1
|
Nayerpour Dizaj T, Doustmihan A, Sadeghzadeh Oskouei B, Akbari M, Jaymand M, Mazloomi M, Jahanban-Esfahlan R. Significance of PSCA as a novel prognostic marker and therapeutic target for cancer. Cancer Cell Int 2024; 24:135. [PMID: 38627732 PMCID: PMC11020972 DOI: 10.1186/s12935-024-03320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/30/2024] [Indexed: 04/20/2024] Open
Abstract
One of the contributing factors in the diagnosis and treatment of most cancers is the identification of their surface antigens. Cancer tissues or cells have their specific antigens. Some antigens that are present in many cancers elicit different functions. One of these antigens is the prostate stem cell antigen (PSCA) antigen, which was first identified in the prostate. PSCA is a cell surface protein that has different functions in different tissues. It can play an inhibitory role in cell proliferation as well as a tumor-inducing role. PSCA has several genetic variants involved in cancer susceptibility in some tissues, so identifying the characteristics of this antigen and its relationship with clinical features can provide more information on diagnosis and treatment of patients with cancers. Most studies on the PSCA have focused on prostate cancer. While it is also expressed in other cancers, little attention has been paid to its role as a valuable diagnostic, prognostic, and therapeutic tool in other cancers. PSCA has several genetic variants that seem to play a significant role in cancer susceptibility in some tissues, so identifying the characteristics of this antigen and its relationship and variants with clinical features can be beneficial in concomitant cancer therapy and diagnosis, as theranostic tools. In this study, we will review the alteration of the PSCA expression and its polymorphisms and evaluate its clinical and theranostics significance in various cancers.
Collapse
Affiliation(s)
- Tina Nayerpour Dizaj
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Doustmihan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Sadeghzadeh Oskouei
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - MirAhmad Mazloomi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Aylon Y, Furth N, Mallel G, Friedlander G, Nataraj NB, Dong M, Hassin O, Zoabi R, Cohen B, Drendel V, Salame TM, Mukherjee S, Harpaz N, Johnson R, Aulitzky WE, Yarden Y, Shema E, Oren M. Breast cancer plasticity is restricted by a LATS1-NCOR1 repressive axis. Nat Commun 2022; 13:7199. [PMID: 36443319 PMCID: PMC9705295 DOI: 10.1038/s41467-022-34863-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
Breast cancer, the most frequent cancer in women, is generally classified into several distinct histological and molecular subtypes. However, single-cell technologies have revealed remarkable cellular and functional heterogeneity across subtypes and even within individual breast tumors. Much of this heterogeneity is attributable to dynamic alterations in the epigenetic landscape of the cancer cells, which promote phenotypic plasticity. Such plasticity, including transition from luminal to basal-like cell identity, can promote disease aggressiveness. We now report that the tumor suppressor LATS1, whose expression is often downregulated in human breast cancer, helps maintain luminal breast cancer cell identity by reducing the chromatin accessibility of genes that are characteristic of a "basal-like" state, preventing their spurious activation. This is achieved via interaction of LATS1 with the NCOR1 nuclear corepressor and recruitment of HDAC1, driving histone H3K27 deacetylation near NCOR1-repressed "basal-like" genes. Consequently, decreased expression of LATS1 elevates the expression of such genes and facilitates slippage towards a more basal-like phenotypic identity. We propose that by enforcing rigorous silencing of repressed genes, the LATS1-NCOR1 axis maintains luminal cell identity and restricts breast cancer progression.
Collapse
Affiliation(s)
- Yael Aylon
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Noa Furth
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Giuseppe Mallel
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Gilgi Friedlander
- grid.13992.300000 0004 0604 7563Department of Life Sciences Core Facilities, The Nancy & Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Nishanth Belugali Nataraj
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Meng Dong
- grid.502798.10000 0004 0561 903XDr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Ori Hassin
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Rawan Zoabi
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Benjamin Cohen
- grid.13992.300000 0004 0604 7563Department of Immunology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Vanessa Drendel
- grid.416008.b0000 0004 0603 4965Department of Pathology, Robert Bosch Hospital, Stuttgart, Germany
| | - Tomer Meir Salame
- grid.13992.300000 0004 0604 7563Flow Cytometry Unit, Department of Life Sciences Core Facilities, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Saptaparna Mukherjee
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Nofar Harpaz
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Randy Johnson
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Walter E. Aulitzky
- grid.416008.b0000 0004 0603 4965Department of Hematology, Oncology and Palliative Medicine, Robert Bosch Hospital, Stuttgart, Germany
| | - Yosef Yarden
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Efrat Shema
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Moshe Oren
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
3
|
Farcas AM, Nagarajan S, Cosulich S, Carroll JS. Genome-Wide Estrogen Receptor Activity in Breast Cancer. Endocrinology 2021; 162:bqaa224. [PMID: 33284960 PMCID: PMC7787425 DOI: 10.1210/endocr/bqaa224] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 12/13/2022]
Abstract
The largest subtype of breast cancer is characterized by the expression and activity of the estrogen receptor alpha (ERalpha/ER). Although several effective therapies have significantly improved survival, the adaptability of cancer cells means that patients frequently stop responding or develop resistance to endocrine treatment. ER does not function in isolation and multiple associating factors have been reported to play a role in regulating the estrogen-driven transcriptional program. This review focuses on the dynamic interplay between some of these factors which co-occupy ER-bound regulatory elements, their contribution to estrogen signaling, and their possible therapeutic applications. Furthermore, the review illustrates how some ER association partners can influence and reprogram the genomic distribution of the estrogen receptor. As this dynamic ER activity enables cancer cell adaptability and impacts the clinical outcome, defining how this plasticity is determined is fundamental to our understanding of the mechanisms of disease progression.
Collapse
Affiliation(s)
- Anca M Farcas
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Sankari Nagarajan
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | | - Jason S Carroll
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Salmerón-Hernández Á, Noriega-Reyes MY, Jordan A, Baranda-Avila N, Langley E. BCAS2 Enhances Carcinogenic Effects of Estrogen Receptor Alpha in Breast Cancer Cells. Int J Mol Sci 2019; 20:ijms20040966. [PMID: 30813351 PMCID: PMC6412365 DOI: 10.3390/ijms20040966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/11/2019] [Accepted: 02/21/2019] [Indexed: 01/18/2023] Open
Abstract
Estrogen receptor alpha (ERα) has an established role in breast cancer biology. Transcriptional activation by ERα is a multistep process modulated by coactivator and corepressor proteins. Breast Cancer Amplified Sequence 2 (BCAS2), is a poorly studied ERα coactivator. In this work, we characterize some of the mechanisms through which this protein increases ERα activity and how this promotes carcinogenic processes in breast cancer cells. Using protein-protein interaction and luciferase assays we show that BCAS2 interacts with ERα both in vitro and in vivo and upregulates transcriptional activation of ERα directly through its N-terminal region (AF-1) and indirectly through its C-terminal (AF-2) region, acting in concert with AF-2 interacting coactivators. Elevated expression of BCAS2 positively affects proliferation, clonogenicity and migration of breast cancer cells and directly activates ERα regulated genes which have been shown to play a role in tumor growth and progression. Finally, we used signal transduction pathway inhibitors to elucidate how BCAS2 is regulated in these cells and observed that BCAS2 is preferentially regulated by the PI3K/AKT signaling pathway. BCAS2 is an AF-1 coactivator of ERα whose overexpression promotes carcinogenic processes, suggesting an important role in the development of estrogen-receptor positive breast cancer.
Collapse
Affiliation(s)
- Ángel Salmerón-Hernández
- Departamento de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, 14080 Mexico City, Mexico.
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| | - María Yamilet Noriega-Reyes
- Departamento de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, 14080 Mexico City, Mexico.
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| | - Albert Jordan
- Institut de Biología Molecular de Barcelona (IBMB-CSIC) Parc Científic de Barcelona, Barcelona, 08028 Cataluña, Spain.
| | - Noemi Baranda-Avila
- Departamento de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, 14080 Mexico City, Mexico.
| | - Elizabeth Langley
- Departamento de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, 14080 Mexico City, Mexico.
| |
Collapse
|
5
|
Goody D, Gupta SK, Engelmann D, Spitschak A, Marquardt S, Mikkat S, Meier C, Hauser C, Gundlach JP, Egberts JH, Martin H, Schumacher T, Trauzold A, Wolkenhauer O, Logotheti S, Pützer BM. Drug Repositioning Inferred from E2F1-Coregulator Interactions Studies for the Prevention and Treatment of Metastatic Cancers. Theranostics 2019; 9:1490-1509. [PMID: 30867845 PMCID: PMC6401510 DOI: 10.7150/thno.29546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
Metastasis management remains a long-standing challenge. High abundance of E2F1 triggers tumor progression by developing protein-protein interactions (PPI) with coregulators that enhance its potential to activate a network of prometastatic transcriptional targets. Methods: To identify E2F1-coregulators, we integrated high-throughput Co-immunoprecipitation (IP)/mass spectometry, GST-pull-down assays, and structure modeling. Potential inhibitors of PPI discovered were found by bioinformatics-based pharmacophore modeling, and transcriptome profiling was conducted to screen for coregulated downstream targets. Expression and target gene regulation was validated using qRT-PCR, immunoblotting, chromatin IP, and luciferase assays. Finally, the impact of the E2F1-coregulator complex and its inhibiting drug on metastasis was investigated in vitro in different cancer entities and two mouse metastasis models. Results: We unveiled that E2F1 forms coactivator complexes with metastasis-associated protein 1 (MTA1) which, in turn, is directly upregulated by E2F1. The E2F1:MTA1 complex potentiates hyaluronan synthase 2 (HAS2) expression, increases hyaluronan production and promotes cell motility. Disruption of this prometastatic E2F1:MTA1 interaction reduces hyaluronan synthesis and infiltration of tumor-associated macrophages in the tumor microenvironment, thereby suppressing metastasis. We further demonstrate that E2F1:MTA1 assembly is abrogated by small-molecule, FDA-approved drugs. Treatment of E2F1/MTA1-positive, highly aggressive, circulating melanoma cells and orthotopic pancreatic tumors with argatroban prevents metastasis and cancer relapses in vivo through perturbation of the E2F1:MTA1/HAS2 axis. Conclusion: Our results propose argatroban as an innovative, E2F-coregulator-based, antimetastatic drug. Cancer patients with the infaust E2F1/MTA1/HAS2 signature will likely benefit from drug repositioning.
Collapse
|
6
|
Turdikulova S, Dalimova D, Abdurakhimov A, Adilov B, Navruzov S, Yusupbekov A, Djuraev M, Abdujapparov S, Egamberdiev D, Mukhamedov R. Association of rs2294008 and rs9297976 Polymorphisms in PSCA Gene with Gastric Cancer Susceptibility in Uzbekistan. Cent Asian J Glob Health 2016; 5:227. [PMID: 29138729 PMCID: PMC5661186 DOI: 10.5195/cajgh.2016.227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Introduction: Genetic factors play an important role in the development of gastric cancer (GC), a prevalent malignancy in Central Asia. Recent studies have shown that single-nucleotide polymorphisms (SNPs) in several genes are associated with increased GC risk, indicating that genetic variation contributes to gastric carcinogenesis. Located on chromosome 8q24.2, the prostate stem cell antigen (PSCA) gene encodes a 123-amino acid glycoprotein related to the cell-proliferation inhibition and cell-death induction activity. SNPs in PSCA gene have been found to be associated with gastric cancer risk in a genome-wide association study, but results were not conclusive. This study aimed to investigate the association between two polymorphic variants of PSCA gene (rs2294008 and rs9297976) and the susceptibility to gastric cancer in Uzbekistan. Methods: Two hundred sixty eight patients with gastric cancer and a control group of 248 healthy individuals were included in this study. DNA samples isolated from these groups were genotyped using PCR-RFLP method. Comparative analysis of resulting genotypes showed a statistically significant association between CT genotype and gastric cancer (p=0.03, additive model of inheritance, Cochran-Armitage trend test). Results: Comparative analysis of the distribution of genotypes of rs2976392 polymorphism did not show a statistically significant difference; however, analysis of the distribution of the rs2976392 genotypes in a subgroup of young women revealed a statistically significant (p = 0.04, additive model of inheritance, Cochran-Armitage trend test) increase in the incidence of AA (38%) and AG (56%) genotypes in patients with GC, compared to the controls (20% and 40%). Conclusion: Our findings support that PSCA rs2294008 and rs9297976 polymorphism may contribute to the susceptibility to gastric cancer. Genotyping of these polymorphisms can potentially be recommended as one of the criteria for identification of high risk groups for gastric cancer development in Uzbekistan.
Collapse
Affiliation(s)
- Shahlo Turdikulova
- Institute of Bioorganic Chemistry Academy of Sciences Republic of Uzbekistan
| | - Dilbar Dalimova
- Institute of Bioorganic Chemistry Academy of Sciences Republic of Uzbekistan
| | - Abror Abdurakhimov
- Institute of Bioorganic Chemistry Academy of Sciences Republic of Uzbekistan
| | - Bekzod Adilov
- Institute of Bioorganic Chemistry Academy of Sciences Republic of Uzbekistan
| | - Sarimbek Navruzov
- National Cancer Center of the Ministry of Health of the Republic of Uzbekistan
| | - Abror Yusupbekov
- National Cancer Center of the Ministry of Health of the Republic of Uzbekistan
| | - Mirjalol Djuraev
- National Cancer Center of the Ministry of Health of the Republic of Uzbekistan
| | | | - Dilshod Egamberdiev
- National Cancer Center of the Ministry of Health of the Republic of Uzbekistan
| | - Rustam Mukhamedov
- Institute of Bioorganic Chemistry Academy of Sciences Republic of Uzbekistan
| |
Collapse
|
7
|
Lu YW, Zhang HF, Liang R, Xie ZR, Luo HY, Zeng YJ, Xu Y, Wang LM, Kong XY, Wang KH. Colorectal Cancer Genetic Heterogeneity Delineated by Multi-Region Sequencing. PLoS One 2016; 11:e0152673. [PMID: 27023146 PMCID: PMC4811559 DOI: 10.1371/journal.pone.0152673] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/17/2016] [Indexed: 12/14/2022] Open
Abstract
Intratumor heterogeneity (ITH) leads to an underestimation of the mutational landscape portrayed by a single needle biopsy and consequently affects treatment precision. The extent of colorectal cancer (CRC) genetic ITH is not well understood in Chinese patients. Thus, we conducted deep sequencing by using the OncoGxOne™ Plus panel, targeting 333 cancer-specific genes in multi-region biopsies of primary and liver metastatic tumors from three Chinese CRC patients. We determined that the extent of ITH varied among the three cases. On average, 65% of all the mutations detected were common within individual tumors. KMT2C aberrations and the NCOR1 mutation were the only ubiquitous events. Subsequent phylogenetic analysis showed that the tumors evolved in a branched manner. Comparison of the primary and metastatic tumors revealed that PPP2R1A (E370X), SETD2 (I1608V), SMAD4 (G382T), and AR splicing site mutations may be specific to liver metastatic cancer. These mutations might contribute to the initiation and progression of distant metastasis. Collectively, our analysis identified a substantial level of genetic ITH in CRC, which should be considered for personalized therapeutic strategies.
Collapse
Affiliation(s)
- You-Wang Lu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
- Faculty of medical, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Hui-Feng Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
- Department of Pharmacy, The First People's Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Rui Liang
- Department of Pathology, First People's Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Zhen-Rong Xie
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Hua-You Luo
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Department of Gastrointestinal and Hernia surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Jie-Shou Li Academician Workstation, Kunming, Yunnan, P.R. China
| | - Yu-Jian Zeng
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Department of Gastrointestinal and Hernia surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Jie-Shou Li Academician Workstation, Kunming, Yunnan, P.R. China
| | - Yu Xu
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Department of Gastrointestinal and Hernia surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Jie-Shou Li Academician Workstation, Kunming, Yunnan, P.R. China
| | - La-Mei Wang
- Faculty of medical, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Xiang-Yang Kong
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
- Faculty of medical, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
- * E-mail: (KHW); (XYK)
| | - Kun-Hua Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Department of Gastrointestinal and Hernia surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Jie-Shou Li Academician Workstation, Kunming, Yunnan, P.R. China
- * E-mail: (KHW); (XYK)
| |
Collapse
|
8
|
Ho MF, Bongartz T, Liu M, Kalari KR, Goss PE, Shepherd LE, Goetz MP, Kubo M, Ingle JN, Wang L, Weinshilboum RM. Estrogen, SNP-Dependent Chemokine Expression and Selective Estrogen Receptor Modulator Regulation. Mol Endocrinol 2016; 30:382-98. [PMID: 26866883 DOI: 10.1210/me.2015-1267] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We previously reported, on the basis of a genome-wide association study for aromatase inhibitor-induced musculoskeletal symptoms, that single-nucleotide polymorphisms (SNPs) near the T-cell leukemia/lymphoma 1A (TCL1A) gene were associated with aromatase inhibitor-induced musculoskeletal pain and with estradiol (E2)-induced TCL1A expression. Furthermore, variation in TCL1A expression influenced the downstream expression of proinflammatory cytokines and cytokine receptors. Specifically, the top hit genome-wide association study SNP, rs11849538, created a functional estrogen response element (ERE) that displayed estrogen receptor (ER) binding and increased E2 induction of TCL1A expression only for the variant SNP genotype. In the present study, we pursued mechanisms underlying the E2-SNP-dependent regulation of TCL1A expression and, in parallel, our subsequent observations that SNPs at a distance from EREs can regulate ERα binding and that ER antagonists can reverse phenotypes associated with those SNPs. Specifically, we performed a series of functional genomic studies using a large panel of lymphoblastoid cell lines with dense genomic data that demonstrated that TCL1A SNPs at a distance from EREs can modulate ERα binding and expression of TCL1A as well as the expression of downstream immune mediators. Furthermore, 4-hydroxytamoxifen or fulvestrant could reverse these SNP-genotype effects. Similar results were found for SNPs in the IL17A cytokine and CCR6 chemokine receptor genes. These observations greatly expand our previous results and support the existence of a novel molecular mechanism that contributes to the complex interplay between estrogens and immune systems. They also raise the possibility of the pharmacological manipulation of the expression of proinflammatory cytokines and chemokines in a SNP genotype-dependent fashion.
Collapse
Affiliation(s)
- Ming-Fen Ho
- Division of Clinical Pharmacology (M.-F.H., M.L., L.W., R.M.W.), Department of Molecular Pharmacology and Experimental Therapeutics, Division of Rheumatology (M.-F.H., T.B.), Department of Medicine, Division of Biomedical Statistics and Informatics (K.R.K.), Department of Health Sciences Research, and Division of Medical Oncology (M.P.G., J.N.I.), Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Division of Hematology/Oncology (P.E.G.), Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard University, Boston, Massachusetts 02114; National Cancer Institute of Canada Clinical Trials Group (L.E.S.), Kingston, Ontario, Canada K7L 3N6; and RIKEN Center for Integrative Medical Science (M.K.), Yokohama 230-0045, Japan
| | - Tim Bongartz
- Division of Clinical Pharmacology (M.-F.H., M.L., L.W., R.M.W.), Department of Molecular Pharmacology and Experimental Therapeutics, Division of Rheumatology (M.-F.H., T.B.), Department of Medicine, Division of Biomedical Statistics and Informatics (K.R.K.), Department of Health Sciences Research, and Division of Medical Oncology (M.P.G., J.N.I.), Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Division of Hematology/Oncology (P.E.G.), Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard University, Boston, Massachusetts 02114; National Cancer Institute of Canada Clinical Trials Group (L.E.S.), Kingston, Ontario, Canada K7L 3N6; and RIKEN Center for Integrative Medical Science (M.K.), Yokohama 230-0045, Japan
| | - Mohan Liu
- Division of Clinical Pharmacology (M.-F.H., M.L., L.W., R.M.W.), Department of Molecular Pharmacology and Experimental Therapeutics, Division of Rheumatology (M.-F.H., T.B.), Department of Medicine, Division of Biomedical Statistics and Informatics (K.R.K.), Department of Health Sciences Research, and Division of Medical Oncology (M.P.G., J.N.I.), Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Division of Hematology/Oncology (P.E.G.), Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard University, Boston, Massachusetts 02114; National Cancer Institute of Canada Clinical Trials Group (L.E.S.), Kingston, Ontario, Canada K7L 3N6; and RIKEN Center for Integrative Medical Science (M.K.), Yokohama 230-0045, Japan
| | - Krishna R Kalari
- Division of Clinical Pharmacology (M.-F.H., M.L., L.W., R.M.W.), Department of Molecular Pharmacology and Experimental Therapeutics, Division of Rheumatology (M.-F.H., T.B.), Department of Medicine, Division of Biomedical Statistics and Informatics (K.R.K.), Department of Health Sciences Research, and Division of Medical Oncology (M.P.G., J.N.I.), Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Division of Hematology/Oncology (P.E.G.), Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard University, Boston, Massachusetts 02114; National Cancer Institute of Canada Clinical Trials Group (L.E.S.), Kingston, Ontario, Canada K7L 3N6; and RIKEN Center for Integrative Medical Science (M.K.), Yokohama 230-0045, Japan
| | - Paul E Goss
- Division of Clinical Pharmacology (M.-F.H., M.L., L.W., R.M.W.), Department of Molecular Pharmacology and Experimental Therapeutics, Division of Rheumatology (M.-F.H., T.B.), Department of Medicine, Division of Biomedical Statistics and Informatics (K.R.K.), Department of Health Sciences Research, and Division of Medical Oncology (M.P.G., J.N.I.), Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Division of Hematology/Oncology (P.E.G.), Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard University, Boston, Massachusetts 02114; National Cancer Institute of Canada Clinical Trials Group (L.E.S.), Kingston, Ontario, Canada K7L 3N6; and RIKEN Center for Integrative Medical Science (M.K.), Yokohama 230-0045, Japan
| | - Lois E Shepherd
- Division of Clinical Pharmacology (M.-F.H., M.L., L.W., R.M.W.), Department of Molecular Pharmacology and Experimental Therapeutics, Division of Rheumatology (M.-F.H., T.B.), Department of Medicine, Division of Biomedical Statistics and Informatics (K.R.K.), Department of Health Sciences Research, and Division of Medical Oncology (M.P.G., J.N.I.), Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Division of Hematology/Oncology (P.E.G.), Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard University, Boston, Massachusetts 02114; National Cancer Institute of Canada Clinical Trials Group (L.E.S.), Kingston, Ontario, Canada K7L 3N6; and RIKEN Center for Integrative Medical Science (M.K.), Yokohama 230-0045, Japan
| | - Matthew P Goetz
- Division of Clinical Pharmacology (M.-F.H., M.L., L.W., R.M.W.), Department of Molecular Pharmacology and Experimental Therapeutics, Division of Rheumatology (M.-F.H., T.B.), Department of Medicine, Division of Biomedical Statistics and Informatics (K.R.K.), Department of Health Sciences Research, and Division of Medical Oncology (M.P.G., J.N.I.), Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Division of Hematology/Oncology (P.E.G.), Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard University, Boston, Massachusetts 02114; National Cancer Institute of Canada Clinical Trials Group (L.E.S.), Kingston, Ontario, Canada K7L 3N6; and RIKEN Center for Integrative Medical Science (M.K.), Yokohama 230-0045, Japan
| | - Michiaki Kubo
- Division of Clinical Pharmacology (M.-F.H., M.L., L.W., R.M.W.), Department of Molecular Pharmacology and Experimental Therapeutics, Division of Rheumatology (M.-F.H., T.B.), Department of Medicine, Division of Biomedical Statistics and Informatics (K.R.K.), Department of Health Sciences Research, and Division of Medical Oncology (M.P.G., J.N.I.), Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Division of Hematology/Oncology (P.E.G.), Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard University, Boston, Massachusetts 02114; National Cancer Institute of Canada Clinical Trials Group (L.E.S.), Kingston, Ontario, Canada K7L 3N6; and RIKEN Center for Integrative Medical Science (M.K.), Yokohama 230-0045, Japan
| | - James N Ingle
- Division of Clinical Pharmacology (M.-F.H., M.L., L.W., R.M.W.), Department of Molecular Pharmacology and Experimental Therapeutics, Division of Rheumatology (M.-F.H., T.B.), Department of Medicine, Division of Biomedical Statistics and Informatics (K.R.K.), Department of Health Sciences Research, and Division of Medical Oncology (M.P.G., J.N.I.), Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Division of Hematology/Oncology (P.E.G.), Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard University, Boston, Massachusetts 02114; National Cancer Institute of Canada Clinical Trials Group (L.E.S.), Kingston, Ontario, Canada K7L 3N6; and RIKEN Center for Integrative Medical Science (M.K.), Yokohama 230-0045, Japan
| | - Liewei Wang
- Division of Clinical Pharmacology (M.-F.H., M.L., L.W., R.M.W.), Department of Molecular Pharmacology and Experimental Therapeutics, Division of Rheumatology (M.-F.H., T.B.), Department of Medicine, Division of Biomedical Statistics and Informatics (K.R.K.), Department of Health Sciences Research, and Division of Medical Oncology (M.P.G., J.N.I.), Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Division of Hematology/Oncology (P.E.G.), Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard University, Boston, Massachusetts 02114; National Cancer Institute of Canada Clinical Trials Group (L.E.S.), Kingston, Ontario, Canada K7L 3N6; and RIKEN Center for Integrative Medical Science (M.K.), Yokohama 230-0045, Japan
| | - Richard M Weinshilboum
- Division of Clinical Pharmacology (M.-F.H., M.L., L.W., R.M.W.), Department of Molecular Pharmacology and Experimental Therapeutics, Division of Rheumatology (M.-F.H., T.B.), Department of Medicine, Division of Biomedical Statistics and Informatics (K.R.K.), Department of Health Sciences Research, and Division of Medical Oncology (M.P.G., J.N.I.), Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905; Division of Hematology/Oncology (P.E.G.), Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard University, Boston, Massachusetts 02114; National Cancer Institute of Canada Clinical Trials Group (L.E.S.), Kingston, Ontario, Canada K7L 3N6; and RIKEN Center for Integrative Medical Science (M.K.), Yokohama 230-0045, Japan
| |
Collapse
|
9
|
Karamouzis MV, Papavassiliou KA, Adamopoulos C, Papavassiliou AG. Targeting Androgen/Estrogen Receptors Crosstalk in Cancer. Trends Cancer 2016; 2:35-48. [PMID: 28741499 DOI: 10.1016/j.trecan.2015.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 01/04/2023]
Abstract
The actions of estrogens are mediated by estrogen receptors, ERα and ERβ. Recent genomic landscaping of ERα- and ERβ-binding sites has revealed important distinctions regarding their transcriptional activity. ERβ and its isoforms have been correlated with endocrine treatment responsiveness in breast tumors, while post-translational modifications, receptor dimerization patterns, and subcellular localization are increasingly recognized as crucial modulators in prostate carcinogenesis. Androgen receptor (AR) is essential for the development and progression of prostate cancer as well as of certain breast cancer types. The balance between the activity of these two hormone receptors and their molecular interactions in different clinical settings is influenced by several coregulators. This comprises a dynamic regulatory network enhancing or limiting the activity of AR-directed treatments in breast and prostate tumorigenesis. In this review, we discuss the molecular background regarding the therapeutic targeting of androgen/estrogen receptor crosstalk in breast and prostate cancer.
Collapse
Affiliation(s)
- Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Kostas A Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Adamopoulos
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
10
|
Xiong R, Patel HK, Gutgesell LM, Zhao J, Delgado-Rivera L, Pham TND, Zhao H, Carlson K, Martin T, Katzenellenbogen JA, Moore TW, Tonetti DA, Thatcher GRJ. Selective Human Estrogen Receptor Partial Agonists (ShERPAs) for Tamoxifen-Resistant Breast Cancer. J Med Chem 2015; 59:219-237. [PMID: 26681208 DOI: 10.1021/acs.jmedchem.5b01276] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Almost 70% of breast cancers are estrogen receptor α (ERα) positive. Tamoxifen, a selective estrogen receptor modulator (SERM), represents the standard of care for many patients; however, 30-50% develop resistance, underlining the need for alternative therapeutics. Paradoxically, agonists at ERα such as estradiol (E2) have demonstrated clinical efficacy in patients with heavily treated breast cancer, although side effects in gynecological tissues are unacceptable. A drug that selectively mimics the actions of E2 in breast cancer therapy but minimizes estrogenic effects in other tissues is a novel, therapeutic alternative. We hypothesized that a selective human estrogen receptor partial agonist (ShERPA) at ERα would provide such an agent. Novel benzothiophene derivatives with nanomolar potency in breast cancer cell cultures were designed. Several showed partial agonist activity, with potency of 0.8-76 nM, mimicking E2 in inhibiting growth of tamoxifen-resistant breast cancer cell lines. Three ShERPAs were tested and validated in xenograft models of endocrine-independent and tamoxifen-resistant breast cancer, and in contrast to E2, ShERPAs did not cause significant uterine growth.
Collapse
Affiliation(s)
- Rui Xiong
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Hitisha K Patel
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Lauren M Gutgesell
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Jiong Zhao
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Loruhama Delgado-Rivera
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Thao N D Pham
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Huiping Zhao
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Kathryn Carlson
- Department of Chemistry, University of Illinois, Urbana Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - Teresa Martin
- Department of Chemistry, University of Illinois, Urbana Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - John A Katzenellenbogen
- Department of Chemistry, University of Illinois, Urbana Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - Terry W Moore
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Debra A Tonetti
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| |
Collapse
|
11
|
Noriega-Reyes MY, Rivas-Torres MA, Oñate-Ocaña LF, Vallés AJ, Baranda-Avila N, Langley E. Novel role for PINX1 as a coregulator of nuclear hormone receptors. Mol Cell Endocrinol 2015; 414:9-18. [PMID: 26187699 DOI: 10.1016/j.mce.2015.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/10/2015] [Accepted: 07/11/2015] [Indexed: 11/20/2022]
Abstract
Estrogen receptor alpha (ERα) has an established role in breast cancer biology. Transcriptional activation by ERα is a multistep process influenced by coactivator and corepressor proteins. This work shows that Pin2 interacting protein 1 (PINX1) interacts with the N-terminal domain of ERα and functions as a corepressor of ERα. Furthermore, it represses both AF-1 and AF-2 transcriptional activities. Chromatin immunoprecipitation assays verified that the interaction between ERα and PINX1 occurs on E2 regulated promoters and enhanced expression of PINX1 deregulates the expression of a number of genes that have a role in cell growth and proliferation in breast cancer. PINX1 overexpression decreases estrogen mediated proliferation of breast cancer cell lines, while its depletion shows the opposite effect. Taken together, these data show a novel molecular mechanism for PINX1 as an attenuator of estrogen receptor activity in breast cancer cell lines, furthering its role as a tumor suppressor gene in breast cancer.
Collapse
Affiliation(s)
- Maria Yamilet Noriega-Reyes
- Departamento de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080, Mexico D.F., Mexico; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de Mexico. D.F., Mexico
| | - Miguel Angel Rivas-Torres
- Departamento de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080, Mexico D.F., Mexico; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de Mexico. D.F., Mexico
| | - Luis Fernando Oñate-Ocaña
- Departamento de Investigación Clínica, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080, Mexico D.F., Mexico
| | - Albert Jordan Vallés
- Institut de Biología Molecular de Barcelona (IBMB-CSIC) Parc Científic de Barcelona, Barcelona, Cataluña, España
| | - Noemi Baranda-Avila
- Departamento de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080, Mexico D.F., Mexico
| | - Elizabeth Langley
- Departamento de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080, Mexico D.F., Mexico.
| |
Collapse
|
12
|
Patki M, Salazar MD, Trumbly R, Ratnam M. Differential effects of estrogen-dependent transactivation vs. transrepression by the estrogen receptor on invasiveness of HER2 overexpressing breast cancer cells. Biochem Biophys Res Commun 2015; 457:404-11. [PMID: 25582774 DOI: 10.1016/j.bbrc.2015.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/05/2015] [Indexed: 02/03/2023]
Abstract
Estrogen (E2) supports breast cancer cell growth but suppresses invasiveness and both actions are antagonized by anti-estrogens. As a consequence, anti-estrogen treatment may increase the invasive potential of estrogen receptor (ER)+ tumor cell sub-populations that are endocrine resistant due to HER2 amplification. Either transactivation or transrepression by E2/ER could lead to both up- and down-regulation of many genes. Inhibition of the transactivation function of ER is adequate to inhibit E2-dependent growth. However, the impact of inhibiting E2-dependent transactivation vs. transrepression by ER on regulation of invasiveness by E2 is less clear. Here we dissect the roles of ER-mediated transactivation and transrepression in the regulation of invasiveness of ER+/HER2+ breast cancer cells by E2. Knocking down the general ER co-activators CBP and p300 prevented activation by E2 of its classical target genes but did not interfere with the ability of E2 to repress its direct target genes known to support invasiveness and tumor progression; there was also no effect on invasiveness or the ability of E2 to regulate invasiveness. On the other hand, overexpression of a co-repressor binding site mutant of ER (L372R) prevented E2-dependent transrepression but not transactivation. The mutant ER abrogated the ability of E2 to suppress invasiveness. E2 can partially down-regulate HER2 but knocking down HER2 below E2-regulated levels did not affect invasiveness or the ability of E2 to regulate invasiveness, although it did inhibit growth. Therefore, in ER+/HER2+ cells, the E2-dependent transrepression by ER rather than its transactivation function is critical for regulation of invasiveness and this is independent of HER2 regulation by E2. The findings suggest that selective inhibitors of transactivation by ER may be more beneficial in reducing tumor progression than conventional anti-estrogens that also antagonize E2-dependent transrepression.
Collapse
Affiliation(s)
- Mugdha Patki
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, 4100 John R., Detroit, MI 48201, USA; Department of Biochemistry and Cancer Biology, University Medical Center, Toledo, OH 43614, USA
| | - Marcela d'alincourt Salazar
- Department of Biochemistry and Cancer Biology, University Medical Center, Toledo, OH 43614, USA; Division of Translational Research, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Robert Trumbly
- Department of Biochemistry and Cancer Biology, University Medical Center, Toledo, OH 43614, USA
| | - Manohar Ratnam
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, 4100 John R., Detroit, MI 48201, USA.
| |
Collapse
|
13
|
Yang J, Fuller PJ, Morgan J, Shibata H, McDonnell DP, Clyne CD, Young MJ. Use of phage display to identify novel mineralocorticoid receptor-interacting proteins. Mol Endocrinol 2014; 28:1571-84. [PMID: 25000480 DOI: 10.1210/me.2014-1101] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mineralocorticoid receptor (MR) plays a central role in salt and water homeostasis via the kidney; however, inappropriate activation of the MR in the heart can lead to heart failure. A selective MR modulator that antagonizes MR signaling in the heart but not the kidney would provide the cardiovascular protection of current MR antagonists but allow for normal electrolyte balance. The development of such a pharmaceutical requires an understanding of coregulators and their tissue-selective interactions with the MR, which is currently limited by the small repertoire of MR coregulators described in the literature. To identify potential novel MR coregulators, we used T7 phage display to screen tissue-selective cDNA libraries for MR-interacting proteins. Thirty MR binding peptides were identified, from which three were chosen for further characterization based on their nuclear localization and their interaction with other MR-interacting proteins or, in the case of x-ray repair cross-complementing protein 6, its known status as an androgen receptor coregulator. Eukaryotic elongation factor 1A1, structure-specific recognition protein 1, and x-ray repair cross-complementing protein 6 modulated MR-mediated transcription in a ligand-, cell- and/or promoter-specific manner and colocalized with the MR upon agonist treatment when imaged using immunofluorescence microscopy. These results highlight the utility of phage display for rapid and sensitive screening of MR binding proteins and suggest that eukaryotic elongation factor 1A1, structure-specific recognition protein 1, and x-ray repair cross-complementing protein 6 may be potential MR coactivators whose activity is dependent on the ligand, cellular context, and target gene promoter.
Collapse
Affiliation(s)
- Jun Yang
- MIMR-PHI Medical Research Institute (J.Y., P.J.F., J.M., C.D.C., M.J.Y.), Department of Medicine (J.Y., P.J.F., M.J.Y.), Monash University, Clayton, Victoria 3168, Australia; Department of Endocrinology, Metabolism, Rheumatology, and Nephrology (H.S.), Oita University, Yufu 879-5593, Japan; and Department of Pharmacology and Cancer Biology (D.P.M.), Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | | | | | | |
Collapse
|
14
|
Xu D, Chatakonda VK, Kourtidis A, Conklin DS, Shi H. In search of novel drug target sites on estrogen receptors using RNA aptamers. Nucleic Acid Ther 2014; 24:226-38. [PMID: 24588102 DOI: 10.1089/nat.2013.0474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Estrogen receptor α (ERα) is a well-validated drug target for a majority of breast cancers. But the target sites on this receptor are far from exhaustively defined. Almost all ER antagonists in clinical use function by binding to the ligand-binding pocket to occlude agonist access. Resistance to this type of drugs may develop over time, not caused by the change of ERα itself, but by changes in ER associated proteins. This observation is fueling the development of reagents that downregulate ER activity through novel binding sites. However, it is challenging to find general ER antagonists that act independently from other known ER ligands. In this report, we describe the utility of RNA aptamers in the search for new drug target sites on ERα. We have identified three high affinity aptamers and characterized one of them in detail. This aptamer interacted with ERα in a way not affected by the presence or absence of either the steroidal ligands or the estrogen response DNA elements, and effectively inhibited ER-mediated transcriptional activation in a breast cancer cell line. Serving as a novel drug lead, it may also be used to guide the rational chemical synthesis of small molecule drugs or to perform screens of small molecule libraries for those that are able to displace the aptamer from its binding site.
Collapse
Affiliation(s)
- Daiying Xu
- 1 Department of Biological Sciences, University at Albany, State University of New York , Albany, New York
| | | | | | | | | |
Collapse
|
15
|
Candelaria NR, Liu K, Lin CY. Estrogen receptor alpha: molecular mechanisms and emerging insights. J Cell Biochem 2014; 114:2203-8. [PMID: 23649536 DOI: 10.1002/jcb.24584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 04/29/2013] [Indexed: 11/11/2022]
Abstract
Estrogen receptor alpha (ERα) is a cellular receptor for the female sex hormone estrogen and other natural and synthetic ligands and play critical roles in normal development and physiology and in the etiology and treatment of endocrine-related diseases. ERα is a member of the nuclear receptor superfamily of transcription factors and regulates target gene expression in a ligand-dependent manner. It has also been shown to interact with G-protein coupled receptors and associated signaling molecules in the cytoplasm. Transcriptionally, ERα either binds DNA directly through conserved estrogen response element sequence motifs or indirectly by tethering to other interacting transcription factors and nucleate transcriptional regulatory complexes which include an array of co-regulator proteins. Genome-scale studies of ERα transcriptional activity and localization have revealed mechanistic complexity and insights including novel interactions with several transcription factors, including FOXA1, AP-2g, GATA3, and RUNX1, which function as pioneering, collaborative, or tethering factors. The major challenge and exciting prospect moving forward is the comprehensive definition and integration of ERα complexes and mechanisms and their tissue-specific roles in normal physiology and in human diseases.
Collapse
Affiliation(s)
- Nicholes R Candelaria
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204‐5506, USA
| | | | | |
Collapse
|
16
|
Osmanbeyoglu HU, Lu KN, Oesterreich S, Day RS, Benos PV, Coronnello C, Lu X. Estrogen represses gene expression through reconfiguring chromatin structures. Nucleic Acids Res 2013; 41:8061-71. [PMID: 23821662 PMCID: PMC3783169 DOI: 10.1093/nar/gkt586] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Estrogen regulates over a thousand genes, with an equal number of them being induced or repressed. The distinct mechanisms underlying these dual transcriptional effects remain largely unknown. We derived comprehensive views of the transcription machineries assembled at estrogen-responsive genes through integrating multiple types of genomic data. In the absence of estrogen, the majority of genes formed higher-order chromatin structures, including DNA loops tethered to protein complexes involving RNA polymerase II (Pol II), estrogen receptor alpha (ERα) and ERα-pioneer factors. Genes to be 'repressed' by estrogen showed active transcription at promoters and throughout the gene bodies; genes to be 'induced' exhibited active transcription initiation at promoters, but with transcription paused in gene bodies. In the presence of estrogen, the majority of estrogen-induced genes retained the original higher-order chromatin structures, whereas most estrogen-repressed genes underwent a chromatin reconfiguration. For estrogen-induced genes, estrogen enhances transcription elongation, potentially through recruitment of co-activators or release of co-repressors with unique roles in elongation. For estrogen-repressed genes, estrogen treatment leads to chromatin structure reconfiguration, thereby disrupting the originally transcription-efficient chromatin structures. Our in silico studies have shown that estrogen regulates gene expression, at least in part, through modifying previously assembled higher-order complexes, rather than by facilitating de novo assembly of machineries.
Collapse
Affiliation(s)
- Hatice Ulku Osmanbeyoglu
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA, Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, USA, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA, Women's Cancer Research Center, University of Pittsburgh, Pittsburgh, PA, USA, Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA and Fondazione Ri.MED, Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Nguyen-Vu T, Vedin LL, Liu K, Jonsson P, Lin JZ, Candelaria NR, Candelaria LP, Addanki S, Williams C, Gustafsson JÅ, Steffensen KR, Lin CY. Liver × receptor ligands disrupt breast cancer cell proliferation through an E2F-mediated mechanism. Breast Cancer Res 2013; 15:R51. [PMID: 23809258 PMCID: PMC4053202 DOI: 10.1186/bcr3443] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/20/2013] [Indexed: 01/24/2023] Open
Abstract
Introduction Liver × receptors (LXRs) are members of the nuclear receptor family of ligand-dependent transcription factors and have established functions as regulators of cholesterol, glucose, and fatty acid metabolism and inflammatory responses. Published reports of anti-proliferative effects of synthetic LXR ligands on breast, prostate, ovarian, lung, skin, and colorectal cancer cells suggest that LXRs are potential targets in cancer prevention and treatment. Methods To further determine the effects of LXR ligands and identify their potential mechanisms of action in breast cancer cells, we carried out microarray analysis of gene expression in four breast cancer cell lines following treatments with the synthetic LXR ligand GW3965. Differentially expressed genes were further subjected to gene ontology and pathway analyses, and their expression profiles and associations with disease parameters and outcomes were examined in clinical samples. Response of E2F target genes were validated by real-time PCR, and the posited role of E2F2 in breast cancer cell proliferation was tested by RNA interference experiments. Results We observed cell line-specific transcriptional responses as well as a set of common responsive genes. In the common responsive gene set, upregulated genes tend to function in the known metabolic effects of LXR ligands and LXRs whereas the downregulated genes mostly include those which function in cell cycle regulation, DNA replication, and other cell proliferation-related processes. Transcription factor binding site analysis of the downregulated genes revealed an enrichment of E2F binding site sequence motifs. Correspondingly, E2F2 transcript levels are downregulated following LXR ligand treatment. Knockdown of E2F2 expression, similar to LXR ligand treatment, resulted in a significant disruption of estrogen receptor positive breast cancer cell proliferation. Ligand treatment also decreased E2F2 binding to cis-regulatory regions of target genes. Hierarchical clustering of breast cancer patients based on the expression profiles of the commonly downregulated LXR ligand-responsive genes showed a strong association of these genes with patient survival. Conclusions Taken together, these results indicate that LXR ligands target gene networks, including those regulated by E2F family members, are critical for tumor biology and disease progression and merit further consideration as potential agents in the prevention and treatment of breast cancers.
Collapse
|
18
|
Narumi R, Murakami T, Kuga T, Adachi J, Shiromizu T, Muraoka S, Kume H, Kodera Y, Matsumoto M, Nakayama K, Miyamoto Y, Ishitobi M, Inaji H, Kato K, Tomonaga T. A Strategy for Large-Scale Phosphoproteomics and SRM-Based Validation of Human Breast Cancer Tissue Samples. J Proteome Res 2012; 11:5311-22. [DOI: 10.1021/pr3005474] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ryohei Narumi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
| | - Tatsuo Murakami
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
| | - Takahisa Kuga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
| | - Takashi Shiromizu
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
| | - Satoshi Muraoka
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
| | - Hideaki Kume
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
| | - Yoshio Kodera
- Laboratory of Biomolecular Dynamics, Department of Physics, Kitasato University School of Science, Kanagawa, Japan
- Clinical Proteomics Research Center, Chiba University Hospital, Chiba, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University Fukuoka, Japan
| | - Keiichi Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University Fukuoka, Japan
| | - Yasuhide Miyamoto
- Department of Immunology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Makoto Ishitobi
- Department
of Breast and Endocrine Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Hideo Inaji
- Department
of Breast and Endocrine Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Kikuya Kato
- Research Institute, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka,
Japan
- Clinical Proteomics Research Center, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
19
|
Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR, Yates LR, Papaemmanuil E, Beare D, Butler A, Cheverton A, Gamble J, Hinton J, Jia M, Jayakumar A, Jones D, Latimer C, Lau KW, McLaren S, McBride DJ, Menzies A, Mudie L, Raine K, Rad R, Chapman MS, Teague J, Easton D, Langerød A, Lee MTM, Shen CY, Tee BTK, Huimin BW, Broeks A, Vargas AC, Turashvili G, Martens J, Fatima A, Miron P, Chin SF, Thomas G, Boyault S, Mariani O, Lakhani SR, van de Vijver M, van 't Veer L, Foekens J, Desmedt C, Sotiriou C, Tutt A, Caldas C, Reis-Filho JS, Aparicio SAJR, Salomon AV, Børresen-Dale AL, Richardson AL, Campbell PJ, Futreal PA, Stratton MR. The landscape of cancer genes and mutational processes in breast cancer. Nature 2012; 486:400-4. [PMID: 22722201 PMCID: PMC3428862 DOI: 10.1038/nature11017] [Citation(s) in RCA: 1322] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 03/06/2012] [Indexed: 12/17/2022]
Abstract
All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease.
Collapse
Affiliation(s)
- Philip J Stephens
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yang J, Fuller PJ. Interactions of the mineralocorticoid receptor--within and without. Mol Cell Endocrinol 2012; 350:196-205. [PMID: 21784126 DOI: 10.1016/j.mce.2011.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/28/2011] [Accepted: 07/03/2011] [Indexed: 01/02/2023]
Abstract
The mineralocortoid receptor (MR) regulates salt homeostasis in the kidneys and plays a range of other roles in the heart, vasculature, brain and adipose tissue. It interacts with both mineralocorticoids and glucocorticoids to mediate transcription of target genes. The ability of the MR to exert tissue- and ligand-specific effects relies on its interactions with a range of binding partners, including the chaperone proteins, coregulators, other transcription factors, DNA and modifying proteins. Interactions within the domains of the MR also modulate the overall transcriptional complex. This review will discuss the current understanding of interactions involving the MR and highlight their relevance to ligand- or tissue-specificity as well as their suitability as therapeutic targets.
Collapse
Affiliation(s)
- Jun Yang
- Department of Medicine, Prince Henry's Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | | |
Collapse
|
21
|
Raha P, Thomas S, Munster PN. Epigenetic modulation: a novel therapeutic target for overcoming hormonal therapy resistance. Epigenomics 2011; 3:451-70. [DOI: 10.2217/epi.11.72] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
For more than four decades, modulation of estrogen receptor activity with antiestrogens has been a successful strategy for the treatment of breast cancer. However, therapeutic resistance limits this approach. Patients whose tumors lack estrogen receptors are not candidates for antiestrogens. Furthermore, roughly half that do express estrogen receptors fail to respond. Together, these tumors are considered to be de novo resistant. For those with tumors that do respond, most will eventually acquire resistance. As such, the underlying mechanisms of both de novo and acquired resistance have been the subject of considerable research, so that new therapeutic targets might be discovered and developed. From this work, epigenetic regulation of gene expression has emerged as a major contributor to both forms of resistance. In this article, we present our current understanding of the mechanisms that contribute to antiestrogen resistance, focusing on epigenetic regulation, and examine the approaches being used that target epigenetic machinery to overcome resistance both in the laboratory and in the clinic.
Collapse
Affiliation(s)
- Paromita Raha
- Department of Medicine, Hematology/Oncology Division. Room A722, University of California, 1600 Divisadero St, San Francisco, CA 94115-1770, USA
| | - Scott Thomas
- Department of Medicine, Hematology/Oncology Division. Room A722, University of California, 1600 Divisadero St, San Francisco, CA 94115-1770, USA
| | | |
Collapse
|