1
|
Mao L, Yin R, Yang L, Zhao D. Elucidating the function of clusterin in the progression of diabetic kidney disease. Front Pharmacol 2025; 16:1573654. [PMID: 40438587 PMCID: PMC12116493 DOI: 10.3389/fphar.2025.1573654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/23/2025] [Indexed: 06/01/2025] Open
Abstract
Diabetic kidney disease (DKD) is a common microvascular complication and the main cause of death in diabetic patients. Metabolic disorders can accelerate the occurrence and development of DKD through a variety of ways, Recent studies have found that Clusterin (Clu) levels are associated with renal dysfunction and can be used as a biomarker of renal tubular injury, while preclinical studies reveal its renoprotective function. This article reviews the molecular mechanisms of Clu in the interaction between various cells in DKD. In addition, we discuss the latest research progress of Clu in the field of DKD. This review aims to explore Clu as a potential therapeutic target for DKD and provide some guidance for future clinical treatment.
Collapse
Affiliation(s)
| | | | - Longyan Yang
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Dong Zhao
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Li S, Xia W, Sun B, Peng W, Yang D, Gao J, He S, Yang H, Zhu Y, Zhou H, Xiang T, Kong Q, Zhao X. The stability of FKBP9 maintained by BiP is crucial for glioma progression. Genes Dis 2024; 11:101123. [PMID: 39281835 PMCID: PMC11402128 DOI: 10.1016/j.gendis.2023.101123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/12/2023] [Accepted: 08/04/2023] [Indexed: 09/18/2024] Open
Abstract
FK506-binding protein 9 (FKBP9) is involved in tumor malignancy by resistance to endoplasmic reticulum (ER) stress, and the up-regulation of FKBP9 is associated with patients' poor prognosis. The current knowledge of the molecular mechanisms is still limited. One previous study showed that FKBP9 could confer glioblastoma cell resistance to ER stress through ASK1-p38 signaling. However, the upstream regulatory mechanism of FKBP9 expression is still indistinct. In this study, we identified the FKBP9 binding proteins using co-immunoprecipitation followed by mass spectrometry. Results showed that FKBP9 interacted with the binding immunoglobulin protein (BiP). BiP bound directly to FKBP9 with high affinity. BiP prolonged the half-life of the FKBP9 protein and stabilized the FKBP9 protein. BiP and FKBP9 protein levels were positively correlated in patients with glioma, and patients with high expression of BiP and FKBP9 showed a worse prognosis. Further studies showed that FKBP9 knockout in genetically engineered mice inhibited intracranial glioblastoma formation and prolonged survival by decreasing cellular proliferation and ER stress-induced CHOP-related apoptosis. Moreover, normal cells may depend less on FKBP9, as shown by the absence of apoptosis upon FKBP9 knockdown in a non-transformed human cell line and overall normal development in homozygous knockout mice. These findings suggest an important role of BiP-regulated FKBP9-associated signaling in glioma progression and the BiP-FKBP9 axis may be a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Shirong Li
- Division of Abdominal Tumor Multimodality Treatment and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wangxiao Xia
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Bin Sun
- Division of Abdominal Tumor Multimodality Treatment and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weiyan Peng
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dong Yang
- Division of Abdominal Tumor Multimodality Treatment and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shuai He
- Division of Abdominal Tumor Multimodality Treatment and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hua Yang
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650600, China
| | - Yongjie Zhu
- Division of Abdominal Tumor Multimodality Treatment and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tingxiu Xiang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qingpeng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xudong Zhao
- Division of Abdominal Tumor Multimodality Treatment and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
Praharaj PP, Patra S, Singh A, Panigrahi DP, Lee HY, Kabir MF, Hossain MK, Patra SK, Patro BS, Patil S, Klionsky DJ, Chae HJ, Bhutia SK. CLU (clusterin) and PPARGC1A/PGC1α coordinately control mitophagy and mitochondrial biogenesis for oral cancer cell survival. Autophagy 2024; 20:1359-1382. [PMID: 38447939 PMCID: PMC11210931 DOI: 10.1080/15548627.2024.2309904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 03/08/2024] Open
Abstract
Mitophagy involves the selective elimination of defective mitochondria during chemotherapeutic stress to maintain mitochondrial homeostasis and sustain cancer growth. Here, we showed that CLU (clusterin) is localized to mitochondria to induce mitophagy controlling mitochondrial damage in oral cancer cells. Moreover, overexpression and knockdown of CLU establish its mitophagy-specific role, where CLU acts as an adaptor protein that coordinately interacts with BAX and LC3 recruiting autophagic machinery around damaged mitochondria in response to cisplatin treatment. Interestingly, CLU triggers class III phosphatidylinositol 3-kinase (PtdIns3K) activity around damaged mitochondria, and inhibition of mitophagic flux causes the accumulation of excessive mitophagosomes resulting in reactive oxygen species (ROS)-dependent apoptosis during cisplatin treatment in oral cancer cells. In parallel, we determined that PPARGC1A/PGC1α (PPARG coactivator 1 alpha) activates mitochondrial biogenesis during CLU-induced mitophagy to maintain the mitochondrial pool. Intriguingly, PPARGC1A inhibition through small interfering RNA (siPPARGC1A) and pharmacological inhibitor (SR-18292) treatment counteracts CLU-dependent cytoprotection leading to mitophagy-associated cell death. Furthermore, co-treatment of SR-18292 with cisplatin synergistically suppresses tumor growth in oral cancer xenograft models. In conclusion, CLU and PPARGC1A are essential for sustained cancer cell growth by activating mitophagy and mitochondrial biogenesis, respectively, and their inhibition could provide better therapeutic benefits against oral cancer.
Collapse
Affiliation(s)
- Prakash P. Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Amruta Singh
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Debasna P. Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Hwa Y. Lee
- Department of Pharmacology, Jeonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Mohammad F. Kabir
- Department of Pharmacology, School of Medicine, Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Muhammad K. Hossain
- School of Pharmacy, Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea
| | - Samir K. Patra
- Laboratory of epigenetics, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Birija S. Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Han J. Chae
- School of Pharmacy, Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Sujit K. Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
4
|
Martín-García D, García-Aranda M, Redondo M. Therapeutic Potential of Clusterin Inhibition in Human Cancer. Cells 2024; 13:665. [PMID: 38667280 PMCID: PMC11049052 DOI: 10.3390/cells13080665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Clusterin (CLU) protein is involved in various pathophysiological processes including carcinogenesis and tumor progression. In recent years, the role of the secretory isoform has been demonstrated in tumor cells, where it inhibits apoptosis and favors the acquisition of resistance to conventional treatments used to treat cancer. To determine the possible therapeutic potential of inhibiting this protein, numerous studies have been carried out in this field. In this article, we present the existing knowledge to date on the inhibition of this protein in different types of cancer and analyze the importance it could have in the development of new therapies targeted against this disease.
Collapse
Affiliation(s)
- Desirée Martín-García
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| | - Marilina García-Aranda
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| | - Maximino Redondo
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| |
Collapse
|
5
|
Malhotra S, Fissolo N, Rodríguez‐Rivera C, Monreal E, Montpeyo M, Urcelay E, Triviño JC, Pérez‐García MJ, Segura MF, Pappolla A, Río J, Vilaseca A, Fernández Velasco JI, Miguez A, Goicoechea C, Martinez‐Vicente M, Villar LM, Montalban X, Comabella M. Clusterin deficiency is associated with a lack of response to teriflunomide in multiple sclerosis. Clin Transl Med 2024; 14:e1654. [PMID: 38591764 PMCID: PMC11003271 DOI: 10.1002/ctm2.1654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Affiliation(s)
- Sunny Malhotra
- Servei de Neurologia. Centre d'Esclerosi Múltiple de Catalunya (Cemcat). Institut de Recerca Vall d'Hebron (VHIR). Hospital Universitari Vall d'Hebron. Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Nicolas Fissolo
- Servei de Neurologia. Centre d'Esclerosi Múltiple de Catalunya (Cemcat). Institut de Recerca Vall d'Hebron (VHIR). Hospital Universitari Vall d'Hebron. Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Carmen Rodríguez‐Rivera
- Area of Pharmacology and Nutrition & BromatologyDepartment of Basic Health SciencesUniversidad Rey Juan Carlos, AlcorcónMadridSpain
| | - Enric Monreal
- Department of NeurologyHospital Universitario Ramón y CajalREEMIRYCISUniversidad de AlcaláMadridSpain
| | - Marta Montpeyo
- Neurodegenerative Diseases Research Group, Institut de Recerca Vall d'Hebron (VHIR) ‐ Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)BarcelonaSpain
| | - Elena Urcelay
- Laboratorio de Investigación en Genética de Enfermedades ComplejasInstituto de Investigación Sanitaria San Carlos (IdISSC)MadridSpain
| | | | - María José Pérez‐García
- Group of Childhood Cancer and Blood DisordersInstitut de Recerca Vall d'Hebron (VHIR)Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Miguel F. Segura
- Group of Childhood Cancer and Blood DisordersInstitut de Recerca Vall d'Hebron (VHIR)Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Agustín Pappolla
- Servei de Neurologia. Centre d'Esclerosi Múltiple de Catalunya (Cemcat). Institut de Recerca Vall d'Hebron (VHIR). Hospital Universitari Vall d'Hebron. Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Jordi Río
- Servei de Neurologia. Centre d'Esclerosi Múltiple de Catalunya (Cemcat). Institut de Recerca Vall d'Hebron (VHIR). Hospital Universitari Vall d'Hebron. Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Andreu Vilaseca
- Servei de Neurologia. Centre d'Esclerosi Múltiple de Catalunya (Cemcat). Institut de Recerca Vall d'Hebron (VHIR). Hospital Universitari Vall d'Hebron. Universitat Autònoma de BarcelonaBarcelonaSpain
| | | | - Andrés Miguez
- Servei de Neurologia. Centre d'Esclerosi Múltiple de Catalunya (Cemcat). Institut de Recerca Vall d'Hebron (VHIR). Hospital Universitari Vall d'Hebron. Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Carlos Goicoechea
- Area of Pharmacology and Nutrition & BromatologyDepartment of Basic Health SciencesUniversidad Rey Juan Carlos, AlcorcónMadridSpain
| | - Marta Martinez‐Vicente
- Neurodegenerative Diseases Research Group, Institut de Recerca Vall d'Hebron (VHIR) ‐ Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED)BarcelonaSpain
| | - Luisa M Villar
- Department of NeurologyHospital Universitario Ramón y CajalREEMIRYCISUniversidad de AlcaláMadridSpain
| | - Xavier Montalban
- Servei de Neurologia. Centre d'Esclerosi Múltiple de Catalunya (Cemcat). Institut de Recerca Vall d'Hebron (VHIR). Hospital Universitari Vall d'Hebron. Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Manuel Comabella
- Servei de Neurologia. Centre d'Esclerosi Múltiple de Catalunya (Cemcat). Institut de Recerca Vall d'Hebron (VHIR). Hospital Universitari Vall d'Hebron. Universitat Autònoma de BarcelonaBarcelonaSpain
| |
Collapse
|
6
|
Zhu D, Zhang S, Wang X, Xiao C, Cui G, Yang X. Secretory Clusterin Inhibits Dopamine Neuron Apoptosis in MPTP Mice by Preserving Autophagy Activity. Neuroscience 2024; 540:38-47. [PMID: 38242280 DOI: 10.1016/j.neuroscience.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Secretory clusterin (sCLU) plays an important role in the research progress of nervous system diseases. However, the physiological function of sCLU in Parkinson's disease (PD) are unclear. The purpose of this study was to examine the effects of sCLU-mediated autophagy on cell survival and apoptosis inhibition in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. We found that MPTP administration induced prolonged pole-climbing time, shortened traction time and rotarod time, significantly decreased TH protein expression in the SN tissue of mice. In contrast, sCLU -treated mice took less time to climb the pole and had an extended traction time and rotating rod time. Meanwhile, sCLU intervention induced increased expression of the TH protein in the SN of mice. These results indicated that sCLU intervention could reduce the loss of dopamine neurons in the SN area and alleviate dyskinesia in mice. Furthermore, MPTP led to suppressed viability, enhanced apoptosis, an increased Bax/Bcl-2 ratio, and cleaved caspase-3 in the SN of mice, and these effects were abrogated by sCLU intervention. In addition, MPTP increased the levels of P62 protein, decreased Beclin1 protein, decreased the ratio of LC3B-II/LC3B-I, and decreased the numbers of autophagosomes and autophagolysosomes in the SN tissues of mice. These effects were also abrogated by sCLU intervention. Activation of PI3K/AKT/mTOR signaling with MPTP inhibited autophagy in the SN of MPTP mice; however, sCLU treatment activated autophagy in MPTP-induced PD mice by inhibiting PI3K/AKT/mTOR signaling. These data indicated that sCLU treatment had a neuroprotective effect in an MPTP-induced model of PD.
Collapse
Affiliation(s)
- Dongxue Zhu
- Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Department of Neurology, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Shenyang Zhang
- Department of Neurology, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xiaoying Wang
- Department of Ultrasound, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Chenghua Xiao
- Department of Neurology, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Guiyun Cui
- Department of Neurology, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xinxin Yang
- Department of Neurology, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Institute of Neurological Diseases of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| |
Collapse
|
7
|
Christie J, Anthony CM, Harish M, Mudartha D, Ud Din Farooqee SB, Venkatraman P. The interaction network of the proteasome assembly chaperone PSMD9 regulates proteostasis. FEBS J 2023; 290:5581-5604. [PMID: 37665644 DOI: 10.1111/febs.16948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/09/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Functional networks in cells are created by physical, genetic, and regulatory interactions. Mapping them and annotating their functions by available methods remains a challenge. We use affinity purification mass spectrometry (AP-MS) coupled with SLiMFinder to discern such a network involving 26S proteasome non-ATPase regulatory subunit 9 (PSMD9), a chaperone of proteasome assembly. Approximately 20% of proteins within the PSMD9 interactome carry a short linear motif (SLiM) of the type 'EXKK'. The binding of purified PSMD9 with the peptide sequence ERKK, proteins heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNPA2B1; containing ERKK), and peroxiredoxin-6 (PRDX6; containing EAKK) provided proof of principle for this motif-driven network. The EXKK motif in the peptide primarily interacts with the coiled-coil N domain of PSMD9, a unique interaction not reported for any coiled-coil domain. PSMD9 knockout (KO) HEK293 cells experience endoplasmic reticulum (ER) stress and respond by increasing the unfolded protein response (UPR) and reducing the formation of aggresomes and lipid droplets. Trans-expression of PSMD9 in the KO cells rescues lipid droplet formation. Overexpression of PSMD9 in HEK293 cells results in reduced UPR, and increased lipid droplet and aggresome formation. The outcome argues for the prominent role of PSMD9 in maintaining proteostasis. Probable mechanisms involve the binding of PSMD9 to binding immunoglobulin protein (BIP/GRP78; containing EDKK), an endoplasmic reticulum chaperone and key regulator of the UPR, and fatty acid synthase (FASN; containing ELKK), involved in fatty acid synthesis/lipid biogenesis. We propose that PSMD9 acts as a buffer in the cellular milieu by moderating the UPR and enhancing aggresome formation to reduce stress-induced proteotoxicity. Akin to waves created in ponds that perpetuate to a distance, perturbing the levels of PSMD9 would cause ripples down the networks, affecting final reactions in the pathway, one of which is altered proteostasis.
Collapse
Affiliation(s)
- Joel Christie
- Protein Interactome Lab for Structural and Functional Biology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - C Merlyn Anthony
- Protein Interactome Lab for Structural and Functional Biology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Mahalakshmi Harish
- Protein Interactome Lab for Structural and Functional Biology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Deepti Mudartha
- Protein Interactome Lab for Structural and Functional Biology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Sheikh Burhan Ud Din Farooqee
- Protein Interactome Lab for Structural and Functional Biology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Prasanna Venkatraman
- Protein Interactome Lab for Structural and Functional Biology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
8
|
Téllez T, Martin-García D, Redondo M, García-Aranda M. Clusterin Expression in Colorectal Carcinomas. Int J Mol Sci 2023; 24:14641. [PMID: 37834086 PMCID: PMC10572822 DOI: 10.3390/ijms241914641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Colorectal cancer is the third most diagnosed cancer, behind only breast and lung cancer. In terms of overall mortality, it ranks second due to, among other factors, problems with screening programs, which means that one of the factors that directly impacts survival and treatment success is early detection of the disease. Clusterin (CLU) is a molecular chaperone that has been linked to tumorigenesis, cancer progression and resistance to anticancer treatments, which has made it a promising drug target. However, it is still necessary to continue this line of research and to adjust the situations in which its use is more favorable. The aim of this paper is to review the current genetic knowledge on the role of CLU in tumorigenesis and cancer progression in general, and discuss its possible use as a therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Teresa Téllez
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (T.T.); (D.M.-G.)
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Malaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Malaga, Spain
| | - Desirée Martin-García
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (T.T.); (D.M.-G.)
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Malaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Malaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| | - Maximino Redondo
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (T.T.); (D.M.-G.)
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Malaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Malaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| | - Marilina García-Aranda
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Malaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Malaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| |
Collapse
|
9
|
Satapathy S, Walker H, Brown J, Gambin Y, Wilson MR. The N-end rule pathway regulates ER stress-induced clusterin release to the cytosol where it directs misfolded proteins for degradation. Cell Rep 2023; 42:113059. [PMID: 37660295 DOI: 10.1016/j.celrep.2023.113059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/14/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Previous work suggests that cell stress induces release of the normally secreted chaperone clusterin (CLU) into the cytosol. We analyzed the localization of CLU in healthy and stressed cells, the mechanism of its cytosolic release, and its interactions with cytosolic misfolded proteins. Key results of this study are the following: (1) full-length CLU is released to the cytosol during stress, (2) the CLU N-terminal D1 residue is recognized by the N-end rule pathway and together with the enzyme ATE1 is essential for cytosolic release, (3) CLU can form stable complexes with cytosolic misfolded proteins and direct them to the proteasome and autophagosomes, and (4) cytosolic CLU protects cells from hypoxic stress and the cytosolic overexpression of an aggregation-prone protein. Collectively, the results suggest that enhanced cytosolic release of CLU is a stress response that can inhibit the toxicity of misfolded proteins and facilitate their targeted degradation via both autophagy and the proteasome.
Collapse
Affiliation(s)
- Sandeep Satapathy
- The Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Molecular Horizons Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Holly Walker
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Molecular Horizons Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - James Brown
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mark R Wilson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Molecular Horizons Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
10
|
Zhang Y, Lv X, Chen L, Liu Y. The role and function of CLU in cancer biology and therapy. Clin Exp Med 2023; 23:1375-1391. [PMID: 36098834 DOI: 10.1007/s10238-022-00885-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
Clusterin (CLU) is a highly evolutionary conserved glycoprotein with multiple isoform-specific functions and is widely distributed in different species. Accumulated evidence has shown the prominent role of CLU in regulating several essential physiological processes, including programmed cell death, metastasis, invasion, proliferation and cell growth via regulating diverse signaling pathways to mediate cancer progression in various cancers, such as prostate, breast, lung, liver, colon, bladder and pancreatic cancer. Several studies have revealed the potential benefit of inhibiting CLU in CLU inhibition-based targeted cancer therapies in vitro, in vivo or in human, suggesting CLU is a promising therapeutic target. This review discusses the multiple functions and mechanisms of CLU in regulating tumor progression of various cancers and summarizes the inhibitors of CLU used in CLU inhibition-based targeted cancer therapies.
Collapse
Affiliation(s)
- Yefei Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Department of Biochemistry, Institute of Cancer, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Xiang Lv
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Department of Biochemistry, Institute of Cancer, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Liming Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Department of Biochemistry, Institute of Cancer, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| | - Yan Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Department of Biochemistry, Institute of Cancer, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
11
|
Panes J, Nguyen TKO, Gao H, Christensen TA, Stojakovic A, Trushin S, Salisbury JL, Fuentealba J, Trushina E. Partial Inhibition of Complex I Restores Mitochondrial Morphology and Mitochondria-ER Communication in Hippocampus of APP/PS1 Mice. Cells 2023; 12:1111. [PMID: 37190020 PMCID: PMC10137328 DOI: 10.3390/cells12081111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Alzheimer's disease (AD) has no cure. Earlier, we showed that partial inhibition of mitochondrial complex I (MCI) with the small molecule CP2 induces an adaptive stress response, activating multiple neuroprotective mechanisms. Chronic treatment reduced inflammation, Aβ and pTau accumulation, improved synaptic and mitochondrial functions, and blocked neurodegeneration in symptomatic APP/PS1 mice, a translational model of AD. Here, using serial block-face scanning electron microscopy (SBFSEM) and three-dimensional (3D) EM reconstructions combined with Western blot analysis and next-generation RNA sequencing, we demonstrate that CP2 treatment also restores mitochondrial morphology and mitochondria-endoplasmic reticulum (ER) communication, reducing ER and unfolded protein response (UPR) stress in the APP/PS1 mouse brain. Using 3D EM volume reconstructions, we show that in the hippocampus of APP/PS1 mice, dendritic mitochondria primarily exist as mitochondria-on-a-string (MOAS). Compared to other morphological phenotypes, MOAS have extensive interaction with the ER membranes, forming multiple mitochondria-ER contact sites (MERCS) known to facilitate abnormal lipid and calcium homeostasis, accumulation of Aβ and pTau, abnormal mitochondrial dynamics, and apoptosis. CP2 treatment reduced MOAS formation, consistent with improved energy homeostasis in the brain, with concomitant reductions in MERCS, ER/UPR stress, and improved lipid homeostasis. These data provide novel information on the MOAS-ER interaction in AD and additional support for the further development of partial MCI inhibitors as a disease-modifying strategy for AD.
Collapse
Affiliation(s)
- Jessica Panes
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology, Universidad de Concepcion, Concepción 4030000, Chile
| | | | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Trace A. Christensen
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Sergey Trushin
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jeffrey L. Salisbury
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jorge Fuentealba
- Department of Physiology, Universidad de Concepcion, Concepción 4030000, Chile
- Centro de Investigaciones Avanzadas en Biomedicina (CIAB-UdeC), Universidad de Concepción, Concepción 4030000, Chile
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
12
|
Kovács P, Pushparaj PN, Takács R, Mobasheri A, Matta C. The clusterin connectome: Emerging players in chondrocyte biology and putative exploratory biomarkers of osteoarthritis. Front Immunol 2023; 14:1103097. [PMID: 37033956 PMCID: PMC10081159 DOI: 10.3389/fimmu.2023.1103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionClusterin is amoonlighting protein that hasmany functions. It is amultifunctional Q6 holdase chaperone glycoprotein that is present intracellularly and extracellularly in almost all bodily fluids. Clusterin is involved in lipid transport, cell differentiation, regulation of apoptosis, and clearance of cellular debris, and plays a protective role in ensuring cellular survival. However, the possible involvement of clusterin in arthritic disease remains unclear. Given the significant potential of clusterin as a biomarker of osteoarthritis (OA), a more detailed analysis of its complex network in an inflammatory environment, specifically in the context of OA, is required. Based on the molecular network of clusterin, this study aimed to identify interacting partners that could be developed into biomarker panels for OA.MethodsThe STRING database and Cytoscape were used to map and visualize the clusterin connectome. The Qiagen Ingenuity Pathway Analysis (IPA) software was used to analyze and study clusterinassociated signaling networks in OA. We also analyzed transcription factors known to modulate clusterin expression, which may be altered in OA.ResultsThe top hits in the clusterin network were intracellular chaperones, aggregate-forming proteins, apoptosis regulators and complement proteins. Using a text-mining approach in Cytoscape, we identified additional interacting partners, including serum proteins, apolipoproteins, and heat shock proteins.DiscussionBased on known interactions with proteins, we predicted potential novel components of the clusterin connectome in OA, including selenoprotein R, semaphorins, and meprins, which may be important for designing new prognostic or diagnostic biomarker panels.
Collapse
Affiliation(s)
- Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research (CEGMR), Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ali Mobasheri
- FibroHealth Interdisciplinary Research Programme, Fibrobesity Cluster, Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
- *Correspondence: Csaba Matta, ; Ali Mobasheri,
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Csaba Matta, ; Ali Mobasheri,
| |
Collapse
|
13
|
Das L, Shekhar S, Chandrani P, Varma AK. In silico structural analysis of secretory clusterin to assess pathogenicity of mutations identified in the evolutionarily conserved regions. J Biomol Struct Dyn 2023; 41:469-478. [PMID: 34821197 DOI: 10.1080/07391102.2021.2007791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Clusterin (CLU) is a secreted glycoprotein, heterodimeric in nature, and is expressed in a wide variety of tissues and body fluids such as serum and plasma. CLU has also been known to be a promising biomarker for cell death, malignancy, cancer progression, and resistance development. However, the lack of a CLU crystal structure obstructs understanding the possible role of reported mutations on the structure, and the subsequent effects on downstream signaling pathways and cancer progression. Considering the importance of crystal structure, a model structure of the pre-secretory isoform of CLU was built to predict the effect of mutations at the molecular level. Ab initio model was built using RaptorX, and loop refinement and energy minimization were carried out with ModLoop, ModRefiner, and GalaxyWeb servers. The cancer associated mutational spectra of CLU was retrieved from the cBioPortal server and 117 unique missense mutations were identified. Evolutionarily conserved regions and pathogenicity of mutations identified in CLU were analyzed using ConSurf and Rhapsody, respectively. Furthermore, sequence and structure-based mutational analysis were carried out with iSTABLE, DynaMut and PremPS servers. Molecular dynamics simulations were carried out with GROMACS for 50 ns to determine the stability of the wild type and mutant protein structures. A dynamically stable model structure of pre-secretory CLU (psCLU) which has high concurrence with the sequence based secondary structure predictions has been explored. Changes in the intra-atomic interactions and folding pattern between wild type and mutant structures were observed. To our conclusion, eleven mutations with the highest structural and functional significance have been predicted to have pathogenic and deleterious effects.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lipi Das
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Shashank Shekhar
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology, New Delhi, India
| | - Pratik Chandrani
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Mumbai, India.,Medical Oncology Molecular Lab, Tata Memorial Hospital, Mumbai, India
| | - Ashok K Varma
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Mumbai, India
| |
Collapse
|
14
|
Li Y, Jin M, Yin X, Zhou B, Ni H. Effects of leptin treatment immediately after neonatal seizures on serum clusterin and VEGF levels and brain oxidative stress-related proteins and neurobehavioral phenotypes. Epilepsy Behav 2023; 138:109016. [PMID: 36473302 DOI: 10.1016/j.yebeh.2022.109016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
The developing infant brain has a different response mechanism and repair potential for injury than the adult brain. There is an urgent need for new anticonvulsants to effectively control neonatal seizures while minimizing the drug's toxic damage to the developing brain. Leptin protects neuronal plasma membrane integrity, while it has clinical advantages in terms of anticonvulsant properties as well. This study aimed to evaluate the effect of immediate leptin treatment on the serum concentration of clusterin and vascular endothelial growth factor (VEGF), neuronal plasma membrane integrity-related proteins, and the neurobehavioral phenotypes following neonatal seizures. Leptin was injected i.p at a dose of 4 mg/kg 1 hour after daily 30 minutes prolonged seizures for consecutive 10 days. The serum biomarkers (clusterin and VEGF), and brain protein expression of ATF-4/GRP78/autophagy axis were measured by enzyme-linked immunosorbent assay and western blot in the acute phase (24 hours after the last seizures), respectively. Behavioral and histopathological phenotypes and seizure threshold were conducted from P23 to P34, respectively. There were rapid elevation of serum VEGF and clusterin as well as upregulated protein expression of ATF-4, GRP78, Beclin-1, and LC3 in the cerebral cortex and hippocampus following a neonatal seizure, which was restored by immediate treatment with leptin after seizures. In addition, leptin improved seizure-induced impaired neuropsychological, and cognitive functioning. Furthermore, leptin succeeded in ameliorating markers of neuronal excitability, including seizure threshold and hippocampal mossy fiber sprouting. In conclusion, this study verified that immediate treatment with leptin after neonatal seizures restored both rapid elevation of serum clusterin as well as upregulated protein expression of ATF-4/GRP78/autophagy axis in the cerebral cortex and hippocampus, which contributes to the recovery of neurological function.
Collapse
Affiliation(s)
- Yachao Li
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China; Department of Pediatrics, The First People's Hospital, Pingdingshan, Henan Province, China
| | - Meifang Jin
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Xiaoping Yin
- Department of Pediatrics, Taixing People's Hospital, Taizhou, Jiangsu Province, China
| | - Baojian Zhou
- Department of Pediatrics, Taixing People's Hospital, Taizhou, Jiangsu Province, China
| | - Hong Ni
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
15
|
Glycosylated clusterin species facilitate Aβ toxicity in human neurons. Sci Rep 2022; 12:18639. [PMID: 36329114 PMCID: PMC9633591 DOI: 10.1038/s41598-022-23167-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Clusterin (CLU) is one of the most significant genetic risk factors for late onset Alzheimer's disease (AD). However, the mechanisms by which CLU contributes to AD development and pathogenesis remain unclear. Studies have demonstrated that the trafficking and localisation of glycosylated CLU proteins is altered by CLU-AD mutations and amyloid-β (Aβ), which may contribute to AD pathogenesis. However, the roles of non-glycosylated and glycosylated CLU proteins in mediating Aβ toxicity have not been studied in human neurons. iPSCs with altered CLU trafficking were generated following the removal of CLU exon 2 by CRISPR/Cas9 gene editing. Neurons were generated from control (CTR) and exon 2 -/- edited iPSCs and were incubated with aggregated Aβ peptides. Aβ induced changes in cell death and neurite length were quantified to determine if altered CLU protein trafficking influenced neuronal sensitivity to Aβ. Finally, RNA-Seq analysis was performed to identify key transcriptomic differences between CLU exon 2 -/- and CTR neurons. The removal of CLU exon 2, and the endoplasmic reticulum (ER)-signal peptide located within, abolished the presence of glycosylated CLU and increased the abundance of intracellular, non-glycosylated CLU. While non-glycosylated CLU levels were unaltered by Aβ25-35 treatment, the trafficking of glycosylated CLU was altered in control but not exon 2 -/- neurons. The latter also displayed partial protection against Aβ-induced cell death and neurite retraction. Transcriptome analysis identified downregulation of multiple extracellular matrix (ECM) related genes in exon 2 -/- neurons, potentially contributing to their reduced sensitivity to Aβ toxicity. This study identifies a crucial role of glycosylated CLU in facilitating Aβ toxicity in human neurons. The loss of these proteins reduced both, cell death and neurite damage, two key consequences of Aβ toxicity identified in the AD brain. Strikingly, transcriptomic differences between exon 2 -/- and control neurons were small, but a significant and consistent downregulation of ECM genes and pathways was identified in exon 2 -/- neurons. This may contribute to the reduced sensitivity of these neurons to Aβ, providing new mechanistic insights into Aβ pathologies and therapeutic targets for AD.
Collapse
|
16
|
Jin M, Li X, Shen Y, Bao Y, Yang B, Wu Z, Jiao L, Zhou Q. The Benefit of Optimal Dietary Lipid Level for Black Seabream Acanthopagrus schlegelii Juveniles under Low-Salinity Environment. AQUACULTURE NUTRITION 2022; 2022:2222029. [PMID: 36860453 PMCID: PMC9973135 DOI: 10.1155/2022/2222029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 06/18/2023]
Abstract
The present study was aimed at evaluating the regulatory effects of dietary lipid levels on growth performance, osmoregulation, fatty acid composition, lipid metabolism, and physiological response in Acanthopagrus schlegelii under low salinity (5 psu). An 8-week feeding trial was conducted in juvenile A. schlegelii with an initial weight of 2.27 ± 0.05 g, and six isonitrogenous experimental diets were formulated with graded levels of lipid: 68.7 g/kg (D1), 111.7 g/kg (D2), 143.5 g/kg (D3), 188.9 g/kg (D4), 239.3 g/kg (D5), and 269.4 g/kg (D6), respectively. Results indicated that fish fed with diet containing 188.9 g/kg lipid significantly improved growth performance. Dietary D4 improved ion reabsorption and osmoregulation by increasing the concentrations of Na+, K+, and cortisol in serum and activities of Na+/K+-ATPase as well as expression levels of osmoregulation related to gene expression levels in the gill and intestine. The expression levels of long chain polyunsaturated fatty acid biosynthesis-related genes were dramatically upregulated when dietary lipid levels increased from 68.7 g/kg to 189.9 g/kg with levels of docosahexaenoic (DHA), eicosapentaenoic (EPA), and DHA/EPA ratio being highest in the D4 group. When fish fed dietary lipid levels from 68.7 g/kg to 188.9 g/kg, lipid homeostasis could be maintained by upregulating sirt1 and pparα expression levels, whereas lipid accumulation was observed in dietary lipid levels of 239.3 g/kg and over. Fish fed with high dietary lipid levels resulted in physiological stress related to oxidative stress and endoplasmic reticulum stress. In conclusion, based on weight gain, the optimal dietary lipid requirement of juvenile A. schlegelii reared at low-salinity water is 196.0 g/kg. These findings indicate that the optimal dietary lipid level can improve growth performance, n-3 LC-PUFA accumulation, and osmoregulatory ability and maintain lipid homeostasis and normal physiological functions of juvenile A. schlegelii.
Collapse
Affiliation(s)
- Min Jin
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xuejiao Li
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Yuedong Shen
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Yangguang Bao
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Bingqian Yang
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Zhaoxun Wu
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Lefei Jiao
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Qicun Zhou
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| |
Collapse
|
17
|
Wang R, Shang Y, Chen B, Xu F, Zhang J, Zhang Z, Zhao X, Wan X, Xu A, Wu L, Zhao G. Protein disulfide isomerase blocks the interaction of LC3II-PHB2 and promotes mTOR signaling to regulate autophagy and radio/chemo-sensitivity. Cell Death Dis 2022; 13:851. [PMID: 36202782 PMCID: PMC9537141 DOI: 10.1038/s41419-022-05302-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022]
Abstract
Protein disulfide isomerase (PDI) is an endoplasmic reticulum (ER) enzyme that mediates the formation of disulfide bonds, and is also a therapeutic target for cancer treatment. Our previous studies found that PDI mediates apoptotic signaling by inducing mitochondrial dysfunction. Considering that mitochondrial dysfunction is a major contributor to autophagy, how PDI regulates autophagy remains unclear. Here, we provide evidence that high expression of PDI in colorectal cancer tumors significantly increases the risk of metastasis and poor prognosis of cancer patients. PDI inhibits radio/chemo-induced cell death by regulating autophagy signaling. Mechanistically, the combination of PDI and GRP78 was enhanced after ER stress, which inhibits the degradation of AKT by GRP78, and eventually activates the mTOR pathway to inhibit autophagy initiation. In parallel, PDI can directly interact with the mitophagy receptor PHB2 in mitochondrial, then competitively blocks the binding of LC3II and PHB2 and inhibits the mitophagy signaling. Collectively, our results identify that PDI can reduce radio/chemo-sensitivity by regulating autophagy, which could be served as a potential target for radio/chemo-therapy.
Collapse
Affiliation(s)
- Ruru Wang
- grid.9227.e0000000119573309High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China ,grid.59053.3a0000000121679639University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Yajing Shang
- grid.9227.e0000000119573309High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China ,grid.186775.a0000 0000 9490 772XAnhui Medical University, Hefei, Anhui 230032 China
| | - Bin Chen
- grid.9227.e0000000119573309High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China ,grid.59053.3a0000000121679639University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Feng Xu
- grid.9227.e0000000119573309High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China ,grid.59053.3a0000000121679639University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Jie Zhang
- grid.9227.e0000000119573309High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China ,grid.59053.3a0000000121679639University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Zhaoyang Zhang
- grid.9227.e0000000119573309High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China ,grid.59053.3a0000000121679639University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Xipeng Zhao
- grid.9227.e0000000119573309High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China ,grid.252245.60000 0001 0085 4987Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601 China
| | - Xiangbo Wan
- grid.488525.6The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275 China
| | - An Xu
- grid.9227.e0000000119573309High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China
| | - Lijun Wu
- grid.9227.e0000000119573309High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China ,grid.252245.60000 0001 0085 4987Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601 China
| | - Guoping Zhao
- grid.9227.e0000000119573309High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031 China
| |
Collapse
|
18
|
Soman A, Asha Nair S. Unfolding the cascade of SERPINA3: Inflammation to cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188760. [PMID: 35843512 DOI: 10.1016/j.bbcan.2022.188760] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
SERine Protease INhibitor clade A member 3 (SERPINA3), a member of the SERine-Protease INhibitor (SERPIN) superfamily, principally works as a protease inhibitor in maintaining cellular homeostasis. It is a matricellular acute-phase glycoprotein that appears to be the sole nuclear-binding secretory serpin. Several studies have emerged in recent years demonstrating its link to cancer and disease biology. SERPINA3 seems to have cancer- and compartment-specific biological functions, acting either as a tumour promoter or suppressor in different cancers. However, the localization, mechanism of action and the effectors of SERPINA3 in physiological and pathological scenarios remain obscure. Our review aims to consolidate the current evidence of SERPINA3 in various cancers, highlighting its association with the cancer hallmarks and ratifying its status as an emerging cancer biomarker. The elucidation of SERPINA3-mediated cancer progression and its targeting might shed light on the realm of cancer therapeutics.
Collapse
Affiliation(s)
- Anjana Soman
- Cancer Research Program 4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India; Research Centre, University of Kerala, Thiruvananthapuram, India
| | - S Asha Nair
- Cancer Research Program 4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
19
|
Wilson MR, Satapathy S, Jeong S, Fini ME. Clusterin, other extracellular chaperones, and eye disease. Prog Retin Eye Res 2022; 89:101032. [PMID: 34896599 PMCID: PMC9184305 DOI: 10.1016/j.preteyeres.2021.101032] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022]
Abstract
Proteostasis refers to all the processes that maintain the correct expression level, location, folding and turnover of proteins, essential to organismal survival. Both inside cells and in body fluids, molecular chaperones play key roles in maintaining proteostasis. In this article, we focus on clusterin, the first-recognized extracellular mammalian chaperone, and its role in diseases of the eye. Clusterin binds to and inhibits the aggregation of proteins that are misfolded due to mutations or stresses, clears these aggregating proteins from extracellular spaces, and facilitates their degradation. Clusterin exhibits three main homeostatic activities: proteostasis, cytoprotection, and anti-inflammation. The so-called "protein misfolding diseases" are caused by aggregation of misfolded proteins that accumulate pathologically as deposits in tissues; we discuss several such diseases that occur in the eye. Clusterin is typically found in these deposits, which is interpreted to mean that its capacity as a molecular chaperone to maintain proteostasis is overwhelmed in the disease state. Nevertheless, the role of clusterin in diseases involving such deposits needs to be better defined before therapeutic approaches can be entertained. A more straightforward case can be made for therapeutic use of clusterin based on its proteostatic role as a proteinase inhibitor, as well as its cytoprotective and anti-inflammatory properties. It is likely that clusterin works together in this way with other extracellular chaperones to protect the eye from disease, and we discuss several examples. We end this article by predicting future steps that may lead to development of clusterin as a biological drug.
Collapse
Affiliation(s)
- Mark R Wilson
- Molecular Horizons and the School of Chemistry and Molecular Bioscience, University of Wollongong; Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, New South Wales, 2522, Australia.
| | - Sandeep Satapathy
- Molecular Horizons and the School of Chemistry and Molecular Bioscience, University of Wollongong; Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, New South Wales, 2522, Australia.
| | - Shinwu Jeong
- USC Roski Eye Institute and Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, 1333 San Pablo Street., Los Angeles, CA, 90033, USA.
| | - M Elizabeth Fini
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine; Program in Pharmacology & Drug Development, Graduate School of Biomedical Sciences, Tufts University, 800 Washington St, Boston, MA, 02111, USA.
| |
Collapse
|
20
|
Søfteland L, Olsvik PA. In vitro toxicity of glyphosate in Atlantic salmon evaluated with a 3D hepatocyte-kidney co-culture model. Food Chem Toxicol 2022; 164:113012. [PMID: 35429611 DOI: 10.1016/j.fct.2022.113012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 12/11/2022]
Abstract
A novel 3D Atlantic salmon co-culture model was developed using primary hepatocytes and kidney epithelial cells isolated from the same fish. Mono and co-cultures of primary hepatocytes and kidney epithelial cells were exposed for 48 h to glyphosate (5, 50 and 500 μM). For comparison, cells were also exposed to chlorpyrifos, benzo(a)pyrene and cadmium. Cell staining, cell viability assessments, RT-qPCR and global metabolomic profiling were used to examine the toxicological effects on liver and renal function and to compare responses in 3D and 2D cultures. The 3D hepatocyte cell culture was considered superior to the 2D culture due to the ATP binding cassette subfamily B member 1 (Abcb1) response and was thus used further in co-culture with kidney cells. Metabolomic analysis of co-cultured cells showed that glyphosate exposure (500 μM) altered lipid metabolism in both hepatocytes and kidney cells. Elevated levels of several types of PUFAs and long-chain fatty acids were observed in exposed hepatocytes, owing to increased uptake and phospholipid remodelling. Glyphosate suppressed the expression of estrogen receptor 1 (Esr1) and vitellogenin (Vtg) and altered histidine metabolism in exposed hepatocytes. Increased levels of cholesterol and downregulation of clusterin (Clu) suggest that glyphosate treatment affected membrane stability in Atlantic salmon kidney cells. This study demonstrates the usefulness of applying 3D co-culture models in risk assessment.
Collapse
Affiliation(s)
- L Søfteland
- Institute of Marine Research, Nordnesgaten 50, 5005, Bergen, Norway.
| | - P A Olsvik
- Institute of Marine Research, Nordnesgaten 50, 5005, Bergen, Norway; Nord University, Universitetsalléen 11, 8049, Bodø, Norway
| |
Collapse
|
21
|
Zhu W, Feng D, Shi X, Wei Q, Yang L. The Potential Role of Mitochondrial Acetaldehyde Dehydrogenase 2 in Urological Cancers From the Perspective of Ferroptosis and Cellular Senescence. Front Cell Dev Biol 2022; 10:850145. [PMID: 35517510 PMCID: PMC9065557 DOI: 10.3389/fcell.2022.850145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
Overproduction of reactive oxygen species (ROS) and superlative lipid peroxidation promote tumorigenesis, and mitochondrial aldehyde dehydrogenase 2 (ALDH2) is associated with the detoxification of ROS-mediated lipid peroxidation-generated reactive aldehydes such as 4-hydroxy-2-nonenal (4-HNE), malondialdehyde, and acrolein due to tobacco smoking. ALDH2 has been demonstrated to be highly associated with the prognosis and chemoradiotherapy sensitivity of many types of cancer, including leukemia, lung cancer, head and neck cancer, esophageal cancer, hepatocellular cancer, pancreatic cancer, and ovarian cancer. In this study, we explored the possible relationship between ALDH2 and urological cancers from the aspects of ferroptosis, epigenetic alterations, proteostasis, mitochondrial dysfunction, and cellular senescence.
Collapse
Affiliation(s)
| | | | | | - Qiang Wei
- *Correspondence: Qiang Wei, ; Lu Yang,
| | - Lu Yang
- *Correspondence: Qiang Wei, ; Lu Yang,
| |
Collapse
|
22
|
Mesgarzadeh JS, Buxbaum JN, Wiseman RL. Stress-responsive regulation of extracellular proteostasis. J Cell Biol 2022; 221:213026. [PMID: 35191945 PMCID: PMC8868021 DOI: 10.1083/jcb.202112104] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/18/2022] Open
Abstract
Genetic, environmental, and aging-related insults can promote the misfolding and subsequent aggregation of secreted proteins implicated in the pathogenesis of numerous diseases. This has led to considerable interest in understanding the molecular mechanisms responsible for regulating proteostasis in extracellular environments such as the blood and cerebrospinal fluid (CSF). Extracellular proteostasis is largely dictated by biological pathways comprising chaperones, folding enzymes, and degradation factors localized to the ER and extracellular space. These pathways limit the accumulation of nonnative, potentially aggregation-prone proteins in extracellular environments. Many reviews discuss the molecular mechanisms by which these pathways impact the conformational integrity of the secreted proteome. Here, we instead focus on describing the stress-responsive mechanisms responsible for adapting ER and extracellular proteostasis pathways to protect the secreted proteome from pathologic insults that challenge these environments. Further, we highlight new strategies to identify stress-responsive pathways involved in regulating extracellular proteostasis and describe the pathologic and therapeutic implications for these pathways in human disease.
Collapse
Affiliation(s)
| | - Joel N Buxbaum
- Department of Molecular Medicine, Scripps Research, La Jolla, CA
| | - R Luke Wiseman
- Department of Molecular Medicine, Scripps Research, La Jolla, CA
| |
Collapse
|
23
|
Schneider M, Winkler K, Kell R, Pfaffl MW, Atkinson MJ, Moertl S. The Chaperone Protein GRP78 Promotes Survival and Migration of Head and Neck Cancer After Direct Radiation Exposure and Extracellular Vesicle-Transfer. Front Oncol 2022; 12:842418. [PMID: 35299733 PMCID: PMC8921984 DOI: 10.3389/fonc.2022.842418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Background and Purpose Increased levels of the chaperone protein GRP78 have been implicated in poorer outcomes of cancer therapy. We have therefore explored the functional connection between the expression of GRP78 and the development of radioresistance and metastatic behavior in HNSCC. Material and Methods The association between gene expression of GRP78 and survival in HNSCC patients was examined using the TCGA database. The influence of ionizing radiation on the GRP78 levels in HNSCC cell lines, their secreted extracellular vesicles (EV) and non-irradiated EV-recipient cells was investigated by Western Blot and FACS. The consequences of chemical inhibition or experimental overexpression of GRP78 on radioresistance and migration of HNSCC cells were analyzed by clonogenic survival and gap closure assays. Results Elevated levels of GRP78 RNA in HNSCC correlated with poorer overall survival. Radiation increased GRP78 protein expression on the surface of HNSCC cell lines. Experimental overexpression of GRP78 increased both radioresistance and migratory potential. Chemical inhibition of GRP78 impaired cell migration. EVs were identified as a potential source of increased GRP78 content as elevated levels of surface GRP78 were found in EVs released by irradiated cells. These vesicles transferred GRP78 to non-irradiated recipient cells during co-cultivation. Conclusions We have identified the chaperone protein GRP78 as a potential driver of increased radioresistance and motility in HNSCC. The uptake of GRP78-rich EVs originating from irradiated cells may contribute to a poorer prognosis through bystander effects mediated by the transfer of GRP78 to non-irradiated cells. Therefore, we consider the chaperone protein GRP78 to be an attractive target for improving radiotherapy strategies.
Collapse
Affiliation(s)
- Michael Schneider
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Klaudia Winkler
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Rosemarie Kell
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael W Pfaffl
- Animal Physiology and Immunology, TUM School of Life Science, Technical University of Munich, Freising, Germany
| | - Michael J Atkinson
- Chair of Radiation Biology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Simone Moertl
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Oberschleißheim, Germany
| |
Collapse
|
24
|
Zhang P, Konja D, Zhang Y, Xu A, Lee IK, Jeon JH, Bashiri G, Mitra A, Wang Y. Clusterin is involved in mediating the metabolic function of adipose SIRT1. iScience 2022; 25:103709. [PMID: 35072003 PMCID: PMC8762396 DOI: 10.1016/j.isci.2021.103709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/17/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
SIRT1 is a metabolic sensor regulating energy homeostasis. The present study revealed that mice with selective overexpression of human SIRT1 in adipose tissue (Adipo-SIRT1) were protected from high-fat diet (HFD)-induced metabolic abnormalities. Adipose SIRT1 was enriched at mitochondria-ER contacts (MERCs) to trigger mitohormesis and unfolded protein response (UPRmt), in turn preventing ER stress. As a downstream target of UPRmt, clusterin was significantly upregulated and acted together with SIRT1 to regulate the protein and lipid compositions at MERCs of adipose tissue. In mice lacking clusterin, HFD-induced metabolic abnormalities were significantly enhanced and could not be prevented by overexpression of SIRT1 in adipose tissue. Treatment with ER stress inhibitors restored adipose SIRT1-mediated beneficial effects on systemic energy metabolism. In summary, adipose SIRT1 facilitated the dynamic interactions and communications between mitochondria and ER, via MERCs, in turn triggering a mild mitochondrial stress to instigate the defense responses against dietary obesity-induced metabolic dysfunctions.
Collapse
Affiliation(s)
- Pengcheng Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Daniels Konja
- The State Key Laboratory of Pharmaceutical Biotechnology, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Yiwei Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Daegu41944, South Korea
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu41404, South Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Daegu41944, South Korea
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu41404, South Korea
| | - Ghader Bashiri
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Alok Mitra
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
25
|
Li N, Huang Z, Ding L, Shi H, Hong M. Endoplasmic reticulum unfolded protein response modulates the adaptation of Trachemys scripta elegans in salinity water. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109102. [PMID: 34102330 DOI: 10.1016/j.cbpc.2021.109102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/18/2022]
Abstract
Trachemys scripta elegans, as a freshwater invasive species, can survive and lay eggs in brackish water, which may lead to the expansion of its potential invasion range due to freshwater salinization. Our previous studies have shown that high salinity leads to the accumulation of serum lipid content, which may induce endoplasmic reticulum stress (ERS) in the turtle. To better understand whether ERS is triggered by salinity, and in turn whether the turtles promote the protection mechanism, we exposed the turtles to the freshwater (CK), 5‰ salinity water (S5) and 15‰ salinity water (S15), and sampled at 6 h, 24 h and 30 d. 13 differentially expressed genes (DEGs) related to ERS pathways were found in the comparison of CK vs. S15 by transcriptomics analysis. Then, the mRNA and protein expression of ERS and its related activation pathways were further investigated. ERS marker glucose regulated protein 78 kD (GRP78) increased significantly (p < 0.05) in both the transcript and protein levels after exposure to 15‰ salinity water, which clearly indicated that salinity could induce ERS in T. s. elegans. Meanwhile, the three unfolded protein response (UPR) including transducers protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α) and activating transcription factor-6 (ATF6) were promoted by salinity, suggesting that the turtle might promote physiological process to eliminate damaged cells and cope with unfolded proteins accumulation induced by ERS. Our results provide new insight into the mechanism of salinity adaptation in T. s. elegans and salt-tolerant biological invasion.
Collapse
Affiliation(s)
- Na Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Zubin Huang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
26
|
Cubedo J, Padró T, Vilahur G, Crea F, Storey RF, Lopez Sendon JL, Kaski JC, Sionis A, Sans-Rosello J, Fernández-Peregrina E, Gallinat A, Badimon L. Glycosylated apolipoprotein J in cardiac ischaemia: molecular processing and circulating levels in patients with acute ischaemic events. Eur Heart J 2021; 43:153-163. [PMID: 34580705 DOI: 10.1093/eurheartj/ehab691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/16/2021] [Accepted: 09/15/2021] [Indexed: 11/12/2022] Open
Abstract
AIM Using proteomics, we previously found that serum levels of glycosylated (Glyc) forms of apolipoprotein J (ApoJ), a cytoprotective and anti-oxidant protein, decrease in the early phase of acute myocardial infarction (AMI). We aimed to investigate: (i) ApoJ-Glyc intracellular distribution and secretion during ischaemia; (ii) the early changes in circulating ApoJ-Glyc during AMI; and (iii) associations between ApoJ-Glyc and residual ischaemic risk post-AMI. METHODS AND RESULTS Glycosylated apolipoprotein J was investigated in: (i) cells from different organ/tissue origin; (ii) a pig model of AMI; (iii) de novo AMI patients (n = 38) at admission within the first 6 h of chest pain onset and without troponin T elevation at presentation (early AMI); (iv) ST-elevation myocardial infarction patients (n = 212) who were followed up for 6 months; and (v) a control group without any overt cardiovascular disease (n = 144). Inducing simulated ischaemia in isolated cardiac cells resulted in an increased intracellular accumulation of non-glycosylated ApoJ forms. A significant decrease in ApoJ-Glyc circulating levels was seen 15 min after ischaemia onset in pigs. Glycosylated apolipoprotein J levels showed a 45% decrease in early AMI patients compared with non-ischaemic patients (P < 0.0001), discriminating the presence of the ischaemic event (area under the curve: 0.934; P < 0.0001). ST-elevation myocardial infarction patients with lower ApoJ-Glyc levels at admission showed a higher rate of recurrent ischaemic events and mortality after 6-month follow-up (P = 0.008). CONCLUSIONS These results indicate that ischaemia induces an intracellular accumulation of non-glycosylated ApoJ and a reduction in ApoJ-Glyc secretion. Glycosylated apolipoprotein J circulating levels are reduced very early after ischaemia onset. Its continuous decrease indicates a worsening in the evolution of the cardiac event, likely identifying patients with sustained ischaemia after AMI.
Collapse
Affiliation(s)
- Judit Cubedo
- Cardiovascular Program-ICCC-IR, Hospital Santa Creu i Sant Pau, c/Sant Antoni MaClaret 167, 08025 Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Program-ICCC-IR, Hospital Santa Creu i Sant Pau, c/Sant Antoni MaClaret 167, 08025 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CiberCV), Hospital Santa Creu i Sant Pau, c/Sant Antoni MaClaret 167, 08025 Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program-ICCC-IR, Hospital Santa Creu i Sant Pau, c/Sant Antoni MaClaret 167, 08025 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CiberCV), Hospital Santa Creu i Sant Pau, c/Sant Antoni MaClaret 167, 08025 Barcelona, Spain
| | - Filippo Crea
- Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, Roma 00168, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Via Giuseppe Moscati, 31, Roma 00168, Italy
| | - Robert F Storey
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
| | | | - Juan Carlos Kaski
- Molecular and Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Alessandro Sionis
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CiberCV), Hospital Santa Creu i Sant Pau, c/Sant Antoni MaClaret 167, 08025 Barcelona, Spain.,Cardiology Department, Hospital Santa Creu i Sant Pau, c/Sant Antoni MaClaret 167, 08025 Barcelona, Spain
| | - Jordi Sans-Rosello
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CiberCV), Hospital Santa Creu i Sant Pau, c/Sant Antoni MaClaret 167, 08025 Barcelona, Spain.,Cardiology Department, Hospital Santa Creu i Sant Pau, c/Sant Antoni MaClaret 167, 08025 Barcelona, Spain
| | | | - Alex Gallinat
- Cardiovascular Program-ICCC-IR, Hospital Santa Creu i Sant Pau, c/Sant Antoni MaClaret 167, 08025 Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program-ICCC-IR, Hospital Santa Creu i Sant Pau, c/Sant Antoni MaClaret 167, 08025 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CiberCV), Hospital Santa Creu i Sant Pau, c/Sant Antoni MaClaret 167, 08025 Barcelona, Spain.,Autonomous University of Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
27
|
Janiszewska E, Kokot I, Gilowska I, Faundez R, Kratz EM. The possible association of clusterin fucosylation changes with male fertility disorders. Sci Rep 2021; 11:15674. [PMID: 34341430 PMCID: PMC8329075 DOI: 10.1038/s41598-021-95288-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023] Open
Abstract
In the seminal plasma (n = 118) and serum (n = 90) clusterin (CLU) the fucosylation and the expression of selected fucosyltransferases (FUTs) were analyzed. Samples from infertile men were divided into groups based on the results of the standard semen analysis: normozoospermic (N), teratozoospermic (T), asthenoteratozoospermic (AT) and oligoasthenoteratozoospermic (OAT). The CLU fucosylation was analyzed using lectin-ELISAs with biotinylated lectins specific to α1,3-, α1,2-linked antennary fucose, and α1,6-linked core fucose (LTA, UEA, and LCA, respectively). The concentrations of FUT3 and FUT4, reflecting the expression of Le oligosaccharide structures, were measured using ELISA tests. The differences in serum CLU and FUT4 concentrations, and in the expression of core fucose and antennary fucose α1,2-linked in CLU glycans between the N group and other groups examined suggest that the disturbances in sperm count, motility, and morphology are not the only cause of male infertility. Lack of similarities between levels of examined parameters in blood serum and seminal plasma may suggest the differences in mechanisms leading to glycoproteins glycosylation. It confirmed the observed differences in concentrations of seminal plasma CLU, FUT3, and FUT4 between the OAT group and N, T, AT groups, indicating that decreased sperm count may be related to these parameters expression. The serum CLU concentrations and expression of core fucose and fucose α1,2-linked in CLU, seem to be good markers differentiating normozoospermic men from those with abnormal sperm parameters, which was not observed for seminal plasma.
Collapse
Affiliation(s)
- Ewa Janiszewska
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556, Wrocław, Poland
| | - Izabela Kokot
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556, Wrocław, Poland
| | - Iwona Gilowska
- University of Opole, Institute of Health Sciences, Collegium Salutis Humanae, Katowicka Street 68, 45-060, Opole, Poland
- Clinical Center of Gynecology, Obstetrics and Neonatology in Opole, Reference Center for the Diagnosis and Treatment of Infertility, Reymonta Street 8, 45-066, Opole, Poland
| | - Ricardo Faundez
- InviMed Fertility Clinics, Rakowiecka Street 36, 02-532, Warsaw, Poland
| | - Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556, Wrocław, Poland.
| |
Collapse
|
28
|
Abstract
Proteome-wide profiling of protein phosphorylation has been widely used to reveal the underlying mechanism of diverse cellular signaling events. Yet, characterizing subcellular phosphoproteome with high spatial-temporal resolution has remained challenging. Herein, we developed a subcellular-specific uncaging-assisted biotinylation and mapping of phosphoproteome (SubMAPP) strategy to monitor the phosphorylation dynamics of subcellular proteome in living cells and animals. Our method capitalizes on the genetically encoded bioorthogonal decaging strategy, which enables the rapid activation of subcellular localized proximity labeling biotin ligase through either light illumination or small-molecule triggers. By further adopting an integrated orthogonal pull-down strategy with quantitative mass spectrometry, SubMAPP allowed for the investigation of subcellular phosphoproteome dynamics, revealing the altered phosphorylation patterns of endoplasmic reticulum (ER) luminal proteins under ER stress. Finally, we further expanded the scope of the SubMAPP strategy to primary neuron culture and living mice.
Collapse
|
29
|
Rodríguez-Rivera C, Pérez-Carrión MD, Olavarría LC, Alguacil LF, Mora MJP, González-Martín C. Clusterin levels in undernourished SH-SY5Y cells. Food Nutr Res 2021; 65:5709. [PMID: 33994910 PMCID: PMC8098648 DOI: 10.29219/fnr.v65.5709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 11/20/2022] Open
Abstract
Food-related disorders are increasingly common in developed societies, and the psychological component of these disorders has been gaining increasing attention. Both overnourishment with high-fat diets and perinatal undernourishment in mice have been linked to a higher motivation toward food, resulting in an alteration in food intake. Clusterin (CLU), a multifaced protein, is overexpressed in the nucleus accumbens (NAc) of over-fed rats, as well as in those that suffered chronic undernutrition. Moreover, an increase of this protein was observed in the plasma of obese patients with food addiction, suggesting the implication of CLU in this eating disorder. To characterize CLU’s cellular mechanisms, in vitro experiments of undernutrition were performed using dopaminergic SH-SY5Y cells. To mimic in vivo dietary conditions, cells were treated with different fetal bovine serum (FBS) concentrations, resulting in control (C group) diet (10% FBS), undernourishment (U group) diet (0.5% FBS), and undernourishment diet followed by restoration of control diet (UC group) (0.5 + 10% FBS). Undernourishment compromised cell viability and proliferation, and concomitantly increased CLU secretion as well as the cytosolic pool of the protein, while decreasing the mitochondrial level. The restoration of normal conditions tended to recover cell physiology, and the normal levels and distribution of CLU. This research study is a step forward toward the characterization of clusterin as a potential marker for food addiction and nutritional status.
Collapse
Affiliation(s)
| | - María Dolores Pérez-Carrión
- Facultad de Farmacia, Universidad CEU San Pablo, Alcorcón, Madrid, Spain.,Facultad de Medicina, Universidad de Castilla-la Mancha, Albacete, Spain
| | | | - Luis F Alguacil
- Facultad de Farmacia, Universidad CEU San Pablo, Alcorcón, Madrid, Spain.,Facultad de Farmacia, Instituto de Estudio de las Adicciones, Universidad CEU San Pablo, Alcorcón, Madrid, Spain
| | - María José Polanco Mora
- Facultad de Farmacia, Universidad CEU San Pablo, Alcorcón, Madrid, Spain.,Facultad de Farmacia, Instituto de Estudio de las Adicciones, Universidad CEU San Pablo, Alcorcón, Madrid, Spain
| | - Carmen González-Martín
- Facultad de Farmacia, Universidad CEU San Pablo, Alcorcón, Madrid, Spain.,Facultad de Farmacia, Instituto de Estudio de las Adicciones, Universidad CEU San Pablo, Alcorcón, Madrid, Spain
| |
Collapse
|
30
|
Saxena N, Beraldi E, Fazli L, Somasekharan SP, Adomat H, Zhang F, Molokwu C, Gleave A, Nappi L, Nguyen K, Brar P, Nikesitch N, Wang Y, Collins C, Sorensen PH, Gleave M. Androgen receptor (AR) antagonism triggers acute succinate-mediated adaptive responses to reactivate AR signaling. EMBO Mol Med 2021; 13:e13427. [PMID: 33709547 PMCID: PMC8103094 DOI: 10.15252/emmm.202013427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/09/2022] Open
Abstract
Treatment-induced adaptive pathways converge to support androgen receptor (AR) reactivation and emergence of castration-resistant prostate cancer (PCa) after AR pathway inhibition (ARPI). We set out to explore poorly defined acute adaptive responses that orchestrate shifts in energy metabolism after ARPI and identified rapid changes in succinate dehydrogenase (SDH), a TCA cycle enzyme with well-known tumor suppressor activity. We show that AR directly regulates transcription of its catalytic subunits (SDHA, SDHB) via androgen response elements (AREs). ARPI acutely suppresses SDH activity, leading to accumulation of the oncometabolite, succinate. Succinate triggers calcium ions release from intracellular stores, which in turn phospho-activates the AR-cochaperone, Hsp27 via p-CaMKK2/p-AMPK/p-p38 axis to enhance AR protein stabilization and activity. Activation of this pathway was seen in tissue microarray analysis on prostatectomy tissues and patient-derived xenografts. This adaptive response is blocked by co-targeting AR with Hsp27 under both in vitro and in vivo studies, sensitizing PCa cells to ARPI treatments.
Collapse
Affiliation(s)
- Neetu Saxena
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | | | - Ladan Fazli
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | | | - Hans Adomat
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Fan Zhang
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | | | - Anna Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lucia Nappi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Pavn Brar
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | | | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Colin Collins
- Vancouver Prostate Centre, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Poul H Sorensen
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Martin Gleave
- Vancouver Prostate Centre, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
31
|
Satapathy S, Wilson MR. The Dual Roles of Clusterin in Extracellular and Intracellular Proteostasis. Trends Biochem Sci 2021; 46:652-660. [PMID: 33573881 DOI: 10.1016/j.tibs.2021.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/04/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Clusterin (CLU) was the first reported secreted mammalian chaperone and impacts on serious diseases associated with inappropriate extracellular protein aggregation. Many studies have described intracellular CLU in locations outside the secretory system and recent work has shown that CLU can be released into the cytosol during cell stress. In this article, we critically evaluate evidence relevant to the proposed origins of cellular CLU found outside the secretory system, and advance the hypothesis that the cytosolic release of CLU induced by stress serves to facilitate the trafficking of misfolded proteins to the proteasome and autophagy for degradation. We also propose future research directions that could help establish CLU as a unique chaperone performing critical and synergic roles in both intracellular and extracellular proteostasis.
Collapse
Affiliation(s)
- Sandeep Satapathy
- School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; Molecular Horizons Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Mark R Wilson
- School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; Molecular Horizons Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| |
Collapse
|
32
|
Rodríguez-Rivera C, Garcia MM, Molina-Álvarez M, González-Martín C, Goicoechea C. Clusterin: Always protecting. Synthesis, function and potential issues. Biomed Pharmacother 2021; 134:111174. [DOI: 10.1016/j.biopha.2020.111174] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
|
33
|
Praharaj PP, Patra S, Panigrahi DP, Patra SK, Bhutia SK. Clusterin as modulator of carcinogenesis: A potential avenue for targeted cancer therapy. Biochim Biophys Acta Rev Cancer 2020; 1875:188500. [PMID: 33385484 DOI: 10.1016/j.bbcan.2020.188500] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 12/30/2022]
Abstract
Clusterin (CLU) is an evolutionary conserved molecular chaperone present in different human tissues and fluids and established to be a significant cancer regulator. It controls several cancer-associated cellular events, including cancer cell proliferation, stemness, survival, metastasis, epithelial-mesenchymal transition, therapy resistance, and inhibition of programmed cell death to support cancer growth and recurrence. This multifunctional role of CLU makes it an ideal target for cancer control. More importantly, genetic and antisense-mediated (OGX-011) inhibition of CLU enhances the anticancer potential of different FDA-approved chemotherapeutic drugs at the clinical level, improving patient's survival. In this review, we have discussed the detailed mechanism of CLU-mediated modulation of different cancer-associated signaling pathways. We have also provided updated information on the current preclinical and clinical findings that drive trials in various cancer types for potential targeted cancer therapy.
Collapse
Affiliation(s)
- Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
34
|
Naik PP, Mukhopadhyay S, Praharaj PP, Bhol CS, Panigrahi DP, Mahapatra KK, Patra S, Saha S, Panda AK, Panda K, Paul S, Aich P, Patra SK, Bhutia SK. Secretory clusterin promotes oral cancer cell survival via inhibiting apoptosis by activation of autophagy in AMPK/mTOR/ULK1 dependent pathway. Life Sci 2020; 264:118722. [PMID: 33160989 DOI: 10.1016/j.lfs.2020.118722] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
AIMS Secretory clusterin (sCLU) plays an important role in tumor development and cancer progression. However, the molecular mechanisms and physiological functions of sCLU in oral cancer is unclear. We examined the impact of sCLU-mediated autophagy in cell survival and apoptosis inhibition in oral cancer. MAIN METHODS Immunohistochemical analysis was performed to analyze protein expression in patient samples. Autophagy and mitophagy was studied by immunofluorescence microscopy and Western blot. The gain and loss of function was studied by overexpression of plasmid and siRNA approaches respectively. Cellular protection against nutrient starvation and therapeutic stress by sCLU was studied by cell viability, caspase assay and meta-analysis. KEY FINDINGS The data from oral cancer patients showed that the expression levels of sCLU, ATG14, ULK1, and PARKIN increased in grade-wise manners. Interestingly, sCLU overexpression promoted autophagy through AMPK/Akt/mTOR signaling pathway leading to cell survival and protection from long exposure serum starvation induced-apoptosis. Additionally, sCLU was demonstrated to interact with ULK1 and inhibition of ULK1 activity by SBI206965 was found to abolish sCLU-induced autophagy indicating critical role of ULK1 in induction of autophagy. Furthermore, sCLU was observed to promote expression of mitophagy-associated proteins in serum starvation conditions to protect cells from nutrient deprivation. The meta-analysis elucidated that high CLU expression is associated with therapy resistance in cancer and we demonstrated that sCLU-mediated mitophagy was revealed to inhibit cell death by cisplatin. SIGNIFICANCE The present investigation has highlighted the probable implications of the clusterin-induced autophagy in cell survival and inhibition of apoptosis in oral cancer.
Collapse
Affiliation(s)
- Prajna Paramita Naik
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Subhadip Mukhopadhyay
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sarbari Saha
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | | | - Krupasindhu Panda
- Panda Curie Cancer Hospital, Telenga Pentha, Cuttack, 753051, Odisha, India
| | - Subhankar Paul
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Palok Aich
- National Institute of Science Education and Research (NISER), HBNI, Bhipmpur-Padanpur, Jatni, Khurda 752050, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
35
|
Shakya M, Yildirim T, Lindberg I. Increased expression and retention of the secretory chaperone proSAAS following cell stress. Cell Stress Chaperones 2020; 25:929-941. [PMID: 32607937 PMCID: PMC7591655 DOI: 10.1007/s12192-020-01128-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 11/25/2022] Open
Abstract
The secretory pathway of neurons and endocrine cells contains a variety of mechanisms designed to combat cellular stress. These include not only the unfolded protein response pathways but also diverse chaperone proteins that collectively work to ensure proteostatic control of secreted and membrane-bound molecules. One of the least studied of these chaperones is the neural- and endocrine-specific molecule known as proSAAS. This small chaperone protein acts as a potent anti-aggregant both in vitro and in cellulo and also represents a cerebrospinal fluid biomarker in Alzheimer's disease. In the present study, we have examined the idea that proSAAS, like other secretory chaperones, might represent a stress-responsive protein. We find that exposure of neural and endocrine cells to the cell stressors tunicamycin and thapsigargin increases cellular proSAAS mRNA and protein in Neuro2A cells. Paradoxically, proSAAS secretion is inhibited by these same drugs. Exposure of Neuro2A cells to low concentrations of the hypoxic stress inducer cobalt chloride, or to sodium arsenite, an oxidative stressor, also increases cellular proSAAS content and reduces its secretion. We conclude that the cellular levels of the small secretory chaperone proSAAS are positively modulated by cell stress.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF2, S267, Baltimore, MD, 21201, USA
| | - Taha Yildirim
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF2, S267, Baltimore, MD, 21201, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF2, S267, Baltimore, MD, 21201, USA.
| |
Collapse
|
36
|
RSK2 protects human breast cancer cells under endoplasmic reticulum stress through activating AMPKα2-mediated autophagy. Oncogene 2020; 39:6704-6718. [PMID: 32958832 DOI: 10.1038/s41388-020-01447-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 01/07/2023]
Abstract
Autophagy can protect stressed cancer cell by degradation of damaged proteins and organelles. However, the regulatory mechanisms behind this cellular process remain incompletely understood. Here, we demonstrate that RSK2 (p90 ribosomal S6 kinase 2) plays a critical role in ER stress-induced autophagy in breast cancer cells. We demonstrated that the promotive effect of RSK2 on autophagy resulted from directly binding of AMPKα2 in nucleus and phosphorylating it at Thr172 residue. IRE1α, an ER membrane-associated protein mediating unfolded protein response (UPR), is required for transducing the signal for activation of ERK1/2-RSK2 under ER stress. Suppression of autophagy by knockdown of RSK2 enhanced the sensitivity of breast cancer cells to ER stress both in vitro and in vivo. Furthermore, we demonstrated that inhibition of RSK2-mediated autophagy rendered breast cancer cells more sensitive to paclitaxel, a chemotherapeutic agent that induces ER stress-mediated cell death. This study identifies RSK2 as a novel controller of autophagy in tumor cells and suggests that targeting RSK2 can be exploited as an approach to reinforce the efficacy of ER stress-inducing agents against cancer.
Collapse
|
37
|
Holmannova D, Borsky P, Borska L, Andrys C, Hamakova K, Rehacek V, Svadlakova T, Malkova A, Beranek M, Palicka V, Krejsek J, Fiala Z. Metabolic Syndrome, Clusterin and Elafin in Patients with Psoriasis Vulgaris. Int J Mol Sci 2020; 21:ijms21165617. [PMID: 32764517 PMCID: PMC7460615 DOI: 10.3390/ijms21165617] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Psoriasis is a pathological condition characterized by immune system dysfunction and inflammation. Patients with psoriasis are more likely to develop a wide range of disorders associated with inflammation. Serum levels of various substances and their combinations have been associated with the presence of the disease (psoriasis) and have shown the potential to reflect its activity. The aim of the present study is to contribute to the elucidation of pathophysiological links between psoriasis, its pro-inflammatory comorbidity metabolic syndrome (MetS), and the expression of clusterin and elafin, which are reflected in the pathophysiological “portfolio” of both diseases. Material and methods: Clinical examinations (PASI score), ELISA (clusterin, elafin), and biochemical analyses (parameters of MetS) were performed. Results: We found that patients with psoriasis were more often afflicted by MetS, compared to the healthy controls. Clusterin and elafin levels were higher in the patients than in the controls but did not correlate to the severity of psoriasis. Conclusion: Our data suggest that patients with psoriasis are more susceptible to developing other systemic inflammatory diseases, such as MetS. The levels of clusterin and elafin, which are tightly linked to inflammation, were significantly increased in the patients, compared to the controls, but the presence of MetS in patients did not further increase these levels.
Collapse
Affiliation(s)
- Drahomira Holmannova
- Institute of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50038 Hradec Kralove, Czech Republic; (D.H.); (T.S.); (A.M.); (M.B.); (Z.F.)
| | - Pavel Borsky
- Institute of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50038 Hradec Kralove, Czech Republic; (D.H.); (T.S.); (A.M.); (M.B.); (Z.F.)
- Institute of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic;
- Correspondence:
| | - Lenka Borska
- Institute of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic;
| | - Ctirad Andrys
- Institute of Clinical Immunology and Allergology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic; (C.A.); (J.K.)
| | - Kvetoslava Hamakova
- Clinic of Dermatology and Venereology, University Hospital Hradec Kralove, 50005 Hradec Králové, Czech Republic;
| | - Vit Rehacek
- Transfusion Center, University Hospital, 50005 Hradec Kralove, Czech Republic;
| | - Tereza Svadlakova
- Institute of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50038 Hradec Kralove, Czech Republic; (D.H.); (T.S.); (A.M.); (M.B.); (Z.F.)
- Institute of Clinical Immunology and Allergology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic; (C.A.); (J.K.)
| | - Andrea Malkova
- Institute of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50038 Hradec Kralove, Czech Republic; (D.H.); (T.S.); (A.M.); (M.B.); (Z.F.)
| | - Martin Beranek
- Institute of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50038 Hradec Kralove, Czech Republic; (D.H.); (T.S.); (A.M.); (M.B.); (Z.F.)
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic;
| | - Vladimir Palicka
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic;
| | - Jan Krejsek
- Institute of Clinical Immunology and Allergology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic; (C.A.); (J.K.)
| | - Zdenek Fiala
- Institute of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50038 Hradec Kralove, Czech Republic; (D.H.); (T.S.); (A.M.); (M.B.); (Z.F.)
| |
Collapse
|
38
|
Gholizadeh MA, Shamsabadi FT, Yamchi A, Golalipour M, Jhingan GD, Shahbazi M. Identification of hub genes associated with RNAi-induced silencing of XIAP through targeted proteomics approach in MCF7 cells. Cell Biosci 2020; 10:78. [PMID: 32537125 PMCID: PMC7291505 DOI: 10.1186/s13578-020-00437-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Background The X-linked inhibitor of apoptosis protein (XIAP) is the most potent caspase inhibitor of the IAP family in apoptosis pathway. This study aims to identify the molecular targets of XIAP in human breast cancer cells exposed to XIAP siRNA by proteomics screening. The expression of XIAP was reduced in MCF-7 breast cancer cells by siRNA. Cell viability and the mRNA expression level of this gene were evaluated by MTS and quantitative real-time PCR procedures, respectively. Subsequently, the XIAP protein level was visualized by Western blotting and analyzed by two-dimensional (2D) electrophoresis and LC–ESI–MS/MS. Results Following XIAP silencing, cell proliferation was reduced in XIAP siRNA transfected cells. The mRNA transcription and protein expression of XIAP were decreased in cells exposed to XIAP siRNA than si-NEG. We identified 30 proteins that were regulated by XIAP, of which 27 down-regulated and 3 up-regulated. The most down-regulated proteins belonged to the Heat Shock Proteins family. They participate in cancer related processes including apoptosis and MAPK signaling pathway. Reduced expression of HSP90B1 was associated with apoptosis induction by androgen receptor and prostate specific antigen. Suppression of XIAP resulted in the enhancement of GDIB, ENO1, and CH60 proteins expression. The network analysis of XIAP-regulated proteins identified HSPA8, HSP90AA1, ENO1, and HSPA9 as key nodes in terms of degree and betweenness centrality methods. Conclusions These results suggested that XIAP may have a number of biological functions in a diverse set of non-apoptotic signaling pathways and may provide an insight into the biomedical significance of XIAP over-expression in MCF-7 cells.
Collapse
Affiliation(s)
- Mehdi Agha Gholizadeh
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Zip Code: 4934174515, Gorgan, Iran
| | - Fatemeh T Shamsabadi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Zip Code: 4934174515, Gorgan, Iran
| | - Ahad Yamchi
- Department of Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Masoud Golalipour
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Zip Code: 4934174515, Gorgan, Iran
| | - Gagan Deep Jhingan
- VProteomics, K-37A, Ground Floor Green Park Main, New Delhi, 110016 India
| | - Majid Shahbazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Zip Code: 4934174515, Gorgan, Iran.,AryaTinaGene Biopharmaceutical Company, Gorgan, Iran
| |
Collapse
|
39
|
Hasle N, Cooke A, Srivatsan S, Huang H, Stephany JJ, Krieger Z, Jackson D, Tang W, Pendyala S, Monnat RJ, Trapnell C, Hatch EM, Fowler DM. High-throughput, microscope-based sorting to dissect cellular heterogeneity. Mol Syst Biol 2020; 16:e9442. [PMID: 32500953 PMCID: PMC7273721 DOI: 10.15252/msb.20209442] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022] Open
Abstract
Microscopy is a powerful tool for characterizing complex cellular phenotypes, but linking these phenotypes to genotype or RNA expression at scale remains challenging. Here, we present Visual Cell Sorting, a method that physically separates hundreds of thousands of live cells based on their visual phenotype. Automated imaging and phenotypic analysis directs selective illumination of Dendra2, a photoconvertible fluorescent protein expressed in live cells; these photoactivated cells are then isolated using fluorescence-activated cell sorting. First, we use Visual Cell Sorting to assess hundreds of nuclear localization sequence variants in a pooled format, identifying variants that improve nuclear localization and enabling annotation of nuclear localization sequences in thousands of human proteins. Second, we recover cells that retain normal nuclear morphologies after paclitaxel treatment, and then derive their single-cell transcriptomes to identify pathways associated with paclitaxel resistance in cancers. Unlike alternative methods, Visual Cell Sorting depends on inexpensive reagents and commercially available hardware. As such, it can be readily deployed to uncover the relationships between visual cellular phenotypes and internal states, including genotypes and gene expression programs.
Collapse
Affiliation(s)
- Nicholas Hasle
- Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
| | | | - Sanjay Srivatsan
- Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
| | - Heather Huang
- Divisions of Basic Sciences and Human BiologyFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Jason J Stephany
- Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
| | - Zachary Krieger
- Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
| | - Dana Jackson
- Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
| | - Weiliang Tang
- Department of PathologyUniversity of WashingtonSeattleWAUSA
| | - Sriram Pendyala
- Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
| | - Raymond J Monnat
- Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
- Department of PathologyUniversity of WashingtonSeattleWAUSA
| | - Cole Trapnell
- Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
| | - Emily M Hatch
- Divisions of Basic Sciences and Human BiologyFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Douglas M Fowler
- Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
- Department of BioengineeringUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
40
|
Machuca A, Garcia‐Calvo E, Anunciação DS, Luque‐Garcia JL. Rhodium Nanoparticles as a Novel Photosensitizing Agent in Photodynamic Therapy against Cancer. Chemistry 2020; 26:7685-7691. [DOI: 10.1002/chem.202001112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/31/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Andres Machuca
- Department of Analytical ChemistryFaculty of Chemical SciencesComplutense University of Madrid Av. Complutense s/n 28040 Madrid Spain
| | - Estefania Garcia‐Calvo
- Department of Analytical ChemistryFaculty of Chemical SciencesComplutense University of Madrid Av. Complutense s/n 28040 Madrid Spain
| | - Daniela S. Anunciação
- Institute of Chemistry and BiotechnologyFederal University of Alagoas Campus A. C. Simões 57072-900 Maceió-AL Brazil
| | - Jose L. Luque‐Garcia
- Department of Analytical ChemistryFaculty of Chemical SciencesComplutense University of Madrid Av. Complutense s/n 28040 Madrid Spain
| |
Collapse
|
41
|
Janiszewska E, Kratz EM. Could the glycosylation analysis of seminal plasma clusterin become a novel male infertility biomarker? Mol Reprod Dev 2020; 87:515-524. [PMID: 32222009 DOI: 10.1002/mrd.23340] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/04/2020] [Accepted: 03/17/2020] [Indexed: 11/06/2022]
Abstract
Male infertility is becoming a rapidly growing problem around the world, mainly in the highly developed countries. Seminal proteome composition seems to be one of the crucial factors of the proper course of fertilization - clusterin (CLU) is among the most important ones. CLU, as one of the crucial seminal plasma glycoproteins, plays a very important role in sperm capacitation and immune tolerance in the female reproductive tract. CLU is also known as a sensitive marker of oxidative stress. It has six n-glycosylation sites and also exhibits chaperone activity. An analysis of changes in the profile and degree of CLU glycosylation may shed some new light on the molecular mechanisms of the fertilization process and may be used as an additional diagnostic marker of male fertility. This study constitutes a review of the recently available literature concerning human seminal CLU, including changes in its glycosylation, analyzed in the context of human reproduction.
Collapse
Affiliation(s)
- Ewa Janiszewska
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw, Poland
| | - Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw, Poland
| |
Collapse
|
42
|
Limso C, Ngo JM, Nguyen P, Leal S, Husain A, Sahoo D, Ghosh P, Bhandari D. The Gα-interacting vesicle-associated protein interacts with and promotes cell surface localization of GRP78 during endoplasmic reticulum stress. FEBS Lett 2019; 594:1088-1100. [PMID: 31736058 DOI: 10.1002/1873-3468.13685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
Cell surface translocation of the chaperone glucose-regulated protein 78 kDa (GRP78) is a key event that promotes cancer cell survival during endoplasmic reticulum (ER) stress. Here, we identify Gα-interacting vesicle-associated protein (GIV) - an enhancer of prosurvival signaling during ER stress - as a binding partner of GRP78. We show that GIV and GRP78 interact in an ER stress-dependent manner through their respective carboxyl terminal domains and that GIV aids in the localization of GRP78 to the plasma membrane. Kaplan-Meier analysis of disease-free survival in cancer patients shows poor prognosis for patients with high expression of both GIV and GRP78, further suggesting a vital role for these two proteins in enhancing cancer cell viability.
Collapse
Affiliation(s)
- Clariss Limso
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Jordan Matthew Ngo
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Peter Nguyen
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Stephanie Leal
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Aida Husain
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Debashis Sahoo
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.,Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Pradipta Ghosh
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Deepali Bhandari
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| |
Collapse
|
43
|
Hoter A, Rizk S, Naim HY. The Multiple Roles and Therapeutic Potential of Molecular Chaperones in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11081194. [PMID: 31426412 PMCID: PMC6721600 DOI: 10.3390/cancers11081194] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancer types in men worldwide. Heat shock proteins (HSPs) are molecular chaperones that are widely implicated in the pathogenesis, diagnosis, prognosis, and treatment of many cancers. The role of HSPs in PCa is complex and their expression has been linked to the progression and aggressiveness of the tumor. Prominent chaperones, including HSP90 and HSP70, are involved in the folding and trafficking of critical cancer-related proteins. Other members of HSPs, including HSP27 and HSP60, have been considered as promising biomarkers, similar to prostate-specific membrane antigen (PSMA), for PCa screening in order to evaluate and monitor the progression or recurrence of the disease. Moreover, expression level of chaperones like clusterin has been shown to correlate directly with the prostate tumor grade. Hence, targeting HSPs in PCa has been suggested as a promising strategy for cancer therapy. In the current review, we discuss the functions as well as the role of HSPs in PCa progression and further evaluate the approach of inhibiting HSPs as a cancer treatment strategy.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sandra Rizk
- School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
44
|
Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ. Clusterin in Alzheimer's Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. Front Neurosci 2019; 13:164. [PMID: 30872998 PMCID: PMC6403191 DOI: 10.3389/fnins.2019.00164] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/12/2019] [Indexed: 01/10/2023] Open
Abstract
Clusterin (CLU) or APOJ is a multifunctional glycoprotein that has been implicated in several physiological and pathological states, including Alzheimer's disease (AD). With a prominent extracellular chaperone function, additional roles have been discussed for clusterin, including lipid transport and immune modulation, and it is involved in pathways common to several diseases such as cell death and survival, oxidative stress, and proteotoxic stress. Although clusterin is normally a secreted protein, it has also been found intracellularly under certain stress conditions. Multiple hypotheses have been proposed regarding the origin of intracellular clusterin, including specific biogenic processes leading to alternative transcripts and protein isoforms, but these lines of research are incomplete and contradictory. Current consensus is that intracellular clusterin is most likely to have exited the secretory pathway at some point or to have re-entered the cell after secretion. Clusterin's relationship with amyloid beta (Aβ) has been of great interest to the AD field, including clusterin's apparent role in altering Aβ aggregation and/or clearance. Additionally, clusterin has been more recently identified as a mediator of Aβ toxicity, as evidenced by the neuroprotective effect of CLU knockdown and knockout in rodent and human iPSC-derived neurons. CLU is also the third most significant genetic risk factor for late onset AD and several variants have been identified in CLU. Although the exact contribution of these variants to altered AD risk is unclear, some have been linked to altered CLU expression at both mRNA and protein levels, altered cognitive and memory function, and altered brain structure. The apparent complexity of clusterin's biogenesis, the lack of clarity over the origin of the intracellular clusterin species, and the number of pathophysiological functions attributed to clusterin have all contributed to the challenge of understanding the role of clusterin in AD pathophysiology. Here, we highlight clusterin's relevance to AD by discussing the evidence linking clusterin to AD, as well as drawing parallels on how the role of clusterin in other diseases and pathways may help us understand its biological function(s) in association with AD.
Collapse
Affiliation(s)
| | | | | | | | - Noel J. Buckley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
45
|
Morciano G, Marchi S, Morganti C, Sbano L, Bittremieux M, Kerkhofs M, Corricelli M, Danese A, Karkucinska-Wieckowska A, Wieckowski MR, Bultynck G, Giorgi C, Pinton P. Role of Mitochondria-Associated ER Membranes in Calcium Regulation in Cancer-Specific Settings. Neoplasia 2018; 20:510-523. [PMID: 29626751 PMCID: PMC5916088 DOI: 10.1016/j.neo.2018.03.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/25/2018] [Accepted: 03/01/2018] [Indexed: 12/31/2022] Open
Abstract
Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are highly specialized subcellular compartments that are shaped by ER subdomains juxtaposed to mitochondria but are biochemically distinct from pure ER and pure mitochondria. MAMs are enriched in enzymes involved in lipid synthesis and transport, channels for calcium transfer, and proteins with oncogenic/oncosuppressive functions that modulate cell signaling pathways involved in physiological and pathophysiological processes. The term "cancer" denotes a group of disorders that result from uncontrolled cell growth driven by a mixture of genetic and environmental components. Alterations in MAMs are thought to account for the onset as well as the progression and metastasis of cancer and have been a focus of investigation in recent years. In this review, we present the current state of the art regarding MAM-resident proteins and their relevance, alterations, and deregulating functions in different types of cancer from a cell biology and clinical perspective.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy; Cecilia Hospital, GVM Care & Research, E.S.: Health Science Foundation, Cotignola, Italy
| | - Saverio Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy
| | - Claudia Morganti
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy
| | - Luigi Sbano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy
| | - Mart Bittremieux
- KU Leuven, Lab. Molecular and Cellular Signaling, Dept. Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000 Leuven, Belgium
| | - Martijn Kerkhofs
- KU Leuven, Lab. Molecular and Cellular Signaling, Dept. Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000 Leuven, Belgium
| | - Mariangela Corricelli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy
| | - Alberto Danese
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy
| | | | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Geert Bultynck
- KU Leuven, Lab. Molecular and Cellular Signaling, Dept. Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000 Leuven, Belgium
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy.
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Ferrara, Italy; Cecilia Hospital, GVM Care & Research, E.S.: Health Science Foundation, Cotignola, Italy; CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy.
| |
Collapse
|
46
|
Liu XR, Li T, Cao L, Yu YY, Chen LL, Fan XH, Yang BB, Tan XQ. Dexmedetomidine attenuates H2O2-induced neonatal rat cardiomyocytes apoptosis through mitochondria- and ER-medicated oxidative stress pathways. Mol Med Rep 2018; 17:7258-7264. [PMID: 29568958 PMCID: PMC5928682 DOI: 10.3892/mmr.2018.8751] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/02/2018] [Indexed: 01/29/2023] Open
Abstract
Dexmedetomidine (DEX), an α2 adrenoceptor agonist, has sedative and analgesic properties and myocardial protective effects. However, the mechanism underlying the protective effects of DEX on the myocardium remain unclear. The present study aimed to determine whether DEX serves an important role on cardioprotection through the endoplasmic reticulum (ER)- and mitochondria-mediated apoptosis signaling pathways. Neonatal rat cardiomyocytes (NRCMs) were cultured and divided four groups: i) Normal culture medium with 10% fetal bovine serum (control group); ii) H2O2 at 500 µM (H2O2 group); iii) DEX at 5 µM (DEX group); and iv) H2O2 plus DEX (H2O2 + DEX group). The levels of apoptosis and oxidative stress of NRCMs were investigated by ELISA, western blotting, flow cytometry and cell immunofluorescence. DEX significantly suppressed H2O2-induced apoptosis, and increased activity of caspases 3, 8 and 9 of NRCMs. DEX inhibited mitochondria-mediated oxidative stress and apoptosis, as evidenced by decreased levels of reactive oxygen species and lactic dehydrogenase, alleviated mitochondrial membrane potential depolarization, and increased Bcl-2-associated X protein/B-cell lymphoma 2 ratio. In addition, DEX decreased the activity of caspase 12, and the expression levels of glucose-regulated protein 78 kDa and serine/threonine-protein kinase/endoribonuclease IRE1, three major signaling molecules involved in the ER stress-mediated apoptosis pathway. Preventive treatment with DEX alleviates cardiomyocyte against H2O2-induced oxidative stress injury through attenuating the mitochondria- and ER-mediated apoptosis pathways.
Collapse
Affiliation(s)
- Xue-Ru Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lu Cao
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yi-Yan Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lin-Lin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xue-Hui Fan
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Bin-Bin Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiao-Qiu Tan
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
47
|
Liu XR, Cao L, Li T, Chen LL, Yu YY, Huang WJ, Liu L, Tan XQ. Propofol attenuates H 2O 2-induced oxidative stress and apoptosis via the mitochondria- and ER-medicated pathways in neonatal rat cardiomyocytes. Apoptosis 2018; 22:639-646. [PMID: 28176145 DOI: 10.1007/s10495-017-1349-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previous studies have shown that propofol, an intravenous anesthetic commonly used in clinical practice, protects the myocardium from injury. Mitochondria- and endoplasmic reticulum (ER)-mediated oxidative stress and apoptosis are two important signaling pathways involved in myocardial injury and protection. The present study aimed to test the hypothesis that propofol could exert a cardio-protective effect via the above two pathways. Cultured neonatal rat cardiomyocytes were treated with culture medium (control group), H2O2 at 500 μM (H2O2 group), propofol at 50 μM (propofol group), and H2O2 plus propofol (H2O2 + propofol group), respectively. The oxidative stress, mitochondrial membrane potential (ΔΨm) and apoptosis of the cardiomyocytes were evaluated by a series of assays including ELISA, flow cytometry, immunofluorescence microscopy and Western blotting. Propofol significantly suppressed the H2O2-induced elevations in the activities of caspases 3, 8, 9 and 12, the ratio of Bax/Bcl-2, and cell apoptosis. Propofol also inhibited the H2O2-induced reactive oxygen species (ROS) generation, lactic dehydrogenase (LDH) release and mitochondrial transmembrane potential (ΔΨm) depolarization, and restored the H2O2-induced reductions of glutathione (GSH) and superoxide dismutase (SOD). In addition, propofol decreased the expressions of glucose-regulated protein 78 kDa (Grp78) and inositol-requiring enzyme 1α (IRE1α), two important signaling molecules in the ER-mediated apoptosis pathway. Propofol protects cardiomyocytes from H2O2-induced injury by inhibiting the mitochondria- and ER-mediated apoptosis signaling pathways.
Collapse
Affiliation(s)
- Xue-Ru Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lu Cao
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Lin-Lin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yi-Yan Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Wen-Jun Huang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao-Qiu Tan
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
48
|
Lin YM, Sun HY, Chiu WT, Su HC, Chien YC, Chong LW, Chang HC, Bai CH, Young KC, Tsao CW. Calcitriol Inhibits HCV Infection via Blockade of Activation of PPAR and Interference with Endoplasmic Reticulum-Associated Degradation. Viruses 2018; 10:v10020057. [PMID: 29385741 PMCID: PMC5850364 DOI: 10.3390/v10020057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/17/2018] [Accepted: 01/26/2018] [Indexed: 02/06/2023] Open
Abstract
Vitamin D has been identified as an innate anti-hepatitis C virus (HCV) agent but the possible mechanisms for this issue remain unclear. Here, we clarified the mechanisms of calcitriol-mediated inhibition of HCV infection. Calcitriol partially inhibited HCV infection, nitric oxide (NO) release and lipid accumulation in Huh7.5 human hepatoma cells via the activation of vitamin D receptor (VDR). When cells were pretreated with the activators of peroxisome proliferator-activated receptor (PPAR)-α (Wy14643) and -γ (Ly171883), the calcitriol-mediated HCV suppression was reversed. Otherwise, three individual stimulators of PPAR-α/β/γ blocked the activation of VDR. PPAR-β (linoleic acid) reversed the inhibition of NO release, whereas PPAR-γ (Ly171883) reversed the inhibitions of NO release and lipid accumulation in the presence of calcitriol. The calcitriol-mediated viral suppression, inhibition of NO release and activation of VDR were partially blocked by an inhibitor of endoplasmic reticulum-associated degradation (ERAD), kifunensine. Furthermore, calcitriol blocked the HCV-induced expressions of apolipoprotein J and 78 kDa glucose-regulated protein, which was restored by pretreatment of kifunensine. These results indicated that the calcitriol-mediated HCV suppression was associated with the activation of VDR, interference with ERAD process, as well as blockades of PPAR, lipid accumulation and nitrative stress.
Collapse
Affiliation(s)
- Yu-Min Lin
- Department of Gastroenterology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan.
| | - Hung-Yu Sun
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Hui-Chen Su
- Department of Pharmacy, Chi-Mei Medical Center, Tainan 71004, Taiwan.
| | - Yu-Chieh Chien
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
- Department of Long Term Care, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan.
| | - Lee-Won Chong
- Department of Gastroenterology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan.
| | - Hung-Chuen Chang
- Department of Gastroenterology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan.
| | - Chyi-Huey Bai
- Department of Public Health, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Kung-Chia Young
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Chiung-Wen Tsao
- Department of Long Term Care, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan.
| |
Collapse
|
49
|
Gastrodin alleviates glucocorticoid induced osteoporosis in rats via activating the Nrf2 signaling pathways. Oncotarget 2018; 9:11528-11540. [PMID: 29545917 PMCID: PMC5837737 DOI: 10.18632/oncotarget.23936] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Background Prolonged and over-dosed administration of glucocorticoids results in more bone remodeling, leading to glucocorticoid-induced osteoporosis, which is primarily due to dysfunction and apoptosis of osteoblasts. The present study investigated the therapeutic effect and molecular mechanism of gastrodin, a natural bioactive compound isolated from the traditional Chinese herbal agent Gastrodia elata, on osteoblastic cells in vivo and in vitro. Materials and Methods The anti-dexamethasone (DEX) effects of gastrodin on primary osteoblasts were measured by cell viability, flow cytometry, and western blot analysis in vitro, and also extensively examined in a rat model in vivo. Results The results show that gastrodin pretreatment significantly increased osteoblast viability and alkaline phosphatase activity when exposed to DEX. Alizarin Red staining indicated more calcium deposits formed in the gastrodin pretreatment against DEX group. Gastrodin alleviated DEX-induced reactive oxygen species at both the mitochondrial and cellular levels in osteoblasts. In addition, gastrodin protected primary osteoblasts from caspase3-related apoptosis by reducing the loss in the mitochondrial membrane potential and decreasing the release of DEX-induced cytochrome-C, bax, and apoptosis inducing factor. Gastrodin also antagonized upregulated endoplasmic reticulum stress signals induced by DEX, including the expression of GRP78, CHOP, and phosphorylated eIF2α. Furthermore, gastrodin protected osteoblasts by activating the nuclear factor erythroid derived 2-related factor-2 (Nrf2) pathway. Furthermore, femoral micro-computed tomography scans and biomechanical tests revealed that gastrodin improved bone microstructure and mitigated DEX-induced deterioration in bone quality. Conclusions These findings suggest that gastrodin alleviated glucocorticoid-induced osteoporosis in rats by protecting osteoblasts via the Nrf2 regulated mitochondrial and ER stress-related signaling pathways.
Collapse
|
50
|
Rohne P, Wolf S, Dörr C, Ringen J, Holtz A, Gollan R, Renner B, Prochnow H, Baiersdörfer M, Koch-Brandt C. Exposure of vital cells to necrotic cell lysates induce the IRE1α branch of the unfolded protein response and cell proliferation. Cell Stress Chaperones 2018; 23:77-88. [PMID: 28687980 PMCID: PMC5741583 DOI: 10.1007/s12192-017-0825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/15/2017] [Accepted: 06/16/2017] [Indexed: 10/19/2022] Open
Abstract
Necrosis is a form of cell death that is detrimental to the affected tissue because the cell ruptures and releases its content (reactive oxygen species among others) into the extracellular space. Clusterin (CLU), a cytoprotective extracellular chaperone has been shown to be upregulated in the face of necrosis. We here show that in addition to CLU upregulation, necrotic cell lysates induce JNK/SAPK signaling, the IRE1α branch of the unfolded protein response (UPR), the MAPK/ERK1/2, and the mTOR signaling pathways and results in an enhanced proliferation of the vital surrounding cells. We name this novel response mechanism: Necrosis-induced Proliferation (NiP).
Collapse
Affiliation(s)
- Philipp Rohne
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| | - Steven Wolf
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
- Department of Pathology, The University of Chicago, Chicago, IL USA
| | - Carolin Dörr
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| | - Julia Ringen
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| | - Andrew Holtz
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| | - René Gollan
- Department of Neurology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Benjamin Renner
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| | - Hans Prochnow
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
- Department of Chemical Biology, Helmholtz Centre for Infection Research GmbH, Braunschweig, Germany
| | - Markus Baiersdörfer
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| | - Claudia Koch-Brandt
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| |
Collapse
|