Moscow, Russia; (O.E.A.); (D.V.S.); (E.I.M.); (Y.Y.S.); (M.V.G.); (M.A.K.)
| | - Marina V. Nemtsova
- Laboratory of Medical Genetics, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (I.V.B.); (M.V.N.)
| | - Margarita V. Gudkova
- Department of Experimental Tumour Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 115522 Moscow, Russia; (O.E.A.); (D.V.S.); (E.I.M.); (Y.Y.S.); (M.V.G.); (M.A.K.)
| | - Alexander M. Scherbakov
- Department of Experimental Tumour Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 115522 Moscow, Russia; (O.E.A.); (D.V.S.); (E.I.M.); (Y.Y.S.); (M.V.G.); (M.A.K.)
- Correspondence: or
| | - Mikhail A. Krasilânikov
- Department of Experimental Tumour Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 115522 Moscow, Russia; (O.E.A.); (D.V.S.); (E.I.M.); (Y.Y.S.); (M.V.G.); (M.A.K.)
| |
Collapse
|
17
|
Association of microRNA-34a rs2666433 (A/G) Variant with Systemic Lupus Erythematosus in Female Patients: A Case-Control Study. J Clin Med 2021; 10:jcm10215095. [PMID: 34768615 PMCID: PMC8584584 DOI: 10.3390/jcm10215095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 01/01/2023] Open
Abstract
Several microRNAs (miRNAs) are associated with autoimmune disease susceptibility and phenotype, including systemic lupus erythematosus (SLE). We aimed to explore for the first time the role of the miRNA-34a gene (MIR34A) rs2666433A > G variant in SLE risk and severity. A total of 163 adult patients with SLE and matched controls were recruited. Real-Time allelic discrimination PCR was applied for genotyping. Correlation with disease activity and clinic-laboratory data was done. The rs2666433 variant conferred protection against SLE development under heterozygous [A/G vs. G/G; OR = 0.57, 95%CI = 0.34-0.95], homozygous [A/A vs. G/G; OR = 0.52, 95%CI = 0.29-0.94], dominant [A/G + A/A vs. GG; OR = 0.55, 95%CI = 0.35-0.88], and log-additive [OR = 0.71, 95%CI = 0.53-0.95] models. Data stratification by sex revealed a significant association with SLE development in female participants under heterozygous/homozygous models (p-interaction = 0.004). There was no clear demarcation between SLE patients carrying different genotypes regarding the disease activity index or patients stratified according to lupus nephritis. Enrichment analysis confirmed the implication of MIR34A in the SLE pathway by targeting several genes related to SLE etiopathology. In conclusion, although the MIR34A rs2666433 variant conferred protection against developing SLE disease in the study population, it showed no association with disease activity. Replication studies in other populations are warranted.
Collapse
|
18
|
Richard V, Davey MG, Annuk H, Miller N, Dwyer RM, Lowery A, Kerin MJ. MicroRNAs in Molecular Classification and Pathogenesis of Breast Tumors. Cancers (Basel) 2021; 13:5332. [PMID: 34771496 PMCID: PMC8582384 DOI: 10.3390/cancers13215332] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
The current clinical practice of breast tumor classification relies on the routine immunohistochemistry-based expression analysis of hormone receptors, which is inadequate in addressing breast tumor heterogeneity and drug resistance. MicroRNA expression profiling in tumor tissue and in the circulation is an efficient alternative to intrinsic molecular subtyping that enables precise molecular classification of breast tumor variants, the prediction of tumor progression, risk stratification and also identifies critical regulators of the tumor microenvironment. This review integrates data from protein, gene and miRNA expression studies to elaborate on a unique miRNA-based 10-subtype taxonomy, which we propose as the current gold standard to allow appropriate classification and separation of breast cancer into a targetable strategy for therapy.
Collapse
Affiliation(s)
- Vinitha Richard
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (M.G.D.); (H.A.); (N.M.); (R.M.D.); (A.L.)
| | | | | | | | | | | | - Michael J. Kerin
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (M.G.D.); (H.A.); (N.M.); (R.M.D.); (A.L.)
| |
Collapse
|
19
|
Muluhngwi P, Klinge CM. Identification and Roles of miR-29b-1-3p and miR29a-3p-Regulated and Non-Regulated lncRNAs in Endocrine-Sensitive and Resistant Breast Cancer Cells. Cancers (Basel) 2021; 13:3530. [PMID: 34298743 PMCID: PMC8307416 DOI: 10.3390/cancers13143530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 01/05/2023] Open
Abstract
Despite improvements in the treatment of endocrine-resistant metastatic disease using combination therapies in patients with estrogen receptor Îą (ERÎą) primary tumors, the mechanisms underlying endocrine resistance remain to be elucidated. Non-coding RNAs (ncRNAs), including microRNAs (miRNA) and long non-coding RNAs (lncRNA), are targets and regulators of cell signaling pathways and their exosomal transport may contribute to metastasis. Previous studies have shown that a low expression of miR-29a-3p and miR-29b-3p is associated with lower overall breast cancer survival before 150 mos. Transient, modest overexpression of miR-29b1-3p or miR-29a-3p inhibited MCF-7 tamoxifen-sensitive and LCC9 tamoxifen-resistant cell proliferation. Here, we identify miR-29b-1/a-regulated and non-regulated differentially expressed lncRNAs in MCF-7 and LCC9 cells using next-generation RNA seq. More lncRNAs were miR-29b-1/a-regulated in LCC9 cells than in MCF-7 cells, including DANCR, GAS5, DSCAM-AS1, SNHG5, and CRND. We examined the roles of miR-29-regulated and differentially expressed lncRNAs in endocrine-resistant breast cancer, including putative and proven targets and expression patterns in survival analysis using the KM Plotter and TCGA databases. This study provides new insights into lncRNAs in endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
20
|
Wang X, Yang D. The regulation of RNA metabolism in hormone signaling and breast cancer. Mol Cell Endocrinol 2021; 529:111221. [PMID: 33711334 PMCID: PMC8262629 DOI: 10.1016/j.mce.2021.111221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 02/02/2023]
Abstract
As the most frequent women's cancer, breast cancer causes the second most cancer-related death in women worldwide. Majority of the breast cancers are hormone receptor-positive and commonly treated by hormone therapy. Thus, the expression levels of hormone receptors signaling pathways are pivotal in the development and therapy of breast cancer. The expression of hormone receptors signaling pathways is not only regulated at the transcription level but also at the post-transcription level by both proteins and RNAs. In addition to that, the function of hormone receptors can also be regulated by RNAs. In this review, we summarize the roles of RNAs in hormone receptor-positive breast cancer. We introduce how mRNA stability and protein function of genes in hormone receptors signaling pathways are regulated by RNA-binding proteins, miRNAs, and lncRNAs. We believe these proteins and RNAs can be potential therapeutic targets of breast cancer.
Collapse
Affiliation(s)
- Xiaofei Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, PA, 15261, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, PA, 15261, USA; UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
21
|
Normann LS, Aure MR, Leivonen SK, Haugen MH, Hongisto V, Kristensen VN, MĂŚlandsmo GM, Sahlberg KK. MicroRNA in combination with HER2-targeting drugs reduces breast cancer cell viability in vitro. Sci Rep 2021; 11:10893. [PMID: 34035375 PMCID: PMC8149698 DOI: 10.1038/s41598-021-90385-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/30/2021] [Indexed: 01/03/2023] Open
Abstract
HER2-positive (HER2â+) breast cancer patients that do not respond to targeted treatment have a poor prognosis. The effects of targeted treatment on endogenous microRNA (miRNA) expression levels are unclear. We report that responsive HER2â+âbreast cancer cell lines had a higher number of miRNAs with altered expression after treatment with trastuzumab and lapatinib compared to poorly responsive cell lines. To evaluate whether miRNAs can sensitize HER2â+âcells to treatment, we performed a high-throughput screen of 1626 miRNA mimics and inhibitors in combination with trastuzumab and lapatinib in HER2â+âbreast cancer cells. We identified eight miRNA mimics sensitizing cells to targeted treatment, miR-101-5p, mir-518a-5p, miR-19b-2-5p, miR-1237-3p, miR-29a-3p, miR-29c-3p, miR-106a-5p, and miR-744-3p. A higher expression of miR-101-5p predicted better prognosis in patients with HER2â+âbreast cancer (OS: pâ=â0.039; BCSS: pâ=â0.012), supporting the tumor-suppressing role of this miRNA. In conclusion, we have identified miRNAs that sensitize HER2â+âbreast cancer cells to targeted therapy. This indicates the potential of combining targeted drugs with miRNAs to improve current treatments for HER2â+âbreast cancers.
Collapse
Affiliation(s)
- Lisa Svartdal Normann
- Department of Research and Innovation, Vestre Viken Hospital Trust, P.O. Box 800, 3004, Drammen, Norway.,Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Miriam Ragle Aure
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Suvi-Katri Leivonen
- Applied Tumor Genomics Research Program, Medical Faculty, University of Helsinki, Helsinki, Finland
| | - Mads Haugland Haugen
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Vesa Hongisto
- Division of Toxicology, Misvik Biology, Turku, Finland
| | - Vessela N Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Division of Medicine, Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
| | - Gunhild Mari MĂŚlandsmo
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute for Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Kristine Kleivi Sahlberg
- Department of Research and Innovation, Vestre Viken Hospital Trust, P.O. Box 800, 3004, Drammen, Norway. .,Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
22
|
Li Z, Jiang J, Yi X, Wang G, Wang S, Sun X. miR-18b regulates the function of rabbit ovary granulosa cells. Reprod Fertil Dev 2021; 33:363-371. [PMID: 33641714 DOI: 10.1071/rd20237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/17/2021] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) have been determined to participate in the process of oestradiol production. Generally, there are two pathways by which oestradiol levels change, one being the state of cells (i.e. the status of enzymes involved in the synthesis of hormones such as oestradiol) and the other being the number of cells that secrete oestradiol. It is known that oestrogens are the main steroids produced by granulosa cells (GCs) of mature ovarian follicles. In this study we explored the function of miR-18b in rabbit GCs by overexpressing or inhibiting its activity. We found that miR-18b silencing promoted the secretion of oestradiol by significantly affecting the expression of steroidogenesis-related genes. Thus, miR-18b may act as a negative regulator of the production of enzymes related to oestradiol synthesis and affect oestradiol production. Furthermore, the effects of miR-18b on the proliferation, cell cycle and apoptosis of GCs were investigated using a cell counting kit (CCK-8) proliferation assay, detection of annexin V-fluorescein isothiocyanate apoptosis, flow cytometry and quantitative polymerase chain reaction. The results showed that miR-18b upregulated GC apoptosis (miR-18b overexpression decreases cell growth and stimulates apoptosis). These findings suggest that miR-18b and the oestrogen receptor 1 (ESR1) gene may be attractive targets to further explore the molecular regulation of GCs. The miR-18b may also explain, in part, the abnormal folliculogenesis in mammals caused by conditions such as polycystic ovary syndrome, primary ovarian insufficiency, and others.
Collapse
Affiliation(s)
- Ze Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Junyi Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Guoyan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xiuzhu Sun
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, PR China; and Corresponding author.
| |
Collapse
|
23
|
Ben-Elazar S, Aure MR, Jonsdottir K, Leivonen SK, Kristensen VN, Janssen EAM, Kleivi Sahlberg K, LingjĂŚrde OC, Yakhini Z. miRNA normalization enables joint analysis of several datasets to increase sensitivity and to reveal novel miRNAs differentially expressed in breast cancer. PLoS Comput Biol 2021; 17:e1008608. [PMID: 33566819 PMCID: PMC7901788 DOI: 10.1371/journal.pcbi.1008608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 02/23/2021] [Accepted: 12/06/2020] [Indexed: 01/24/2023] Open
Abstract
Different miRNA profiling protocols and technologies introduce differences in the resulting quantitative expression profiles. These include differences in the presence (and measurability) of certain miRNAs. We present and examine a method based on quantile normalization, Adjusted Quantile Normalization (AQuN), to combine miRNA expression data from multiple studies in breast cancer into a single joint dataset for integrative analysis. By pooling multiple datasets, we obtain increased statistical power, surfacing patterns that do not emerge as statistically significant when separately analyzing these datasets. To merge several datasets, as we do here, one needs to overcome both technical and batch differences between these datasets. We compare several approaches for merging and jointly analyzing miRNA datasets. We investigate the statistical confidence for known results and highlight potential new findings that resulted from the joint analysis using AQuN. In particular, we detect several miRNAs to be differentially expressed in estrogen receptor (ER) positive versus ER negative samples. In addition, we identify new potential biomarkers and therapeutic targets for both clinical groups. As a specific example, using the AQuN-derived dataset we detect hsa-miR-193b-5p to have a statistically significant over-expression in the ER positive group, a phenomenon that was not previously reported. Furthermore, as demonstrated by functional assays in breast cancer cell lines, overexpression of hsa-miR-193b-5p in breast cancer cell lines resulted in decreased cell viability in addition to inducing apoptosis. Together, these observations suggest a novel functional role for this miRNA in breast cancer. Packages implementing AQuN are provided for Python and Matlab: https://github.com/YakhiniGroup/PyAQN. This work demonstrates a practical approach to the joint-analysis of multiple miRNA expression profiling datasets acquired with different measurement technologies. The use of different platforms in miRNA profiling can lead to major differences in results. In particular, some miRNA species are less amenable to detection and quantification by certain platforms or designs. Our approach, termed AQuN, combines quantile normalization with special attention to missing entities, to normalize miRNA expression across datasets, technologies, designs and platforms. As we show, our proposed approach uncovers patterns of interest that would not have emerged as statistically significant when analyzing the datasets individually or with other standard-practice normalization methods. Amongst our findings, we noted a previously undocumented miRNA that is significantly over-expressed in samples from estrogen-receptor positive breast cancer patients as compared to samples from estrogen-receptor negative patients. We further investigated this miRNA, hsa-miR-193b-5p, and experimentally show, in cell lines, that its expression level impacts the viability of tumor cells. AQuN is available to the community in the form of Python and Matlab packages. The joint-processed data is also made available for further investigation.
Collapse
Affiliation(s)
- Shay Ben-Elazar
- School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
- Department of Computer Science, Interdisciplinary Center, Herzliya, Israel
- * E-mail: (SBE); (MRA); (ZY)
| | - Miriam Ragle Aure
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- * E-mail: (SBE); (MRA); (ZY)
| | - Kristin Jonsdottir
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Suvi-Katri Leivonen
- Helsinki University Hospital Comprehensive Cancer Centre and University of Helsinki, Helsinki, Finland
| | - Vessela N. Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Molecular Biology and Laboratory Science (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Emiel A. M. Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Kristine Kleivi Sahlberg
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Research, Vestre Viken Hospital Trust, Drammen, Norway
| | - Ole Christian LingjĂŚrde
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Zohar Yakhini
- Department of Computer Science, Interdisciplinary Center, Herzliya, Israel
- Department of Computer Science, TechnionâIsrael Institute of Technology, Haifa, Israel
- * E-mail: (SBE); (MRA); (ZY)
| |
Collapse
|
24
|
Evangelista AF, Oliveira RJ, O Silva VA, D C Vieira RA, Reis RM, C Marques MM. Integrated analysis of mRNA and miRNA profiles revealed the role of miR-193 and miR-210 as potential regulatory biomarkers in different molecular subtypes of breast cancer. BMC Cancer 2021; 21:76. [PMID: 33461524 PMCID: PMC7814437 DOI: 10.1186/s12885-020-07731-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Breast cancer is the most frequently diagnosed malignancy among women. However, the role of microRNA (miRNA) expression in breast cancer progression is not fully understood. In this study we examined predictive interactions between differentially expressed miRNAs and mRNAs in breast cancer cell lines representative of the common molecular subtypes. Integrative bioinformatics analysis identified miR-193 and miR-210 as potential regulatory biomarkers of mRNA in breast cancer. Several recent studies have investigated these miRNAs in a broad range of tumors, but the mechanism of their involvement in cancer progression has not previously been investigated. METHODS The miRNA-mRNA interactions in breast cancer cell lines were identified by parallel expression analysis and miRNA target prediction programs. The expression profiles of mRNA and miRNAs from luminal (MCF-7, MCF-7/AZ and T47D), HER2 (BT20 and SK-BR3) and triple negative subtypes (Hs578T e MDA-MB-231) could be clearly separated by unsupervised analysis using HB4A cell line as a control. Breast cancer miRNA data from TCGA patients were grouped according to molecular subtypes and then used to validate these findings. Expression of miR-193 and miR-210 was investigated by miRNA transient silencing assays using the MCF7, BT20 and MDA-MB-231 cell lines. Functional studies included, xCELLigence system, ApoTox-Glo triplex assay, flow cytometry and transwell inserts were performed to determine cell proliferation, cytotoxicity, apoptosis, migration and invasion, respectively. RESULTS The most evident effects were associated with cell proliferation after miR-210 silencing in triple negative subtype cell line MDA-MB-231. Using in silico prediction algorithms, TNFRSF10 was identified as one of the potential regulated downstream targets for both miRNAs. The TNFRSF10C and TNFRSF10D mRNA expression inversely correlated with the expression levels of miR-193 and miR210 in breast cell lines and breast cancer patients, respectively. Other potential regulated genes whose expression also inversely correlated with both miRNAs were CCND1, a known mediator on invasion and metastasis, and the tumor suppressor gene RUNX3. CONCLUSIONS In summary, our findings identify miR-193 and miR-210 as potential regulatory miRNA in different molecular subtypes of breast cancer and suggest that miR-210 may have a specific role in MDA-MB-231 proliferation. Our results highlight important new downstream regulated targets that may serve as promising therapeutic pathways for aggressive breast cancers.
Collapse
Affiliation(s)
- Adriane F Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SĂŁo Paulo, 14784-400, Brazil
| | - Renato J Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SĂŁo Paulo, 14784-400, Brazil.
| | - Viviane A O Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SĂŁo Paulo, 14784-400, Brazil
| | - Rene A D C Vieira
- Department of Mastology and Breast Reconstruction, Barretos Cancer Hospital, Barretos, SĂŁo Paulo, 14784-400, Brazil
| | - Rui M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SĂŁo Paulo, 14784-400, Brazil.,Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, Braga, 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/GuimarĂŁes, 4710-057, Portugal
| | - Marcia M C Marques
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SĂŁo Paulo, 14784-400, Brazil.,Tumor Biobank, Barretos Cancer Hospital, Barretos, SĂŁo Paulo, 14784-400, Brazil.,Barretos School of Health Sciences, FACISB, Barretos, SĂŁo Paulo, 14784-400, Brazil
| |
Collapse
|
25
|
Mu L, Sun X, Tu M, Zhang D. Non-coding RNAs in polycystic ovary syndrome: a systematic review and meta-analysis. Reprod Biol Endocrinol 2021; 19:10. [PMID: 33446212 PMCID: PMC7807442 DOI: 10.1186/s12958-020-00687-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Genetic, environmental and epigenetical factors may play important roles in the pathogenesis of polycystic ovary syndrome (PCOS), however the etiology of PCOS remains unclear. Studies indicated that non-coding RNAs (ncRNAs) were involved in the occurrence and development of PCOS. Thus, we aim to perform a systematic review and meta-analysis to investigate the presence and dysregulated expression of ncRNAs in human PCOS. METHODS We searched in PubMed, Medline, Web of Science and Embase until July 2019 and summarized all eligible publications focusing on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and small interfering RNAs (siRNAs) in PCOS. RESULTS Sixty-seven articles were included in our systematic review and 9 articles were included in meta-analysis. There is little overlap between studies when comparing miRNA profiles. Sensitivity analysis showed that the expression of miR-93 was upregulated in PCOS patients (WMD 0.75, Pâ<â0.00001), without heterogeneity among remaining studies (I2â=â0%). CONCLUSION A large number of ncRNAs with altered levels were observed in plasma, serum, follicular fluid, granulosa cells or other issues from PCOS patients. Aberrant ncRNAs expression in PCOS may lead to aberrant steroidogenesis, adipocyte dysfunction, altered ovarian cell proliferation and/or apoptosis and have the potential to be used as diagnostic biomarkers.
Collapse
Affiliation(s)
- Liangshan Mu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Xiaoting Sun
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Mixue Tu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China.
| |
Collapse
|
26
|
Tu J, Yang H, Jiang L, Chen Y, Li Z, Li L, Zhang Y, Chen X, Chen H, Yu Z. The Central Roles of Noncoding RNA in Estrogen-Dependent Female Reproductive System Tumors. Int J Endocrinol 2021; 2021:5572063. [PMID: 34122542 PMCID: PMC8169271 DOI: 10.1155/2021/5572063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of ovarian and endometrial cancers is closely associated with estrogen-related pathways. These estrogen-dependent tumors seriously threaten the health and quality of life in women. Noncoding RNAs (ncRNAs) are defined as RNAs that do not encode proteins, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), both of which have been reported in estrogen-dependent female reproductive system tumors. This review systematically summarizes the role of ncRNAs in estrogen-dependent tumors and common patterns of regulatory mechanisms to explore their future research directions in tumor diagnosis, treatment, and prognosis. This may provide new ideas for the potential application of ncRNAs in estrogen-dependent female reproductive system tumors.
Collapse
Affiliation(s)
- Jiajie Tu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
- Department of Gynecology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Huan Yang
- Department of Gynecology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Lei Jiang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhe Li
- The First Clinical Medical College of Southern Medical University, Guangzhou, China
| | - Lei Li
- Department of Gynecology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yuanyuan Zhang
- Department of Gynecology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaochun Chen
- Department of Gynecology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - He Chen
- Department of Gynecology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhiying Yu
- Department of Gynecology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
27
|
Laine S, HÜgel H, Ishizu T, Toivanen J, Yli-Karjanmaa M, GrÜnroos TJ, Rantala J, Mäkelä R, Hannukainen JC, Kalliokoski KK, Heinonen I. Effects of Different Exercise Training Protocols on Gene Expression of Rac1 and PAK1 in Healthy Rat Fast- and Slow-Type Muscles. Front Physiol 2020; 11:584661. [PMID: 33329033 PMCID: PMC7711069 DOI: 10.3389/fphys.2020.584661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Purpose Rac1 and its downstream target PAK1 are novel regulators of insulin and exercise-induced glucose uptake in skeletal muscle. However, it is not yet understood how different training intensities affect the expression of these proteins. Therefore, we studied the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on Rac1 and PAK1 expression in fast-type (gastrocnemius, GC) and slow-type (soleus, SOL) muscles in rats after HIIT and MICT swimming exercises. Methods The mRNA expression was determined using qPCR and protein expression levels with reverse-phase protein microarray (RPPA). Results HIIT significantly decreased Rac1 mRNA expression in GC compared to MICT (p = 0.003) and to the control group (CON) (p = 0.001). At the protein level Rac1 was increased in GC in both training groups, but only the difference between HIIT and CON was significant (p = 0.02). HIIT caused significant decrease of PAK1 mRNA expression in GC compared to MICT (p = 0.007) and to CON (p = 0.001). At the protein level, HIIT increased PAK1 expression in GC compared to MICT and CON (by âź17%), but the difference was not statistically significant (p = 0.3, p = 0.2, respectively). There were no significant differences in the Rac1 or PAK1 expression in SOL between the groups. Conclusion Our results indicate that HIIT, but not MICT, decreases Rac1 and PAK1 mRNA expression and increases the protein expression of especially Rac1 but only in fast-type muscle. These exercise training findings may reveal new therapeutic targets to treat patients with metabolic diseases.
Collapse
Affiliation(s)
- Saara Laine
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Heidi HĂśgel
- Turku Centre for Biotechnology, University of Turku, Ă
bo Akademi University, Turku, Finland.,Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Tamiko Ishizu
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland.,TuDMM Doctoral Programmes, University of Turku, Turku, Finland
| | - Jussi Toivanen
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Minna Yli-Karjanmaa
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Tove J GrĂśnroos
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | | | | | - Jarna C Hannukainen
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
| | - Kari K Kalliokoski
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
| | - Ilkka Heinonen
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland.,Rydberg Laboratory of Applied Sciences, University of Halmstad, Halmstad, Sweden
| |
Collapse
|
28
|
In-silico modeling and analysis of the therapeutic potential of miRNA-7 on EGFR associated signaling network involved in breast cancer. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
The Genetic Polymorphisms in the MIR17HG Gene Are Associated with the Risk of Head and Neck Squamous Cell Carcinoma in the Chinese Han Population. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2329196. [PMID: 33299861 PMCID: PMC7707933 DOI: 10.1155/2020/2329196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
Purpose Head and neck squamous cell carcinoma (HNSCC) is the most common malignant tumors in the world. Genetic variants have an important role in HNSCC progression. Our study is aimed at exploring the relationship between MIR17HG polymorphisms and HNSCC risk in the Chinese Han population. Methods We recruited 537 HNSCC cases and 533 healthy subjects to detect the correlation of six polymorphisms in MIR17HG with HNSCC susceptibility. The associations were evaluated by computing odds ratios (ORs) and 95% confidence intervals (CIs) using logistic regression analysis. Results Our study revealed that rs7336610 (OR 1.77, 95%CI = 1.09â2.86, and p = 0.021) and rs1428 (OR 1.73, 95%CI = 1.07â2.81, and p = 0.025) are strongly associated with increased susceptibility to HNSCC in men. Besides, rs17735387 played a crucial protective role in stage III/IV HNSCC patients (OR 0.34, 95%CI = 0.12â0.95, and p = 0.040) compared with stage I/II. Conclusion Our study firstly indicated that MIR17HG polymorphisms are significantly associated with HNSCC susceptibility, which suggests that MIR17HG has a potential role in the occurrence of HNSCC.
Collapse
|
30
|
Abstract
OBJECTIVES: Barrett's esophagus (BE) is the precursor lesion and a major risk factor for esophageal adenocarcinoma (EAC). Although patients with BE undergo routine endoscopic surveillance, current screening methodologies have proven ineffective at identifying individuals at risk of EAC. Since microRNAs (miRNAs) have potential diagnostic and prognostic value as disease biomarkers, we sought to identify an miRNA signature of BE and EAC. METHODS: High-throughput sequencing of miRNAs was performed on serum and tissue biopsies from 31 patients identified either as normal, gastroesophageal reflux disease (GERD), BE, BE with low-grade dysplasia (LGD), or EAC. Logistic regression modeling of miRNA profiles with Lasso regularization was used to identify discriminating miRNA. Quantitative reverse transcription polymerase chain reaction was used to validate changes in miRNA expression using 46 formalin-fixed, paraffin-embedded specimens obtained from normal, GERD, BE, BE with LGD or HGD, and EAC subjects. RESULTS: A 3-class predictive model was able to classify tissue samples into normal, GERD/BE, or LGD/EAC classes with an accuracy of 80%. Sixteen miRNAs were identified that predicted 1 of the 3 classes. Our analysis confirmed previous reports indicating that miR-29c-3p and miR-193b-5p expressions are altered in BE and EAC and identified miR-4485-5p as a novel biomarker of esophageal dysplasia. Quantitative reverse transcription polymerase chain reaction validated 11 of 16 discriminating miRNAs. DISCUSSION: Our data provide an miRNA signature of normal, precancerous, and cancerous tissue that may stratify patients at risk of progressing to EAC. We found that serum miRNAs have a limited ability to distinguish between disease states, thus limiting their potential utility in early disease detection.
Collapse
|
31
|
Differential expression, function and prognostic value of miR-17-92 cluster in ER-positive and triple-negative breast cancer. Cancer Treat Res Commun 2020; 25:100224. [PMID: 33096318 DOI: 10.1016/j.ctarc.2020.100224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/02/2020] [Accepted: 10/11/2020] [Indexed: 12/19/2022]
Abstract
Recent evidence has shown that the miR-17-92 cluster can function either as oncogene or tumor suppressor in human cancers. The function of miR-17-92 in subtypes of breast cancer remains largely unknown. The expression of miR-17-92 is elevated in triple negative breast cancer (TNBC) but reduced in estrogen receptor (ER)-positive breast cancer (ERPBC). We show that increased expression of miRNAs belonging to the miR-17-92 cluster is associated with poor outcome in TNBC, whereas the expression of miR-17-92 miRNAs is with good outcome in ERPBC. We show that ectopic expression of miR-17-92 inhibited cell growth and invasion of ER-positive and HER2-enriched cells. On the contrary, miR-17-92 expression enhanced cell growth and invasion of TNBC cells. Further, we found that miR-17-92 expression sensitized MCF7 cells to chemotherapeutic compounds, whereas it rendered SKBR3 cells resistant to them. We found that expression of ADORA1 was reduced by miR-17-92-expressing breast cancer cells, specifically in ERPBC. We observed an inverse correlation between the expression of ADORA1 and miR-17-92 in human breast cancer. Treatment with DPCPX, a selective ADORA1 antagonist, abolished the difference in the growth of control and miR-17-92 overexpressing MCF7 cells and identified ADORA1 as a key functional target of miR-17-92 in ERPBC. Furthermore, increased expression of ADORA1 in ERPBC is associated with a poor outcome. Our observations underscore the context-dependent role of miR-17-92 in breast cancer subtypes and suggest that miR-17-92 could serve as novel prognostic markers in breast cancer.
Collapse
|
32
|
MotieGhader H, Masoudi-Sobhanzadeh Y, Ashtiani SH, Masoudi-Nejad A. mRNA and microRNA selection for breast cancer molecular subtype stratification using meta-heuristic based algorithms. Genomics 2020; 112:3207-3217. [DOI: 10.1016/j.ygeno.2020.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/13/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
|
33
|
Kunc M, PopÄda M, SzaĹkowska A, Niemira M, BieĹkowski M, PÄksa R, Ĺacko A, Radecka BS, Braun M, Pikiel J, Litwiniuk M, Pogoda K, IĹźycka-Ĺwieszewska E, KrÄtowski A, Ĺťaczek AJ, Biernat W, Senkus-Konefka E. microRNA Expression Profile in Single Hormone Receptor-Positive Breast Cancers is Mainly Dependent on HER2 Status-A Pilot Study. Diagnostics (Basel) 2020; 10:diagnostics10090617. [PMID: 32825530 PMCID: PMC7555149 DOI: 10.3390/diagnostics10090617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/04/2020] [Accepted: 08/19/2020] [Indexed: 11/30/2022] Open
Abstract
Estrogen (ER) and progesterone (PgR) receptors and HER2 are crucial in the assessment of breast cancer specimens due to their prognostic and predictive significance. Single hormone receptor-positive breast cancers are less common and their clinical course is less favorable than ER(+)/PgR(+) tumors. Their molecular features, especially microRNA (miRNA) profiles, have not been investigated to date. Tumor specimens from 36 chemonaive breast cancer patients with known ER and PgR status (18 ER(+)/PgR(â) and 18 ER(â)/PgR(+) cases) were enrolled to the study. The expression of 829 miRNAs was evaluated with nCounter Human v3 miRNA expression Assay (NanoString). miRNAs differentiating between ER/PgR/HER2 phenotypes were selected based on fold change (FC) calculated for the mean normalized counts of each probe in compared groups. The differences were estimated with Studentâs t-test or Two-Way ANOVA (considering also the HER2 status). The results were validated using The Cancer Genome Atlas (TCGA) dataset. Following quality control of raw data, fourcases were excluded due to low sample quality, leaving 14 ER(+)/PgR(â) and 18 ER(â)/PgR(+) cases. After correction for multiple comparisons, we did not find miRNA signature differentiating between ER(â)/PgR(+) and ER(+)/PgR(â) breast cancers. However, a trend for differing expression (p-value ⤠0.05; FDR > 0.2; ANOVA) in eight miRNAs was observed. The ER(+)/PgR(â) group demonstrated elevated levels of four miRNAsâmiR-30a-5p, miR-29c-3p, miR-141-3p and miR-423-5pâwhile the ER(â)/PgR(+) tumors were enriched in another four miRNAsâmiR-514b-5p, miR-424-5p, miR-495-3p, and miR-92a-3p. For one of the miRNAsâmiR-29c-3pâthe association with the ER(+)/PgR(â) phenotype was confirmed in the TCGA cohort (p-value = 0.024; t-test). HER2 amplification/overexpression in the NanoString cohort was related to significant differences observed in 33 miRNA expression levels (FDR ⤠0.2; ANOVA). The association with HER2 status was confirmed in the TCGA cohort for four miRNAs (miR-1180-3p, miR-223-3p, miR-30d-5p, and miR-195-5p). The main differences in miRNA expression amongst single hormone receptor-positive tumors were identified according to their HER2 status. However, ER(+)/PgR(â) cases tended to express higher levels of miRNAs associated with ER-positivity (miR-30a-5p, miR-29c-3p, miR-141-3p), whereas ER(â)/PgR(+) cancers showed elevated levels of miRNAs characteristic for double- and triple-negative tumors (miR-92a-3p, miR-424-5p). Further studies are necessary to comprehensively analyze miRNA signatures characteristic of ER(â)/PgR(+) and ER(+)/PgR(â) tumors.
Collapse
Affiliation(s)
- MichaĹ Kunc
- Department of Pathomorphology, Medical University of Gdansk, 80-214 GdaĹsk, Poland; (M.K.); (M.B.); (R.P.); (W.B.)
| | - Marta PopÄda
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.P.); (A.J.Ĺť.)
| | - Anna SzaĹkowska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (M.N.); (A.K.)
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (M.N.); (A.K.)
| | - MichaĹ BieĹkowski
- Department of Pathomorphology, Medical University of Gdansk, 80-214 GdaĹsk, Poland; (M.K.); (M.B.); (R.P.); (W.B.)
| | - RafaĹ PÄksa
- Department of Pathomorphology, Medical University of Gdansk, 80-214 GdaĹsk, Poland; (M.K.); (M.B.); (R.P.); (W.B.)
| | - Aleksandra Ĺacko
- Department of Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland;
- Department of Oncology, Breast Unit, Lower Silesian Oncology Centre, 53-413 Wroclaw, Poland
| | - Barbara S. Radecka
- Department of Oncology, Institute of Medical Sciences, University of Opole, 45-052 Opole, Poland;
- Department of Clinical Oncology, Tadeusz Koszarowski Cancer Center in Opole, 45-061 Opole, Poland
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Joanna Pikiel
- Department of Oncology, Szpital Morski, 81-519 Gdynia, Poland;
| | - Maria Litwiniuk
- Department of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences, 61-866 Poznan, Poland;
| | - Katarzyna Pogoda
- Department of Breast Cancer and Reconstructive Surgery, Maria Sklodowska Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | | | - Adam KrÄtowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (M.N.); (A.K.)
| | - Anna J. Ĺťaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.P.); (A.J.Ĺť.)
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdansk, 80-214 GdaĹsk, Poland; (M.K.); (M.B.); (R.P.); (W.B.)
| | - ElĹźbieta Senkus-Konefka
- Department of Oncology and Radiotherapy, Medical University of Gdansk, 80-214 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-584-4481
| |
Collapse
|
34
|
Kolenda T, Guglas K, KopczyĹska M, SobociĹska J, Teresiak A, BliĹşniak R, Lamperska K. Good or not good: Role of miR-18a in cancer biology. Rep Pract Oncol Radiother 2020; 25:808-819. [PMID: 32884453 DOI: 10.1016/j.rpor.2020.07.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/24/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
miR-18a is a member of primary transcript called miR-17-92a (C13orf25 or MIR17HG) which also contains five other miRNAs: miR-17, miR-19a, miR-20a, miR-19b and miR-92a. This cluster as a whole shows specific characteristics, where miR-18a seems to be unique. In contrast to the other members, the expression of miR-18a is additionally controlled and probably functions as its own internal controller of the cluster. miR-18a regulates many genes involved in proliferation, cell cycle, apoptosis, response to different kinds of stress, autophagy and differentiation. The disturbances of miR-18a expression are observed in cancer as well as in different diseases or pathological states. The miR-17-92a cluster is commonly described as oncogenic and it is known as 'oncomiR-1', but this statement is a simplification because miR-18a can act both as an oncogene and a suppressor. In this review we summarize the current knowledge about miR-18a focusing on its regulation, role in cancer biology and utility as a potential biomarker.
Collapse
Key Words
- 5-FU, 5-fluorouracyl
- ACVR2A, activin A receptor type 2A
- AKT, AKT serine/threonine kinase
- AR, androgen receptor
- ATG7, autophagy related 7
- ATM, ATM serine/threonine kinase
- BAX, BCL2 associated Xapoptosis regulator
- BCL2, BCL2 apoptosis regulator
- BCL2L10, BCL2 like 10
- BDNF, brain derived neurotrophic factor
- BLCA, bladder urothelial carcinoma
- BRCA, breast cancer
- Biomarker
- Bp, base pair
- C-myc (MYCBP), MYC binding protein
- CASC2, cancer susceptibility 2
- CD133 (PROM1), prominin 1
- CDC42, cell division cycle 42
- CDKN1, Bcyclin dependent kinase inhibitor 1B
- COAD, colon adenocarcinoma
- Cancer
- Circulating miRNA
- DDR, DNA damage repair
- E2F family (E2F1, E2F2, E2F3), E2F transcription factors
- EBV, Epstein-Barr virus
- EMT, epithelial-to-mesenchymal transition
- ER, estrogen receptor
- ERBB (EGFR), epidermal growth factor receptor
- ESCA, esophageal carcinoma
- FENDRR, FOXF1 adjacent non-coding developmental regulatory RNA
- FER1L4, fer-1 like family member 4 (pseudogene)
- GAS5, growth arrestâspecific 5
- HIF-1Îą (HIF1A), hypoxia inducible factor 1 subunit alpha
- HNRNPA1, heterogeneous nuclear ribonucleoprotein A1
- HNSC, head and neck squamous cell carcinoma
- HRR, homologous recombination-based DNA repair
- IFN-Îł (IFNG), interferon gamma
- IGF1, insulin like growth factor 1
- IL6, interleukin 6
- IPMK, inositol phosphate multikinase
- KIRC, clear cell kidney carcinoma
- KIRP, kidney renal papillary cell carcinoma
- KRAS, KRAS proto-oncogene, GTPase
- LIHC, liver hepatocellular carcinoma
- LMP1, latent membrane protein 1
- LUAD, lung adenocarcinoma
- LUSC, lung squamous cell carcinoma
- Liquid biopsy
- MAPK, mitogen-activated protein kinase
- MCM7, minichromosome maintenance complex component 7
- MET, mesenchymal-to-epithelial transition
- MTOR, mechanistic target of rapamycin kinase
- N-myc (MYCN), MYCN proto-oncogene, bHLH transcription factor
- NF-ÎşB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NOTCH2, notch receptor 2
- Oncogene
- PAAD, pancreatic adenocarcinoma
- PERK (EIF2AK3), eukaryotic translation initiation factor 2 alpha kinase 3
- PI3K (PIK3CA), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
- PIAS3, protein inhibitor of activated STAT 3
- PRAD, prostate adenocarcinoma
- RISC, RNA-induced silencing complex
- SMAD2, SMAD family member 2
- SMG1, SMG1 nonsense mediated mRNA decay associated PI3K related kinase
- SNHG1, small nucleolar RNA host gene 1
- SOCS5, suppressor of cytokine signaling 5
- STAD, stomach adenocarcinoma
- STAT3, signal transducer and activator of transcription 3
- STK4, serine/threonine kinase 4
- Suppressor
- TCGA
- TCGA, The Cancer Genome Atlas
- TGF-β (TGFB1), transforming growth factor beta 1
- TGFBR2, transforming growth factor beta receptor 2
- THCA, papillary thyroid carcinoma
- TNM, Classification of Malignant Tumors: T - tumor / N - lymph nodes / M â metastasis
- TP53, tumor protein p53
- TP53TG1, TP53 target 1
- TRIAP1, p53-regulating inhibitor of apoptosis gene
- TSC1, TSC complex subunit 1
- UCA1, urothelial cancer associated 1
- UCEC, uterine corpus endometrial carcinoma
- UTR, untranslated region
- WDFY3-AS2, WDFY3 antisense RNA 2
- WEE1, WEE1 G2 checkpoint kinase
- WNT family, Wingless-type MMTV integration site family/Wnt family ligands
- ZEB1/ZEB2, zinc finger E-box binding homeobox 1 and 2
- ceRNA, competitive endogenous RNA
- cncRNA, protein coding and non-coding RNA
- lncRNA, long-non coding RNA
- miR-17-92a
- miR-18a
- miRNA
Collapse
Affiliation(s)
- Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland.,Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Magda KopczyĹska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland.,Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna SobociĹska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | - Renata BliĹşniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | | |
Collapse
|
35
|
Song N, Zhang Y, Kong F, Yang H, Ma X. HOXA-AS2 promotes type I endometrial carcinoma via miRNA-302c-3p-mediated regulation of ZFX. Cancer Cell Int 2020; 20:359. [PMID: 32760226 PMCID: PMC7393821 DOI: 10.1186/s12935-020-01443-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background HOXA cluster antisense RNA2 (HOXA-AS2), a long-chain non-coding RNA, plays an important role in the behavior of various malignant tumors. The roles of HOXA-AS2 in endometrial cancer remain unclear. Methods We test expression levels of HOXA-AS2, miRNA-302c-3p, the transcription factor zinc finger X-chromosomal protein (ZFX), and the chitinase-like protein YKL-40 in endometrial carcinoma by qRT-PCR and western blotting. Luciferase reporter and qRT-PCR assays were conducted to identify potential binding sites of HOXA-AS2 to miRNA-302c-3p. Cell cycle, migration and invasion ability of endometrial cancer cells were investigated using flow-cytometric analysis, CCK-8 and transwell assays, respectively. Results HOXA-AS2 levels were significantly increased in endometrial cancer specimens compared to normal endometrial specimens. Upregulated HOXA-AS2 promoted invasion and proliferation of type I endometrial cancer cells. HOXA-AS2 silenced miRNA-302c-3p by binding to it. MiRNA-302c-3p negatively regulates ZFX and YKL-40. Thus HOXA-AS2 promotes the development of type I endometrial cancer via miRNA-302c-3p-mediated regulation of ZFX. Conclusions These findings suggest that HOXA-AS2 can act as a new therapeutic target for type I endometrial cancer.
Collapse
Affiliation(s)
- Ning Song
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Heping District Sanhao Street 36, Shenyang, 110004 China
| | - Ying Zhang
- Experimental technology center of China Medical University, Shenyang, China
| | - Fanfei Kong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Heping District Sanhao Street 36, Shenyang, 110004 China
| | - Hui Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Heping District Sanhao Street 36, Shenyang, 110004 China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Heping District Sanhao Street 36, Shenyang, 110004 China
| |
Collapse
|
36
|
Nair MG, Prabhu JS, Korlimarla A, Rajarajan S, P S H, Kaul R, Alexander A, Raghavan R, B S S, T S S. miR-18a activates Wnt pathway in ER-positive breast cancer and is associated with poor prognosis. Cancer Med 2020; 9:5587-5597. [PMID: 32543775 PMCID: PMC7402845 DOI: 10.1002/cam4.3183] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/24/2022] Open
Abstract
Despite the established benefits of longâterm endocrine therapy, women with hormone receptorâpositive breast cancer remain at risk for late relapse. The basis of this is multiâfactorial including genetic, epigenetic, and host factors. In this study we have explored the epigenetic regulation of estrogen receptor (ER)âdependent molecular and cellular phenotype by hsaâmiRâ18aâ5p using wellâestablished human ERâpositive (ER+) breast cancer cell lines. miRâ18a was overexpressed in MCF7 and ZRâ75â1 and this led to an increase in the proliferative ability of the cells and concurrently resulted in decreased expression of luminal markers and higher expression of the basal marker, cytokeratin 14. The cells became more migratory with a significant repression of Eâcadherin and activation of the Wnt noncanonical pathway. We observed an activation of the planar cell polarity (PCP) pathway with increased activation of JNK pathway and eventually change in actin dynamics. There was increased Fâactin polymerization in cells with higher expression of miRâ18a. Examination of miRâ18a expression in a set of human ER+ breast cancer specimens showed a negative correlation between miRâ18a and ESR1 transcripts as well as ER protein. KaplanâMeier survival analysis of the cohort stratified by tumor hsaâmiRâ18aâ5p levels produced significant differences in diseaseâfree survival (log rank PÂ <Â .05). This observation was independently validated in the METABRIC cohort. These data provide support for a role of hsaâmiRâ18aâ5p in altering the proliferative and migratory behavior of ER+ cells and its potential utility as a prognostic marker in clinical ER+ breast cancers.
Collapse
Affiliation(s)
- Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Aruna Korlimarla
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Savitha Rajarajan
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Hari P S
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Roma Kaul
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Annie Alexander
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Rohini Raghavan
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Srinath B S
- Sri Shankara Cancer Hospital and Research Centre, Bangalore, India
| | - Sridhar T S
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| |
Collapse
|
37
|
Egeland NG, Jonsdottir K, Aure MR, Sahlberg K, Kristensen VN, Cronin-Fenton D, Skaland I, Gudlaugsson E, Baak JPA, Janssen EAM. MiR-18a and miR-18b are expressed in the stroma of oestrogen receptor alpha negative breast cancers. BMC Cancer 2020; 20:377. [PMID: 32370743 PMCID: PMC7201801 DOI: 10.1186/s12885-020-06857-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/13/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Previously, we have shown that miR-18a and miR-18b gene expression strongly correlates with high proliferation, oestrogen receptor -negativity (ER-), cytokeratin 5/6 positivity and basal-like features of breast cancer. METHODS We investigated the expression and localization of miR-18a and -18b in formalin fixed paraffin embedded (FFPE) tissue from lymph node negative breast cancers (nâ=â40), by chromogenic in situ hybridization (CISH). The expression level and in situ localization of miR-18a and -18b was assessed with respect to the presence of tumour infiltrating lymphocytes (TILs) and immunohistochemical markers for ER, CD4, CD8, CD20, CD68, CD138, PAX5 and actin. Furthermore, in two independent breast cancer cohorts (94 and 377 patients) the correlation between miR-18a and -18b expression and the relative quantification of 22 immune cell types obtained from the CIBERSORT tool was assessed. RESULTS CISH demonstrated distinct and specific cytoplasmic staining for both miR-18a and miR-18b, particularly in the intratumoural stroma and the stroma surrounding the tumour margin. Staining by immunohistochemistry revealed some degree of overlap of miR-18a and -18b with CD68 (monocytes/macrophages), CD138 (plasma cells) and the presence of high percentages of TILs. CIBERSORT analysis showed a strong correlation between M1-macrophages and CD4+ memory activated T-cells with mir-18a and -18b. CONCLUSIONS Our study demonstrates that miR-18a and miR-18b expression is associated with ER- breast tumours that display a high degree of inflammation. This expression is potentially associated specifically with macrophages. These results suggest that miR-18a and miR-18b may play a role in the systemic immunological response in ER- tumours.
Collapse
Affiliation(s)
- Nina Gran Egeland
- Department of Pathology, Stavanger University Hospital, Box 8100, 4068, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Kristin Jonsdottir
- Department of Pathology, Stavanger University Hospital, Box 8100, 4068, Stavanger, Norway.
| | - Miriam Ragle Aure
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kristine Sahlberg
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Research and Innovation, Vestre Viken Hospital Trust, Drammen, Norway
| | - Vessela N Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| | | | - Ivar Skaland
- Department of Pathology, Stavanger University Hospital, Box 8100, 4068, Stavanger, Norway
| | - Einar Gudlaugsson
- Department of Pathology, Stavanger University Hospital, Box 8100, 4068, Stavanger, Norway
| | - Jan P A Baak
- Department of Pathology, Stavanger University Hospital, Box 8100, 4068, Stavanger, Norway.,Dr. Med. Jan Baak AS, Tananger, Norway
| | - Emiel A M Janssen
- Department of Pathology, Stavanger University Hospital, Box 8100, 4068, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| |
Collapse
|
38
|
Evran S, Baran O, Kayhan A, Katar S, Akkaya E, Cevik S, Kaya M, Sonmez D, Serin H, Kaynar MY. The Expression of MIR17HG Protein as a Potential Therapeutic Target in Meningioma. World Neurosurg 2020; 137:e554-e563. [PMID: 32068173 DOI: 10.1016/j.wneu.2020.02.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND MIR17 host gene (MIR17HG) is a potential therapeutic target for some cancer types. The aim of this study was to assess MIR17HG protein levels in patients with meningioma who had not been reported previously in the literature and comparing with normal meninges tissues. METHODS MIR17HG protein levels were measured in 46 samples including 25 meningioma tissues procured during surgery and 21 normal meninges tissues obtained within 4 hours of death during autopsy procedures. Each sample was stored at -80°C until the evaluation of MIR17HG protein using a sandwich enzyme-linked immunoassay principle. Results were compared between the groups. RESULTS MIR17HG protein levels were significantly higher in meningioma tissues compared with controls and difference was statistically significant (P = 0.012). Both World Health Organization grade I and grade II meningiomas had higher MIR17HG protein levels compared with controls and differences were statistically significant (P = 0.026 for grade I and P = 0.042 for grade II). Receiver operating characteristic curve analysis was performed to determine the cutoff of MIR17HG protein value in differentiating meningioma and control groups. At the cutoff value for MIR17HG protein of >0.0998 ng/mL, the sensitivity was 73.91%, 71.43%, and 77.78% and area under the curve was 0.756, 0.753, and 0.761 for meningioma group, grade I, and grade II subgroups, respectively, and specificity was 69.23% for each group. CONCLUSIONS MIR17HG protein expression was found to have a higher level in meningiomas than in normal meninges tissues in our study. Considering the recurrence and irresectability for some meningiomas, which require further treatment, MIR17HG may be a new target for treatment in meningiomas and our study will shed light on further studies.
Collapse
Affiliation(s)
- Sevket Evran
- Neurosurgery Clinic, Haseki Research and Training Hospital, Istanbul, Turkey.
| | - Oguz Baran
- Neurosurgery Clinic, Haseki Research and Training Hospital, Istanbul, Turkey
| | - Ahmet Kayhan
- Neurosurgery Clinic, Haseki Research and Training Hospital, Istanbul, Turkey
| | - Salim Katar
- Neurosurgery Clinic, Diyarbakir State Hospital, Diyarbakir, Turkey
| | - Enes Akkaya
- Neurosurgery Clinic, Sisli Hamidiye Etfal Research and Training Hospital, Istanbul, Turkey
| | - Serdar Cevik
- Neurosurgery Clinic, Memorial Hospital, Istanbul, Turkey
| | - Mustafa Kaya
- Neurosurgery Clinic, Eregli State Hospital, Zonguldak, Turkey
| | - Derya Sonmez
- Clinical Biochemistry Laboratory, Istanbul Research and Training Hospital, Istanbul, Turkey
| | - Huriye Serin
- Clinical Biochemistry Laboratory, Istanbul Research and Training Hospital, Istanbul, Turkey
| | | |
Collapse
|
39
|
Liu J, Wang Y, Ji P, Jin X. Application of the microRNA-302/367 cluster in cancer therapy. Cancer Sci 2020; 111:1065-1075. [PMID: 31957939 PMCID: PMC7156871 DOI: 10.1111/cas.14317] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 02/05/2023] Open
Abstract
As a novel class of noncoding RNAs, microRNAs (miRNAs) can effectively silence their target genes at the posttranscriptional level. Various biological processes, such as cell proliferation, differentiation, and motility, are regulated by miRNAs. In different diseases and different stages of disease, miRNAs have various expression patterns, which makes them candidate prognostic markers and therapeutic targets. Abnormal miRNA expression has been detected in numerous neoplastic diseases in humans, which indicates the potential role of miRNAs in tumorigenesis. Previous studies have indicated that miRNAs are involved in nearly the entire process of tumor development. MicroRNAâ302a, miRâ302b, miRâ302c, miRâ302d, and miRâ367 are members of the miRâ302/367 cluster that plays various biological roles in diverse neoplastic diseases by targeting different genes. These miRNAs have been implicated in several unique characteristics of cancer, including the evasion of growth suppressors, the sustained activation of proliferative signaling, the evasion of cell death and senescence, and the regulation of angiogenesis, invasion, and metastasis. This review provides a critical overview of miRâ302/367 cluster dysregulation and the subsequent effects in cancer and highlights the vast potential of members of this cluster as therapeutic targets and novel biomarkers.
Collapse
Affiliation(s)
- Jiajia Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Jin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
40
|
ESR1-Stabilizing Long Noncoding RNA TMPO-AS1 Promotes Hormone-Refractory Breast Cancer Progression. Mol Cell Biol 2019; 39:MCB.00261-19. [PMID: 31501276 DOI: 10.1128/mcb.00261-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
Acquired endocrine therapy resistance is a significant clinical problem for breast cancer patients. In recent years, increasing attention has been paid to long noncoding RNA (lncRNA) as a critical modulator for cancer progression. Based on RNA-sequencing data of breast invasive carcinomas in The Cancer Genome Atlas database, we identified thymopoietin antisense transcript 1 (TMPO-AS1) as a functional lncRNA that significantly correlates with proliferative biomarkers. TMPO-AS1 positivity analyzed by in situ hybridization significantly correlates with poor prognosis of breast cancer patients. TMPO-AS1 expression was upregulated in endocrine therapy-resistant MCF-7 cells compared with levels in parental cells and was estrogen inducible. Gain and loss of TMPO-AS1 experiments showed that TMPO-AS1 promotes the proliferation and viability of estrogen receptor (ER)-positive breast cancer cells in vitro and in vivo Global expression analysis using a microarray demonstrated that TMPO-AS1 is closely associated with the estrogen signaling pathway. TMPO-AS1 could positively regulate estrogen receptor 1 (ESR1) mRNA expression by stabilizing ESR1 mRNA through interaction with ESR1 mRNA. Enhanced expression of ESR1 mRNA by TMPO-AS1 could play a critical role in the proliferation of ER-positive breast cancer. Our findings provide a new insight into the understanding of molecular mechanisms underlying hormone-dependent breast cancer progression and endocrine resistance.
Collapse
|
41
|
Uno Y, Yamazaki H. Expression levels of microRNAs that are potential cytochrome P450 regulators in cynomolgus macaques. Xenobiotica 2019; 50:747-752. [PMID: 31682544 DOI: 10.1080/00498254.2019.1688423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1. Although the cynomolgus macaque is an important non-human primate species used in drug metabolism studies, cynomolgus macaque microRNA expressions have not been fully investigated.2. The expressions of 11 cynomolgus microRNAs, all orthologues of P450 regulators in humans, were measured by quantitative polymerase chain reaction in adrenal gland, brain, heart, jejunum, kidney, liver, ovary, testis and uterus. mfa-miR-122 and mfa-miR-192, potentially important biomarkers for liver toxicity, were also analyzed.3. Several cynomolgus microRNAs showed preferential tissue expressions: mfa-miR-1 in heart, mfa-miR-122 in liver and mfa-miR-21 and mfa-miR-192 in jejunum. The remaining nine microRNAs had more ubiquitous expressions. All 13 cynomolgus microRNAs were expressed in liver. Among the 10 animals investigated, inter-individual microRNA expression levels in liver varied from 1.5- to 5.3-fold. mfa-miR-18b was the most variable microRNA. Sex differences in expression levels were <2.0-fold, and the difference was only significant for mfa-miR-29 [1.6-fold difference (pâ<â.05)]. Six cynomolgus microRNAs (mfa-miR-18b, mfa-miR-27a, mfa-miR-132, mfa-miR-27b, mfa-miR-122 and mfa-miR-29) were significantly correlated with P450 mRNAs: mfa-miR-18b and mfa-miR-27a were each correlated with seven P450 mRNAs.4. Expression of these cynomolgus microRNAs in liver might indicate their possible roles in this tissue, and further investigation will clarify their involvement in P450 regulation.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima city, Japan.,Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd, Kainan, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| |
Collapse
|
42
|
Moi L, Braaten T, Al-Shibli K, Lund E, Busund LTR. Differential expression of the miR-17-92 cluster and miR-17 family in breast cancer according to tumor type; results from the Norwegian Women and Cancer (NOWAC) study. J Transl Med 2019; 17:334. [PMID: 31581940 PMCID: PMC6775665 DOI: 10.1186/s12967-019-2086-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNAs (miRNAs) are promising biomarkers due to their structural stability and distinct expression profile in various cancers. We wanted to explore the miRNA expression in benign breast tissue and breast cancer subgroups in the Norwegian Women and Cancer study. Methods Specimens and histopathological data from study participants in Northern Norway diagnosed with breast cancer, and benign tissue from breast reduction surgery were collected. Main molecular subtypes were based on surrogate markers; luminal A (ER+ and/or PR+, HER2â and Ki67ââ¤â30%), luminal B (ER+ and/or PR+, HER2â and Ki67â>â30% or ER+ and/or PR+ and HER2+), HER2 positive (ERâ and PRâ and HER2+) and triple-negative (ERâ, PRâ and HER2â). RNA was extracted from formalin-fixed paraffin-embedded (FFPE) tissue, and miRNAs were successfully analyzed in 102 cancers and 36 benign controls using the 7th generation miRCURY LNA microarray containing probes targeting all human miRNAs as annotated in miRBASE version 19.0. Validation with RT-qPCR was performed. Results On average, 450 miRNAs were detected in each sample, and 304 miRNAs were significantly different between malignant and benign tissue. Subgroup analyses of cancer cases revealed 23 miRNAs significantly different between ER+ and ERâ tumors, and 47 miRNAs different between tumors stratified according to grade. Significantly higher levels were found in high grade tumors for miR-17-5p (pâ=â0.006), miR-20a-5p (pâ=â0.007), miR-106b-5p (pâ=â0.007), miR-93-5p (pâ=â0.007) and miR-25-3p (pâ=â0.015) from the paralogous clusters miR-17-92 and miR-106b-25. Expression of miR-17-5p (pâ=â0.0029), miR-20a-5p (pâ=â0.0021), miR-92a-3p (pâ=â0.011) and miR-106b-5p (pâ=â0.021) was significantly higher in triple-negative tumors compared to the rest, and miR-17-5p and miR-20a-5p were significantly lower in luminal A tumors. Conclusions miRNA expression profiles were significantly different between malignant and benign tissue and between cancer subgroups according to ERâ status, grade and molecular subtype. miRNAs in the miR-17-92 cluster and miR-17 family were overexpressed in high grade and triple-negative tumors associated with aggressive behavior. The expression and functional role of these miRNAs should be further studied in breast cancer to explore their potential as biomarkers in diagnostic pathology and clinical oncology.
Collapse
Affiliation(s)
- Line Moi
- Institute of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway. .,Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway.
| | - Tonje Braaten
- Institute of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Khalid Al-Shibli
- Institute of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Pathology, Nordland Hospital, Bodø, Norway
| | - Eiliv Lund
- Institute of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Cancer Registry of Norway, Oslo, Norway
| | - Lill-Tove Rasmussen Busund
- Institute of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
43
|
Edwards VL, Smith SB, McComb EJ, Tamarelle J, Ma B, Humphrys MS, Gajer P, Gwilliam K, Schaefer AM, Lai SK, Terplan M, Mark KS, Brotman RM, Forney LJ, Bavoil PM, Ravel J. The Cervicovaginal Microbiota-Host Interaction Modulates Chlamydia trachomatis Infection. mBio 2019; 10:e01548-19. [PMID: 31409678 PMCID: PMC6692509 DOI: 10.1128/mbio.01548-19] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/09/2019] [Indexed: 12/02/2022] Open
Abstract
The mechanism(s) by which Lactobacillus-dominated cervicovaginal microbiota provide a barrier to Chlamydia trachomatis infection remain(s) unknown. Here we evaluate the impact of different Lactobacillus spp. identified via culture-independent metataxonomic analysis of C. trachomatis-infected women on C. trachomatis infection in a three-dimensional (3D) cervical epithelium model. Lactobacillus spp. that specifically produce d(-) lactic acid were associated with long-term protection against C. trachomatis infection, consistent with reduced protection associated with Lactobacillus iners, which does not produce this isoform, and with decreased epithelial cell proliferation, consistent with the observed prolonged protective effect. Transcriptomic analysis revealed that epigenetic modifications involving histone deacetylase-controlled pathways are integral to the cross talk between host and microbiota. These results highlight a fundamental mechanism whereby the cervicovaginal microbiota modulates host functions to protect against C. trachomatis infection.IMPORTANCE The vaginal microbiota is believed to protect women against Chlamydia trachomatis, the etiologic agent of the most prevalent sexually transmitted infection (STI) in developed countries. The mechanism underlying this protection has remained elusive. Here, we reveal the comprehensive strategy by which the cervicovaginal microbiota modulates host functions to protect against chlamydial infection, thereby providing a novel conceptual mechanistic understanding. Major implications of this work are that (i) the impact of the vaginal microbiota on the epithelium should be considered in future studies of chlamydial infection and other STIs and (ii) a fundamental understanding of the cervicovaginal microbiota's role in protection against STIs may enable the development of novel microbiome-based therapeutic strategies to protect women from infection and improve vaginal and cervical health.
Collapse
Affiliation(s)
- Vonetta L Edwards
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Steven B Smith
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Elias J McComb
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jeanne Tamarelle
- Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases, Institut Pasteur, INSERM, UniversitĂŠ de Versailles-Saint-Quentin-en-Yvelines, Versailles, France
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Michael S Humphrys
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pawel Gajer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kathleen Gwilliam
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alison M Schaefer
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Samuel K Lai
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mishka Terplan
- Department of Obstetrics and Gynecology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Katrina S Mark
- Department of Obstetrics and Gynecology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rebecca M Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Larry J Forney
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Patrik M Bavoil
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
44
|
Klinge CM, Piell KM, Tooley CS, Rouchka EC. HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells. Sci Rep 2019; 9:9430. [PMID: 31263129 PMCID: PMC6603045 DOI: 10.1038/s41598-019-45636-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are dysregulated in breast cancer. Heterogeneous Nuclear Ribonucleoprotein A2/B1 (HNRNPA2/B1) is a reader of the N(6)-methyladenosine (m6A) mark in primary-miRNAs (pri-miRNAs) and promotes DROSHA processing to precursor-miRNAs (pre-miRNAs). We examined the expression of writers, readers, and erasers of m6A and report that HNRNPA2/B1 expression is higher in tamoxifen-resistant LCC9 breast cancer cells as compared to parental, tamoxifen-sensitive MCF-7 cells. To examine how increased expression of HNRNPA2/B1 affects miRNA expression, HNRNPA2/B1 was transiently overexpressed (~5.4-fold) in MCF-7 cells for whole genome miRNA profiling (miRNA-seq). 148 and 88 miRNAs were up- and down-regulated, respectively, 48âh after transfection and 177 and 172 up- and down-regulated, respectively, 72âh after transfection. MetaCore Enrichment analysis identified progesterone receptor action and transforming growth factor β (TGFβ) signaling via miRNA in breast cancer as pathways downstream of the upregulated miRNAs and TGFβ signaling via SMADs and Notch signaling as pathways of the downregulated miRNAs. GO biological processes for mRNA targets of HNRNPA2/B1-regulated miRNAs included response to estradiol and cell-substrate adhesion. qPCR confirmed HNRNPA2B1 downregulation of miR-29a-3p, miR-29b-3p, and miR-222 and upregulation of miR-1266-5p, miR-1268a, miR-671-3p. Transient overexpression of HNRNPA2/B1 reduced MCF-7 sensitivity to 4-hydroxytamoxifen and fulvestrant, suggesting a role for HNRNPA2/B1 in endocrine-resistance.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| | - Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Christine Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Eric C Rouchka
- Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40292, USA
| |
Collapse
|
45
|
Søkilde R, Persson H, Ehinger A, Pirona AC, FernĂś M, Hegardt C, Larsson C, Loman N, Malmberg M, RydĂŠn L, Saal L, Borg Ă
, Vallon-Christerson J, Rovira C. Refinement of breast cancer molecular classification by miRNA expression profiles. BMC Genomics 2019; 20:503. [PMID: 31208318 PMCID: PMC6580620 DOI: 10.1186/s12864-019-5887-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background Accurate classification of breast cancer using gene expression profiles has contributed to a better understanding of the biological mechanisms behind the disease and has paved the way for better prognostication and treatment prediction. Results We found that miRNA profiles largely recapitulate intrinsic subtypes. In the case of HER2-enriched tumors a small set of miRNAs including the HER2-encoded mir-4728 identifies the group with very high specificity. We also identified differential expression of the miR-99a/let-7c/miR-125b miRNA cluster as a marker for separation of the Luminal A and B subtypes. High expression of this miRNA cluster is linked to better overall survival among patients with Luminal A tumors. Correlation between the miRNA cluster and their precursor LINC00478 is highly significant suggesting that its expression could help improve the accuracy of present dayâs signatures. Conclusions We show here that miRNA expression can be translated into mRNA profiles and that the inclusion of miRNA information facilitates the molecular diagnosis of specific subtypes, in particular the clinically relevant sub-classification of luminal tumors. Electronic supplementary material The online version of this article (10.1186/s12864-019-5887-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rolf Søkilde
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden
| | - Helena Persson
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden
| | - Anna Ehinger
- Clinical Pathology, Laboratory Medicine, SkĂĽne University Hospital, Lund, Sweden
| | - Anna Chiara Pirona
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden.,German Cancer Research Center DKFZ, Division of Functional Genome Analysis, Heidelberg, Germany
| | - MĂĽrten FernĂś
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden
| | - Cecilia Hegardt
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden
| | - Christer Larsson
- Division of Translational Cancer Research, Lund University, Lund, Sweden.,BioCARE, Strategic Cancer Research Program, Lund, Sweden
| | - Niklas Loman
- Division of Oncology, SkĂĽne University Hospital, Lund, Sweden
| | - Martin Malmberg
- Division of Oncology, SkĂĽne University Hospital, Lund, Sweden
| | - Lisa RydĂŠn
- Department of Surgery, SkĂĽne University Hospital, Lund, Sweden
| | - Lao Saal
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden.,BioCARE, Strategic Cancer Research Program, Lund, Sweden
| | - Ă
ke Borg
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden.,BioCARE, Strategic Cancer Research Program, Lund, Sweden
| | - Johan Vallon-Christerson
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden
| | - Carlos Rovira
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden. .,BioCARE, Strategic Cancer Research Program, Lund, Sweden.
| |
Collapse
|
46
|
Sun G, Li F, Ma X, Sun J, Jiang R, Tian Y, Han R, Li G, Wang Y, Li Z, Kang X, Li W. gga-miRNA-18b-3p Inhibits Intramuscular Adipocytes Differentiation in Chicken by Targeting the ACOT13 Gene. Cells 2019; 8:E556. [PMID: 31181634 PMCID: PMC6627633 DOI: 10.3390/cells8060556] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022] Open
Abstract
Intramuscular fat (IMF) is the most important evaluating indicator of chicken meat quality, the content of which is positively correlated with tenderness, flavor, and succulence of the meat. Chicken IMF deposition process is regulated by many factors, including genetic, nutrition, and environment. Although large number of omics' studies focused on the IMF deposition process, the molecular mechanism of chicken IMF deposition is still poorly understood. In order to study the role of miRNAs in chicken intramuscular adipogenesis, the intramuscular adipocyte differentiation model (IMF-preadipocytes and IMF-adipocytes) was established and subject to miRNA-Seq. A total of 117 differentially expressed miRNAs between two groups were obtained. Target genes prediction and functional enrichment analysis revealed that eight pathways involved in lipid metabolism related processes, such as fatty acid metabolism and fatty acid elongation. Meanwhile a putative miRNA, gga-miR-18b-3p, was identified be served a function in the intramuscular adipocyte differentiation. Luciferase assay suggested that the gga-miR-18b-3p targeted to the 3'UTR of ACOT13. Subsequent functional experiments demonstrated that gga-miR-18b-3p acted as an inhibitor of intramuscular adipocyte differentiation by targeting ACOT13. Our findings laid a new theoretical foundation for the study of lipid metabolism, and also provided a potential target to improve the meat quality in the poultry industry.
Collapse
Affiliation(s)
- Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Fang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xiangfei Ma
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Junwei Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Wenting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
47
|
Luengo-Gil G, GarcĂa-MartĂnez E, Chaves-Benito A, Conesa-Zamora P, Navarro-Manzano E, GonzĂĄlez-Billalabeitia E, GarcĂa-Garre E, MartĂnez-Carrasco A, Vicente V, Ayala de la PeĂąa F. Clinical and biological impact of miR-18a expression in breast cancer after neoadjuvant chemotherapy. Cell Oncol (Dordr) 2019; 42:627-644. [DOI: 10.1007/s13402-019-00450-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
|
48
|
Khordadmehr M, Shahbazi R, Sadreddini S, Baradaran B. miR-193: A new weapon against cancer. J Cell Physiol 2019; 234:16861-16872. [PMID: 30779342 DOI: 10.1002/jcp.28368] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/06/2019] [Indexed: 12/12/2022]
Abstract
microRNAs (miRNAs) are known as a large group of short noncoding RNAs, which structurally consist of 19-22 nucleotides in length and functionally act as one of the main regulators of gene expression in important biological and physiological contexts like cell growth, apoptosis, proliferation, differentiation, movement (cell motility), and angiogenesis as well as disease formation and progression importantly in cancer cell invasion, migration, and metastasis. Among these notable tiny molecules, many studies recently presented the important role of the miR-193 family comprising miR-193a-3p, miR-193a-5p, miR-193b-3p, and miR-193b-5p in health and disease biological processes by interaction with special targeting and signaling, which mainly contribute as a tumor suppressor. Therefore, in the present paper, we review the functional role of this miRNA family in both health and disease conditions focusing on various tumor developments, diagnoses, prognoses, and treatment.
Collapse
Affiliation(s)
- Monireh Khordadmehr
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Roya Shahbazi
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sanam Sadreddini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Li X, Liu H, Sun L, Zhou X, Yuan X, Chen Y, Liu F, Liu Y, Xiao L. MicroRNA-302c modulates peritoneal dialysis-associated fibrosis by targeting connective tissue growth factor. J Cell Mol Med 2019; 23:2372-2383. [PMID: 30693641 PMCID: PMC6433681 DOI: 10.1111/jcmm.14029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Longâterm peritoneal dialysis (PD) can lead to the induction of mesothelial/epithelialâmesenchymal transition (MMT/EMT) and fibrosis; these effects eventually result in ultrafiltration failure and the discontinuation of PD. MicroRNAâ302c (miRâ302c) is believed to be involved in regulating tumour cell growth and metastasis by suppressing MMT, but the effect of miRâ302c on MMT in the context of PD is unknown. MiRâ302c levels were measured in mesothelial cells isolated from the PD effluents of continuous ambulatory peritoneal dialysis patients. After miRâ302c overexpression using lentivirus, human peritoneal mesothelial cell line (HMrSV5) and PD mouse peritoneum were treated with TGFâβ1 or high glucose peritoneal dialysate respectively. MiRâ302c expression level and MMTârelated factors alteration were observed. In addition, fibrosis of PD mouse peritoneum was alleviated by miRâ302c overexpression. Furthermore, the expression of connective tissue growth factor (CTGF) was negatively related by miRâ302c, and LVâmiRâ302c reversed the upâregulation of CTGF induced by TGFâβ1. These data suggest that there is a novel TGFâβ1/miRâ302c/CTGF pathway that plays a significant role in the process of MMT and fibrosis during PD. MiRâ302c might be a potential biomarker for peritoneal fibrosis and a novel therapeutic target for protection against peritoneal fibrosis in PD patients.
Collapse
Affiliation(s)
- Xiejia Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhou
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xinke Yuan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yusa Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fuyou Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
50
|
Yang X, Zhao C, Bamunuarachchi G, Wang Y, Liang Y, Huang C, Zhu Z, Xu D, Lin K, Senavirathna LK, Xu L, Liu L. miR-193b represses influenza A virus infection by inhibiting Wnt/β-catenin signalling. Cell Microbiol 2019; 21:e13001. [PMID: 30650225 PMCID: PMC6459727 DOI: 10.1111/cmi.13001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 12/29/2022]
Abstract
Due to an increasing emergence of new and drugâresistant strains of the influenza A virus (IAV), developing novel measures to combat influenza is necessary. We have previously shown that inhibiting Wnt/βâcatenin pathway reduces IAV infection. In this study, we aimed to identify antiviral human microRNAs (miRNAs) that target the Wnt/βâcatenin signalling pathway. Using a miRNA expression library, we identified 85 miRNAs that upâregulated and 20 miRNAs that downâregulated the Wnt/βâcatenin signalling pathway. Fifteen miRNAs were validated to upâregulate and five miRNAs to downâregulate the pathway. Overexpression of four selected miRNAs (miRâ193b, miRâ548fâ1, miRâ1â1, and miRâ509â1) that downâregulated the Wnt/βâcatenin signalling pathway reduced viral mRNA, protein levels in A/PR/8/34âinfected HEK293 cells, and progeny virus production. Overexpression of miRâ193b in lung epithelial A549 cells also resulted in decreases of A/PR/8/34 infection. Furthermore, miRâ193b inhibited the replication of various strains, including H1N1 (A/PR/8/34, A/WSN/33, A/Oklahoma/3052/09) and H3N2 (A/Oklahoma/309/2006), as determined by a viral reporter luciferase assay. Further studies revealed that βâcatenin was a target of miRâ193b, and βâcatenin rescued miRâ193bâmediated suppression of IAV infection. miRâ193b induced G0/G1 cell cycle arrest and delayed vRNP nuclear import. Finally, adenovirusâmediated gene transfer of miRâ193b to the lung reduced viral load in mice challenged by a sublethal dose of A/PR/8/34. Collectively, our findings suggest that miRâ193b represses IAV infection by inhibiting Wnt/βâcatenin signalling.
Collapse
Affiliation(s)
- Xiaoyun Yang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Chunling Zhao
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Gayan Bamunuarachchi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yang Wang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Zhengyu Zhu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Dao Xu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kong Lin
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lakmini Kumari Senavirathna
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lan Xu
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|