1
|
Bonaventure B, Rebendenne A, Chaves Valadão AL, Arnaud‐Arnould M, Gracias S, Garcia de Gracia F, McKellar J, Labaronne E, Tauziet M, Vivet‐Boudou V, Bernard E, Briant L, Gros N, Djilli W, Courgnaud V, Parrinello H, Rialle S, Blaise M, Lacroix L, Lavigne M, Paillart J, Ricci EP, Schulz R, Jouvenet N, Moncorgé O, Goujon C. The
DEAD
box
RNA
helicase
DDX42
is an intrinsic inhibitor of positive‐strand
RNA
viruses. EMBO Rep 2022; 23:e54061. [PMID: 36161446 PMCID: PMC9638865 DOI: 10.15252/embr.202154061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Genome‐wide screens are powerful approaches to unravel regulators of viral infections. Here, a CRISPR screen identifies the RNA helicase DDX42 as an intrinsic antiviral inhibitor of HIV‐1. Depletion of endogenous DDX42 increases HIV‐1 DNA accumulation and infection in cell lines and primary cells. DDX42 overexpression inhibits HIV‐1 infection, whereas expression of a dominant‐negative mutant increases infection. Importantly, DDX42 also restricts LINE‐1 retrotransposition and infection with other retroviruses and positive‐strand RNA viruses, including CHIKV and SARS‐CoV‐2. However, DDX42 does not impact the replication of several negative‐strand RNA viruses, arguing against an unspecific effect on target cells, which is confirmed by RNA‐seq analysis. Proximity ligation assays show DDX42 in the vicinity of viral elements, and cross‐linking RNA immunoprecipitation confirms a specific interaction of DDX42 with RNAs from sensitive viruses. Moreover, recombinant DDX42 inhibits HIV‐1 reverse transcription in vitro. Together, our data strongly suggest a direct mode of action of DDX42 on viral ribonucleoprotein complexes. Our results identify DDX42 as an intrinsic viral inhibitor, opening new perspectives to target the life cycle of numerous RNA viruses.
Collapse
Affiliation(s)
| | | | | | | | - Ségolène Gracias
- Virus Sensing and Signaling Unit, Department of Virology, Institut Pasteur Université de Paris Cité, CNRS UMR 3569 Paris France
| | | | | | | | | | - Valérie Vivet‐Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002 Strasbourg France
| | | | | | - Nathalie Gros
- CEMIPAI, CNRS Université de Montpellier Montpellier France
| | | | | | - Hugues Parrinello
- Montpellier GenomiX (MGX), Biocampus, CNRS, INSERM Université de Montpellier Montpellier France
| | - Stéphanie Rialle
- Montpellier GenomiX (MGX), Biocampus, CNRS, INSERM Université de Montpellier Montpellier France
| | | | - Laurent Lacroix
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM Université PSL Paris France
| | - Marc Lavigne
- Department of Virology Institut Pasteur Paris France
| | | | | | - Reiner Schulz
- Department of Medical & Molecular Genetics King's College London London UK
| | - Nolwenn Jouvenet
- Virus Sensing and Signaling Unit, Department of Virology, Institut Pasteur Université de Paris Cité, CNRS UMR 3569 Paris France
| | | | | |
Collapse
|
2
|
Huo Y, Cao K, Kou B, Chai M, Dou S, Chen D, Shi Y, Liu X. TP53BP2: Roles in suppressing tumorigenesis and therapeutic opportunities. Genes Dis 2022. [PMID: 37492707 PMCID: PMC10363587 DOI: 10.1016/j.gendis.2022.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Malignant tumor is still a major problem worldwide. During tumorigenesis or tumor development, tumor suppressor p53-binding protein 2 (TP53BP2), also known as apoptosis stimulating protein 2 of p53 (ASPP2), plays a critical role in p53 dependent and independent manner. Expression of TP53BP2 is highly correlated with the prognosis and survival rate of malignant tumor patients. TP53BP2 can interact with p53, NF-κB p65, Bcl-2, HCV core protein, PP1, YAP, CagA, RAS, PAR3, and other proteins to regulate cell function. Moreover, TP53BP2 can also regulate the proliferation, apoptosis, autophagy, migration, EMT and drug resistance of tumor cells through downstream signaling pathways, such as NF-κB, RAS/MAPK, mevalonate, TGF-β1, PI3K/AKT, aPKC-ι/GLI1 and autophagy pathways. As a potential therapeutic target, TP53BP2 has been attracted more attention. We review the role of TP53BP2 in tumorigenesis or tumor development and the signal pathway involved in TP53BP2, which may provide more deep insight and strategies for tumor treatment.
Collapse
|
3
|
Rieger I, Tsintari V, Overkamp M, Fend F, Lopez CD, Schittenhelm MM, Kampa-Schittenhelm KM. ASPP2κ Is Expressed In Human Colorectal Carcinoma And Promotes Chemotherapy Resistance And Tumorigenesis. Front Mol Biosci 2021; 8:727203. [PMID: 34805267 PMCID: PMC8602356 DOI: 10.3389/fmolb.2021.727203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
Alternative splicing is a common physiologic mechanism to generate numerous distinct gene products from one gene locus, which can result in unique gene products with differing important functional outcomes depending on cell context. Aberrant alternative splicing is a hallmark of cancer that can contribute to oncogenesis and aggressiveness of the disease as well as resistance to therapy. However, aberrant splicing might also result in novel targets for cancer therapy. ASPP2 is a haplo-insufficient tumor suppressor, that functions through both p53-dependent as well as p53-independent mechanisms to enhance cell death after stress. Interestingly, the common human tumor TP53 mutations result in a loss of the binding sites to ASPP2, leading to impaired induction of apoptosis. Vice versa, attenuation of ASPP2 has been described to be associated with high-risk disease, therapy failure and poor clinical outcome especially in tumors harboring the TP53 wildtype (WT) isoform. We have recently identified a novel, dominant-negative splicing variant of ASPP2, named ASPP2κ, with oncogenic potential. Exon-skipping results in a reading-frame shift with a premature translation stop, omitting most of the ASPP2 C-terminus - which harbors the p53-binding domain. Consequently, the ASPP2-p53 interaction is abrogated, which in part impacts on oncogenesis, aggressiveness of disease and response to therapy. Since ASPP2κ has been shown in hematologic malignancies to promote tumorigenesis, we further wished to determine if aberrant ASPP2κ expression plays a role in human solid tumors. In this report, we find that ASPP2κ is frequently expressed in human colorectal tumors (CRC). Using ASPP2κ overexpressing and interference CRC models, we demonstrate a functional role of ASPP2κ in contributing to oncogenesis and resistance to therapy in CRC by 1) enhancing proliferation, 2) promoting cell migration and, 3) conferring resistance to chemotherapy induced apoptosis. Our findings have far-reaching consequences for future diagnostic and therapeutic strategies for ASPP2κ expressing colorectal cancer patients and provide proof-of-principle to further explore ASPP2κ as potential predictive marker and target for therapy in clinical trials.
Collapse
Affiliation(s)
- Ingmar Rieger
- Department of Oncology, Hematology, Clinical Immunology and Rheumatology, University Hospital Tübingen (UKT), Tübingen, Germany
| | - Vasileia Tsintari
- Department of Oncology, Hematology, Clinical Immunology and Rheumatology, University Hospital Tübingen (UKT), Tübingen, Germany
| | - Mathis Overkamp
- Institute of Pathology at the University Hospital Tübingen, Tübingen, Germany
| | - Falko Fend
- Institute of Pathology at the University Hospital Tübingen, Tübingen, Germany
| | - Charles D Lopez
- Department of Hematology and Medical Oncology, Oregon Health and Science University (OHSU), Portland, OR, United States
| | - Marcus M Schittenhelm
- Clinic of Medical Oncology and Hematology, Cantonal Hospital St. Gallen (KSSG), St. Gallen, Switzerland
| | - Kerstin M Kampa-Schittenhelm
- Department of Oncology, Hematology, Clinical Immunology and Rheumatology, University Hospital Tübingen (UKT), Tübingen, Germany.,Translational Experimental Hematology and Oncology, Medical Research Center and Department of Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
4
|
Asberger J, Erbes T, Jaeger M, Rücker G, Nöthling C, Ritter A, Berner K, Juhasz-Böss I, Hirschfeld M. Endoxifen and fulvestrant regulate estrogen-receptor α and related DEADbox proteins. Endocr Connect 2020; 9:1156-1167. [PMID: 33112831 PMCID: PMC7774761 DOI: 10.1530/ec-20-0281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC) represents the most common type of cancer in females worldwide. Endocrine therapy evolved as one of the main concepts in treatment of hormone-receptor positive BC. Current research focuses on the elucidation of tumour resistance mechanisms against endocrine therapy. In a translational in vitro approach, potential regulatory effects of clinically implemented BC anti-oestrogens on ERα, its coactivators DDX5, DDX17 and other DEADbox proteins as well as on the proliferation markers cyclin D1 and Ki67 were investigated on both the RNA and protein level. BC in vitro models for hormone-receptor positive (MCF-7, T-47D) and hormone-receptor negative cells (BT-20) were subjected to endocrine therapy. Anti-oestrogen-dependent expression regulation of target genes on the transcriptional and translational level was quantified and statistically assessed. Endocrine therapy decreases the expression levels of Ki67, cyclin D1 and ERα in hormone-receptor positive cells. In the hormone-receptor negative cells, the three parameters remained stable after endocrine therapy. Endoxifen triggers a downregulation of DDX5 and DDX23 in MCF-7 cells. Fulvestrant treatment downregulates the expression levels of all investigated DEADbox proteins in MCF-7 cells. In T-47D cells, endoxifen and fulvestrant lead to a decrease of all target gene expression levels. Interestingly, endocrine therapy affects DEADbox RNA expression levels in BT-20 cells, too. However, this result could only be confirmed for DDX1, immunocytologically. The investigated DEADbox proteins appear to correlate with the oestrogen-dependent tumourigenesis in hormone-receptor positive BC and show expression alterations after endocrine treatment.
Collapse
Affiliation(s)
- Jasmin Asberger
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Correspondence should be addressed to J Asberger:
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Jaeger
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gerta Rücker
- Institute of Medical Biometry and Statistics, Medical Center – University of Freiburg, Freiburg, Germany
| | - Claudia Nöthling
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Ritter
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingolf Juhasz-Böss
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marc Hirschfeld
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Veterinary Medicine, Georg-August-University Goettingen, Goettingen, Germany
| |
Collapse
|
5
|
Cytotoxic potential of Artemisia absinthium extract loaded polymeric nanoparticles against breast cancer cells: Insight into the protein targets. Int J Pharm 2020; 586:119583. [PMID: 32603837 DOI: 10.1016/j.ijpharm.2020.119583] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022]
Abstract
Targeted drug delivery system in the form of herbal based nano-formulations is the new ray of hope for minimizing the side effects related to the anti-cancer drugs as well as conventional drug delivery system. In view of this, the present study was designed to evaluate the cytotoxic potential of A. absinthium extract loaded polymeric nanoparticles (NVA-AA) against the breast cancer cell lines (MCF-7 and MDA MB-231) and to identify the protein targets for the caused cytotoxicity. The polymeric nanoparticles (PNPs) were prepared by free radical mechanism and loaded with the whole plant extract. The cytotoxicity of these NVA-AA were evaluated on the breast cancer cell lines via different cytotoxic parameters viz. MTT assay, CFSE proliferation assay, apoptosis assay, cell cycle study. The protein targets and the interaction among them were identified by nano-LCMS/MS analysis and STRING online tool respectively, which were further validated by qPCR and BLI. The LCMS/MS analysis suggests that the caused cytotoxicity was due to the alteration of proteins involved in vesicular trafficking, apoptosis, proliferation and metastasis. Further, interactome analysis identified UBA52 in MCF-7 and TIAL1, PPP1CC in MDA MB-231 cells as the central molecule in the vesicular trafficking and apoptosis networking connection.
Collapse
|
6
|
Hennigan RF, Fletcher JS, Guard S, Ratner N. Proximity biotinylation identifies a set of conformation-specific interactions between Merlin and cell junction proteins. Sci Signal 2019; 12:12/578/eaau8749. [PMID: 31015291 DOI: 10.1126/scisignal.aau8749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurofibromatosis type 2 is an inherited, neoplastic disease associated with schwannomas, meningiomas, and ependymomas and that is caused by inactivation of the tumor suppressor gene NF2 The NF2 gene product, Merlin, has no intrinsic catalytic activity; its tumor suppressor function is mediated through the proteins with which it interacts. We used proximity biotinylation followed by mass spectrometry and direct binding assays to identify proteins that associated with wild-type and various mutant forms of Merlin in immortalized Schwann cells. We defined a set of 52 proteins in close proximity to wild-type Merlin. Most of the Merlin-proximal proteins were components of cell junctional signaling complexes, suggesting that additional potential interaction partners may exist in adherens junctions, tight junctions, and focal adhesions. With mutant forms of Merlin that cannot bind to phosphatidylinositol 4,5-bisphosphate (PIP2) or that constitutively adopt a closed conformation, we confirmed a critical role for PIP2 binding in Merlin function and identified a large cohort of proteins that specifically interacted with Merlin in the closed conformation. Among these proteins, we identified a previously unreported Merlin-binding protein, apoptosis-stimulated p53 protein 2 (ASPP2, also called Tp53bp2), that bound to closed-conformation Merlin predominately through the FERM domain. Our results demonstrate that Merlin is a component of cell junctional mechanosensing complexes and defines a specific set of proteins through which it acts.
Collapse
Affiliation(s)
- Robert F Hennigan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA.
| | - Jonathan S Fletcher
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Steven Guard
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| |
Collapse
|
7
|
Schittenhelm MM, Walter B, Tsintari V, Federmann B, Bajrami Saipi M, Akmut F, Illing B, Mau-Holzmann U, Fend F, Lopez CD, Kampa-Schittenhelm KM. Alternative splicing of the tumor suppressor ASPP2 results in a stress-inducible, oncogenic isoform prevalent in acute leukemia. EBioMedicine 2019; 42:340-351. [PMID: 30952616 PMCID: PMC6491939 DOI: 10.1016/j.ebiom.2019.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 01/01/2023] Open
Abstract
Background Apoptosis-stimulating Protein of TP53-2 (ASPP2) is a tumor suppressor enhancing TP53-mediated apoptosis via binding to the TP53 core domain. TP53 mutations found in cancers disrupt ASPP2 binding, arguing for an important role of ASPP2 in TP53-mediated tumor suppression. We now identify an oncogenic splicing variant, ASPP2κ, with high prevalence in acute leukemia. Methods An mRNA screen to detect ASPP2 splicing variants was performed and ASPP2κ was validated using isoform-specific PCR approaches. Translation into a genuine protein isoform was evaluated after establishing epitope-specific antibodies. For functional studies cell models with forced expression of ASPP2κ or isoform-specific ASPP2κ-interference were created to evaluate proliferative, apoptotic and oncogenic characteristics of ASPP2κ. Findings Exon skipping generates a premature stop codon, leading to a truncated C-terminus, omitting the TP53-binding sites. ASPP2κ translates into a dominant-negative protein variant impairing TP53-dependent induction of apoptosis. ASPP2κ is expressed in CD34+ leukemic progenitor cells and functional studies argue for a role in early oncogenesis, resulting in perturbed proliferation and impaired induction of apoptosis, mitotic failure and chromosomal instability (CIN) – similar to TP53 mutations. Importantly, as expression of ASPP2κ is stress-inducible it defines a novel class of dynamic oncogenes not represented by genomic mutations. Interpretation Our data demonstrates that ASPP2κ plays a distinctive role as an antiapoptotic regulator of the TP53 checkpoint, rendering cells to a more aggressive phenotype as evidenced by proliferation and apoptosis rates – and ASPP2κ expression results in acquisition of genomic mutations, a first initiating step in leukemogenesis. We provide proof-of-concept to establish ASPP2κ as a clinically relevant biomarker and a target for molecule-defined therapy. Fund Unrestricted grant support from the Wilhelm Sander Foundation for Cancer Research, the IZKF Program of the Medical Faculty Tübingen, the Brigitte Schlieben-Lange Program and the Margarete von Wrangell Program of the State Ministry Baden-Wuerttemberg for Science, Research and Arts and the Athene Program of the excellence initiative of the Eberhard-Karls University, Tübingen.
Collapse
Affiliation(s)
- Marcus Matthias Schittenhelm
- Department of Oncology, Hematology, Rheumatology, Immunology and Pulmology, University Hospital Tübingen, Germany
| | - Bianca Walter
- Department of Oncology, Hematology, Rheumatology, Immunology and Pulmology, University Hospital Tübingen, Germany
| | - Vasileia Tsintari
- Department of Oncology, Hematology, Rheumatology, Immunology and Pulmology, University Hospital Tübingen, Germany
| | - Birgit Federmann
- Institute of General and Molecular Pathology and Pathological Anatomy, University Hospital Tübingen, Germany
| | - Mihada Bajrami Saipi
- Department of Oncology, Hematology, Rheumatology, Immunology and Pulmology, University Hospital Tübingen, Germany
| | - Figen Akmut
- Department of Oncology, Hematology, Rheumatology, Immunology and Pulmology, University Hospital Tübingen, Germany
| | - Barbara Illing
- Department of Oncology, Hematology, Rheumatology, Immunology and Pulmology, University Hospital Tübingen, Germany
| | | | - Falko Fend
- Institute of General and Molecular Pathology and Pathological Anatomy, University Hospital Tübingen, Germany
| | - Charles Darin Lopez
- Department of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, United States of America
| | | |
Collapse
|
8
|
Sohn SO, Chay KO. The ATP-dependent RNA helicase, DDX42 interacts with paxillin and regulates apoptosis and polarization of Ba/F3 cells. Anim Cells Syst (Seoul) 2019; 23:1-9. [PMID: 30834153 PMCID: PMC6394298 DOI: 10.1080/19768354.2019.1567580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/24/2018] [Accepted: 01/06/2019] [Indexed: 01/08/2023] Open
Abstract
Paxillin is a focal adhesion adaptor protein, heavily phosphorylated at multiple tyrosine residues, as well as at serine 273 (S273), and is known to be critical for cytoskeleton rearrangement and cell migration. We previously found that paxillin plays a regulatory role in IL-3-dependent survival of Ba/F3 cells, a mouse pro-B cell line. In this study, by using overexpressed His6 tagged-paxillin as a bait, we found that DDX42, a DEAD-box RNA helicase, interacted with paxillin, inhibited apoptosis, and promoted polarization of Ba/F3 cells. His6 tagged-paxillin was stably overexpressed in Ba/F3 cells, pulled-down from cell lysates with Ni+-NTA beads, and analyzed by one-dimensional SDS-PAGE followed by LC–MS. We found that DDX42 co-precipitated with paxillin, as demonstrated by western blotting analysis of His6 tagged-paxillin precipitates with anti-DDX42 antibodies and His6 tagged-DDX42 precipitates with anti-paxillin antibodies. In addition, we observed a preferential interaction of DDX42 with the paxillin mutant, S273A, compared to the S273D mutant. Furthermore, DDX42 overexpression in Ba/F3 cells delayed the apoptosis induced by IL-3 deprivation and promoted restoration of the elongated shape in Ba/F3 cells induced by IL-3 re-supply after a 6 h-deprivation. These results suggested that DDX42 interacts with paxillin and participates in IL-3-dependent cell survival, as well as in the cytoskeletal rearrangements underlying polarization of Ba/F3 cells.
Collapse
Affiliation(s)
- Sung Oh Sohn
- Department of Biochemistry, Medical School, Chonnam National University, Jeollanam-do, Republic of Korea
| | - Kee Oh Chay
- Department of Biochemistry, Medical School, Chonnam National University, Jeollanam-do, Republic of Korea
| |
Collapse
|
9
|
Xie F, Jia L, Lin M, Shi Y, Yin J, Liu Y, Chen D, Meng Q. ASPP2 attenuates triglycerides to protect against hepatocyte injury by reducing autophagy in a cell and mouse model of non-alcoholic fatty liver disease. J Cell Mol Med 2015; 19:155-164. [PMID: 25256142 PMCID: PMC4288359 DOI: 10.1111/jcmm.12364] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/10/2014] [Indexed: 01/01/2023] Open
Abstract
ASPP2 is a pro-apoptotic member of the p53 binding protein family. ASPP2 has been shown to inhibit autophagy, which maintains energy balance in nutritional deprivation. We attempted to identify the role of ASPP2 in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). In a NAFLD cell model, control treated and untreated HepG2 cells were pre-incubated with GFP-adenovirus (GFP-ad) for 12 hrs and then treated with oleic acid (OA) for 24 hrs. In the experimental groups, the HepG2 cells were pre-treated with ASPP2-adenovirus (ASPP2-ad) or ASPP2-siRNA for 12 hrs and then treated with OA for 24 hrs. BALB/c mice fed a methionine- and choline-deficient (MCD) diet were used to generate a mouse model of NAFLD. The mice with fatty livers in the control group were pre-treated with injections of GFP-ad for 10 days. In the experimental group, the mice that had been pre-treated with ASPP2-ad were fed an MCD diet for 10 days. ASPP2-ad or GFP-ad was administered once every 5 days. Liver tissue from fatty liver patients and healthy controls were used to analyse the role of ASPP2. Autophagy, apoptosis markers and lipid metabolism mediators, were assessed with confocal fluorescence microscopy, immunohistochemistry, western blot and biochemical assays. ASPP2 overexpression decreased the triglyceride content and inhibited autophagy and apoptosis in the HepG2 cells. ASPP2-ad administration suppressed the MCD diet-induced autophagy, steatosis and apoptosis and decreased the previously elevated alanine aminotransferase levels. In conclusion, ASPP2 may participate in the lipid metabolism of non-alcoholic steatohepatitis and attenuate liver failure.
Collapse
Affiliation(s)
- Fang Xie
- Beijing You An Hospital, Affiliated Hospital of Capital Medical UniversityBeijing, China
- Beijing Institute of HepatologyBeijing, China
| | - Lin Jia
- Beijing You An Hospital, Affiliated Hospital of Capital Medical UniversityBeijing, China
| | - Minghua Lin
- Beijing You An Hospital, Affiliated Hospital of Capital Medical UniversityBeijing, China
- Beijing Institute of HepatologyBeijing, China
| | - Ying Shi
- Beijing You An Hospital, Affiliated Hospital of Capital Medical UniversityBeijing, China
- Beijing Institute of HepatologyBeijing, China
| | - Jiming Yin
- Beijing You An Hospital, Affiliated Hospital of Capital Medical UniversityBeijing, China
- Beijing Institute of HepatologyBeijing, China
| | - Yin Liu
- Beijing You An Hospital, Affiliated Hospital of Capital Medical UniversityBeijing, China
| | - Dexi Chen
- Beijing Institute of HepatologyBeijing, China
| | - Qinghua Meng
- Beijing You An Hospital, Affiliated Hospital of Capital Medical UniversityBeijing, China
| |
Collapse
|
10
|
Iosub-Amir A, Friedler A. Protein–protein interactions of ASPP2: an emerging therapeutic target. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00147h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ASPP2 induces apoptosis and is downregulated in many types of cancer, making it a promising target for anti-cancer drugs.
Collapse
Affiliation(s)
- Anat Iosub-Amir
- Institute of Chemistry
- The Hebrew University of Jerusalem
- Safra Campus
- Jerusalem 91904, Israel
| | - Assaf Friedler
- Institute of Chemistry
- The Hebrew University of Jerusalem
- Safra Campus
- Jerusalem 91904, Israel
| |
Collapse
|
11
|
Pacchiani N, Censini S, Buti L, Covacci A. Echoes of a distant past: The cag pathogenicity island of Helicobacter pylori. Cold Spring Harb Perspect Med 2013; 3:cshperspect.a010355. [PMID: 24097901 DOI: 10.1101/cshperspect.a010355] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review discusses the multiple roles of the CagA protein encoded by the cag pathogenicity island of Helicobacter pylori and highlights the CagA degradation activities on p53. By subverting the p53 tumor suppressor pathway CagA induces a strong antiapoptotic effect. Helicobacter pylori infection has been always associated with an increased risk of gastric cancer. The pro-oncogenic functions of CagA also target the tumor suppressor ASPP2. In the absence of tumor suppressor genes, cells survive and proliferate at times and in places where their survival and proliferation are inappropriate.
Collapse
Affiliation(s)
- Nicola Pacchiani
- Systems Biology Unit, Novartis Vaccines and Diagnostics, 53100 Siena, Italy
| | | | | | | |
Collapse
|
12
|
Rippey C, Walsh T, Gulsuner S, Brodsky M, Nord AS, Gasperini M, Pierce S, Spurrell C, Coe BP, Krumm N, Lee MK, Sebat J, McClellan JM, King MC. Formation of chimeric genes by copy-number variation as a mutational mechanism in schizophrenia. Am J Hum Genet 2013; 93:697-710. [PMID: 24094746 PMCID: PMC3791253 DOI: 10.1016/j.ajhg.2013.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/15/2013] [Accepted: 09/10/2013] [Indexed: 12/28/2022] Open
Abstract
Chimeric genes can be caused by structural genomic rearrangements that fuse together portions of two different genes to create a novel gene. We hypothesize that brain-expressed chimeras may contribute to schizophrenia. Individuals with schizophrenia and control individuals were screened genome wide for copy-number variants (CNVs) that disrupted two genes on the same DNA strand. Candidate events were filtered for predicted brain expression and for frequency < 0.001 in an independent series of 20,000 controls. Four of 124 affected individuals and zero of 290 control individuals harbored such events (p = 0.002); a 47 kb duplication disrupted MATK and ZFR2, a 58 kb duplication disrupted PLEKHD1 and SLC39A9, a 121 kb duplication disrupted DNAJA2 and NETO2, and a 150 kb deletion disrupted MAP3K3 and DDX42. Each fusion produced a stable protein when exogenously expressed in cultured cells. We examined whether these chimeras differed from their parent genes in localization, regulation, or function. Subcellular localizations of DNAJA2-NETO2 and MAP3K3-DDX42 differed from their parent genes. On the basis of the expression profile of the MATK promoter, MATK-ZFR2 is likely to be far more highly expressed in the brain during development than the ZFR2 parent gene. MATK-ZFR2 includes a ZFR2-derived isoform that we demonstrate localizes preferentially to neuronal dendritic branch sites. These results suggest that the formation of chimeric genes is a mechanism by which CNVs contribute to schizophrenia and that, by interfering with parent gene function, chimeras may disrupt critical brain processes, including neurogenesis, neuronal differentiation, and dendritic arborization.
Collapse
Affiliation(s)
- Caitlin Rippey
- Departments of Medicine and of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Harkensee C, Oka A, Onizuka M, Middleton PG, Inoko H, Nakaoka H, Gennery AR, Ando K, Morishima Y. Microsatellite scanning of the immunogenome associates MAPK14 and ELTD1 with graft-versus-host disease in hematopoietic stem cell transplantation. Immunogenetics 2013; 65:417-27. [PMID: 23474535 DOI: 10.1007/s00251-013-0691-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 02/16/2013] [Indexed: 12/16/2022]
Abstract
Graft-versus-host disease (GVHD) is the main complication after hematopoietic stem cell transplantation (HSCT). Evidence for non-HLA gene polymorphisms as a cause of GVHD lacks consistency, which is, in part, due to methodological issues of previous candidate gene association studies and small effect size of their results, demanding for larger scale and more robust approaches. Here, non-HLA gene polymorphisms were studied on a large population (922 HSCT pairs) from a homogeneous ethnic background with selection/correction for important clinical confounders. A methodology was applied exploiting the strength of confirmatory typing in an independent study cohort. Targeting an immunogenome of 2,909 genes, an approach of pooled DNA typing of 4,321 microsatellite (MS) markers in two independent screening steps and confirmation of associated markers by further individual genotyping on combined screening cohorts was used to identify genetic susceptibility loci for moderate to severe GVHD (grades 2-4). Ten MS loci (D5S424, D6S0035i, D1S0818i, DXS0151i, D17S0219i, DXS0629i, DXS0324i, D17S0271i, D6S0330i, and D1S1335i) passed the two pooled DNA typing steps and confirmation by individual sample genotyping; two of these (D1S0818i-ELTD1 and D6S0035i-MAPK14) remain associated following application of Bonferroni's correction and multivariate analysis. The MAPK14 locus was exemplarily explored by typing of haplotype single nucleotide polymorphisms (SNP) confirming this association. This study identified several new MS susceptibility loci for GVHD that warrant further investigation. Immunogenome scanning using MS markers is a useful method for the identification of non-HLA gene loci associating with HSCT outcomes.
Collapse
Affiliation(s)
- Christian Harkensee
- Division of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dey H, Liu ZR. Phosphorylation of p68 RNA helicase by p38 MAP kinase contributes to colon cancer cells apoptosis induced by oxaliplatin. BMC Cell Biol 2012; 13:27. [PMID: 23110695 PMCID: PMC3519718 DOI: 10.1186/1471-2121-13-27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/15/2012] [Indexed: 12/28/2022] Open
Abstract
Background We previously demonstrated that p68 phosphorylation at threonine residues correlates with cancer cell apoptosis under the treatments of TNF-α and TRAIL (Yang, L. Mol Cancer Res Vol 3, pp 355–63 2005). Results In this report, we characterized the role of p68 phosphorylation in apoptosis induction under the treatment of oxaliplatin in the colon cancer cells. Our data suggest that oxaliplatin treatment activates p38 MAP kinase, which subsequently phosphorylates p68 at T564 and/or T446. The phosphorylation of p68, at least partially, mediates the effects of the drug on apoptosis induction, as mutations at these two sites greatly reduce the cancer cell death. Conclusion Our studies reveal an important molecular mechanism that mediates the effects of anti-cancer drug, providing a potential strategy for improving cancer treatment.
Collapse
Affiliation(s)
- Heena Dey
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | |
Collapse
|
15
|
Abstract
Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, and mutations in the TCOF1 gene are responsible for over 90% of TCS cases. The knowledge about the molecular mechanisms responsible for this syndrome is relatively scant, probably due to the difficulty of reproducing the pathology in experimental animals. Zebrafish is an emerging model for human disease studies, and we therefore assessed it as a model for studying TCS. We identified in silico the putative zebrafish TCOF1 ortholog and cloned the corresponding cDNA. The derived polypeptide shares the main structural domains found in mammals and amphibians. Tcof1 expression is restricted to the anterior-most regions of zebrafish developing embryos, similar to what happens in mouse embryos. Tcof1 loss-of-function resulted in fish showing phenotypes similar to those observed in TCS patients, and enabled a further characterization of the mechanisms underlying craniofacial malformation. Besides, we initiated the identification of potential molecular targets of treacle in zebrafish. We found that Tcof1 loss-of-function led to a decrease in the expression of cellular proliferation and craniofacial development. Together, results presented here strongly suggest that it is possible to achieve fish with TCS-like phenotype by knocking down the expression of the TCOF1 ortholog in zebrafish. This experimental condition may facilitate the study of the disease etiology during embryonic development.
Collapse
|
16
|
Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. Proc Natl Acad Sci U S A 2011; 108:9238-43. [PMID: 21562218 DOI: 10.1073/pnas.1106200108] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Type I strains of Helicobacter pylori (Hp) possess a pathogenicity island, cag, that encodes the effector protein cytotoxin-associated gene A (CagA) and a type four secretion system. After translocation into the host cell, CagA affects cell shape, increases cell motility, abrogates junctional activity, and promotes an epithelial to mesenchymal transition-like phenotype. Transgenic expression of CagA enhances gastrointestinal and intestinal carcinomas as well as myeloid and B-cell lymphomas in mice, but the mechanism of the induced cancer formation is not fully understood. Here, we show that CagA subverts the tumor suppressor function of apoptosis-stimulating protein of p53 (ASPP2). Delivery of CagA inside the host results in its association with ASPP2. After this interaction, ASPP2 recruits its natural target p53 and inhibits its apoptotic function. CagA leads to enhanced degradation of p53 and thereby, down-regulates its activity in an ASPP2-dependent manner. Finally, Hp-infected cells treated with the p53-activating drug Doxorubicin are more resistant to apoptosis than uninfected cells, an effect that requires ASPP2. The interaction between CagA and ASPP2 and the consequent degradation of p53 are examples of a bacterial protein that subverts the p53 tumor suppressor pathway in a manner similar to DNA tumor viruses. This finding may contribute to the understanding of the increased risk of gastric cancer in patients infected with Hp CagA+ strains.
Collapse
|
17
|
Alenzi FQ. Cell type specific expression of the apoptosis stimulating protein (ASPP-2) in human tissues. Acta Microbiol Immunol Hung 2010; 57:419-29. [PMID: 21183427 DOI: 10.1556/amicr.57.2010.4.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Apoptosis stimulating proteins of p53 (ASPP-l and ASPP-2) are a novel family of proteins that have been found to co-stimulate p53 activation of Bax (Bcl-2 associated protein X) inducing caspase-mediated apoptosis. Therefore, these proteins may play an important role in regulating apoptosis in normal and neoplastic cells. However, their cellular and tissue distribution has not been documented. The aim of this study was to determine the localization pattern of ASPP-2 in a variety of normal and malignant human tissues, including liver, lung, prostate, small intestine, kidney, ovary, bladder, cervix, breast, stomach, bowel, gallbladder, endometrium, pancreas, spleen and thyroid.The distribution and expression of ASPP-2 was assessed by immunohistochemistry in a range of formalin-fixed, paraffin embedded, benign and malignant human tissues, using a mouse monoclonal antibody against ASPP-2.The results showed a variable pattern of positivity of ASPP-2 within the tissues studied. ASPP-2 expression was localized in the cytoplasmic paranuclear granules in the epithelial cells of most of the organs we studied. The pattern of staining intensity of ASPP-2 correlated to the maturation state in benign tissue and to the differentiation state in the context of bladder cancer.This study indicates that ASPP-2 has a specific distribution pattern within tissues and cells in a way that appears to be related to differentiation. However, the patterns are neither simplistic nor straightforward and will require further investigation in order to appreciate fully their physiological/pathological significance.
Collapse
Affiliation(s)
- Faris Q Alenzi
- Department of Medical Laboratory Sciences, College of Applied Medial Sciences, Al-Kharj University, Al-Kharj, Saudi Arabia.
| |
Collapse
|
18
|
Gustafson EA, Wessel GM. DEAD-box helicases: posttranslational regulation and function. Biochem Biophys Res Commun 2010; 395:1-6. [PMID: 20206133 DOI: 10.1016/j.bbrc.2010.02.172] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 02/26/2010] [Indexed: 12/22/2022]
Affiliation(s)
- Eric A Gustafson
- Providence Institute of Molecular Oogenesis, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|