1
|
Chuwa AH, Mvunta DH. Prognostic and clinicopathological significance of survivin in gynecological cancer. Oncol Rev 2024; 18:1444008. [PMID: 39687493 PMCID: PMC11646728 DOI: 10.3389/or.2024.1444008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Survivin belongs to the inhibitor of apoptosis protein (IAP) family and is encoded by the baculoviral inhibitor of apoptosis repeat-containing, or BIRC5, gene. It is preferentially expressed in cancers with functional complexity in cell signaling cascades such as extracellular signal-regulated kinases (ERK), mitogen-activated protein kinases (MAPK), heat shock protein-90 (HSP90), epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase (PI3K), signal transducer and activator of transcription (STAT), hypoxia-inducible factor-1 alpha (HIF-1α), vascular endothelial growth factor (VEGF), and others. Survivin plays a role in cell division and cell death, properties that have attracted a large body of research to decipher its therapeutic and prognostic significance in cancer. Survivin has tumor-promoting effects in endometrial (EC) and ovarian (OC) cancers, and its upregulation in endometrial cancer has been associated with poor overall survival (OS). While survivin protein is abundantly expressed in OC, it is barely detectable in normal ovarian tissue or benign ovarian tumors. Survivin expression is also a marker for cervical intraepithelial neoplasia (CIN) and high-risk human papillomavirus, and a predictor of viral clearance and prognosis in uterine cervical cancer (UCC). Furthermore, nuclear survivin expression is very low in normal vulvar squamous epithelium and increases to become abundant in vulvar invasive squamous cell carcinoma (ISCC), conferring resistance to apoptosis in vulvar carcinogenesis. In this review, we discuss in detail the impact of survivin signaling on gynecological cancers and provide insight on its therapeutic and diagnostic potential, existing research gaps, and areas for future research.
Collapse
Affiliation(s)
- Agapiti H. Chuwa
- Department of Physiology, Mbeya College of Health and Allied Sciences, University of Dar es Salaam, Mbeya, Tanzania
| | - David H. Mvunta
- Department of Obstetrics and Gynecology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Surgical Oncology, Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| |
Collapse
|
2
|
Vasishta S, Ammankallu S, Poojary G, Gomes SM, Ganesh K, Umakanth S, Adiga P, Upadhya D, Prasad TSK, Joshi MB. High glucose induces DNA methyltransferase 1 dependent epigenetic reprogramming of the endothelial exosome proteome in type 2 diabetes. Int J Biochem Cell Biol 2024; 176:106664. [PMID: 39303850 DOI: 10.1016/j.biocel.2024.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
In response to hyperglycemia, endothelial cells (ECs) release exosomes with altered protein content and contribute to paracrine signalling, subsequently leading to vascular dysfunction in type 2 diabetes (T2D). High glucose reprograms DNA methylation patterns in various cell/tissue types, including ECs, resulting in pathologically relevant changes in cellular and extracellular proteome. However, DNA methylation-based proteome reprogramming in endothelial exosomes and associated pathological implications in T2D are not known. Hence, in the present study, we used Human umbilical vein endothelial cells (HUVECs), High Fat Diet (HFD) induced diabetic mice (C57BL/6) and clinical models to understand epigenetic basis of exosome proteome regulation in T2D pathogenesis . Exosomes were isolated by size exclusion chromatography and subjected to tandem mass tag (TMT) labelled quantitative proteomics and bioinformatics analysis. Immunoblotting was performed to validate exosome protein signature in clinically characterized individuals with T2D. We observed ECs cultured in high glucose and aortic ECs from HFD mouse expressed elevated DNA methyltransferase1 (DNMT1) levels. Quantitative proteomics of exosomes isolated from ECs treated with high glucose and overexpressing DNMT1 showed significant alterations in both protein levels and post translational modifications which were aligned to T2D associated vascular functions. Based on ontology and gene-function-disease interaction analysis, differentially expressed exosome proteins such as Thrombospondin1, Pentraxin3 and Cystatin C related to vascular complications were significantly increased in HUVECs treated with high glucose and HFD animals and T2D individuals with higher levels of glycated hemoglobin. These proteins were reduced upon treatment with 5-Aza-2'-deoxycytidine. Our study shows epigenetic regulation of exosome proteome in T2D associated vascular complications.
Collapse
Affiliation(s)
- Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shruthi Ammankallu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575020, India
| | - Ganesha Poojary
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sarah Michael Gomes
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kailash Ganesh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | | | - Prashanth Adiga
- Department of Reproductive Medicine and Surgery (MARC), Kasturba Hospital, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | | | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
3
|
Su L, Bu J, Yu J, Jin M, Meng G, Zhu X. Comprehensive review and updated analysis of DNA methylation in hepatocellular carcinoma: From basic research to clinical application. Clin Transl Med 2024; 14:e70066. [PMID: 39462685 PMCID: PMC11513202 DOI: 10.1002/ctm2.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary malignant tumour, ranking second in global mortality rates and posing significant health threats. Epigenetic alterations, particularly DNA methylation, have emerged as pivotal factors associated with HCC diagnosis, therapy, prognosis and malignant progression. However, a comprehensive analysis of the DNA methylation mechanism driving HCC progression and its potential as a therapeutic biomarker remains lacking. This review attempts to comprehensively summarise various aspects of DNA methylation, such as its mechanism, detection methods and biomarkers aiding in HCC diagnosis, treatment and prognostic assessment of HCC. It also explores the role of DNA methylation in regulating HCC's malignant progression and sorafenib resistance, alongside elaborating the therapeutic effects of DNA methyltransferase inhibitors on HCC. A detailed examination of these aspects underscores the significant research on DNA methylation in tumour cells to elucidate malignant progression mechanisms, identify diagnostic markers and develop new tumour-specific inhibitors for HCC. KEY POINTS: A comprehensive summary of various aspects of DNA methylation, such as its mechanism, detection methods and biomarkers aiding in diagnosis and treatment. The role of DNA methylation in regulating hepatocellular carcinoma's (HCC) malignant progression and sorafenib resistance, alongside elaborating therapeutic effects of DNA methyltransferase inhibitors. Deep research on DNA methylation is critical for discovering novel tumour-specific inhibitors for HCC.
Collapse
Affiliation(s)
- Lin Su
- Department of Pain ManagementShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jiawen Bu
- Department of Colorectal SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jiahui Yu
- Department of UltrasoundShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Mila Jin
- Department of Operation RoomThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Guanliang Meng
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xudong Zhu
- Department of OncologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Department of General SurgeryCancer Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
4
|
Gan J, Huang M, Wang W, Fu G, Hu M, Zhong H, Ye X, Cao Q. Novel genome-wide DNA methylation profiling reveals distinct epigenetic landscape, prognostic model and cellular composition of early-stage lung adenocarcinoma. J Transl Med 2024; 22:428. [PMID: 38711158 PMCID: PMC11075300 DOI: 10.1186/s12967-024-05146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/31/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) has been a leading cause of cancer-related mortality worldwide. Early intervention can significantly improve prognosis. DNA methylation could occur in the early stage of tumor. Comprehensive understanding the epigenetic landscape of early-stage LUAD is crucial in understanding tumorigenesis. METHODS Enzymatic methyl sequencing (EM-seq) was performed on 23 tumors and paired normal tissue to reveal distinct epigenetic landscape, for compared with The Cancer Genome Atlas (TCGA) 450K methylation microarray data. Then, an integrative analysis was performed combined with TCGA LUAD RNA-seq data to identify significant differential methylated and expressed genes. Subsequently, the prognostic risk model was constructed and cellular composition was analyzed. RESULTS Methylome analysis of EM-seq comparing tumor and normal tissues identified 25 million cytosine-phosphate-guanine (CpG) sites and 30,187 differentially methylated regions (DMR) with a greater number of untraditional types. EM-seq identified a significantly higher number of CpG sites and DMRs compared to the 450K microarray. By integrating the differentially methylated genes (DMGs) with LUAD-related differentially expressed genes (DEGs) from the TCGA database, we constructed prognostic model based on six differentially methylated-expressed genes (MEGs) and verified our prognostic model in GSE13213 and GSE42127 dataset. Finally, cell deconvolution based on the in-house EM-seq methylation profile was used to estimate cellular composition of early-stage LUAD. CONCLUSIONS This study firstly delves into novel pattern of epigenomic DNA methylation and provides a multidimensional analysis of the role of DNA methylation revealed by EM-seq in early-stage LUAD, providing distinctive insights into its potential epigenetic mechanisms.
Collapse
Affiliation(s)
- Junwen Gan
- Department of Thoracic Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Meng Huang
- Zhuhai Sanmed Biotech Ltd, No. 266 Tongchang Road, Xiang Zhou District, Zhuhai, Guangdong, P. R. China
- Joint Research Center of Liquid Biopsy in Guangdong, Hong Kong, and Macao, Zhuhai, China
| | - Weishi Wang
- Zhuhai Sanmed Biotech Ltd, No. 266 Tongchang Road, Xiang Zhou District, Zhuhai, Guangdong, P. R. China
- Joint Research Center of Liquid Biopsy in Guangdong, Hong Kong, and Macao, Zhuhai, China
| | - Guining Fu
- Department of Thoracic Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Mingyuan Hu
- Department of Thoracic Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Hongcheng Zhong
- Department of Thoracic Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| | - Xin Ye
- Zhuhai Sanmed Biotech Ltd, No. 266 Tongchang Road, Xiang Zhou District, Zhuhai, Guangdong, P. R. China.
- Joint Research Center of Liquid Biopsy in Guangdong, Hong Kong, and Macao, Zhuhai, China.
| | - Qingdong Cao
- Department of Thoracic Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
5
|
Chiou JT, Chang LS. Synergistic cytotoxicity of decitabine and YM155 in leukemia cells through upregulation of SLC35F2 and suppression of MCL1 and survivin expression. Apoptosis 2024; 29:503-520. [PMID: 38066391 DOI: 10.1007/s10495-023-01918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 02/18/2024]
Abstract
The hypomethylation agent decitabine (DAC), in combination with other apoptosis inducers, is considered a potential modality for cancer treatment. We investigated the mechanism underlying the combined cytotoxicity of DAC and YM155 in acute myeloid leukemia (AML) cells because of increasing evidence that YM155 induces apoptosis in cancer cells. Co-administration of DAC and YM155 resulted in synergistic cytotoxicity in AML U937 cells, which was characterized by the induction of apoptosis, NOXA-dependent degradation of MCL1 and survivin, and depolarization of mitochondria. Restoration of MCL1 or survivin expression attenuated DAC/YM155-induced U937 cell death. DAC initiated AKT and p38 MAPK phosphorylation in a Ca2+/ROS-dependent manner, thereby promoting autophagy-mediated degradation of β-TrCP mRNA, leading to increased Sp1 expression. DAC-induced Sp1 expression associated with Ten-eleven-translocation (TET) dioxygenases and p300 was used to upregulate the expression of SLC35F2. Simultaneously, the activation of p38 MAPK induced by DAC, promoted CREB-mediated NOXA expression, resulting in survivin and MCL1 degradation. The synergistic cytotoxicity of DAC and YM155 in U937 cells was dependent on elevated SLC35F2 expression. Additionally, YM155 facilitated DAC-induced degradation of MCL1 and survivin. A similar mechanism explained DAC/YM155-mediated cytotoxicity in AML HL-60 cells. Our data demonstrated that the synergistic cytotoxicity of DAC and YM155 in AML cell lines U937 and HL-60 is dependent on AKT- and p38 MAPK-mediated upregulation of SLC35F2 and p38 MAPK-mediated degradation of survivin and MCL1. This indicates that a treatment regimen that amalgamates YM155 and DAC may be beneficial for AML.
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
6
|
Kovalenko TF, Yadav B, Anufrieva KS, Larionova TD, Aksinina TE, Latyshev YA, Bastola S, Shakhparonov MI, Pandey AK, Pavlyukov MS. PTEN regulates expression of its pseudogene in glioblastoma cells in DNA methylation-dependent manner. Biochimie 2024; 219:74-83. [PMID: 37619809 DOI: 10.1016/j.biochi.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/08/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Glioblastoma (GBM) is the most aggressive and frequent type of primary brain cancer in adult patients. One of the key molecular features associated with GBM pathogenesis is the dysfunction of PTEN oncosuppressor. In addition to PTEN gene, humans and several primates possess processed PTEN pseudogene (PTENP1) that gives rise to long non-coding RNA lncPTENP1-S. Regulation and functions of PTEN and PTENP1 are highly interconnected, however, the exact molecular mechanism of how these two genes affect each other remains unclear. Here, we analyzed the methylation level of the CpG islands (CpGIs) in the promoter regions of PTEN and PTENP1 in patient-derived GBM neurospheres. We found that increased PTEN methylation corelates with decreased PTEN mRNA level. Unexpectedly, we showed the opposite trend for PTENP1. Using targeted methylation and demethylation of PTENP1 CpGI, we demonstrated that DNA methylation increases lncPTENP1-S expression in the presence of wild type PTEN protein but decreases lncPTENP1-S expression if PTEN protein is absent. Further experiments revealed that PTEN protein binds to PTENP1 promoter region and inhibits lncPTENP1-S expression if its CpGI is demethylated. Interestingly, we did not detect any effect of lncPTENP1-S on the level of PTEN mRNA, indicating that in GBM cells PTENP1 is a downstream target of PTEN rather than its upstream regulator. Finally, we studied the functions of lncPTENP1-S and demonstrated that it plays a pro-oncogenic role in GBM cells by upregulating the expression of cancer stem cell markers and decreasing cell adhesion.
Collapse
Affiliation(s)
| | - Bhupender Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana, India
| | - Ksenia S Anufrieva
- Laboratory of System Biology, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | | | - Yaroslav A Latyshev
- Federal State Autonomous Institution, N.N. Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - Soniya Bastola
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana, India; National Institute of Pharmaceutical Education and Research, Palaj, Gandhinagar, Gujarat, India
| | - Marat S Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| |
Collapse
|
7
|
Lin X, Lin T, Wang X, He J, Gao X, Lyu S, Wang Q, Chen J. Sesamol serves as a p53 stabilizer to relieve rheumatoid arthritis progression and inhibits the growth of synovial organoids. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155109. [PMID: 37778247 DOI: 10.1016/j.phymed.2023.155109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease known as a leading cause of disability with considerable mortality. Developing alternative drugs and targets for RA treatment is an urgent issue. Sesamol is a phenolic compound isolated from natural food sesame (Sesamum indicum L.) with various biological activities. PURPOSE The current research intended to illuminate the bioactivity and mechanisms of sesamol in RA fibroblast-like synoviocytes (FLS), and aimed to estimate the potential clinical application value of sesamol in RA treatment. METHODS CCK-8, EdU, and flow cytometry assays, as well as transwell tests were applied to observe the effects of sesamol on the abnormal functions of RA-FLS. Moreover, synovial organoids and a collagen-induced arthritis (CIA) mouse model were constructed to further explore the therapeutic capacity of sesamol on RA. Furthermore, RNA sequencing combined with quantitative real-time PCR assay, Western blot as well as co-immunoprecipitation were employed to clarify the mechanism of sesamol in regulating RA progression. RESULTS Sesamol suppressed the proliferation through inhibiting DNA replication, triggering cell cycle arrest and apoptosis of RA-FLS. Besides, sesamol impaired RA-FLS migration and invasion. Interestingly, sesamol inhibited the growth of constructed synovial organoids and alleviated RA symptoms in CIA mice. Moreover, RNA sequencing further implicated p53 signaling as a downstream pathway of sesamol. Furthermore, sesamol was shown to decrease p53 ubiquitination and degradation, thereby activating p53 signaling. Finally, bioinformatics analyses also highlighted the importance of sesamol-regulated networks in the progression of RA. CONCLUSIONS Our investigation demonstrated that sesamol served as a novel p53 stabilizer to attenuate the abnormal functions of RA-FLS via facilitating the activation of p53 signaling. Moreover, our study highlighted that sesamol might be an effective lead compound or candidate drug and p53 could be a promising target for the therapy of RA.
Collapse
Affiliation(s)
- Xian Lin
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China
| | - Tengyu Lin
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China
| | - Xiaocheng Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China
| | - Jiaxin He
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China
| | - Xu Gao
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China
| | - Shuyan Lyu
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China.
| | - Jian Chen
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China.
| |
Collapse
|
8
|
Wang X, Dai L, Liu Y, Li C, Fan D, Zhou Y, Li P, Kong Q, Su J. Partial erosion on under-methylated regions and chromatin reprogramming contribute to oncogene activation in IDH mutant gliomas. Epigenetics Chromatin 2023; 16:13. [PMID: 37118755 PMCID: PMC10142198 DOI: 10.1186/s13072-023-00490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND IDH1/2 hotspot mutations are well known to drive oncogenic mutations in gliomas and are well-defined in the WHO 2021 classification of central nervous system tumors. Specifically, IDH mutations lead to aberrant hypermethylation of under-methylated regions (UMRs) in normal tissues through the disruption of TET enzymes. However, the chromatin reprogramming and transcriptional changes induced by IDH-related hypermethylation in gliomas remain unclear. RESULTS Here, we have developed a precise computational framework based on Hidden Markov Model to identify altered methylation states of UMRs at single-base resolution. By applying this framework to whole-genome bisulfite sequencing data from 75 normal brain tissues and 15 IDH mutant glioma tissues, we identified two distinct types of hypermethylated UMRs in IDH mutant gliomas. We named them partially hypermethylated UMRs (phUMRs) and fully hypermethylated UMRs (fhUMRs), respectively. We found that the phUMRs and fhUMRs exhibit distinct genomic features and chromatin states. Genes related to fhUMRs were more likely to be repressed in IDH mutant gliomas. In contrast, genes related to phUMRs were prone to be up-regulated in IDH mutant gliomas. Such activation of phUMR genes is associated with the accumulation of active H3K4me3 and the loss of H3K27me3, as well as H3K36me3 accumulation in gene bodies to maintain gene expression stability. In summary, partial erosion on UMRs was accompanied by locus-specific changes in key chromatin marks, which may contribute to oncogene activation. CONCLUSIONS Our study provides a computational strategy for precise decoding of methylation encroachment patterns in IDH mutant gliomas, revealing potential mechanistic insights into chromatin reprogramming that contribute to oncogenesis.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Lijun Dai
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Yang Liu
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Chenghao Li
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Dandan Fan
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Yue Zhou
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325011, Zhejiang, China
| | - Pengcheng Li
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Qingran Kong
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325011, Zhejiang, China
| | - Jianzhong Su
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China.
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325011, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, China.
| |
Collapse
|
9
|
Alvanou M, Lysandrou M, Christophi P, Psatha N, Spyridonidis A, Papadopoulou A, Yannaki E. Empowering the Potential of CAR-T Cell Immunotherapies by Epigenetic Reprogramming. Cancers (Basel) 2023; 15:1935. [PMID: 37046597 PMCID: PMC10093039 DOI: 10.3390/cancers15071935] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
T-cell-based, personalized immunotherapy can nowadays be considered the mainstream treatment for certain blood cancers, with a high potential for expanding indications. Chimeric antigen receptor T cells (CAR-Ts), an ex vivo genetically modified T-cell therapy product redirected to target an antigen of interest, have achieved unforeseen successes in patients with B-cell hematologic malignancies. Frequently, however, CAR-T cell therapies fail to provide durable responses while they have met with only limited success in treating solid cancers because unique, unaddressed challenges, including poor persistence, impaired trafficking to the tumor, and site penetration through a hostile microenvironment, impede their efficacy. Increasing evidence suggests that CAR-Ts' in vivo performance is associated with T-cell intrinsic features that may be epigenetically altered or dysregulated. In this review, we focus on the impact of epigenetic regulation on T-cell differentiation, exhaustion, and tumor infiltration and discuss how epigenetic reprogramming may enhance CAR-Ts' memory phenotype, trafficking, and fitness, contributing to the development of a new generation of potent CAR-T immunotherapies.
Collapse
Affiliation(s)
- Maria Alvanou
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, 570 10 Thessaloniki, Greece
- Bone Marrow Transplantation Unit, Institute of Cell Therapy, University of Patras, 265 04 Rio, Greece
| | - Memnon Lysandrou
- Bone Marrow Transplantation Unit, Institute of Cell Therapy, University of Patras, 265 04 Rio, Greece
| | - Panayota Christophi
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, 570 10 Thessaloniki, Greece
- Bone Marrow Transplantation Unit, Institute of Cell Therapy, University of Patras, 265 04 Rio, Greece
| | - Nikoleta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 570 10 Thessaloniki, Greece
| | - Alexandros Spyridonidis
- Bone Marrow Transplantation Unit, Institute of Cell Therapy, University of Patras, 265 04 Rio, Greece
| | - Anastasia Papadopoulou
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, 570 10 Thessaloniki, Greece
| | - Evangelia Yannaki
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, 570 10 Thessaloniki, Greece
- Department of Medicine, University of Washington, Seattle, WA 98195-2100, USA
| |
Collapse
|
10
|
Lin Z, Sui X, Jiao W, Wang Y, Zhao J. Exploring the mechanism and experimental verification of puerarin in the treatment of endometrial carcinoma based on network pharmacology and bioinformatics analysis. BMC Complement Med Ther 2022; 22:150. [PMID: 35672846 PMCID: PMC9175360 DOI: 10.1186/s12906-022-03623-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022] Open
Abstract
Endometrial carcinoma is one of the two cancers with rising mortality and morbidity in recent years. In the light of many controversies about its treatment, it is urgent to construct a new prognostic model and to find out new therapeutic directions. As a small drug molecule widely used in clinical treatment and experimental research in China, puerarin has recently been proven to have obvious anti-cancer effects in multiple cancer cells. In this study, bioinformatics analysis and experimental validation were used to explore the potential mechanism of puerarin for endometrial carcinoma and construct a prognostic model. A total of 22 drug-related differential genes were found by constructing a database of drug targets and disease genes. The protein–protein interaction network was constructed for GO and KEGG enrichment analysis to initially explore the potential mechanism of its therapeutic effects. To construct the prognostic model, validation was performed by risk regression analysis and LASSO analysis. Finally, two prognostic genes—PIM1 and BIRC5 were determined to establish high and low risk groups. Kaplan–Meier analysis displayed a higher survival rate in the low-risk group than in the high-risk group. ROC curves indicated the stable and good effect in prediction (one-year AUC is 0.626; two-year AUC is 0.620; three-year AUC is 0.623). The interrelationship between immunity and its disease was explored by immune infiltration analysis. Finally, the potential effect of puerarin on endometrial carcinoma cells was further verified by experiments.
Collapse
|
11
|
Zhang X, He D, Xiang Y, Wang C, Liang B, Li B, Qi D, Deng Q, Yu H, Lu Z, Zheng F. DYSF promotes monocyte activation in atherosclerotic cardiovascular disease as a DNA methylation-driven gene. Transl Res 2022; 247:19-38. [PMID: 35460889 DOI: 10.1016/j.trsl.2022.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Dysferlin (DYSF) has drawn much attention due to its involvement in dysferlinopathy and was reported to affect monocyte functions in recent studies. However, the role of DYSF in the pathogenesis of atherosclerotic cardiovascular diseases (ASCVD) and the regulation mechanism of DYSF expression have not been fully studied. In this study, Gene Expression Omnibus (GEO) database and epigenome-wide association study (EWAS) literatures were searched to find the DNA methylation-driven genes (including DYSF) of ASCVD. The hub genes related to DYSF were also identified through weighted correlation network analysis (WGCNA). Regulation of DYSF expression through its promoter methylation status was verified using peripheral blood leucocytes (PBLs) from ASCVD patients and normal controls, and experiments on THP1 cells and Apoe-/- mice. Similarly, the expressions of DYSF related hub genes, mainly contained SELL, STAT3 and TMX1, were also validated. DYSF functions were then evaluated by phagocytosis, transwell and adhesion assays in DYSF knock-down and overexpressed THP1 cells. The results showed that DYSF promoter hypermethylation up-regulated its expression in clinical samples, THP1 cells and Apoe-/- mice, confirming DYSF as a DNA methylation-driven gene. The combination of DYSF expression and methylation status in PBLs had a considerable prediction value for ASCVD. Besides, DYSF could enhance the phagocytosis, migration and adhesion ability of THP1 cells. Among DYSF related hub genes, SELL was proven to be the downstream target of DYSF by wet experiments. In conclusion, DYSF promoter hypermethylation upregulated its expression and promoted monocytes activation, which further participated in the pathogenesis of ASCVD.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Dingdong He
- Department of Clinical Laboratory Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yang Xiang
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chen Wang
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Bin Liang
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Boyu Li
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Daoxi Qi
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qianyun Deng
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China
| | - Hong Yu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Zhibing Lu
- Institute of Myocardial Injury and Repair, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Fang Zheng
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
12
|
Chen YC, Young MJ, Chang HP, Liu CY, Lee CC, Tseng YL, Wang YC, Chang WC, Hung JJ. Estradiol-mediated inhibition of DNMT1 decreases p53 expression to induce M2-macrophage polarization in lung cancer progression. Oncogenesis 2022; 11:25. [PMID: 35589688 PMCID: PMC9119954 DOI: 10.1038/s41389-022-00397-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/11/2022] Open
Abstract
Previous studies indicate that estrogen positively regulates lung cancer progression. Understanding the reasons will be beneficial for treating women with lung cancer in the future. In this study, we found that tumor formation was more significant in female EGFRL858R mice than in male mice. P53 expression levels were downregulated in the estradiol (E2)-treated lung cancer cells, female mice with EGFRL858R-induced lung cancer mice, and premenopausal women with lung cancer. E2 increased DNA methyltransferase 1 (DNMT1) expression to enhance methylation in the TP53 promoter, which led to the downregulation of p53. Overexpression of GFP-p53 decreased DNMT1 expression in lung cancer cells. TP53 knockout in mice with EGFRL858R-induced lung cancer not only changed gene expression in cancer cells but also increased the polarization of M2 macrophages by increasing C–C motif chemokine ligand 5 (CCL5) expression and decreasing growth differentiation factor 15 (GDF15) expression. The TP53 mutation rate was increased in females with late-stage but not early-stage lung cancer compared to males with lung cancer. In conclusion, E2-induced DNMT1 and p53 expression were negatively regulated each other in females with lung cancer, which not only affected cancer cells but also modulated the tumor-associated microenvironment, ultimately leading to a poor prognosis.
Collapse
Affiliation(s)
- Yung-Ching Chen
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jer Young
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ping Chang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yu Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Chi Lee
- Division of Thoracic Surgery, Department of Surgery, College of Medicine National Cheng Kung University, Tainan, Taiwan
| | - Yau-Lin Tseng
- Division of Thoracic Surgery, Department of Surgery, College of Medicine National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chang Chang
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan. .,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
13
|
Tian G, He L, Gu R, Sun J, Chen W, Qian Y, Ma X, Yan W, Zhao Z, Xu Z, Suo M, Sheng W, Huang G. CpG site hypomethylation at ETS1‑binding region regulates DLK1 expression in Chinese patients with Tetralogy of Fallot. Mol Med Rep 2022; 25:93. [PMID: 35059744 PMCID: PMC8809049 DOI: 10.3892/mmr.2022.12609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022] Open
Abstract
Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart malformation accounting for ~10% of cases. Although the pathogenesis of TOF is complex and largely unknown, epigenetics plays a huge role, specifically DNA methylation. The protein δ like non-canonical Notch ligand 1 (DLK1) gene encodes a non-canonical ligand of the Notch signaling pathway, which is involved in heart development. However, the epigenetic mechanism of DLK1 in the pathogenesis of TOF is yet to be elucidated. Therefore, the present study aimed to clarify its specific mechanism. In this study, immunohistochemistry was used to detect the protein expression of DLK1 and the methylation status of the DLK1 promoter was measured via bisulfite sequencing PCR. Dual-luciferase reporter assays were performed to examine the influence of transcription factor ETS proto-oncogene 1 (ETS1) on DLK1 gene expression. The electrophoretic mobility shift assay and chromatin immunoprecipitation assay, both in vivo and in vitro, were used to verify the binding of the ETS1 transcription factor to the DLK1 promoter as well as the influence of methylation status of DLK1 promoter on this binding affinity. The expression of DLK1 in the right ventricular outflow tract was significantly lower in patients with Tetralogy of Fallot (TOF) than that in controls (P<0.001). Moreover, the methylation level of CpG site 10 and CpG site 11 in the DLK1_R region was significantly decreased in TOF cases compared with controls (P<0.01). The integral methylation levels of DLK1_R and the methylation status of the CpG site 11 were both positively associated with DLK1 protein expression in TOF cases. ETS1 was found to inhibit DLK1 transcriptional activity by binding to the CpG site 11 and this affinity could be influenced by the methylation level of the DLK1 promoter. These findings demonstrated that the hypomethylation of the DLK1 promoter could increase the binding affinity of ETS1 transcription factor, which in turn inhibited DLK1 gene transcriptional activity and contributed to the development of TOF.
Collapse
Affiliation(s)
- Guixiang Tian
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Lili He
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Ruoyi Gu
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Jingwei Sun
- Pediatrics Department, Bengbu First People's Hospital, Bengbu, Anhui 233000, P.R. China
| | - Weicheng Chen
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Yanyan Qian
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Xiaojing Ma
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Weili Yan
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Zhenshan Zhao
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Ziqing Xu
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Meijiao Suo
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Wei Sheng
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Guoying Huang
- Department of Ultrasound, Cardiovascular Center, Pediatrics Research Institute, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| |
Collapse
|
14
|
Dong Y, Liu X, Jiang B, Wei S, Xiang B, Liao R, Wang Q, He X. A Genome-Wide Investigation of Effects of Aberrant DNA Methylation on the Usage of Alternative Promoters in Hepatocellular Carcinoma. Front Oncol 2022; 11:780266. [PMID: 35111672 PMCID: PMC8803206 DOI: 10.3389/fonc.2021.780266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The alternative usage of promoters provides a way to regulate gene expression, has a significant influence on the transcriptome, and contributes to the cellular transformation of cancer. However, the function of alternative promoters (APs) in hepatocellular carcinoma (HCC) has not been systematically studied yet. In addition, the potential mechanism of regulation to the usage of APs remains unclear. DNA methylation, one of the most aberrant epigenetic modifications in cancers, is known to regulate transcriptional activity. Whether DNA methylation regulates the usage of APs needs to be explored. Here, we aim to investigate the effects of DNA methylation on usage of APs in HCC. METHODS Promoter activities were calculated based on RNA-seq data. Functional enrichment analysis was implemented to conduct GO terms. Correlation tests were used to detect the correlation between promoter activity and methylation status. The LASSO regression model was used to generate a diagnostic model. Kaplan-Meier analysis was used to compare the overall survival between high and low methylation groups. RNA-seq and whole-genome bisulfite sequencing (WGBS) in HCC samples were performed to validate the correlation of promoter activity and methylation. RESULTS We identified 855 APs in total, which could be well used to distinguish cancer from normal samples. The correlation of promoter activity and DNA methylation in APs was observed, and the APs with negative correlation were defined as methylation-regulated APs (mrAPs). Six mrAPs were identified to generate a diagnostic model with good performance (AUC = 0.97). Notably, the majority of mrAPs had CpG sites that could be used to predict clinical outcomes by methylation status. Finally, we verified 85.6% of promoter activity variation and 92.3% of methylation changes in our paired RNA-seq and WGBS samples, respectively. The negative correlation between promoter activity and methylation status was further confirmed in our HCC samples. CONCLUSION The aberrant methylation status plays a critical role in the precision usage of APs in HCC, which sheds light on the mechanism of cancer development and provides a new insight into cancer screening and treatment.
Collapse
Affiliation(s)
- Yuting Dong
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaozhao Liu
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Bijun Jiang
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Siting Wei
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ruichu Liao
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi, Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Ximiao He
- Department of Physiology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Yu M, Yu S, Zhou W, Yi B, Liu Y. HOXC6/8/10/13 predict poor prognosis and associate with immune infiltrations in glioblastoma. Int Immunopharmacol 2021; 101:108293. [PMID: 34763232 DOI: 10.1016/j.intimp.2021.108293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Glioblastoma (GBM), characterized by deregulated cell proliferation and immune cells infiltration, is a common and lethal tumor of the central nervous system. Recently, the infiltration of immune cells has attracted attention as a potential novel GBM immunotherapy option. Homeobox C cluster (HOXC) is an evolutionarily conserved family of transcriptional factors that are involved in embryogenesis and tumorigenesis. Nevertheless, the correlations of HOXCs with the prognosis and immune infiltration of GBM remain blurred. METHODS The RNA-seq data with corresponding clinical characteristics were downloaded from TCGA and GTEx databases. The correlations between HOXCs and clinical characteristics were calculated using univariable and multivariate Cox regression. R language with ggplot2, survminer, survival, GSVA, and pROC packages were employed to analyze the data and present the plots. MethSurv, UALCAN and cBioPortal were employed to evaluate the DNA methylation and mutation status of HOXCs in GBM. We also verified the expression and prognosis of HOXCs by qPCR and immunohistochemistry in a cohort of 36 patients. RESULTS We identified that HOXC6/8/10/13 were crucial biomarkers for diagnosis and prognostic judgement in GBM. Gene set variation analysis revealed that levels of expression of HOXCs were associated with the infiltration of various immune cells. The qPCR and immunohistochemistry data validated the prognostic values of HOXC6/8/10/13 in GBM. Finally, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that HOXCs might be involved in DNA-binding transcription activator activity and the apelin signaling pathway. CONCLUSION This research highlights that HOXC6/8/10/13 are involved in the immune infiltrates, also provide potential clinical utility as therapeutic targets in GBM.
Collapse
Affiliation(s)
- Mingjun Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China; Gamma Knife Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Shijia Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Wen Zhou
- Department of Pain Management, Dalian Municipal Central Hospital, Dalian 116033, People's Republic of China
| | - Bolong Yi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, People's Republic of China.
| |
Collapse
|
16
|
Abstract
Epigenetic mechanisms such as DNA methylation (DNAm) have been associated with stress responses and increased vulnerability to depression. Abnormal DNAm is observed in stressed animals and depressed individuals. Antidepressant treatment modulates DNAm levels and regulates gene expression in diverse tissues, including the brain and the blood. Therefore, DNAm could be a potential therapeutic target in depression. Here, we reviewed the current knowledge about the involvement of DNAm in the behavioural and molecular changes associated with stress exposure and depression. We also evaluated the possible use of DNAm changes as biomarkers of depression. Finally, we discussed current knowledge limitations and future perspectives.
Collapse
|
17
|
High Maternal Serum Estradiol in First Trimester of Multiple Pregnancy Contributes to Small for Gestational Age via DNMT1-Mediated CDKN1C Upregulation. Reprod Sci 2021; 29:1368-1378. [PMID: 34580843 PMCID: PMC8907102 DOI: 10.1007/s43032-021-00735-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/04/2021] [Indexed: 10/27/2022]
Abstract
High maternal serum estradiol (E2) levels in the first trimester of pregnancy are associated with a high incidence of low birth weight (LBW) and small for gestational age (SGA). This study aimed to investigate the effect of first-trimester high maternal serum E2 levels on fetal growth and the underlying mechanisms in multiple pregnancies. Maternal serum E2 levels of women at 8 weeks of gestation were measured. The expression levels of imprinted genes and DNMT1 were determined by RT-qPCR, and KvDMR1 methylation in embryo tissue, placenta, and newborn cord blood samples was examined by bisulfite sequencing PCR. The effect of E2 on CDKN1C expression was investigated in HTR8 cells. The incidence of SGA was significantly higher in multiple pregnancies reduced to singleton than that in primary singleton pregnancies (11.4% vs. 2.9%) (P < 0.01) and multiple pregnancies reduced to twins than primary twins (38.5% vs. 27.3%) (P < 0.01). The maternal serum E2 level at 8 weeks of gestation increased with the number of fetuses and was negatively correlated with offspring birth weight. CDKN1C and DNMT1 expression was significantly upregulated in embryo tissue, placenta, and cord blood from multiple pregnancies. Furthermore, there was a positive correlation between CDKN1C mRNA expression and KvDMR1 methylation levels. In HTR8 cells, DNMT1 mediated the estrogen-induced upregulation of CDKN1C, which might contribute to SGA. To minimize the risks of LBW and SGA, our findings suggest that abnormally high maternal serum E2 levels should be avoided during the first trimester of multiple pregnancies from assisted reproductive technology (ART).
Collapse
|
18
|
Dottino JA, Zhang Q, Loose DS, Fellman B, Melendez BD, Borthwick MS, McKenzie LJ, Yuan Y, Yang RK, Broaddus RR, Lu KH, Soliman PT, Yates MS. Endometrial biomarkers in premenopausal women with obesity: an at-risk cohort. Am J Obstet Gynecol 2021; 224:278.e1-278.e14. [PMID: 32835719 DOI: 10.1016/j.ajog.2020.08.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Obesity is a well-known risk factor for endometrial cancer, but the mechanisms of obesity-related carcinogenesis are not well defined, particularly for premenopausal women. With the continuing obesity epidemic, increases in the incidence of endometrial cancer and a younger age of diagnosis are often attributed to a hyperestrogenic state created by hormone production in adipose tissue, but significant knowledge gaps remain. The balance of estrogen-responsive signals has not been defined in the endometrium of premenopausal women with obesity, where obesity may not create hyperestrogenism in the context of ovaries being the primary source of estrogen production. Obesity is associated with a state of low-grade, chronic inflammation that can promote tumorigenesis, and it is also known that hormonal changes alter the immune microenvironment of the endometrium. However, limited research has been conducted on endometrial immune-response changes in women who have an increased risk for cancer due to obesity. OBJECTIVE Endometrial estrogen-regulated biomarkers, previously shown to be dysregulated in endometrial cancer, were evaluated in a cohort of premenopausal women to determine if obesity is associated with differences in the biomarker expression levels, which might reflect an altered risk of developing cancer. The expression of a multiplexed panel of immune-related genes was also evaluated for expression differences related to obesity. STUDY DESIGN Premenopausal women with a body mass index of ≥30 kg/m2 (n=97) or a body mass index of ≤25 kg/m2 (n=33) were prospectively enrolled in this cross-sectional study, which included the assessment of serum metabolic markers and a timed endometrial biopsy for pathologic evaluation, hormone-regulated biomarker analysis, and immune response gene expression analysis. Medical and gynecologic histories were obtained. Endometrial gene expression markers were also compared across the body mass index groups in a previous cohort of premenopausal women with an inherited cancer risk (Lynch syndrome). RESULTS In addition to known systemic metabolic differences, histologically normal endometria from women with obesity showed a decrease in gene expression of progesterone receptor (P=.0027) and the estrogen-induced genes retinaldehyde dehydrogenase 2 (P=.008), insulin-like growth factor 1 (P=.016), and survivin (P=.042) when compared with women without obesity. The endometrial biomarkers insulin-like growth factor 1, survivin, and progesterone receptor remained statistically significant in multivariate linear regression models. In contrast, women with obesity and Lynch syndrome had an increased expression of insulin-like growth factor 1 (P=.017). There were no differences in endometrial proliferation, and limited endometrial immune differences were observed. CONCLUSION When comparing premenopausal women with and without obesity in the absence of endometrial pathology or an inherited cancer risk, the expression of the endometrial biomarkers does not reflect a local hyperestrogenic environment, but it instead reflects a decreased cancer risk profile that may be indicative of a compensated state. In describing premenopausal endometrial cancer risk, it may be insufficient to attribute a high-risk state to obesity alone; further studies are warranted to evaluate individualized biomarker profiles for differences in the hormone-responsive signals or immune response. In patients with Lynch syndrome, the endometrial biomarker profile suggests that obesity further increases the risk of developing cancer.
Collapse
|
19
|
Fuentes-Antrás J, Alcaraz-Sanabria AL, Morafraile EC, Noblejas-López MDM, Galán-Moya EM, Baliu-Pique M, López-Cade I, García-Barberán V, Pérez-Segura P, Manzano A, Pandiella A, Győrffy B, Ocaña A. Mapping of Genomic Vulnerabilities in the Post-Translational Ubiquitination, SUMOylation and Neddylation Machinery in Breast Cancer. Cancers (Basel) 2021; 13:cancers13040833. [PMID: 33671201 PMCID: PMC7922122 DOI: 10.3390/cancers13040833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Breast cancer is a major cause of death worldwide and remains incurable in advanced stages. The dysregulation of the post-translational machinery has been found to underlie tumorigenesis and drug resistance in preclinical models but has only recently led to early trials in cancer patients. We performed an in silico analysis of the most common genomic alterations occurring in ubiquitination and ubiquitin-like SUMOylation and neddylation using data from publicly available repositories and with the aim of identifying those with prognostic and predictive value and those exploitable for therapeutic intervention. Clinical and statistical criteria were used to sort out the best candidates and the results were validated in independent datasets. UBE2T, UBE2C, and BIRC5 amplifications predicted a worse survival and poor response to therapy across different intrinsic subtypes of breast cancer. Mutated USP9X and USP7 also conferred detrimental outcome. Leveraging these molecular vulnerabilities as biomarkers or drug targets could benefit breast cancer patients. Abstract The dysregulation of post-translational modifications (PTM) transversally impacts cancer hallmarks and constitutes an appealing vulnerability for drug development. In breast cancer there is growing preclinical evidence of the role of ubiquitin and ubiquitin-like SUMO and Nedd8 peptide conjugation to the proteome in tumorigenesis and drug resistance, particularly through their interplay with estrogen receptor signaling and DNA repair. Herein we explored genomic alterations in these processes using RNA-seq and mutation data from TCGA and METABRIC datasets, and analyzed them using a bioinformatic pipeline in search of those with prognostic and predictive capability which could qualify as subjects of drug research. Amplification of UBE2T, UBE2C, and BIRC5 conferred a worse prognosis in luminal A/B and basal-like tumors, luminal A/B tumors, and luminal A tumors, respectively. Higher UBE2T expression levels were predictive of a lower rate of pathological complete response in triple negative breast cancer patients following neoadjuvant chemotherapy, whereas UBE2C and BIRC5 expression was higher in luminal A patients with tumor relapse within 5 years of endocrine therapy or chemotherapy. The transcriptomic signatures of USP9X and USP7 gene mutations also conferred worse prognosis in luminal A, HER2-enriched, and basal-like tumors, and in luminal A tumors, respectively. In conclusion, we identified and characterized the clinical value of a group of genomic alterations in ubiquitination, SUMOylation, and neddylation enzymes, with potential for drug development in breast cancer.
Collapse
Affiliation(s)
- Jesús Fuentes-Antrás
- Experimental Therapeutics Unit, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC) and Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28040 Madrid, Spain; (E.C.M.); (M.B.-P.); (P.P.-S.); (A.M.)
- Correspondence: (J.F.-A.); (A.O.)
| | - Ana Lucía Alcaraz-Sanabria
- Translational Oncology Laboratory, Centro Regional de Investigaciones Biomédicas, Castilla-La Mancha University (CRIB-UCLM), 02008 Albacete, Spain; (A.L.A.-S.); (M.d.M.N.-L.); (E.M.G.-M.)
| | - Esther Cabañas Morafraile
- Experimental Therapeutics Unit, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC) and Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28040 Madrid, Spain; (E.C.M.); (M.B.-P.); (P.P.-S.); (A.M.)
| | - María del Mar Noblejas-López
- Translational Oncology Laboratory, Centro Regional de Investigaciones Biomédicas, Castilla-La Mancha University (CRIB-UCLM), 02008 Albacete, Spain; (A.L.A.-S.); (M.d.M.N.-L.); (E.M.G.-M.)
| | - Eva María Galán-Moya
- Translational Oncology Laboratory, Centro Regional de Investigaciones Biomédicas, Castilla-La Mancha University (CRIB-UCLM), 02008 Albacete, Spain; (A.L.A.-S.); (M.d.M.N.-L.); (E.M.G.-M.)
| | - Mariona Baliu-Pique
- Experimental Therapeutics Unit, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC) and Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28040 Madrid, Spain; (E.C.M.); (M.B.-P.); (P.P.-S.); (A.M.)
| | - Igor López-Cade
- Molecular Oncology Laboratory, Instituto de Investigación Sanitaria San Carlos (IdISCC), 28040 Madrid, Spain; (I.L.-C.); (V.G.-B.)
| | - Vanesa García-Barberán
- Molecular Oncology Laboratory, Instituto de Investigación Sanitaria San Carlos (IdISCC), 28040 Madrid, Spain; (I.L.-C.); (V.G.-B.)
| | - Pedro Pérez-Segura
- Experimental Therapeutics Unit, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC) and Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28040 Madrid, Spain; (E.C.M.); (M.B.-P.); (P.P.-S.); (A.M.)
| | - Aránzazu Manzano
- Experimental Therapeutics Unit, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC) and Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28040 Madrid, Spain; (E.C.M.); (M.B.-P.); (P.P.-S.); (A.M.)
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas (CSIC-IBSAL) and Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 37007 Salamanca, Spain;
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, H-1094 Budapest, Hungary;
- 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
- TTK Cancer Biomarker Research Group, Institute of Enzymology, H-1117 Budapest, Hungary
| | - Alberto Ocaña
- Experimental Therapeutics Unit, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC) and Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28040 Madrid, Spain; (E.C.M.); (M.B.-P.); (P.P.-S.); (A.M.)
- Translational Oncology Laboratory, Centro Regional de Investigaciones Biomédicas, Castilla-La Mancha University (CRIB-UCLM), 02008 Albacete, Spain; (A.L.A.-S.); (M.d.M.N.-L.); (E.M.G.-M.)
- Correspondence: (J.F.-A.); (A.O.)
| |
Collapse
|
20
|
Giri AK. Higher ETV5 Expression Associates With Poor 5-Florouracil-Based Adjuvant Therapy Response in Colon Cancer. Front Pharmacol 2021; 11:620811. [PMID: 33658938 PMCID: PMC7917823 DOI: 10.3389/fphar.2020.620811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
Discovery of markers predictive for 5-Fluorouracil (5-FU)-based adjuvant chemotherapy (adjCTX) response in patients with locally advanced stage II and III colon cancer (CC) is necessary for precise identification of potential therapy responders. PEA3 subfamily of ETS transcription factors (ETV1, ETV4, and ETV5) are upregulated in multiple cancers including colon cancers. However, the underlying epigenetic mechanism regulating their overexpression as well as their role in predicting therapy response in colon cancer are largely unexplored. In this study, using gene expression and methylation data from The Cancer Genome Atlas (TCGA) project, we showed that promoter DNA methylation negatively correlates with ETV4 expression (ρ = -0.17, p = 5.6 × 10-3) and positively correlates with ETV5 expression (ρ = 0.22, p = 1.43 × 10-4) in colon cancer tissue. Further, our analysis in 1,482 colon cancer patients from five different cohorts revealed that higher ETV5 expression associates with shorter relapse-free survival (RFS) of adjCTX treated colon cancer patients (Hazard ratio = 2.09-5.43, p = 0.004-0.01). The present study suggests ETV5 expression as a strong predictive biomarker for 5-FU-based adjCTX response in stage II/III CC patients.
Collapse
Affiliation(s)
- Anil K Giri
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Tumor Suppressor Protein p53 and Inhibitor of Apoptosis Proteins in Colorectal Cancer-A Promising Signaling Network for Therapeutic Interventions. Cancers (Basel) 2021; 13:cancers13040624. [PMID: 33557398 PMCID: PMC7916307 DOI: 10.3390/cancers13040624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Tumor suppressor 53 (p53) is a multifunctional protein that regulates cell cycle, DNA repair, apoptosis and metabolic pathways. In colorectal cancer (CRC), mutations of the gene occur in 60% of patients and are associated with a more aggressive tumor phenotype and resistance to anti-cancer therapy. In addition, inhibitor of apoptosis (IAP) proteins are distinguished biomarkers overexpressed in CRC that impact on a diverse set of signaling pathways associated with the regulation of apoptosis/autophagy, cell migration, cell cycle and DNA damage response. As these mechanisms are further firmly controlled by p53, a transcriptional and post-translational regulation of IAPs by p53 is expected to occur in cancer cells. Here, we aim to review the molecular regulatory mechanisms between IAPs and p53 and discuss the therapeutic potential of targeting their interrelationship by multimodal treatment options. Abstract Despite recent advances in the treatment of colorectal cancer (CRC), patient’s individual response and clinical follow-up vary considerably with tumor intrinsic factors to contribute to an enhanced malignancy and therapy resistance. Among these markers, upregulation of members of the inhibitor of apoptosis protein (IAP) family effects on tumorigenesis and radiation- and chemo-resistance by multiple pathways, covering a hampered induction of apoptosis/autophagy, regulation of cell cycle progression and DNA damage response. These mechanisms are tightly controlled by the tumor suppressor p53 and thus transcriptional and post-translational regulation of IAPs by p53 is expected to occur in malignant cells. By this, cellular IAP1/2, X-linked IAP, Survivin, BRUCE and LIVIN expression/activity, as well as their intracellular localization is controlled by p53 in a direct or indirect manner via modulating a multitude of mechanisms. These cover, among others, transcriptional repression and the signal transducer and activator of transcription (STAT)3 pathway. In addition, p53 mutations contribute to deregulated IAP expression and resistance to therapy. This review aims at highlighting the mechanistic and clinical importance of IAP regulation by p53 in CRC and describing potential therapeutic strategies based on this interrelationship.
Collapse
|
22
|
Kovalenko TF, Morozova KV, Pavlyukov MS, Anufrieva KS, Bobrov MY, Gamisoniya AM, Ozolinya LA, Dobrokhotova YE, Shakhparonov MI, Patrushev LI. Methylation of the PTENP1 pseudogene as potential epigenetic marker of age-related changes in human endometrium. PLoS One 2021; 16:e0243093. [PMID: 33481830 PMCID: PMC7822536 DOI: 10.1371/journal.pone.0243093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 11/16/2020] [Indexed: 01/09/2023] Open
Abstract
The processed pseudogene PTENP1 is involved in the regulation of the expression of the PTEN and acts as a tumor suppressor in many types of malignances. In our previous study we showed that PTENP1 methylation is present not only in tumor, but also in normal endometrium tissues of women over 45 years old. Here we used methylation-specific PCR to analyze methylation status of CpG island located near promoter region of PTENP1 in malignant and non-malignant endometrium tissues collected from 236 women of different age groups. To confirm our results, we also analyzed RNA sequencing and microarray data from 431 women with endometrial cancer from TCGA database. We demonstrated that methylation of PTENP1 is significantly increased in older patients. We also found an age-dependent increase in the level of PTENP1 expression in endometrial tissue. According to our data, PTENP1 methylation elevates the level of the pseudogene sense transcript. In turn, a high level of this transcript correlates with a more favorable prognosis in endometrial cancer. The data obtained suggested that PTENP1 methylation is associated with age-related changes in normal and hyperplastic endometrial tissues. We assumed that age-related increase in PTENP1 methylation and subsequent elevation of its expression may serve as a protective mechanism aimed to prevent malignant transformation of endometrial tissue in women during the perimenopause, menopause, and postmenopause periods.
Collapse
Affiliation(s)
- Tatyana F. Kovalenko
- Laboratory of membrane bioenergetics, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| | - Ksenia V. Morozova
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Marat S. Pavlyukov
- Laboratory of membrane bioenergetics, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, Russia
| | - Ksenia S. Anufrieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Moscow Region, Russia
| | - Mikhail Yu. Bobrov
- Laboratory of Molecular Pathophysiology, Kulakov Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Alina M. Gamisoniya
- Laboratory of Molecular Pathophysiology, Kulakov Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, Moscow, Russia
- Laboratory of oxylipins, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, Russia
| | - Lyudmila A. Ozolinya
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Yulia E. Dobrokhotova
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Mikhail I. Shakhparonov
- Laboratory of membrane bioenergetics, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, Russia
| | - Lev I. Patrushev
- Educational & scientific center, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
23
|
Byun Y, Choi YC, Jeong Y, Yoon J, Baek K. Long Noncoding RNA Expression Profiling Reveals Upregulation of Uroplakin 1A and Uroplakin 1A Antisense RNA 1 under Hypoxic Conditions in Lung Cancer Cells. Mol Cells 2020; 43:975-988. [PMID: 33273139 PMCID: PMC7772508 DOI: 10.14348/molcells.2020.0126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/15/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Hypoxia plays important roles in cancer progression by inducing angiogenesis, metastasis, and drug resistance. However, the effects of hypoxia on long noncoding RNA (lncRNA) expression have not been clarified. Herein, we evaluated alterations in lncRNA expression in lung cancer cells under hypoxic conditions using lncRNA microarray analyses. Among 40,173 lncRNAs, 211 and 113 lncRNAs were up- and downregulated, respectively, in both A549 and NCI-H460 cells. Uroplakin 1A (UPK1A) and UPK1A-antisense RNA 1 (AS1), which showed the highest upregulation under hypoxic conditions, were selected to investigate the effects of UPK1AAS1 on the expression of UPK1A and the mechanisms of hypoxia-inducible expression. Following transfection of cells with small interfering RNA (siRNA) targeting hypoxiainducible factor 1α (HIF-1α), the hypoxia-induced expression of UPK1A and UPK1A-AS1 was significantly reduced, indicating that HIF-1α played important roles in the hypoxiainduced expression of these targets. After transfection of cells with UPK1A siRNA, UPK1A and UPK1A-AS1 levels were reduced. Moreover, transfection of cells with UPK1A-AS1 siRNA downregulated both UPK1A-AS1 and UPK1A. RNase protection assays demonstrated that UPK1A and UPK1A-AS1 formed a duplex; thus, transfection with UPK1A-AS1 siRNA decreased the RNA stability of UPK1A. Overall, these results indicated that UPK1A and UPK1A-AS1 expression increased under hypoxic conditions in a HIF-1α-dependent manner and that formation of a UPK1A/UPK1A-AS1 duplex affected RNA stability, enabling each molecule to regulate the expression of the other.
Collapse
MESH Headings
- Cell Hypoxia/genetics
- Cell Line, Tumor
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lung Neoplasms/genetics
- Methylation
- RNA Stability/genetics
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Reproducibility of Results
- Ribonucleases/metabolism
- Up-Regulation/genetics
- Uroplakin Ia/genetics
Collapse
Affiliation(s)
- Yuree Byun
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Young-Chul Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Yongsu Jeong
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Jaeseung Yoon
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Kwanghee Baek
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
24
|
Stavropoulos A, Varras M, Vasilakaki T, Varra VK, Varra FN, Tsavari A, Nonni A, Kavantzas N, Lazaris AC. Expression of anti-apoptotic protein survivin in human endometrial carcinoma: Clinical and pathological associations as a separate factor and in combination with concomitant PTEN and p53 expression. Oncol Lett 2020; 20:1033-1054. [PMID: 32724342 PMCID: PMC7377108 DOI: 10.3892/ol.2020.11690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Endometrial carcinoma is one of the most common types of gynecological cancer. A total of 99 cases of primary endometrial carcinoma were investigated for survivin expression by immunohistochemistry. Furthermore, the association between concomitant survivin, PTEN and p53 expression, and clinicopathological parameters was examined. Immunopositivity for survivin was identified in 88% of cases. Concomitant survivin, PTEN and p53 expression (staining scores and intensity) was observed in 60% of endometrial adenocarcinomas. A significant association was identified between the sum of staining intensity and scores of survivin immunopositive cells, and patient age (P=0.028), histological grade (P<0.001), clinical stage (P=0.018) and fallopian tube and/or ovarian invasion (P=0.039). A negative tendency for correlation was observed between surivin and PTEN immunostaining scores (P=0.062; ρ=−0.238). Specimens with high scores of survivin expression tended to show decreased scores of PTEN immunostaining, and vice versa. However, in circumstances with an increased co-expression of survivin and PTEN, a statistically significant association with histological types was observed (P=0.020). A statistically significant positive correlation was identified between survivin and p53 sum co-expression (P=0.008; ρ=0.300). Furthermore, a significant association was identified between survivin and p53 concomitant sum expression and age of patients (P=0.001), histological type (P=0.020), clinical stage (P=0.037), histological differentiation (P=0.001) and presence of fallopian tube and/or ovarian invasion (P=0.026). The present findings suggested that survivin may be an indicator of unfavorable outcome in older patients with endometrial carcinoma, in specific circumstances that are dependent on different concomitant genetic alterations and different combinations of molecular signaling pathways. Increased expression levels of survivin and PTEN may serve a role in the development of more aggressive endometrial carcinoma during their interaction. In addition, protein expression levels of survivin and p53 are positively correlated and may share a common molecular pathway to promote endometrial carcinogenesis. These findings provided evidence that survivin and p53 combined may be useful markers for the prediction of tumor behavior and prognosis.
Collapse
Affiliation(s)
- Aggelis Stavropoulos
- Forth Obstetrics and Gynecology Department, 'Elena Venizelou' General Hospital, Athens 11521, Greece
| | - Michail Varras
- Fifth Obstetrics and Gynecology Department, 'Elena Venizelou' General Hospital, Athens 11521, Greece
| | - Thivi Vasilakaki
- Department of Pathology, 'Tzaneio' General Hospital, Piraeus 18536, Greece
| | | | - Fani-Niki Varra
- Department of Pharmacy, Frederick University, Nicosia 1036, Cyprus
| | - Aikaterini Tsavari
- Department of Pathology, 'Tzaneio' General Hospital, Piraeus 18536, Greece
| | - Aphrodite Nonni
- First Pathology Department, Medical School, National Kapodistrian University, Athens 11527, Greece
| | - Nikolaos Kavantzas
- First Pathology Department, Medical School, National Kapodistrian University, Athens 11527, Greece
| | - Andreas C Lazaris
- First Pathology Department, Medical School, National Kapodistrian University, Athens 11527, Greece
| |
Collapse
|
25
|
Smith J, Sen S, Weeks RJ, Eccles MR, Chatterjee A. Promoter DNA Hypermethylation and Paradoxical Gene Activation. Trends Cancer 2020; 6:392-406. [PMID: 32348735 DOI: 10.1016/j.trecan.2020.02.007] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022]
Abstract
DNA methylation is a stable epigenetic modification that contributes to the spatiotemporal regulation of gene expression. The manner in which DNA methylation contributes to transcriptional control is dependent on the biological context, including physiological state and the properties of the DNA itself. Classically, dense promoter DNA methylation is associated with transcriptional repression. However, growing evidence suggests that this association may not always hold true, and promoter hypermethylation now also appears to be associated with high transcriptional activity. Furthermore, in a selection of contexts, increasing levels of promoter methylation correlate directly with increased gene expression. These findings postulate a context-dependent model whereby epigenetic contributions to transcriptional regulation occur in a more complex and dynamic manner. We present current evidence documenting promoter hypermethylation and high levels of gene expression, offer insights into the possible mechanisms by which this occurs, and discuss the potential implications for both research and clinical applications.
Collapse
Affiliation(s)
- Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 9016, Dunedin, New Zealand
| | - Swapnoleena Sen
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 9016, Dunedin, New Zealand
| | - Robert J Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 9016, Dunedin, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 9016, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 9016, Dunedin, New Zealand.
| |
Collapse
|
26
|
Zhu P, Shan X, Liu J, Zhou X, Zhang H, Wang T, Wu J, Zhu W, Liu P. miR-3622b-5p regulates cisplatin resistance of human gastric cancer cell line by targeting BIRC5. J Biomed Res 2019; 33:382. [PMCID: PMC6891874 DOI: 10.7555/jbr.33.20180078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 06/04/2019] [Indexed: 08/30/2023] Open
Abstract
Many evidences showed that drug resistance of gastric cancer cells could be regulated by the abnormal expression of microRNAs (miRNAs), a post-transcriptional regulator of gene expression. Thus, we investigated the role of miR-3622b-5p in the development of cisplatin (DDP) resistance in human gastric cancer cell lines. A set of biochemical assays were used to elucidate the mechanism by which miR-3622b-5p regulates drug resistance in cancer cells. The expression of miR-3622b-5p was measured by quantitative real-time PCR and showed that miR-3622b-5p was significantly downregulated in the plasma of patients with acquired drug resistance to platinum-based chemotherapy for gastric cancer. miR-3622b-5p was also found significantly downregulated in DDP-resistant gastric cancer cell line SGC7901/DDP, compared with the parental SGC7901 cells. An in vitro drug sensitivity assay showed that overexpression of miR-3622b-5p sensitized SGC7901/DDP cells to DDP. The luciferase activity of reporters constructed by BIRC5 3′-untranslated regions in SGC7901/DDP cells suggested that BIRC5 was target gene of miR-3622b-5p. Ecpotic miR-3622b-5p expression in SGC7901/DDP cells significantly repressed the expression of the BIRC5 and sensitized the cells to DDP-induced apoptosis. By contrast, treatment with miR-3622b-5p inhibitor increased the protein expression of BIRC5 and led to a lower proportion of apoptotic cells in the SGC7901 cells. In conclusion, our findings suggest that miR-3622b-5p regulates DDP resistance of human gastric cancer cells at least in part by repressing the expression of BIRC5. Altering miR-3622b-5p expression may be a potential therapeutic strategy for the treatment of chemoresistance in gastric cancer in the future.
Collapse
Affiliation(s)
- Ping Zhu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics
| | - Xia Shan
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Respiration, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Jinhui Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Zhou
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Huo Zhang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tongshan Wang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jianqing Wu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics
| | - Wei Zhu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Oncology, the Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Ping Liu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
27
|
Martín-Pardillos A, Cajal SRY. Characterization of Kelch domain-containing protein 7B in breast tumours and breast cancer cell lines. Oncol Lett 2019; 18:2853-2860. [PMID: 31452764 PMCID: PMC6704290 DOI: 10.3892/ol.2019.10672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 05/29/2019] [Indexed: 12/24/2022] Open
Abstract
Adenocarcinomas exhibit great heterogeneity, with many genetic and epigenetic alterations. The Kelch domain-containing protein 7B (KLHDC7B) has recently been identified as epigenetically modified and upregulated in breast cancer. The potential reversibility of epigenetic states offers exciting possibilities for novel cancer diagnostics and drugs. However, to properly evaluate specific inhibitors, the role of KLHDC7B in the development and progression of breast cancer should be established. With that objective in mind, the present study investigated a series of human breast tumours and correlated their clinicopathology, according to the Elston-Ellis modification of the Scarff-Bloom-Richardson (SBR) grading system, with KLHDC7B mRNA expression, analysed using quantitative PCR (qPCR). The results revealed that KLHDC7B was significantly upregulated in grade 3 tumours, and that KLHDC7B expression varied according to the tumour grade and the individual, being downregulated in well-differentiated and moderately-differentiated tumours (grade 1–2) and upregulated in poorly-differentiated tumours (grade 3). Immunohistochemical staining revealed that ductal tumours and tumours with a higher percentage of Ki67 positive cells showed the highest levels of KLHDC7B. Receptor expression, HER, p53 status, presence of metastasis, and vascular invasion showed no association with KLHDC7B expression. Previous studies have proposed KLHDC7B as an epigenetic marker of breast cancer. We propose that KLHDC7B should be used as a marker for poorly-differentiated tumours only; use of KLHDC7B without considering tumour grade could lead to an inaccurate diagnosis. Finally, we suggest the appropriate breast cancer cell lines to use to determine the functions of KLHDC7B. KLHDC7B expression was tested in the non-tumour cell line MCF-10A and in the breast cancer cell lines MCF-7, MDA-MB-231 and MDA-MB-468, using qPCR and western blotting. The results revealed that all tested cancer cell lines overexpressed KLHDC7B mRNA, but MDA-MB-468 exhibited a much lower level of protein expression relative to mRNA. Although the breast cancer cell lines used may be appropriate for studying KLHDC7B epigenetic status, MDA-MB-468 should be excluded from functional experiments.
Collapse
Affiliation(s)
- Ana Martín-Pardillos
- Translational Molecular Pathology Group, Oncology Department, Vall d'Hebron Institut de Recerca, Edificio Collserola, Hospital Vall d'Hebron, 08035 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer, 28029 Madrid, Spain
| | - Santiago Ramón Y Cajal
- Translational Molecular Pathology Group, Oncology Department, Vall d'Hebron Institut de Recerca, Edificio Collserola, Hospital Vall d'Hebron, 08035 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer, 28029 Madrid, Spain.,Hospital Vall d'Hebron, Anatomical Pathology Department, 08035 Barcelona, Spain
| |
Collapse
|
28
|
Elmallah MIY, Micheau O. Epigenetic Regulation of TRAIL Signaling: Implication for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11060850. [PMID: 31248188 PMCID: PMC6627638 DOI: 10.3390/cancers11060850] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
One of the main characteristics of carcinogenesis relies on genetic alterations in DNA and epigenetic changes in histone and non-histone proteins. At the chromatin level, gene expression is tightly controlled by DNA methyl transferases, histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyl-binding proteins. In particular, the expression level and function of several tumor suppressor genes, or oncogenes such as c-Myc, p53 or TRAIL, have been found to be regulated by acetylation. For example, HATs are a group of enzymes, which are responsible for the acetylation of histone proteins, resulting in chromatin relaxation and transcriptional activation, whereas HDACs by deacetylating histones lead to chromatin compaction and the subsequent transcriptional repression of tumor suppressor genes. Direct acetylation of suppressor genes or oncogenes can affect their stability or function. Histone deacetylase inhibitors (HDACi) have thus been developed as a promising therapeutic target in oncology. While these inhibitors display anticancer properties in preclinical models, and despite the fact that some of them have been approved by the FDA, HDACi still have limited therapeutic efficacy in clinical terms. Nonetheless, combined with a wide range of structurally and functionally diverse chemical compounds or immune therapies, HDACi have been reported to work in synergy to induce tumor regression. In this review, the role of HDACs in cancer etiology and recent advances in the development of HDACi will be presented and put into perspective as potential drugs synergizing with TRAIL's pro-apoptotic potential.
Collapse
Affiliation(s)
- Mohammed I Y Elmallah
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, F-21079 Dijon, France.
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan 11795 Cairo, Egypt.
| | - Olivier Micheau
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, F-21079 Dijon, France.
| |
Collapse
|
29
|
Braný D, Dvorská D, Grendár M, Ňachajová M, Szépe P, Lasabová Z, Žúbor P, Višňovský J, Halášová E. Different methylation levels in the KLF4, ATF3 and DLEC1 genes in the myometrium and in corpus uteri mesenchymal tumours as assessed by MS-HRM. Pathol Res Pract 2019; 215:152465. [PMID: 31176573 DOI: 10.1016/j.prp.2019.152465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Mesenchymal tumours of the corpus uteri comprise common benign lesions - leiomyomas and very rare malignant variants - sarcomas. It can be difficult to distinguish between the particular types of mesenchymal tumours pre-surgically. Primarily, leiomyomas and the very aggressive leiomyosarcomas can be easily misdiagnosed when using only imaging devices. Therefore, a reliable non-invasive marker for these tumour types would provide greater certitude for patients that the lesion remains benign. Our collection comprises 76 native leiomyomas, an equal number of healthy myometrium samples and 49 FFPE samples of various types of sarcomas. The methylation level was assessed by MS-HRM method and we observed differences in the methylation level between healthy, benign and (semi)malignant tissues in the KLF4 and DLEC1 genes. The mean methylation levels of leiomyomas compared to myometrium and leiomyosarcomas were 70.7% vs. 6.5% vs. 39.6 % (KLF4) and 66.1% vs. 14.08% vs. 37.5% (DLEC1). The ATF3 gene was differentially methylated in leiomyomatous and myometrial tissues with 98.1% compared to 76.6%. The AUC values of the predictive logistic regression model for discrimination between leiomyomas and leiomyosarcomas based on methylation levels were 0.7829 (KLF4) and 0.7719 (DLEC1). Finally, our results suggest that there should be distinct models for the methylation events in benign leiomyomas and sarcomas, and that the KLF4 and DLEC1 genes can be considered potential methylation biomarkers for uterine leiomyomas.
Collapse
Affiliation(s)
- Dušan Braný
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Dana Dvorská
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Marián Grendár
- Bioinformatic Unit, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Marcela Ňachajová
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Peter Szépe
- Department of Pathological Anatomy, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Zora Lasabová
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Pavol Žúbor
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Jozef Višňovský
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Erika Halášová
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
30
|
Liu L, Lin J, He H. Identification of Potential Crucial Genes Associated With the Pathogenesis and Prognosis of Endometrial Cancer. Front Genet 2019; 10:373. [PMID: 31105744 PMCID: PMC6499025 DOI: 10.3389/fgene.2019.00373] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
Background and Objective Endometrial cancer (EC) is a common gynecological malignancy worldwide. Despite advances in the development of strategies for treating EC, prognosis of the disease remains unsatisfactory, especially for advanced EC. The aim of this study was to identify novel genes that can be used as potential biomarkers for identifying the prognosis of EC and to construct a novel risk stratification using these genes. Methods and Results An mRNA sequencing dataset, corresponding survival data and expression profiling of an array of EC patients were obtained from The Cancer Genome Atlas and Gene Expression Omnibus, respectively. Common differentially expressed genes (DEGs) were identified based on sequencing and expression as given in the profiling dataset. Pathway enrichment analysis of the DEGs was performed using the Database for Annotation, Visualization, and Integrated Discovery. The protein-protein interaction network was established using the string online database in order to identify hub genes. Univariate and multivariable Cox regression analyses were used to screen prognostic DEGs and to construct a prognostic signature. Survival analysis based on the prognostic signature was performed on TCGA EC dataset. A total of 255 common DEGs were found and 11 hub genes (TOP2A, CDK1, CCNB1, CCNB2, AURKA, PCNA, CCNA2, BIRC5, NDC80, CDC20, and BUB1BA) that may be closely related to the pathogenesis of EC were identified. A panel of 7 DEG signatures consisting of PHLDA2, GGH, ESPL1, FAM184A, KIAA1644, ESPL1, and TRPM4 were constructed. The signature performed well for prognosis prediction (p < 0.001) and time-dependent receiver-operating characteristic (ROC) analysis displayed an area under the curve (AUC) of 0.797, 0.734, 0.729, and 0.647 for 1, 3, 5, and 10-year overall survival (OS) prediction, respectively. Conclusion This study identified potential genes that may be involved in the pathophysiology of EC and constructed a novel gene expression signature for EC risk stratification and prognosis prediction.
Collapse
Affiliation(s)
- Li Liu
- Department of Obstetrics and Gynecology, Liuzhou Worker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jiajing Lin
- Department of Obstetrics and Gynecology, Liuzhou Worker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Hongying He
- Department of Obstetrics and Gynecology, Liuzhou Worker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| |
Collapse
|
31
|
Pahlavan Y, Kahroba H, Samadi N, Karimi A, Ansarin K, Khabbazi A. Survivin modulatory role in autoimmune and autoinflammatory diseases. J Cell Physiol 2019; 234:19440-19450. [PMID: 31020660 DOI: 10.1002/jcp.28725] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/06/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
Abstract
Baculoviral IAP repeat containing 5 (BIRC5) gene encodes the important protein as survivin, a multifunctional protein, which is involved in cellular and molecular networks, progression of cell cycle, homeostasis, developmental morphogenesis, and apoptosis. The proximal BIRC5 promoter possesses specific binding sites for key transcription factors such as nuclear factor κB and signal transducer and activator of transcription 3. Upregulation of survivin exacerbates the autoimmune diseases (AIDs) including multiple sclerosis and myasthenia gravis by reducing the activity threshold of survivin-specific cytotoxic T cells. DNA damage along with upregulation or downregulation of survivin have been demonstrated in initiation and pathogenesis of cancers and AIDs. However, detailed mechanism of survivin function in pathogenesis of AIDs is not well understood. This review focuses on the structure, specificity, regulation, and function of survivin in physiologic conditions and pathogenesis of AIDs.
Collapse
Affiliation(s)
- Yasamin Pahlavan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Students Research Committee, University of Tabriz Medical Sciences, Tabriz, Iran
| | - Houman Kahroba
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Students Research Committee, University of Tabriz Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khabbazi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Wang M, Cai WR, Meng R, Chi JR, Li YR, Chen AX, Yu Y, Cao XC. miR-485-5p suppresses breast cancer progression and chemosensitivity by targeting survivin. Biochem Biophys Res Commun 2018; 501:48-54. [PMID: 29678577 DOI: 10.1016/j.bbrc.2018.04.129] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
Abstract
Breast cancer is the most common cancer among women worldwide. Chemoresistance remains to be a considerable obstacle in breast cancer therapy and it is often involves dysregulation of a variety of microRNAs (miRNAs). miR-485-5p functions as a tumor suppressor in several types of human cancers. However, its role in breast cancer chemosensitivity have not been determined. In the present study, we demonstrated that overexpression of miR-485-5p suppresses breast cancer progression and enhances chemosensitivity both in vitro and in vivo. Further study demonstrated that miR-485-5p directly targeted the 3'-untranslated region of survivin and overexpression of survivin overcomes the miR-485-5p induced effects on breast cancer. In conclusion, our study identified that miR-485-5p suppresses cancer progression and enhances the chemosensitivity by targeting survivin. Targeting survivin by miR-485-5p may provide a potential approach to reverse chemosensitivity in breast cancer cells.
Collapse
Affiliation(s)
- Meng Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Wen-Run Cai
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Ran Meng
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Jiang-Rui Chi
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Yun-Rui Li
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Ao-Xiang Chen
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| | - Xu-Chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
33
|
Dizdar L, Oesterwind KA, Riemer JC, Werner TA, Mersch S, Möhlendick B, Schütte SC, Verde PE, Raba K, Topp SA, Stoecklein NH, Esposito I, Knoefel WT, Krieg A. Preclinical assesement of survivin and XIAP as prognostic biomarkers and therapeutic targets in gastroenteropancreatic neuroendocrine neoplasia. Oncotarget 2018; 8:8369-8382. [PMID: 28039474 PMCID: PMC5352407 DOI: 10.18632/oncotarget.14207] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023] Open
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) represent a rare and heterogenous tumor entity. Importantly, the highly proliferative subgroup of neuroendocrine carcinoma (GEP-NEC) is characterized by high resistance to conventional chemotherapy. Consequently, there is an urgent need to identify novel therapeutic targets, especially for GEP-NEC. Thus, we focused on Inhibitor of apoptosis protein (IAP) family members survivin and XIAP that orchestrate inhibition of apoptosis, induce resistance against chemotherapeutics and facilitate tumor metastasis. Copy number gains (CNGs) could be detected by microarray comparative genomic hybridization for survivin and XIAP in 60 % and 26.7 % of all GEP-NENs, respectively. Immunohistochemical staining of tissue specimens from 77 consecutive patients with GEP-NEN demonstrated increased survivin protein expression levels in tissue specimens of highly proliferative GEP-NEC or GEP-NEN located in the stomach and colon. In contrast, XIAP overexpression was associated with advanced tumor stages. Knockdown of survivin and XIAP markedly reduced cell proliferation and tumor growth. In vitro, YM155 induced apoptotic cell death accompanied by a reduction in cell proliferation and inhibited GEP-NEC xenograft growth. Taken together, our data provide evidence for a biological relevance of these IAPs in GEP-NEN and support a potential role of survivin as therapeutic target especially in the subgroup of aggressive GEP-NEC.
Collapse
Affiliation(s)
- Levent Dizdar
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Kira A Oesterwind
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Jasmin C Riemer
- Institute of Pathology, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Thomas A Werner
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Sabrina Mersch
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Birte Möhlendick
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Sina C Schütte
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Pablo E Verde
- Coordination Centre for Clinical Trials, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Stefan A Topp
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Nikolas H Stoecklein
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Wolfram T Knoefel
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Andreas Krieg
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| |
Collapse
|
34
|
Jia N, Wang J, Li Q, Tao X, Chang K, Hua K, Yu Y, Wong KK, Feng W. DNA methylation promotes paired box 2 expression via myeloid zinc finger 1 in endometrial cancer. Oncotarget 2018; 7:84785-84797. [PMID: 27764784 PMCID: PMC5356698 DOI: 10.18632/oncotarget.12626] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/25/2016] [Indexed: 12/27/2022] Open
Abstract
This work investigated the role of paired box 2 (PAX2) in endometrial cancer and its epigenetic regulation mechanism. Endometrial cancer tissues and cell lines exhibited increased PAX2 expression compared with hyperplasia, normal endometrium and endometrial epithelial cells. Knock-down of PAX2 resulted in reduced cell viability, invasion and migration, and PAX2 overexpression caused the opposite effects. Increased methylation of the PAX2 promoter was observed in both cancer tissues and cell lines and was positively correlated with PAX2 expression. After 5-Aza-CdR treatment, PAX2 mRNA and protein were down-regulated, and PAX2 methylation was decreased. Deletion analysis confirmed that a repressive transcriptional regulatory region of the PAX2 promoter coincided with the hypermethylated region identified in MassARRAY analysis. Binding sites of myeloid zinc finger 1 (MZF1) are predicted in the defined region. Knock-down of MZF1 up-regulated the transcriptional activity and protein level of PAX2 after 5-Aza-CdR treatment, which indicated that MZF1 may act as a repressive transcription factor when the PAX2 promoter is unmethylated. In conclusion, PAX2 is involved in the carcinogenesis of endometrial cancer by stimulating cell growth and promoting cell motility. The overexpression of PAX2 in endometrial cancer is regulated by promoter hypermethylation and the transcription factor MZF1.
Collapse
Affiliation(s)
- Nan Jia
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, China
| | - Jieyu Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, China
| | - Qing Li
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, China
| | - Xiang Tao
- Department of Pathology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Kaikai Chang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, China
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, China
| | - Yinhua Yu
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, China
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weiwei Feng
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Epigenetic mechanism of survivin dysregulation in human cancer. SCIENCE CHINA-LIFE SCIENCES 2018; 61:808-814. [PMID: 29318497 DOI: 10.1007/s11427-017-9230-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/01/2017] [Indexed: 02/05/2023]
Abstract
Survivin (coding gene BIRC5) is a dual functional protein acting as a critical inhibitor of apoptosis (IAP) and key regulator of cell cycle progression. It is usually produced in embryonic tissues during development and undetectable in most adult tissues. Overexpression of Survivin frequently occurs in various human cancers and increased Survivin correlates with poor clinic outcome, tumor recurrence, and therapeutic resistance. Because of its selective expression in tumor, but not normal tissues, Survivin has been recognized as an attractive target for cancer treatment. Although several therapeutic approaches targeting Survivin are actively under clinical trials in human cancers, to date no Survivin-targeted therapy has been approved for cancer treatment. Numerous studies have devoted to uncovering the underlying mechanism resulting in Survivin dysregulation at multiple levels, such as transcriptional and post-transcriptional regulation. The current article provides a literature review on the transcriptional and epigenetic regulation of Survivin expression in human cancers. We focus on the impact of DNA methylation and histone modifications, including specific lysine methylation, demethylation, and acetylation on the expression of Survivin. The latest development of epigenetic approaches targeting Survivin for cancer treatment are also discussed.
Collapse
|
36
|
Abstract
DNA methylation is a dynamic epigenetic mark that characterizes different cellular developmental stages, including tissue-specific profiles. This CpG dinucleotide modification cooperates in the regulation of the output of the cellular genetic content, in both healthy and pathological conditions. According to endogenous and exogenous stimuli, DNA methylation is involved in gene transcription, alternative splicing, imprinting, X-chromosome inactivation, and control of transposable elements. When these dinucleotides are organized in dense regions are called CpG islands (CGIs), being commonly known as transcriptional regulatory regions frequently associated with the promoter region of several genes. In cancer, promoter DNA hypermethylation events sustained the mechanistic hypothesis of epigenetic transcriptional silencing of an increasing number of tumor suppressor genes. CGI hypomethylation-mediated reactivation of oncogenes was also documented in several cancer types. In this chapter, we aim to summarize the functional consequences of the differential DNA methylation at CpG dinucleotides in cancer, focused in CGIs. Interestingly, cancer methylome is being recently explored, looking for biomarkers for diagnosis, prognosis, and predictors of drug response.
Collapse
Affiliation(s)
- Humberto J Ferreira
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
37
|
Fischer M. Census and evaluation of p53 target genes. Oncogene 2017; 36:3943-3956. [PMID: 28288132 PMCID: PMC5511239 DOI: 10.1038/onc.2016.502] [Citation(s) in RCA: 668] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022]
Abstract
The tumor suppressor p53 functions primarily as a transcription factor. Mutation of the TP53 gene alters its response pathway, and is central to the development of many cancers. The discovery of a large number of p53 target genes, which confer p53's tumor suppressor function, has led to increasingly complex models of p53 function. Recent meta-analysis approaches, however, are simplifying our understanding of how p53 functions as a transcription factor. In the survey presented here, a total set of 3661 direct p53 target genes is identified that comprise 3509 potential targets from 13 high-throughput studies, and 346 target genes from individual gene analyses. Comparison of the p53 target genes reported in individual studies with those identified in 13 high-throughput studies reveals limited consistency. Here, p53 target genes have been evaluated based on the meta-analysis data, and the results show that high-confidence p53 target genes are involved in multiple cellular responses, including cell cycle arrest, DNA repair, apoptosis, metabolism, autophagy, mRNA translation and feedback mechanisms. However, many p53 target genes are identified only in a small number of studies and have a higher likelihood of being false positives. While numerous mechanisms have been proposed for mediating gene regulation in response to p53, recent advances in our understanding of p53 function show that p53 itself is solely an activator of transcription, and gene downregulation by p53 is indirect and requires p21. Taking into account the function of p53 as an activator of transcription, recent results point to an unsophisticated means of regulation.
Collapse
Affiliation(s)
- M Fischer
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Ejarque M, Ceperuelo-Mallafré V, Serena C, Pachón G, Núñez-Álvarez Y, Terrón-Puig M, Calvo E, Núñez-Roa C, Oliva-Olivera W, Tinahones FJ, Peinado MA, Vendrell J, Fernández-Veledo S. Survivin, a key player in cancer progression, increases in obesity and protects adipose tissue stem cells from apoptosis. Cell Death Dis 2017; 8:e2802. [PMID: 28518147 PMCID: PMC5520726 DOI: 10.1038/cddis.2017.209] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 12/24/2022]
Abstract
Adipose tissue (AT) has a central role in obesity-related metabolic imbalance through the dysregulated production of cytokines and adipokines. In addition to its known risk for cardiovascular disease and diabetes, obesity is also a major risk for cancer. We investigated the impact of obesity for the expression of survivin, an antiapoptotic protein upregulated by adipokines and a diagnostic biomarker of tumor onset and recurrence. In a cross-sectional study of 111 subjects classified by body mass index, circulating levels of survivin and gene expression in subcutaneous AT were significantly higher in obese patients and positively correlated with leptin. Within AT, survivin was primarily detected in human adipocyte-derived stem cells (hASCs), the adipocyte precursors that determine AT expansion. Remarkably, survivin expression was significantly higher in hASCs isolated from obese patients that from lean controls and was increased by proinflammatory M1 macrophage soluble factors including IL-1β. Analysis of survivin expression in hASCs revealed a complex regulation including epigenetic modifications and protein stability. Surprisingly, obese hASCs showed survivin promoter hypermethylation that correlated with a significant decrease in its mRNA levels. Nonetheless, a lower level of mir-203, which inhibits survivin protein translation, and higher protein stability, was found in obese hASCs compared with their lean counterparts. We discovered that survivin levels determine the susceptibility of hASCs to apoptotic stimuli (including leptin and hypoxia). Accordingly, hASCs from an obese setting were protected from apoptosis. Collectively, these data shed new light on the molecular mechanisms governing AT expansion in obesity through promotion of hASCs that are resistant to apoptosis, and point to survivin as a potential new molecular player in the communication between AT and tumor cells. Thus, inhibition of apoptosis targeting survivin might represent an effective strategy for both obesity and cancer therapy.
Collapse
Affiliation(s)
- Miriam Ejarque
- Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili Universitat Rovira i Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Victòria Ceperuelo-Mallafré
- Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili Universitat Rovira i Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Serena
- Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili Universitat Rovira i Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Gisela Pachón
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Dermatology, Program of Excellence in Glycosciences, Brigham & Women’s Hospital/Harvard Medical School, Boston, MA, USA
- Department of Medicine, Program of Excellence in Glycosciences, Brigham & Women’s Hospital/Harvard Medical School, Boston, MA, USA
| | - Yaiza Núñez-Álvarez
- Health Sciences Research Institute Germans Trias i Pujol, Institute of Predictive and Personalized Medicine of Cancer, Badalona, Spain
| | - Margarida Terrón-Puig
- Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili Universitat Rovira i Virgili, Tarragona, Spain
| | - Enrique Calvo
- Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili Universitat Rovira i Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Catalina Núñez-Roa
- Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili Universitat Rovira i Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Wilfredo Oliva-Olivera
- CIBER de la Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Biomedical Research, Virgen de la Victoria Clinical University Hospital, Málaga, Spain
| | - Francisco J Tinahones
- CIBER de la Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Biomedical Research, Virgen de la Victoria Clinical University Hospital, Málaga, Spain
| | - Miguel Angel Peinado
- Health Sciences Research Institute Germans Trias i Pujol, Institute of Predictive and Personalized Medicine of Cancer, Badalona, Spain
| | - Joan Vendrell
- Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili Universitat Rovira i Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Fernández-Veledo
- Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili Universitat Rovira i Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
39
|
Dihydromyricetin Induces Apoptosis and Reverses Drug Resistance in Ovarian Cancer Cells by p53-mediated Downregulation of Survivin. Sci Rep 2017; 7:46060. [PMID: 28436480 PMCID: PMC5402300 DOI: 10.1038/srep46060] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/03/2017] [Indexed: 01/15/2023] Open
Abstract
Ovarian cancer is one of the leading causes of death in gynecological malignancies, and the resistance to chemotherapeutic agents remains a major challenge to successful ovarian cancer chemotherapy. Dihydromyricetin (DHM), a natural flavonoid derived from Ampeopsis Grossdentata, has been widely applied in food industry and medicine for a long time. However, little is known about the effects of DHM on ovarian cancer and the underlying mechanisms. In this study, we demonstrated that DHM could effectively inhibit the proliferation of ovarian cancer cells and induce cell apoptosis. Survivin, an inhibitor of apoptosis (IAPs) family member, exhibited a decreased expression level after DHM treatment, which may be attributed to the activation of p53. Moreover, DHM markedly sensitized paclitaxel (PTX) and doxorubicin (DOX) resistant ovarian cancer cells to PTX and DOX by inhibiting survivin expression. Collectively, our findings highlight a previously undiscovered effect of DHM, which induces apoptosis and reverses multi-drug resistance against ovarian cancer cells through downregulation of survivin.
Collapse
|
40
|
Jiang X, Wang Z, Ding B, Yin C, Zhong Q, Carter BZ, Yu G, Jiang L, Ye J, Dai M, Zhang Y, Liang S, Zhao Q, Liu Q, Meng F. The hypomethylating agent decitabine prior to chemotherapy improves the therapy efficacy in refractory/relapsed acute myeloid leukemia patients. Oncotarget 2016; 6:33612-22. [PMID: 26384351 PMCID: PMC4741789 DOI: 10.18632/oncotarget.5600] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/26/2015] [Indexed: 12/16/2022] Open
Abstract
In this study, we investigated the effect of pre-treatment with demethylating agent decitabine on susceptibility to chemotherapeutic drugs in HL60/ADR, Kasumi-1 and primary AML cells. Cytotoxic effect was increased by decitabine through activation of p53 and inhibition of c-Myc, Survivin and Bcl-2. We demonstrated in clinic that combination of decitabine and HAA consisting of harringtonine, aclarubicin and cytarabine was effective and safe to treat patients with refractory, relapsed or high-risk AML. Decitabine prior to HAA regimen improved the first induction complete response rate, and significantly prolonged overall survival and disease-free survival in these patients compared with HAA alone. These findings support clinic protocols based on decitabine prior to chemotherapy to overcome resistance and improve therapeutic efficacy in AML patients.
Collapse
Affiliation(s)
- Xuejie Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhixiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bingjie Ding
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changxin Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingxiu Zhong
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Hematopathy Diagnosis and Therapy Center, Kanghua Hospital, Dongguan, China
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jieyu Ye
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Min Dai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Qingxia Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fanyi Meng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Hematopathy Diagnosis and Therapy Center, Kanghua Hospital, Dongguan, China
| |
Collapse
|
41
|
Ma J, Feng Y, Liu Y, Li X. PUMA and survivin are involved in the apoptosis of HepG2 cells induced by microcystin-LR via mitochondria-mediated pathway. CHEMOSPHERE 2016; 157:241-249. [PMID: 27235693 DOI: 10.1016/j.chemosphere.2016.05.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/04/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
The present study aimed to determine the cytotoxicity of microcystin-LR (MC-LR) on the human hepatocellular carcinoma (HepG2) cells in order to elucidate the mechanism of apoptosis induced by MC-LR. Morphological evaluation results showed that MC-LR induced time- and concentration-dependent apoptosis in HepG2 cells. The biochemical assays revealed that MC-LR-exposure caused overproduction of reactive oxygen species (ROS), cyclooxygenase-2 activity alteration, cytochrome c release, and remarkable activation of caspase-3 and caspase-9 in HepG2 cells, indicating that MC-LR-induced apoptosis is mediated by mitochondrial pathway. Moreover, we also found that p53 and Bax might play an important role in MC-LR-induced apoptosis in HepG2 cells in which PUMA and survivin were involved. However, further studies are necessary to elucidate the possible functions of PUMA and survivin in MC-LR-induced apoptosis in HepG2 cells.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yiyi Feng
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yang Liu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
42
|
Hannemann L, Suppanz I, Ba Q, MacInnes K, Drepper F, Warscheid B, Koch HG. Redox Activation of the Universally Conserved ATPase YchF by Thioredoxin 1. Antioxid Redox Signal 2016; 24:141-56. [PMID: 26160547 PMCID: PMC4742990 DOI: 10.1089/ars.2015.6272] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIMS YchF/Ola1 are unconventional members of the universally conserved GTPase family because they preferentially hydrolyze ATP rather than GTP. These ATPases have been associated with various cellular processes and pathologies, including DNA repair, tumorigenesis, and apoptosis. In particular, a possible role in regulating the oxidative stress response has been suggested for both bacterial and human YchF/Ola1. In this study, we analyzed how YchF responds to oxidative stress and how it potentially regulates the antioxidant response. RESULTS Our data identify a redox-regulated monomer-dimer equilibrium of YchF as a key event in the functional cycle of YchF. Upon oxidative stress, the oxidation of a conserved and surface-exposed cysteine residue promotes YchF dimerization, which is accompanied by inhibition of the ATPase activity. No dimers were observed in a YchF mutant lacking this cysteine. In vitro, the YchF dimer is dissociated by thioredoxin 1 (TrxA) and this stimulates the ATPase activity. The physiological significance of the YchF-thioredoxin 1 interaction was demonstrated by in vivo cross-linking, which validated this interaction in living cells. This approach also revealed that both the ATPase domain and the helical domain of YchF are in contact with TrxA. INNOVATION YchF/Ola1 are the first redox-regulated members of the universally conserved GTPase family and are inactivated by oxidation of a conserved cysteine residue within the nucleotide-binding motif. CONCLUSION Our data provide novel insights into the regulation of the so far ill-defined YchF/Ola1 family of proteins and stipulate their role as negative regulators of the oxidative stress response.
Collapse
Affiliation(s)
- Liya Hannemann
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Ida Suppanz
- 2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,3 BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Qiaorui Ba
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Katherine MacInnes
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Friedel Drepper
- 2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,3 BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Bettina Warscheid
- 2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,3 BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Hans-Georg Koch
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| |
Collapse
|
43
|
Fischer M, Quaas M, Nickel A, Engeland K. Indirect p53-dependent transcriptional repression of Survivin, CDC25C, and PLK1 genes requires the cyclin-dependent kinase inhibitor p21/CDKN1A and CDE/CHR promoter sites binding the DREAM complex. Oncotarget 2015; 6:41402-17. [PMID: 26595675 PMCID: PMC4747163 DOI: 10.18632/oncotarget.6356] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 11/11/2015] [Indexed: 12/15/2022] Open
Abstract
The transcription factor p53 is central to cell cycle control by downregulation of cell cycle-promoting genes upon cell stress such as DNA damage. Survivin (BIRC5), CDC25C, and PLK1 encode important cell cycle regulators that are repressed following p53 activation. Here, we provide evidence that p53-dependent repression of these genes requires activation of p21 (CDKN1A, WAF1, CIP1). Chromatin immunoprecipitation (ChIP) data indicate that promoter binding of B-MYB switches to binding of E2F4 and p130 resulting in a replacement of the MMB (Myb-MuvB) by the DREAM complex. We demonstrate that this replacement depends on p21. Furthermore, transcriptional repression by p53 requires intact DREAM binding sites in the target promoters. The CDE and CHR cell cycle promoter elements are the sites for DREAM binding. These elements as well as the p53 response of Survivin, CDC25C, and PLK1 are evolutionarily conserved. No binding of p53 to these genes is detected by ChIP and mutation of proposed p53 binding sites does not alter the p53 response. Thus, a mechanism for direct p53-dependent transcriptional repression is not supported by the data. In contrast, repression by DREAM is consistent with most previous findings and unifies models based on p21-, E2F4-, p130-, and CDE/CHR-dependent repression by p53. In conclusion, the presented data suggest that the p53-p21-DREAM-CDE/CHR pathway regulates p53-dependent repression of Survivin, CDC25C, and PLK1.
Collapse
Affiliation(s)
- Martin Fischer
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
- Department of Medical Oncology, Dana–Farber Cancer Institute, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marianne Quaas
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | - Annina Nickel
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | - Kurt Engeland
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| |
Collapse
|
44
|
Lee BS, Oh J, Kang SK, Park S, Lee SH, Choi D, Chung JH, Chung YW, Kang SM. Insulin Protects Cardiac Myocytes from Doxorubicin Toxicity by Sp1-Mediated Transactivation of Survivin. PLoS One 2015; 10:e0135438. [PMID: 26271039 PMCID: PMC4535909 DOI: 10.1371/journal.pone.0135438] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/23/2015] [Indexed: 12/15/2022] Open
Abstract
Insulin inhibits ischemia/reperfusion-induced myocardial apoptosis through the PI3K/Akt/mTOR pathway. Survivin is a key regulator of anti-apoptosis against doxorubicin-induced cardiotoxicity. Insulin increases survivin expression in cardiac myocytes to mediate cytoprotection. However, the mechanism by which survivin mediates the protective effect of insulin against doxorubicin-associated injury remains to be determined. In this study, we demonstrated that pretreatment of H9c2 cardiac myocytes with insulin resulted in a significant decrease in doxorubicin-induced apoptotic cell death by reducing cytochrome c release and caspase-3 activation. Doxorubicin-induced reduction of survivin mRNA and protein levels was also significantly perturbed by insulin pretreatment. Reducing survivin expression with survivin siRNA abrogated insulin-mediated inhibition of caspase-3 activation, suggesting that insulin signals to survivin inhibited caspase-3 activation. Interestingly, pretreatment of H9c2 cells with insulin or MG132, a proteasome inhibitor, inhibited doxorubicin-induced degradation of the transcription factor Sp1. ChIP assay showed that pretreatment with insulin inhibited doxorubicin-stimulated Sp1 dissociation from the survivin promoter. Finally using pharmacological inhibitors of the PI3K pathway, we showed that insulin-mediated activation of the PI3K/Akt/mTORC1 pathway prevented doxorubicin-induced proteasome-mediated degradation of Sp1. Taken together, insulin pretreatment confers a protective effect against doxorubicin-induced cardiotoxicity by promoting Sp1-mediated transactivation of survivin to inhibit apoptosis. Our study is the first to define a role for survivin in cellular protection by insulin against doxorubicin-associated injury and show that Sp1 is a critical factor in the transcriptional regulation of survivin.
Collapse
Affiliation(s)
- Beom Seob Lee
- Graduate Program in Science for Aging, Yonsei University, Seoul, Republic of Korea
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases (SIRIC), Yonsei University Health System, Seoul, Republic of Korea
| | - Jaewon Oh
- Cardiology Division, Severance Cardiovascular Hospital, Seoul, Republic of Korea
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Ku Kang
- Avon Old Farms School, Avon, Connecticut, United States of America
| | - Sungha Park
- Cardiology Division, Severance Cardiovascular Hospital, Seoul, Republic of Korea
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Hak Lee
- Cardiology Division, Severance Cardiovascular Hospital, Seoul, Republic of Korea
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Donghoon Choi
- Cardiology Division, Severance Cardiovascular Hospital, Seoul, Republic of Korea
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases (SIRIC), Yonsei University Health System, Seoul, Republic of Korea
| | - Ji Hyung Chung
- Department of Applied Bioscience, College of Life Science, CHA University, Gyeonggi-do, Republic of Korea
| | - Youn Wook Chung
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- * E-mail: (SMK); (YWC)
| | - Seok-Min Kang
- Cardiology Division, Severance Cardiovascular Hospital, Seoul, Republic of Korea
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases (SIRIC), Yonsei University Health System, Seoul, Republic of Korea
- * E-mail: (SMK); (YWC)
| |
Collapse
|
45
|
Langie SA, Koppen G, Desaulniers D, Al-Mulla F, Al-Temaimi R, Amedei A, Azqueta A, Bisson WH, Brown D, Brunborg G, Charles AK, Chen T, Colacci A, Darroudi F, Forte S, Gonzalez L, Hamid RA, Knudsen LE, Leyns L, Lopez de Cerain Salsamendi A, Memeo L, Mondello C, Mothersill C, Olsen AK, Pavanello S, Raju J, Rojas E, Roy R, Ryan E, Ostrosky-Wegman P, Salem HK, Scovassi I, Singh N, Vaccari M, Van Schooten FJ, Valverde M, Woodrick J, Zhang L, van Larebeke N, Kirsch-Volders M, Collins AR. Causes of genome instability: the effect of low dose chemical exposures in modern society. Carcinogenesis 2015; 36 Suppl 1:S61-S88. [PMID: 26106144 PMCID: PMC4565613 DOI: 10.1093/carcin/bgv031] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 12/17/2022] Open
Abstract
Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.
Collapse
Affiliation(s)
- Sabine A.S. Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
- Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
- Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
- Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia
- University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow 226003, Uttar Pradesh, India
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200MD, PO Box 61, Maastricht, The Netherlands
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
- Laboratory for Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent 9000, Belgium
- Department of Nutrition, University of Oslo, Oslo 0316, Norway
| | - Gudrun Koppen
- *To whom correspondence should be addressed. Tel: +32 14335165; Fax: +32 14580523
| | - Daniel Desaulniers
- Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Dustin Brown
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Amelia K. Charles
- Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Firouz Darroudi
- Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Laetitia Gonzalez
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Roslida A. Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia
| | - Lisbeth E. Knudsen
- University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark
| | - Luc Leyns
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | | | - Lorenzo Memeo
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Carmel Mothersill
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
| | - Ann-Karin Olsen
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Emilio Rojas
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Elizabeth Ryan
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Hosni K. Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow 226003, Uttar Pradesh, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Frederik J. Van Schooten
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200MD, PO Box 61, Maastricht, The Netherlands
| | - Mahara Valverde
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | - Nik van Larebeke
- Laboratory for Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent 9000, Belgium
| | | | | |
Collapse
|
46
|
miR-218 targets survivin and regulates resistance to chemotherapeutics in breast cancer. Breast Cancer Res Treat 2015; 151:269-80. [DOI: 10.1007/s10549-015-3372-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 04/06/2015] [Indexed: 12/20/2022]
|
47
|
Tyagi T, Treas JN, Mahalingaiah PKS, Singh KP. Potentiation of growth inhibition and epigenetic modulation by combination of green tea polyphenol and 5-aza-2′-deoxycytidine in human breast cancer cells. Breast Cancer Res Treat 2015; 149:655-68. [DOI: 10.1007/s10549-015-3295-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 02/02/2015] [Indexed: 12/18/2022]
|
48
|
Su F, Wang L, Sun Y, Liu C, Duan X, Li Z. Highly sensitive and multiplexed analysis of CpG methylation at single-base resolution with ligation-based exponential amplification. Chem Sci 2014; 6:1866-1872. [PMID: 28706642 PMCID: PMC5494546 DOI: 10.1039/c4sc03135k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/10/2014] [Indexed: 01/16/2023] Open
Abstract
DNA methylation is a primary epigenetic mechanism for transcriptional regulation during normal development and the occurrence of diseases, including cancers. DNA methylation has been increasingly utilized as a biomarker for cancer detection and differential diagnosis. Generally, one type of cancer is associated with several CpG methylation sites and detection of multiplexed CpG methylation can greatly improve the accuracy of cancer diagnosis. In this paper, we have developed a novel ligase chain reaction (LCR)-based method for multiplexed detection of CpG methylation in genomic DNA at single-base resolution. By rationally designing the two pairs of DNA probes for LCR, the bisulfite-treated methylated DNA target can be exponentially amplified by thermal cycling of the ligation reaction, in which one-base mismatch can be discriminated against, and thus high sensitivity and specificity for the detection of DNA methylation can be achieved. The LCR-based method can accurately determine as low as 10 aM methylated DNA fragment and 10 ng methylated genomic DNA. 0.1% methylated DNA can be detected in the presence of a large excess of unmethylated DNA. Moreover, by simply encoding one of the DNA probes in the LCR with a different length of poly(A) for detection of methylation at different CpG sites, the CpG methylation at different sites can produce LCR products with different lengths, and thus, can be simultaneously detected with one-tube LCR amplification and separation by capillary electrophoresis.
Collapse
Affiliation(s)
- Fengxia Su
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis , Ministry of Education , College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , Hebei Province , P. R. China . ; ; Tel: +86 29 81530859
| | - Limei Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis , Ministry of Education , College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , Hebei Province , P. R. China . ; ; Tel: +86 29 81530859
| | - Yueying Sun
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis , Ministry of Education , College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , Hebei Province , P. R. China . ; ; Tel: +86 29 81530859
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , Shaanxi Province , P. R. China
| | - Xinrui Duan
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , Shaanxi Province , P. R. China
| | - Zhengping Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis , Ministry of Education , College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , Hebei Province , P. R. China . ; ; Tel: +86 29 81530859.,Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , Shaanxi Province , P. R. China
| |
Collapse
|
49
|
Rawat A, Gopisetty G, Thangarajan R. E4BP4 is a repressor of epigenetically regulated SOSTDC1 expression in breast cancer cells. Cell Oncol (Dordr) 2014; 37:409-19. [DOI: 10.1007/s13402-014-0204-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2014] [Indexed: 01/15/2023] Open
|
50
|
Adhesion molecule-mediated hippo pathway modulates hemangioendothelioma cell behavior. Mol Cell Biol 2014; 34:4485-99. [PMID: 25266662 DOI: 10.1128/mcb.00671-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hemangioendotheliomas are categorized as intermediate-grade vascular tumors that are commonly localized in the lungs and livers. The regulation of this tumor cell's proliferative and apoptotic mechanisms is ill defined. We recently documented an important role for Hippo pathway signaling via endothelial cell adhesion molecules in brain microvascular endothelial cell proliferation and apoptosis. We found that endothelial cells lacking cell adhesion molecules escaped from contact inhibition and exhibited abnormal proliferation and apoptosis. Here we report on the roles of adherens junction molecule modulation of survivin and the Hippo pathway in the proliferation and apoptosis of a murine hemangioendothelioma (EOMA) cell. We demonstrated reduced adherens junction molecule (CD31 and VE-cadherin) expression, increased survivin and Ajuba expression, and a reduction in Hippo pathway signaling resulting in increased proliferation and decreased activation of effector caspase 3 in postconfluent EOMA cell cultures. Furthermore, we confirmed that YM155, an antisurvivin drug that interferes with Sp1-survivin promoter interactions, and survivin small interference RNA (siRNA) transfection elicited induction of VE-cadherin, decreased Ajuba expression, increased Hippo pathway and caspase activation and apoptosis, and decreased cell proliferation. These findings support the importance of the Hippo pathway in hemangioendothelioma cell proliferation and survival and YM155 as a potential therapeutic agent in this category of vascular tumors.
Collapse
|