1
|
Wang Y, Huang D, Li M, Yang M. MicroRNA-99 family in cancer: molecular mechanisms for clinical applications. PeerJ 2025; 13:e19188. [PMID: 40161350 PMCID: PMC11955196 DOI: 10.7717/peerj.19188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNA sequences that regulate gene expression post-transcriptionally. The miR-99 family, which is highly evolutionarily conserved, comprises three homologs: miR-99a, miR-99b, and miR-100. Its members are under-expressed in most cancerous tissues, suggesting their cancer-repressing properties in multiple cancers; however, in some contexts, they also promote malignant lesion progression. MiR-99 family members target numerous genes involved in various tumor-related processes such as tumorigenesis, proliferation, cell-cycle regulation, apoptosis, invasion, and metastasis. We review the recent research on this family, summarize its implications in cancer, and explore its potential as a biomarker and cancer therapeutic target. This review contributes to the clinical translation of the miR-99 family members.
Collapse
Affiliation(s)
- Yueyuan Wang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, ChangChun, Jilin, China
| | - Dan Huang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, ChangChun, Jilin, China
| | - Mingxi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, ChangChun, Jilin, China
| | - Ming Yang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, ChangChun, Jilin, China
| |
Collapse
|
2
|
Maatouk N, Kurdi A, Marei S, Nasr R, Talhouk R. CircRNAs and miRNAs: Key Player Duo in Breast Cancer Dynamics and Biomarkers for Breast Cancer Early Detection and Prevention. Int J Mol Sci 2024; 25:13056. [PMID: 39684767 DOI: 10.3390/ijms252313056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Breast cancer (BC) remains a significant global health issue, necessitating advanced molecular approaches for early detection and prevention. This review delves into the roles of microRNAs (miRNAs) and circular RNAs (circRNAs) in BC, highlighting their potential as non-invasive biomarkers. Utilizing in silico tools and databases, we propose a novel methodology to establish mRNA/circRNA/miRNA axes possibly indicative of early detection and possible prevention. We propose that during early tumor initiation, some changes in oncogene or tumor suppressor gene expression (mRNA) are mirrored by alterations in corresponding circRNAs and reciprocal changes in sponged miRNAs affecting tumorigenesis pathways. We used two Gene Expression Omnibus (GEO) datasets and identified five mRNA/circRNA/miRNA axes as early possible tumor initiation biomarkers. We further validated the proposed axes through a Kaplan-Meier (KM) plot and enrichment analysis of miRNA expression using patient data. Evaluating coupled differential expression of circRNAs and miRNAs in body fluids or exosomes provides greater confidence than assessing either, with more axes providing even greater confidence. The proposed methodology not only improves early BC detection reliability but also has applications for other cancers, enhancing preventive measures.
Collapse
Affiliation(s)
- Nour Maatouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| | - Abdallah Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Sarah Marei
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Rabih Talhouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| |
Collapse
|
3
|
Lin L, Wusiman J, Zhang Z. Circular RNA circRNA_100349 functions as a miR-218-5p sponge for suppressing the cell proliferation of gastric cancer via regulation of IGF2 expression. Clinics (Sao Paulo) 2024; 79:100492. [PMID: 39293372 PMCID: PMC11422554 DOI: 10.1016/j.clinsp.2024.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/19/2024] [Accepted: 08/25/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) hold critical importance due to their notable function in developing Gastric Cancer (GC), which is a malignancy with the third most frequent occurrence worldwide. The aim of this study was to see if circRNA_0044516 would control GC cell proliferation and establish more effective therapeutic strategies. METHODS In GC tissues or cells, quantitative Real‑Time Polymerase Chain Reaction (qRT-PCR) was employed for the detection of the expression of circRNA_100349, Insulin-like Growth Factor II (IGF2), and miR-218-5p. CCK-8 assays were employed to gauge the proliferation of cells. A luciferase reporter was employed to establish the relationship of circRNA_100349 or IGF2 with miR-218-5p. RESULTS CircRNA_100349 was observed to undergo upregulation in GC cell lines along with tissues. GC cell proliferation was prevented by downregulating circRNA_100349. MiR-149 was targeted by CircRNA_100349, and its downregulation increased the amount of miR-218-5p in GC cells. Simultaneously silencing circRNA_100349 decreased IGF2 expression via miR-218-5p, and thus suppressed GC cell proliferation. Furthermore, in nude mice, circRNA_100349 knockdown prevented the tumor development of GC cells. CONCLUSIONS The findings furnished evidence of the critical involvement of circRNA_100349 in GC and that its downregulation impedes GC cell proliferation via the miR-218-5p/IGF2 axis.
Collapse
Affiliation(s)
- Linmei Lin
- Blood Transfusion Department, The First Hospital of Putian City, Putian, Fujian, China
| | - Jiamilan Wusiman
- Internal Medicine-Oncology, Guangzhou Royal Cancer Hospital, Guangzhou, Guangdong, China
| | - Zixu Zhang
- Department of Endoscope, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Asberger J, Berner K, Bicker A, Metz M, Jäger M, Weiß D, Kreutz C, Juhasz-Böss I, Mayer S, Ge I, Erbes T. In Vitro microRNA Expression Profile Alterations under CDK4/6 Therapy in Breast Cancer. Biomedicines 2023; 11:2705. [PMID: 37893081 PMCID: PMC10604872 DOI: 10.3390/biomedicines11102705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Breast cancer is the most common type of cancer worldwide. Cyclin-dependent kinase inhibition is one of the backbones of metastatic breast cancer therapy. However, there are a significant number of therapy failures. This study evaluates the biomarker potential of microRNAs for the prediction of a therapy response under cyclin-dependent kinase inhibition. METHODS This study comprises the analysis of intracellular and extracellular microRNA-expression-level alterations of 56 microRNAs under palbociclib mono as well as combination therapy with letrozole. Breast cancer cell lines BT-474, MCF-7 and HS-578T were analyzed using qPCR. RESULTS A palbociclib-induced microRNA signature could be detected intracellularly as well as extracellularly. Intracellular miR-10a, miR-15b, miR-21, miR-23a and miR-23c were constantly regulated in all three cell lines, whereas let-7b, let-7d, miR-15a, miR-17, miR-18a, miR-20a, miR-191 and miR301a_3p were regulated only in hormone-receptor-positive cells. Extracellular miR-100, miR-10b and miR-182 were constantly regulated across all cell lines, whereas miR-17 was regulated only in hormone-receptor-positive cells. CONCLUSIONS Because they are secreted and significantly upregulated in the microenvironment of tumor cells, miRs-100, -10b and -182 are promising circulating biomarkers that can be used to predict or detect therapy responses under CDK inhibition. MiR-10a, miR-15b, miR-21, miR-23a and miR-23c are potential tissue-based biomarkers.
Collapse
Affiliation(s)
- Jasmin Asberger
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Anna Bicker
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Obstetrics and Gynecology, St. Josefs-Hospital Wiesbaden, 65189 Wiesbaden, Germany
| | - Marius Metz
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daniela Weiß
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Clemens Kreutz
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Institute of Medical Biometry and Statistics, Medical Center – University of Freiburg, 79104 Freiburg, Germany
| | - Ingolf Juhasz-Böss
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sebastian Mayer
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Gynaecology and Obstetrics, Hospital Krumbach, 86381 Krumbach, Germany
| | - Isabell Ge
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Obstetrics and Gynaecology, University Hospital of Basel, 4056 Basel, Switzerland
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Gynaecology and Obstetrics, Diako Mannheim, 68135 Mannheim, Germany
| |
Collapse
|
5
|
Majed SO, Mustafa SA. The profiles of miR-4510 expression level in breast cancer. Sci Rep 2023; 13:2262. [PMID: 36755123 PMCID: PMC9908886 DOI: 10.1038/s41598-022-25292-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 11/28/2022] [Indexed: 02/10/2023] Open
Abstract
MicroRNA that is abnormally produced in breast cells can disrupt biological processes, which can lead to cancer. This study aims to screen differentially expressed genes (DEGs) and ncRNAs (DEncRNAs) in the formalin-fixed paraffin-embedded (FFPE) tissues of breast cancer (BC) as compared with the normal adjacent tissues (NAT), and identify miR-4510 as a novel biomarker of BC. This study looked at differentially expressed genes (DEGs) using MACE-Seq and differentially expressed ncRNAs (DEncRNAs) using the small RNA-Seq. Real-time qPCR was used to determine the level of expression of miR-4510. In this study, MACE-Seq results showed that 26,795 genes, with a p-value < 0.05, were differentially expressed in BC paraffin tissues as compared with NAT. Small RNA-Seq results revealed that 1326 ncRNAs, with a p-value < 0.05, were differentially expressed. We confirmed that miR-4510 was significantly down-expressed (p-value = 0.001) by qRT-PCR in the paraffin tissue of 120 BC patients. Based on eleven computational prediction programs, TP53, TP53INP1, MMP11, and COL1A1 for the miR-4510 were identified as miR-4510 targets. The MACE-seq result showed that the gene of TP53 (p-value = 0.001) and TP53INP1 (p-value = 0.02) was significantly down-regulated, but the gene of MMP11 (p-value = 0.004) and COL1A1 (p-value = 0.0001) was significantly over-expressed in 20 paired specimens of the BC and NAT. We discovered that a single SNP inside the miR-4510 binding site occurred only in BC, in which Guanine (G) changed into Adenine (A). Two SNPs outside the miR-4510 binding site occurred, and Guanine (G) in both BC and NAT was changed into Thymine (T), as compared to the reference sequence (RefSeq). Overall, our results suggested that miR-4510 functions as a tumor suppressor in the BC. Mir-4510 may act as a tumor suppressor, however additional experimental data is needed to corroborate these assumptions and can be exploited as a biomarker for BC.
Collapse
Affiliation(s)
- Sevan Omer Majed
- Biology Department, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Suhad Asad Mustafa
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Iraq.
| |
Collapse
|
6
|
IGF2: A Role in Metastasis and Tumor Evasion from Immune Surveillance? Biomedicines 2023; 11:biomedicines11010229. [PMID: 36672737 PMCID: PMC9855361 DOI: 10.3390/biomedicines11010229] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Insulin-like growth factor 2 (IGF2) is upregulated in both childhood and adult malignancies. Its overexpression is associated with resistance to chemotherapy and worse prognosis. However, our understanding of its physiological and pathological role is lagging behind what we know about IGF1. Dysregulation of the expression and function of IGF2 receptors, insulin receptor isoform A (IR-A), insulin growth factor receptor 1 (IGF1R), and their downstream signaling effectors drive cancer initiation and progression. The involvement of IGF2 in carcinogenesis depends on its ability to link high energy intake, increase cell proliferation, and suppress apoptosis to cancer risk, and this is likely the key mechanism bridging insulin resistance to cancer. New aspects are emerging regarding the role of IGF2 in promoting cancer metastasis by promoting evasion from immune destruction. This review provides a perspective on IGF2 and an update on recent research findings. Specifically, we focus on studies providing compelling evidence that IGF2 is not only a major factor in primary tumor development, but it also plays a crucial role in cancer spread, immune evasion, and resistance to therapies. Further studies are needed in order to find new therapeutic approaches to target IGF2 action.
Collapse
|
7
|
ZeinElAbdeen YA, AbdAlSeed A, Youness RA. Decoding Insulin-Like Growth Factor Signaling Pathway From a Non-coding RNAs Perspective: A Step Towards Precision Oncology in Breast Cancer. J Mammary Gland Biol Neoplasia 2022; 27:79-99. [PMID: 35146629 DOI: 10.1007/s10911-022-09511-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is a highly complex and heterogenous disease. Several oncogenic signaling pathways drive BC oncogenic activity, thus hindering scientists to unravel the exact molecular pathogenesis of such multifaceted disease. This highlights the urgent need to find a key regulator that tunes up such intertwined oncogenic drivers to trim the malignant transformation process within the breast tissue. The Insulin-like growth factor (IGF) signaling pathway is a tenacious axis that is heavily intertwined with BC where it modulates the amplitude and activity of vital downstream oncogenic signaling pathways. Yet, the complexity of the pathway and the interactions driven by its different members seem to aggravate its oncogenicity and hinder its target-ability. In this review, the authors shed the light on the stubbornness of the IGF signaling pathway and its potential regulation by non-coding RNAs in different BC subtypes. Nonetheless, this review also spots light on the possible transport systems available for efficient delivery of non-coding RNAs to their respective targets to reach a personalized treatment code for BC patients.
Collapse
Affiliation(s)
- Yousra Ahmed ZeinElAbdeen
- The Molecular Genetics Research Team, Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University, Main Entrance Al Tagamoa Al Khames, New Cairo CityCairo, 11835, Egypt
| | - Amna AbdAlSeed
- The Molecular Genetics Research Team, Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University, Main Entrance Al Tagamoa Al Khames, New Cairo CityCairo, 11835, Egypt
- University of Khartoum, Al-Gama a Avenue, 11115, Khartoum, Sudan
| | - Rana A Youness
- The Molecular Genetics Research Team, Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University, Main Entrance Al Tagamoa Al Khames, New Cairo CityCairo, 11835, Egypt.
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, Cairo, 11586, Egypt.
| |
Collapse
|
8
|
Li X, Ren Y, Liu D, Yu X, Chen K. Role of miR-100-5p and CDC25A in breast carcinoma cells. PeerJ 2022; 9:e12263. [PMID: 35036112 PMCID: PMC8734459 DOI: 10.7717/peerj.12263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To inquiry about mechanism of miR-100-5p/CDC25A axis in breast carcinoma (BC), thus offering a new direction for BC targeted treatment. METHODS qRT-PCR was employed to explore miR-100-5p and CDC25A mRNA levels. Western blot was employed for detecting protein expression of CDC25A. Targeting relationship of miR-100-5p and CDC25A was verified by dual-luciferase assay. In vitro experiments were used for assessment of cell functions. RESULTS In BC tissue and cells, miR-100-5p was significantly lowly expressed (P < 0.05) while CDC25A was highly expressed. Besides, miR-100-5p downregulated CDC25A level. miR-100-5p had a marked influence on the prognosis of patients. The forced miR-100-5p expression hindered BC cell proliferation, migration and invasion, and facilitated cell apoptosis. Upregulated miR-100-5p weakened promotion of CDC25A on BC cell growth. CONCLUSION Together, these findings unveiled that CDC25A may be a key target of miR-100-5p that mediated progression of BC cells. Hence, miR-100-5p overexpression or CDC25A suppression may contribute to BC diagnosis.
Collapse
Affiliation(s)
- Xiaoping Li
- Faculty of Medicine, Macau University of Science and Technology, Macau, China.,Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang province, China
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, China
| | - Donghong Liu
- Department of Laboratory Medicine, Hangyan hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang province, China
| |
Collapse
|
9
|
Garnier D, Ratcliffe E, Briand J, Cartron PF, Oliver L, Vallette FM. The Activation of Mesenchymal Stem Cells by Glioblastoma Microvesicles Alters Their Exosomal Secretion of miR-100-5p, miR-9-5p and let-7d-5p. Biomedicines 2022; 10:biomedicines10010112. [PMID: 35052791 PMCID: PMC8773192 DOI: 10.3390/biomedicines10010112] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor, and despite initial response to chemo- and radio-therapy, the persistence of glioblastoma stem cells (GSCs) unfortunately always results in tumor recurrence. It is now largely admitted that tumor cells recruit normal cells, including mesenchymal stem cells (MSCs), and components of their environment, to participate in tumor progression, building up what is called the tumor microenvironment (TME). While growth factors and cytokines constitute essential messengers to pass on signals between tumor and TME, recent uncovering of extracellular vesicles (EVs), composed of microvesicles (MVs) and exosomes, opened new perspectives to define the modalities of this communication. In the GBM context particularly, we investigated what could be the nature of the EV exchange between GSCs and MSCs. We show that GSCs MVs can activate MSCs into cancer-associated fibroblasts (CAFs)-like cells, that subsequently increase their secretion of exosomes. Moreover, a significant decrease in anti-tumoral miR-100-5p, miR-9-5p and let-7d-5p was observed in these exosomes. This clearly suggests a miRNA-mediated GBM tumor promotion by MSCs exosomes, after their activation by GBM MVs.
Collapse
Affiliation(s)
- Delphine Garnier
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France
- Correspondence:
| | - Edward Ratcliffe
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
| | - Joséphine Briand
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
| | - Pierre-François Cartron
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
| | - Lisa Oliver
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
| | - François M. Vallette
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
| |
Collapse
|
10
|
Xie H, Xiao R, He Y, He L, Xie C, Chen J, Hong Y. MicroRNA-100 inhibits breast cancer cell proliferation, invasion and migration by targeting FOXA1. Oncol Lett 2021; 22:816. [PMID: 34671430 PMCID: PMC8503813 DOI: 10.3892/ol.2021.13077] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are highly conserved single-stranded small non-coding RNAs, which are involved in the physiological and pathological processes of breast cancer, and affect the prognosis of patients with breast cancer. The present study used the Gene Expression Omnibus (GEO)2R tool to detect miR-100 expression in breast cancer tissues obtained from GEO breast cancer-related datasets. Bioinformatics analysis revealed that miR-100 expression was downregulated in different stages, grades and lymph node metastasis stages of breast cancer, and patients with high miR-100 expression had a more favorable prognosis. Based on these analyses, Cell Counting Kit-8, wound healing and Transwell assays were performed, and the results demonstrated that overexpression of miR-100 inhibited the proliferation, migration and invasion of breast cancer cells. To verify the tumor-suppressive effect of miR-100 in breast cancer, the LinkedOmics and PITA databases were used to assess the association between miR-100 and forkhead box A1 (FOXA1). The results demonstrated that miR-100 had binding sites within the FOXA1 gene, and FOXA1 expression was negatively associated with miR-100 expression in breast cancer tissues. Similarly, a negative association was observed between miR-100 and FOXA1 expression, using the StarBase V3.0 database. The association between miR-100 and FOXA1 was further verified via reverse transcription-quantitative PCR and western blot analyses, and the dual-luciferase reporter assay. The results demonstrated that miR-100 targeted the 3′-untranslated region of FOXA1 in breast cancer cells. Furthermore, rescue experiments were performed to confirm whether miR-100 exerts its antitumor effects by regulating FOXA1. The results demonstrated that overexpression of FOXA1 promoted the proliferation, migration and invasion of breast cancer cells; thus, the antitumor effects of miR-100 in breast cancer were reversed following overexpression of FOXA1. Taken together, the results of the present study suggest that miR-100 inhibits the proliferation, migration and invasion of breast cancer cells by targeting FOXA1 expression. These results may provide a novel insight and an experimental basis for identifying effective therapeutic targets of high specificity for breast cancer.
Collapse
Affiliation(s)
- Haihui Xie
- Department of Radiation Oncology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China.,Clinical Research Center for Prevention and Treatment of Breast & Thyroid Disease in Hunan Province, Hengyang, Hunan 421001, P.R. China
| | - Ruobing Xiao
- Department of Radiation Oncology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China.,Clinical Research Center for Prevention and Treatment of Breast & Thyroid Disease in Hunan Province, Hengyang, Hunan 421001, P.R. China
| | - Yaolin He
- Department of Radiation Oncology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lingzhi He
- Department of Preventive Medicine, Hunan Polytechnic of Environment and Biology, Hengyang, Hunan 421001, P.R. China
| | - Changjun Xie
- Department of Radiation Oncology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China
| | - Juan Chen
- Department of Radiation Oncology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yan Hong
- Department of Preventive Medicine, Hunan Polytechnic of Environment and Biology, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
11
|
Majed SO, Mustafa SA. MACE-Seq-based coding RNA and TrueQuant-based small RNA profile in breast cancer: tumor-suppressive miRNA-1275 identified as a novel marker. BMC Cancer 2021; 21:473. [PMID: 33910530 PMCID: PMC8082896 DOI: 10.1186/s12885-021-08218-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/19/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction Disruption of cellular processes in the breast by abnormally expressed miRNA is characterized to develop cancer. We aimed to identify the differential expression of small RNAs (sRNAs) and mRNAs in formalin-fixed paraffin-embedded (FFPE) tissue of the breast cancer (BC) and normal adjacent tissue (NAT). Another aim is to determine the differential expression of miR-1275 as a novel biomarker for BC and also identify its target genes. Methods TrueQuant method for analysis of sRNA expression and MACE-sequencing method for analysis of gene expression were used analyzing. The RT-qPCR technique was used to confirm miR-1275 down expression. Target genes of miR-1275 were computationally identified using target prediction sites and also the expression level of them was experimentally determined among the expressed genes. Results TrueQuant findings showed that 1400 sRNAs were differentially expressed in the FFPE tissue of two Kurdish cases with BC, as compared to NAT. Among the sRNAs, 29 small RNAs were shown to be significantly downregulated in BC cells. The RT-qPCR results confirmed that miR-1275 was significantly down-expressed in 20 Kurdish cases with BC compared to NAT. However, Overall survival (OS) analysis revealed that the correlation between the expression level of miR-1275 and clinical significance was highly corrected in cases with BC (OS rate: P = 0.0401). The MACE-seq results revealed that 26,843 genes were differentially expressed in the BC tissue compared to NAT, but 7041 genes were displayed in a scatter plot. Furthermore, putative target genes (DVL3, PPP2R2D, THSD4, CREB1, SYT7, and PRKACA) were computationally identified as direct targets of miR-1275 in several target predicted sites. The MACE-seq results revealed that the expression level of these targets was increased in BC tissue compared to NAT. The level of these targets was negatively associated with miR-1275 expression. Finally, the role of down-regulated miR-1275 on its targets in biological mechanisms of BC cells was identified; including cell growth, proliferation, movement, invasion, metastasis, and apoptosis. Conclusion Down-expressed miR-1275, a tumor suppressor, is a novel biomarker for early detection of BC. DVL3, PPP2R2D, THSD4, CREB1, SYT7, and PRKACA are newly identified to be targeted by miR-1275.
Collapse
Affiliation(s)
- Sevan Omer Majed
- Biology Department, College of Education, Salahaddin University-Erbil, Erbil, Iraq.
| | - Suhad Asad Mustafa
- Research Center, Molecular Genetics lab, Salahaddin University-Erbil, Erbil, Iraq
| |
Collapse
|
12
|
Ghafouri-Fard S, Abak A, Mohaqiq M, Shoorei H, Taheri M. The Interplay Between Non-coding RNAs and Insulin-Like Growth Factor Signaling in the Pathogenesis of Neoplasia. Front Cell Dev Biol 2021; 9:634512. [PMID: 33768092 PMCID: PMC7985092 DOI: 10.3389/fcell.2021.634512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The insulin-like growth factors (IGFs) are polypeptides with similar sequences with insulin. These factors regulate cell growth, development, maturation, and aging via different processes including the interplay with MAPK, Akt, and PI3K. IGF signaling participates in the pathogenesis of neoplasia, insulin resistance, diabetes mellitus, polycystic ovarian syndrome, cerebral ischemic injury, fatty liver disease, and several other conditions. Recent investigations have demonstrated the interplay between non-coding RNAs and IGF signaling. This interplay has fundamental roles in the development of the mentioned disorders. We designed the current study to search the available data about the role of IGF-associated non-coding RNAs in the evolution of neoplasia and other conditions. As novel therapeutic strategies have been designed for modification of IGF signaling, identification of the impact of non-coding RNAs in this pathway is necessary for the prediction of response to these modalities.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mohaqiq
- School of Advancement, Centennial College, Ashtonbee Campus, Toronto, ON, Canada
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Biranjd University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Seol HS, Akiyama Y, Lee SE, Shimada S, Jang SJ. Loss of miR-100 and miR-125b results in cancer stem cell properties through IGF2 upregulation in hepatocellular carcinoma. Sci Rep 2020; 10:21412. [PMID: 33293585 PMCID: PMC7722933 DOI: 10.1038/s41598-020-77960-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022] Open
Abstract
Stemness factors control microRNA expression in cancer stem cells. Downregulation of miR-100 and miR-125b is associated with tumor progression and prognosis of various cancers. Comparing miRNA profiling of patient-derived tumorsphere (TS) and adherent (2D) hepatocellular carcinoma cells, miR-100 and miR-125b are identified to have association with stemness. In TS cells, miR-100 and miR-125b were downregulated comparing to 2D cells. The finding was reproduced in Hep3B cells. Overexpression of stemness factors NANOG, OCT4 and SOX2 by introduction of gene constructs in Hep3B cells suppressed these two miRNA expression levels. Treatment of chromeceptin, an IGF signaling pathway inhibitor, decreased numbers of TS and inhibited the AKT/mTOR pathway. Stable cell line of miR-100 and miR-125b overexpression decreased IGF2 expression and inhibited tumor growth in the xenograft model. In conclusion, miR-100 and miR-125b have tumor suppressor role in hepatocellular carcinoma through inhibiting IGF2 expression and activation of the AKT/mTOR pathway.
Collapse
Affiliation(s)
- Hyang Sook Seol
- Asan Institute for Life Science, Asan Medical Center, Seoul, 05505, South Korea.
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - San-Eun Lee
- Asan Institute for Life Science, Asan Medical Center, Seoul, 05505, South Korea
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Se Jin Jang
- Asan Institute for Life Science, Asan Medical Center, Seoul, 05505, South Korea. .,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 05505, Seoul, South Korea.
| |
Collapse
|
14
|
Eniafe J, Jiang S. MicroRNA-99 family in cancer and immunity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1635. [PMID: 33230974 DOI: 10.1002/wrna.1635] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022]
Abstract
The microRNA (miR)-99 family comprising miR-99a, miR-99b, and miR-100 is an evolutionarily conserved family with existence dating prior to the bilaterians. Members are typically oncogenic in leukemia while their functional roles in other cancers alternate between that of a tumor suppressor and a tumor promoter. Targets of the miR-99 family rank in the lists of oncogenes and tumor suppressors, thereby illustrating the dual role of this miR family as oncogenic miRs (oncomiRs) and tumor suppressing miRs (TSmiRs) in different cellular contexts. In addition to their functional roles in cancers, miR-99 family is implicated in the modulation of macrophage inflammatory responses and T-cell subsets biology, thereby exerting critical roles in the maintenance of tissue homeostasis, establishment of peripheral tolerance as well as resolution of an inflammatory reaction. Here, we review emerging knowledge of this miR family and discuss remaining concerns linked to their activities. A better dissection of the functional roles of miR-99 family members in cancer and immunity will help in the development of novel miR-99-based therapeutics for the treatment of human cancer and immune-related diseases. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Joseph Eniafe
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Shuai Jiang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
15
|
The CXCR4-Dependent LASP1-Ago2 Interaction in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12092455. [PMID: 32872485 PMCID: PMC7564666 DOI: 10.3390/cancers12092455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022] Open
Abstract
The CXCR4-LASP1 axis is an emerging target in the field of breast cancer metastasis. C-X-C chemokine receptor type 4 (CXCR4) mediates directed cell migration when activated by its cognate ligand CXCL12. LIM and SH3 Protein 1 (LASP1) is a critical node in the CXCR4 signaling pathway, as its deficiency blocks CXCR4-dependent Matrigel invasion. The mechanism by which LASP1 facilitates this invasive ability of tumor cells when CXCR4 is activated is unknown. Our previous proteomics work had revealed several components of the RNA interference (RNAi) machinery as being potential LASP1 interacting proteins. Here we report that argonaute 2 (Ago2), a protein with central involvement in RNAi, associates with LASP1 in triple-negative breast cancer (TNBC) cells. We demonstrate that LASP1 co-immunoprecipitates with Ago2 endogenously in a CXCL12-dependent manner, with further confirmation of this interaction by proximity ligation assay. Furthermore, this association is specific to CXCR4 as it can be abrogated by the CXCR4 antagonist, AMD3465. By GST-pulldown approach, we identify that LASP1 directly binds to Ago2 through its LIM and SH3 domains, and that this binding is dictated by the S146 and Y171 phosphorylation sites of LASP1. Additionally, the phosphorylation status of LASP1 affected tumor suppressor microRNA (miRNA) Let-7a-guided Ago2 activity. Levels of several endogenous targets of Let-7a were found to be altered including C-C chemokine receptor type 7 (CCR7), which is another critical chemokine receptor involved in metastasis to lymph nodes. Our results suggest a novel role for the LASP1-Ago2 module in shaping the RNAi landscape, functionally impacting the invasive ability of cancer cells.
Collapse
|
16
|
Yang N, Dong B, Song Y, Li Y, Kou L, Yang J, Qin Q. Downregulation of miR-637 promotes vascular smooth muscle cell proliferation and migration via regulation of insulin-like growth factor-2. Cell Mol Biol Lett 2020; 25:30. [PMID: 32399056 PMCID: PMC7203897 DOI: 10.1186/s11658-020-00222-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/13/2020] [Indexed: 02/08/2023] Open
Abstract
Background Dysregulation of the proliferation and migration of vascular smooth muscle cells (VSMCs) is a crucial cause of atherosclerosis. MiR-637 exerts an antiproliferative effect on multiple human cells. Its impact on atherosclerosis remains largely unexplored. Methods Real-time PCR was used to determine miR-637 expression in samples from atherosclerosis patients and animal models. Its expression in VSMC dysfunction models (induced by ox-LDL) was also measured. The proliferation and migration of VSMCs were respectively tested using CCK-8 and Transwell assays, and apoptosis was measured using flow cytometry. The Targetscan database was used to predict the target genes of miR-637. Interaction between miR-637 and the potential target gene was validated via real-time PCR, western blotting and a luciferase reporter assay. Results MiR-637 expression was significantly lower in atherosclerosis patient and animal model samples. It also decreased in a dose- and time-dependent manner in animal models with ox-LDL-induced atherosclerosis. Transfection with miR-637 mimics suppressed the proliferation and migration of VSMCs while promoting apoptosis, while transfection with miR-637 inhibitors had the opposite effects. We also validated that insulin-like growth factor-2 (IGF-2), a crucial factor in the pathogenesis of atherosclerosis, serves as a target gene for miR-637. Conclusion MiR-637 targeting IGF-2 contributes to atherosclerosis inhibition and could be a potential target for this disease.
Collapse
Affiliation(s)
- Ning Yang
- Department of Cardiology, Tianjin Chest hospital, Taierzhuang South Road No.261, Jinnan District, Tianjin, 300222 China
| | - Bo Dong
- Department of Cardiology, Tianjin Chest hospital, Taierzhuang South Road No.261, Jinnan District, Tianjin, 300222 China
| | - Yanqiu Song
- Department of Cardiology, Tianjin Chest hospital, Taierzhuang South Road No.261, Jinnan District, Tianjin, 300222 China
| | - Yang Li
- Department of Cardiology, Tianjin Chest hospital, Taierzhuang South Road No.261, Jinnan District, Tianjin, 300222 China
| | - Lu Kou
- Department of Cardiology, Tianjin Chest hospital, Taierzhuang South Road No.261, Jinnan District, Tianjin, 300222 China
| | - Jingyu Yang
- Department of Cardiology, Tianjin Chest hospital, Taierzhuang South Road No.261, Jinnan District, Tianjin, 300222 China
| | - Qin Qin
- Department of Cardiology, Tianjin Chest hospital, Taierzhuang South Road No.261, Jinnan District, Tianjin, 300222 China
| |
Collapse
|
17
|
Takebayashi K, Nasu K, Okamoto M, Aoyagi Y, Hirakawa T, Narahara H. hsa-miR-100-5p, an overexpressed miRNA in human ovarian endometriotic stromal cells, promotes invasion through attenuation of SMARCD1 expression. Reprod Biol Endocrinol 2020; 18:31. [PMID: 32299427 PMCID: PMC7161200 DOI: 10.1186/s12958-020-00590-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/13/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND A number of microRNAs are aberrantly expressed in endometriosis and are involved in its pathogenesis. Our previous study demonstrated that has-miR-100-5p expression is enhanced in human endometriotic cyst stromal cells (ECSCs). The present study aimed to elucidate the roles of has-miR-100-5p in the pathogenesis of endometriosis. METHODS Normal endometrial stromal cells (NESCs) were isolated from normal eutopic endometrium without endometriosis. Using hsa-miR-100-5p-transfected NESCs, we evaluated the effect of hsa-miR-100-5p on the invasiveness of these cells by Transwell invasion assay and in-vitro wound repair assay. We also investigated the downstream signal pathways of hsa-miR-100-5p by microarray analysis and Ingenuity pathways analysis. RESULTS hsa-miR-100-5p transfection enhanced the invasion and motility of NESCs. After hsa-miR-100-5p transfection, mRNA expression of SWItch/sucrose non-fermentable-related matrix-associated actin-dependent regulator of chromatin subfamily D member 1 (SMARCD1) was significantly attenuated. Whereas, the expression of matrix metallopeptidase 1 (MMP1) mRNA and active MMP1 protein levels was upregulated. CONCLUSION We found that SMARCD1/MMP-1 is a downstream pathway of hsa-miR-100-5p. hsa-miR-100-5p transfection enhanced the motility of NESCs by inhibiting SMARCD1 expression and MMP1 activation. These findings suggest that enhanced hsa-miR-100-5p expression in endometriosis is involved in promoting the acquisition of endometriosis-specific characteristics during endometriosis development. Our present findings on the roles of hsa-miR-100-5p may thus contribute to understand the epigenetic mechanisms involved in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Kanetoshi Takebayashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Kaei Nasu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan.
- Division of Obstetrics and Gynecology, Support System for Community Medicine, Faculty of Medicine, Oita University, Oita, Japan.
| | - Mamiko Okamoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Yoko Aoyagi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Tomoko Hirakawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Hisashi Narahara
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| |
Collapse
|
18
|
Tfaily MA, Nassar F, Sellam LS, Amir-Tidadini ZC, Asselah F, Bourouba M, Rihab N. miRNA expression in advanced Algerian breast cancer tissues. PLoS One 2020; 15:e0227928. [PMID: 32040529 PMCID: PMC7010257 DOI: 10.1371/journal.pone.0227928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/02/2020] [Indexed: 11/18/2022] Open
Abstract
Breast cancer is one of the commonest cancers among Algerian females. Compared to Western populations, the median age of diagnosis of breast cancer is much lower in Algeria. The objective of this study is to explore the expression of several miRNAs reported to be deregulated in breast cancer. The miRNAs miR-21, miR-125b, miR-100, miR-425-5p, miR-200c, miR-183 and miR-182 were studied on tumor and normal adjacent Algerian breast tissues using quantitative reverse transcription real time PCR, and the results were analyzed according to clinical characteristics. Compared to the normal adjacent tissues, miR-21, miR-183, miR-182, miR-425-5p and miR-200c were found to be upregulated while miR-100 and miR-125b were insignificantly deregulated. A positive correlation was noted among miR-183, miR-182 and miR-200c and among miR-425-5p, miR-183, miR-200c and miR-21. Further global miRNA microarray profiling studies can aid in finding ethnic specific miRNA biomarkers in the Algerian breast cancer population.
Collapse
Affiliation(s)
- Mohamad Ali Tfaily
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Nassar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Leila-Sarah Sellam
- Department of Cell and Molecular Biology, Team Cytokines and Nitric oxide synthases, Faculty of Biology, University of Sciences and Technology Houari Boumediene USTHB, Algiers, Algeria
| | | | - Fatima Asselah
- Central Laboratory for Anatomopathology, Mustapha Pacha Hospital, Algiers, Algeria
| | - Mehdi Bourouba
- Department of Cell and Molecular Biology, Team Cytokines and Nitric oxide synthases, Faculty of Biology, University of Sciences and Technology Houari Boumediene USTHB, Algiers, Algeria
- * E-mail: (RN); (MB)
| | - Nasr Rihab
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- * E-mail: (RN); (MB)
| |
Collapse
|
19
|
He W, Huang Y, Jiang CC, Zhu Y, Wang L, Zhang W, Huang W, Zhou T, Tang S. miR-100 Inhibits Cell Growth and Proliferation by Targeting HOXA1 in Nasopharyngeal Carcinoma. Onco Targets Ther 2020; 13:593-602. [PMID: 32021301 PMCID: PMC6980857 DOI: 10.2147/ott.s228783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/21/2019] [Indexed: 01/08/2023] Open
Abstract
Background Increasing evidence indicates that the dysregulation of miRNAs plays a vital role in tumorigenesis and progression of nasopharyngeal carcinoma (NPC). Thus, it is necessary to further investigate the function and mechanism of miRNAs in NPC. Methods miR-100 expression was analyzed using publicly available databases and then tested using quantitative RT-PCR in NPC tissues and cell lines. MTT and colony formation assays and xenograft tumor model were used to test the NPC cell growth and proliferation abilities while modulating miR-100 expression. The target of miR-100 was predicted with TargetScan and validated with luciferase reporter assay, quantitative RT-PCR, and Western blot. Results The expression of miR-100 was significantly reduced in NPC tissues and cell lines. Overexpression of miR-100 obviously suppressed NPC cell growth and proliferation, whereas silencing miR-100 promoted NPC cell growth and proliferation in vitro. HOXA1 (homeobox A1) was validated as a direct target of miR-100, and restoring HOXA1 expression could reverse the inhibitive effect of miR-100 on NPC cell growth and proliferation. The mRNA and protein expression of HOXA1 was increased in NPC cell lines. Furthermore, ectopic expression of miR-100 inhibited xenograft tumor growth in vivo. Conclusion Taken together, our findings suggest that miR-100 could suppress NPC growth and proliferation through targeting HOXA1, providing a novel target for the miRNA-mediated therapy for patients with NPC in the future.
Collapse
Affiliation(s)
- Weifeng He
- Department of Oncology, Brain Hospital of Hunan Province, Changsha 410007, Hunan Province, People's Republic of China
| | - Yun Huang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, People's Republic of China
| | - Cheng Chuan Jiang
- Department of Oncology, Brain Hospital of Hunan Province, Changsha 410007, Hunan Province, People's Republic of China
| | - Yuan Zhu
- People's Hospital of Changshou Chongqing, Chongqing 401220, People's Republic of China
| | - Ling Wang
- Yi Chang Central People's Hospital, Yichang 443000, Hubei Province, People's Republic of China
| | - Weiwei Zhang
- Department of Oncology, Brain Hospital of Hunan Province, Changsha 410007, Hunan Province, People's Republic of China
| | - Weiguo Huang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, People's Republic of China
| | - Ting Zhou
- Department of Oncology, Brain Hospital of Hunan Province, Changsha 410007, Hunan Province, People's Republic of China.,Department of Clinical Pharmacy, College of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, People's Republic of China
| | - Sanyuan Tang
- Department of Oncology, Brain Hospital of Hunan Province, Changsha 410007, Hunan Province, People's Republic of China
| |
Collapse
|
20
|
Dastmalchi N, Safaralizadeh R, Baradaran B, Hosseinpourfeizi M, Baghbanzadeh A. An update review of deregulated tumor suppressive microRNAs and their contribution in various molecular subtypes of breast cancer. Gene 2019; 729:144301. [PMID: 31884105 DOI: 10.1016/j.gene.2019.144301] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Breast cancer (BC) is histologically classified into hormone-receptor+ (ER+, PR + ), human epidermal growth factor receptor-2+ (Her2 + ), and triple-negative breast cancer (TNBC) types. The important contribution of tumor-suppressive (TS) microRNAs (miRs) in BC development and treatment have been well-acknowledged in the literature. OBJECTIVE The present review focused on the contribution of recently examined TS miRs in the progression and treatment of various histological subtypes of BC. RESULTS In summary, various miRs have tumor-suppressive roles in BC, so that their aberrant expression leads to the abnormality in the cellular processes such as enhanced cell growth, decreased apoptosis, cell migration and metastasis, and decreased sensitivity to chemotherapy through deregulated expression of oncogene targets of TS miRs. CONCLUSION TS miRs could be regarded as a proper molecular target for target therapy of BC. However, further in vitro and in vivo investigations are required to confirm the exact molecular functions of TS miRs in BC cells to offer more efficient targeted therapies.
Collapse
Affiliation(s)
- Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Abolghasemi M, Tehrani SS, Yousefi T, Karimian A, Mahmoodpoor A, Ghamari A, Jadidi-Niaragh F, Yousefi M, Kafil HS, Bastami M, Edalati M, Eyvazi S, Naghizadeh M, Targhazeh N, Yousefi B, Safa A, Majidinia M, Rameshknia V. MicroRNAs in breast cancer: Roles, functions, and mechanism of actions. J Cell Physiol 2019; 235:5008-5029. [PMID: 31724738 DOI: 10.1002/jcp.29396] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022]
Abstract
Breast cancer is one of the most lethal malignancies in women in the world. Various factors are involved in the development and promotion of the malignancy; most of them involve changes in the expression of certain genes, such as microRNAs (miRNAs). MiRNAs can regulate signaling pathways negatively or positively, thereby affecting tumorigenesis and various aspects of cancer progression, particularly breast cancer. Besides, accumulating data demonstrated that miRNAs are a novel tool for prognosis and diagnosis of breast cancer patients. Herein, we will review the roles of these RNA molecules in several important signaling pathways, such as transforming growth factor, Wnt, Notch, nuclear factor-κ B, phosphoinositide-3-kinase/Akt, and extracellular-signal-regulated kinase/mitogen activated protein kinase signaling pathways in breast cancer.
Collapse
Affiliation(s)
- Maryam Abolghasemi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Sadra Samavarchi Tehrani
- Departmant of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ata Mahmoodpoor
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Ghamari
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Edalati
- Department of Laboratory Sciences, Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Naghizadeh
- Departmant of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Babol University Of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Rameshknia
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
22
|
Expression analysis of miR-100 and selected genes from mTOR pathway in breast cancer patients. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
23
|
De Vincenzo A, Belli S, Franco P, Telesca M, Iaccarino I, Botti G, Carriero MV, Ranson M, Stoppelli MP. Paracrine recruitment and activation of fibroblasts by c-Myc expressing breast epithelial cells through the IGFs/IGF-1R axis. Int J Cancer 2019; 145:2827-2839. [PMID: 31381136 DOI: 10.1002/ijc.32613] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 06/26/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022]
Abstract
Fibroblasts are among the most abundant stromal cells in the tumor microenvironment (TME), progressively differentiating into activated, motile, myofibroblast-like, protumorigenic cells referred to as Cancer-Associated Fibroblasts (CAFs). To investigate the mechanisms by which epithelial cells direct this transition, the early stages of tumorigenesis were exemplified by indirect cocultures of WI-38 or human primary breast cancer fibroblasts with human mammary epithelial cells expressing an inducible c-Myc oncogene (MCF10A-MycER). After c-Myc activation, the conditioned medium (CM) of MCF10A-MycER cells significantly enhanced fibroblast activation and mobilization. As this was accompanied by decreased insulin-like growth factor binding protein-6 (IGFBP-6) and increased insulin-like growth factor-1 and IGF-II (IGF-I, IGF-II) in the CM, IGFs were investigated as key chemotactic factors. Silencing IGFBP-6 or IGF-I or IGF-II expression in epithelial cells or blocking Insulin-like growth factor 1 receptor (IGF-1R) activity on fibroblasts significantly altered fibroblast mobilization. Exposure of WI-38 fibroblasts to CM from induced MCF10A-MycER cells or to IGF-II upregulated FAK phosphorylation on Tyr397 , as well as the expression of α-smooth muscle actin (α-SMA), features associated with CAF phenotype and increased cell migratory/invasive behavior. In three-dimensional (3D)-organotypic assays, WI-38 or human primary fibroblasts, preactivated with either CM from MCF10A-MycER cells or IGFs, resulted in a permissive TME that enabled nontransformed MCF10A matrix invasion. This effect was abolished by inhibiting IGF-1R activity. Thus, breast epithelial cell oncogenic activation and stromal fibroblast transition to CAFs are linked through the IGFs/IGF-1R axis, which directly promotes TME remodeling and increases tumor invasion.
Collapse
Affiliation(s)
- Anna De Vincenzo
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council, Naples, Italy
| | - Stefania Belli
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council, Naples, Italy
| | - Paola Franco
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council, Naples, Italy
| | - Marialucia Telesca
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council, Naples, Italy
| | - Ingram Iaccarino
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council, Naples, Italy.,Hematopathology Section, University Hospital Schleswig-Holstein Campus Kiel, Christian-Albrechts University, Kiel, Germany
| | - Gerardo Botti
- Pathology Unit, IRCCS National Cancer Institute "Fondazione G. Pascale", Naples, Italy
| | - Maria V Carriero
- Department of Experimental Oncology, IRCCS National Cancer Institute "Fondazione G. Pascale", Naples, Italy
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Maria Patrizia Stoppelli
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council, Naples, Italy
| |
Collapse
|
24
|
Yang D, Tang S, Yang Y, Yang F, Jiang W, Liu Y, Zhang F, Fang H, Wang S, Zhang Y. Generation and Validation of miR-100 Hepatocyte-Specific Knock-Out Mice. Front Oncol 2019; 9:535. [PMID: 31293973 PMCID: PMC6606737 DOI: 10.3389/fonc.2019.00535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Inactivation of microRNA-100 (miR-100) is involved in hepatocellular carcinoma (HCC) and miR-100 behaves as a tumor suppressor. To understand miR-100 function in HCC genesis and development in vivo, we developed hepatocyte-specific miR-100 deficient mice. Methods: Mice homozygous for floxed miR-100 allele that carried the Alb-Cre transgene (miR-100flox/floxAlb -Cre+) were developed by mating miR-100flox/flox mice with Alb-Cre+/+mice. The mice tails DNA were genotyped using the primers for LoxP sites and Cre recombinase, respectively. The specific deletion of miR-100 in the livers was verified by quantitative Real-time PCR (qRT-PCR). HE-staining was performed for histology analysis. Liver function was assessed by transaminase activity. The metabolic profiles of the hepatocytes were detected using a Seahorse XFe24 extracellular flux analyzer. The direct targets of miR-100 (such as IGF1R-β, mTOR and CDC25A) and HCC related protein (SHP-2) were detected by qRT-PCR and Western blot in liver tissues. Results: The resultant homozygous knockout mice with genotype of miR-100flox/flox-Alb-Cre+ showed an 80% decrease in hepatic miR-100 expression. In adult mice, miR-100 knockout has no effect on the liver function and morphology. In aged mice, HE staining showed that miR-100 knockout caused infiltration of inflammatory cells and expansion of hepatocellular nuclei. Consistently, liver function was impaired in miR-100 knockout aged mice as indicated by increased serum AST and ALT levels. The metabolic analysis demonstrated that the miR-100 knockout hepatocytes tend to adopt glycolysis. The expressions of the miR-100 target genes, such as IGF1R-β, CDC25A and mTOR, were increased. In addition, the known HCC related protein, SHP-2 also was up-regulated in the knockout livers. Conclusions: We successfully generated a miR-100 hepatocyte-specific knock-out mouse model. The malignant transformation related to HCC were observed in aged mice. Therefore, this model is suitable for investigating the mechanism of miR-100 inactivation contributing to HCC genesis in vivo.
Collapse
Affiliation(s)
- Dong Yang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Sai Tang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yan Yang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Fan Yang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Wengang Jiang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yakun Liu
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Fengyun Zhang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Haoshu Fang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Siying Wang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yuxia Zhang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Wu J, Kuang L, Chen C, Yang J, Zeng WN, Li T, Chen H, Huang S, Fu Z, Li J, Liu R, Ni Z, Chen L, Yang L. miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials 2019; 206:87-100. [PMID: 30927715 DOI: 10.1016/j.biomaterials.2019.03.022] [Citation(s) in RCA: 383] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/12/2019] [Accepted: 03/16/2019] [Indexed: 12/17/2022]
Abstract
Osteoarthritis (OA) is the most common disabling joint disease throughout the world and its therapeutic effect is still not satisfactory in clinic nowadays. Recent studies showed that the exosomes derived from several types of mesenchymal stem cells (MSCs) could maintain chondrocyte homeostasis and ameliorate the pathological severity of OA in animal models, indicating that MSCs-derived exosomes could be a novel promising strategy for treating OA. In this study, we investigated the role and underlying mechanisms of infrapatellar fat pad (IPFP) MSCs-derived exosomes (MSCIPFP-Exos) on OA in vitro and in vivo. Our data revealed that MSCIPFP could produce amounts of MSCIPFP-Exos, which exhibited the typical morphological features of exosomes. The MSCIPFP-Exos ameliorated the OA severity in vivo and inhibited cell apoptosis, enhanced matrix synthesis and reduced the expression of catabolic factor in vitro. Moreover, MSCIPFP-Exos could significantly enhance autophagy level in chondrocytes partially via mTOR inhibition. Exosomal RNA-seq showed that the level of miR-100-5p that could bind to the 3'-untranslated region (3'UTR) of mTOR was the highest among microRNAs. MSCIPFP-Exos decreased the luciferase activity of mTOR 3'UTR, while inhibition of miR-100-5p could reverse the MSCIPFP-Exos-decreased mTOR signaling pathway. Intra-articular injection of antagomir-miR-100-5p dramatically attenuated MSCIPFP-Exos-mediated protective effect on articular cartilage in vivo. In brief, MSCIPFP-derived exosomes protect articular cartilage from damage and ameliorate gait abnormality in OA mice by maintaining cartilage homeostasis, the mechanism of which may be related to miR100-5p-regulated inhibition of mTOR-autophagy pathway. As it is relatively feasible to obtain human IPFP from OA patients by arthroscopic operation in clinic, MSCIPFP-derived exosomes may be a potential therapy for OA in the future.
Collapse
Affiliation(s)
- Jiangyi Wu
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Liang Kuang
- Center of Bone Metabolism and Repair (CBMR), Trauma Center State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Junjun Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wei-Nan Zeng
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Tao Li
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Hao Chen
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Shu Huang
- Department of Orthopedics, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiamiao Li
- Department of Orthopedics, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Renfeng Liu
- Department of Orthopedics, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Zhenhong Ni
- Center of Bone Metabolism and Repair (CBMR), Trauma Center State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Lin Chen
- Center of Bone Metabolism and Repair (CBMR), Trauma Center State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
26
|
Lu L, Cai M, Peng M, Wang F, Zhai X. miR-491-5p functions as a tumor suppressor by targeting IGF2 in colorectal cancer. Cancer Manag Res 2019; 11:1805-1816. [PMID: 30863186 PMCID: PMC6391127 DOI: 10.2147/cmar.s183085] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Dysregulation of miRNAs is critically implicated in tumorigenesis, and aberrant expression of miR-491-5p has been reported to play a key role in initiation and progression of various cancers. However, the biological function and underlying mechanism of miR-491-5p in colorectal cancer (CRC) remain elusive. Methods Quantitative real-time PCR (qRT-PCR) was employed to evaluate the levels of miR-491-5p and IGF2 mRNA expression in CRC tissues, cell lines and plasma. Cell counting kit-8 and colony formation assays were used to detect the effects of miR-491-5p on CRC cell growth. Luciferase reporter assays were applied to confirm the miR-491-5p target gene. In vivo experiments were conducted in nude mice. Results miR-491-5p was found to be obviously downregulated in CRC tissues and cell lines, and decreased miR-491-5p expression level was shown to be associated with differentiation, TNM stage and poor overall survival (OS). miR-491-5p overexpression suppressed CRC cell proliferation both in vitro and in vivo. Mechanically, insulin-like growth factor 2 (IGF2) was identified to be a direct target of miR-491-5p in CRC cells, and overexpression of IGF2 rescued the miR-491-5p-induced suppression of proliferation in CRC cells. Finally, we demonstrated that plasma miR-491-5p expression was decreased in CRC when compared to healthy controls and might be an effective diagnostic biomarker for CRC. Conclusion These data showed that miR-491-5p functioned as a tumor suppressor by targeting IGF2 in CRC, and miR-491-5p could serve as a potential diagnostic and prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Lei Lu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China,
| | - Ming Cai
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China,
| | - Meixia Peng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China,
| | - Fei Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China,
| | - Xiaofeng Zhai
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China,
| |
Collapse
|
27
|
Zhang H, Wang J, Wang Z, Ruan C, Wang L, Guo H. Serum miR-100 is a potential biomarker for detection and outcome prediction of glioblastoma patients. Cancer Biomark 2019; 24:43-49. [PMID: 30530966 DOI: 10.3233/cbm-181416] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Huiping Zhang
- Department of Neurology, Baoji Hi-Tech People’s Hospital, Baoji, Shaanxi 721000, China
| | - Jianfeng Wang
- Department of Neurology, Shaanxi Nuclear Industry 215 Hospital, Xianyang, Shaanxi 712000, China
| | - Zhanying Wang
- Department of Neurology, Xianyang Hospital of Yan’an University, Xianyang, Shaanxi 712000, China
| | - Cailian Ruan
- Medical College, Yan’an University, Yan’an, Shaanxi 716000, China
| | - Lu Wang
- Medical College, Yan’an University, Yan’an, Shaanxi 716000, China
| | - Hongtao Guo
- College of Physical Education, Yan’an University, Yan’an, Shaanxi 716000, China
| |
Collapse
|
28
|
Wang W, Liu Y, Guo J, He H, Mi X, Chen C, Xie J, Wang S, Wu P, Cao F, Bai L, Si Q, Xiang R, Luo Y. miR-100 maintains phenotype of tumor-associated macrophages by targeting mTOR to promote tumor metastasis via Stat5a/IL-1ra pathway in mouse breast cancer. Oncogenesis 2018; 7:97. [PMID: 30563983 PMCID: PMC6299090 DOI: 10.1038/s41389-018-0106-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/09/2018] [Accepted: 11/26/2018] [Indexed: 01/10/2023] Open
Abstract
Tumor-associated macrophages (TAMs), the main part of immune cells in tumor microenvironment (TME), play a potent role in promoting tumorigenesis through mechanisms such as stimulating angiogenesis, enhancing tumor migration and suppressing antitumor immunity. MicroRNAs (miRNAs) are considered as crucial regulators in multiple biological processes. The relationship between miRNAs and macrophages function has been extensively reported, but the roles that miRNAs play in regulating TAMs phenotype remain unclear. In this study, we screened highly expressed microRNAs in TAMs, and first identified that miR-100 represented a TAMs-high expression pattern and maintained TAMs phenotype by targeting mTOR signaling pathway. Moreover, miR-100 expression level in TAMs was positively related to IL-1ra secretion, a traditional immune-suppressive cytokine, which was determined to promote tumor cells stemness via stimulating Hedgehog pathway. Mechanism study suggested that mTOR/Stat5a pathway was involved in IL-1ra transcriptional regulation process mediated by miR-100. More importantly, tumor metastasis and invasion capacity were significantly decreased in a 4T1 mouse breast cancer model injected intratumorally with miR-100 antagomir, and combination therapy with cisplatin showed much better benefit. In this study, we confirm that highly expressed miR-100 maintains the phenotype of TAMs and promotes tumor metastasis via enhancing IL-1ra secretion. Interfering miR-100 expression of TAMs in mouse breast cancer model could inhibit TAMs pro-tumor function and reduce tumor metastasis, which suggests that miR-100 could serve as a potential therapy target to remodel tumor microenvironment in breast cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Yan Liu
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Jian Guo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Huiwen He
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Xue Mi
- Department of Immunology, Medical School of Nankai University, 300071, Tianjin, China
| | - Chong Chen
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Junling Xie
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Shengnan Wang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Peng Wu
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Fengqi Cao
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Lipeng Bai
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Qin Si
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Rong Xiang
- Department of Immunology, Medical School of Nankai University, 300071, Tianjin, China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China. .,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.
| |
Collapse
|
29
|
Rapa I, Votta A, Gatti G, Izzo S, Buono NL, Giorgio E, Vatrano S, Napoli F, Scarpa A, Scagliotti G, Papotti M, Volante M. High miR-100 expression is associated with aggressive features and modulates TORC1 complex activation in lung carcinoids. Oncotarget 2018; 9:27535-27546. [PMID: 29938004 PMCID: PMC6007959 DOI: 10.18632/oncotarget.25541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Mammalian target of rapamycin (mTOR) is a promising therapeutic target in advanced lung carcinoid patients. However, the mechanisms of mTOR modulation and of responsiveness to mTOR inhibitors are largely unclear. Our aim was to analyze the expression and functional role of specific miRNAs in lung carcinoids as an alternative mechanism targeting mTOR pathway. EXPERIMENTAL DESIGN Seven miRNAs, selected by bioinformatic tools and literature search, were analyzed in 142 lung neuroendocrine neoplasms (92 carcinoids and a control group of 50 high grade neuroendocrine carcinomas), and compared with mTOR mRNA expression and clinical/pathological parameters. Tissue results were validated in vitro in two lung carcinoid cell lines by specific RNA interference and biological/pharmacological tests. RESULTS Tissutal expression of five miRNAs (miR-99b, miR-100, miR-155, miR-193a-3p, miR-193a-5p) was inversely correlated with mTOR mRNA expression, supporting their role in the negative regulation of mTOR transcription. High expression of miR-100, miR-193a-3p and miR-193a-5p was associated with aggressive features and, for the former two, with shorter time to progression. In H727 and UMC11 lung carcinoid cells, miR-100 modulated mTOR RNA and TORC1 complex protein expression, positively promoted cell migration and negatively influenced cell proliferation. Moreover, miR-100 directly influenced responsiveness of H727 and UMC11 cells to rapamycin. CONCLUSIONS MiR-100 actively participates to the regulation of mTOR expression in lung carcinoids and represents a novel candidate prognostic biomarker for this tumor type; moreover, inhibition of its expression is associated to increased responsiveness to mTOR inhibitors and might represent a novel strategy to sensitize lung carcinoids to these target agents.
Collapse
Affiliation(s)
- Ida Rapa
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Arianna Votta
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Gaia Gatti
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Stefania Izzo
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Nicola Lo Buono
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elisa Giorgio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Simona Vatrano
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Francesca Napoli
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Aldo Scarpa
- ARC-NET Applied Research on Cancer Centre at Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Giorgio Scagliotti
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Mauro Papotti
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Marco Volante
- Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| |
Collapse
|
30
|
Protein arginine methyltransferase 5 promotes lung cancer metastasis via the epigenetic regulation of miR-99 family/FGFR3 signaling. Cancer Lett 2018; 427:38-48. [PMID: 29679612 DOI: 10.1016/j.canlet.2018.04.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 01/02/2023]
Abstract
Protein arginine methyltransferase 5 (PRMT5) functions as a tumor initiator to regulate several cancer progressions, such as proliferation and apoptosis, by catalyzing the symmetrical dimethylation (me2s) of arginine residues within targeted molecules. However, the exact role of PRMT5-mediated metastasis in lung cancer is not fully understood. Here, we illustrated its potential effects in lung cancer metastasis in vivo and vitro. PRMT5 was frequently overexpressed in lung tumors, and its expression was positively related to tumor stages, lymphatic metastasis and poor outcome. In this model, PRMT5 repressed the transcription of the miR-99 family by symmetrical dimethylation of histone H4R3, which increased FGFR3 expression and in turn activated Erk1/2 and Akt, leading to cell growth and metastasis in lung cancer. Furthermore, loss of PRMT5 exerted anti-metastasis effects on lung cancer progression by blocking histone-modification of miR-99 family. Overall, this study provides new insights into the PRMT5/miR-99 family/FGFR3 axis in regulating lung cancer progression and identifies PRMT5 as a promising prognostic biomarker and therapeutic target.
Collapse
|
31
|
Comparative transcriptome analysis to investigate the potential role of miRNAs in milk protein/fat quality. Sci Rep 2018; 8:6250. [PMID: 29674689 PMCID: PMC5908868 DOI: 10.1038/s41598-018-24727-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/14/2018] [Indexed: 01/06/2023] Open
Abstract
miRNAs play an important role in the processes of cell differentiation, biological development, and physiology. Here we investigated the molecular mechanisms regulating milk secretion and quality in dairy cows via transcriptome analyses of mammary gland tissues from dairy cows during the high-protein/high-fat, low-protein/low-fat or dry periods. To characterize the important roles of miRNAs and mRNAs in milk quality and to elucidate their regulatory networks in relation to milk secretion and quality, an integrated analysis was performed. A total of 25 core miRNAs were found to be differentially expressed (DE) during lactation compared to non-lactation, and these miRNAs were involved in epithelial cell terminal differentiation and mammary gland development. In addition, comprehensive analysis of mRNA and miRNA expression between high-protein/high-fat group and low-protein/low-fat groups indicated that, 38 miRNAs and 944 mRNAs were differentially expressed between them. Furthermore, 38 DE miRNAs putatively negatively regulated 253 DE mRNAs. The putative genes (253 DE mRNAs) were enriched in lipid biosynthetic process and amino acid transmembrane transporter activity. Moreover, putative DE genes were significantly enriched in fatty acid (FA) metabolism, biosynthesis of amino acids, synthesis and degradation of ketone bodies and biosynthesis of unsaturated FAs. Our results suggest that DE miRNAs might play roles as regulators of milk quality and milk secretion during mammary gland differentiation.
Collapse
|
32
|
Pakravan K, Babashah S, Sadeghizadeh M, Mowla SJ, Mossahebi-Mohammadi M, Ataei F, Dana N, Javan M. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol (Dordr) 2017; 40:457-470. [PMID: 28741069 DOI: 10.1007/s13402-017-0335-7] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Human mesenchymal stem cells (MSCs) have been shown to be involved in the formation and modulation of tumor stroma and in interacting with tumor cells, partly through their secretome. Exosomes are nano-sized intraluminal multi-vesicular bodies secreted by most types of cells and have been found to mediate intercellular communication through the transfer of genetic information via coding and non-coding RNAs to recipient cells. Since exosomes are considered as protective and enriched sources of shuttle microRNAs (miRNAs), we hypothesized that exosomal transfer of miRNAs from MSCs may affect tumor cell behavior, particularly angiogenesis. METHODS Exosomes derived from MSCs were isolated and characterized by scanning electron microscopy analyses, dynamic light scattering measurements, and Western blotting. Fold changes in miR-100 expression levels were calculated in exosomes and their corresponding donor cells by qRT-PCR. The effects of exosomal transfer of miR-100 from MSCs were assessed by qRT-PCR and Western blotting of the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. The quantification of secreted VEGF protein was determined by enzyme-linked immunosorbent assay. The putative paracrine effects of MSC-derived exosomes on tumor angiogenesis were explored by in vitro angiogenesis assays including endothelial cell proliferation, migration and tube formation assays. RESULTS We found that MSC-derived exosomes induce a significant and dose-dependent decrease in the expression and secretion of vascular endothelial growth factor (VEGF) through modulating the mTOR/HIF-1α signaling axis in breast cancer-derived cells. We also found that miR-100 is enriched in MSC-derived exosomes and that its transfer to breast cancer-derived cells is associated with the down-regulation of VEGF in a time-dependent manner. The putative role of exosomal miR-100 transfer in regulating VEGF expression was substantiated by the ability of anti-miR-100 to rescue the inhibitory effects of MSC-derived exosomes on the expression of VEGF in breast cancer-derived cells. In addition, we found that down-regulation of VEGF mediated by MSC-derived exosomes can affect the vascular behavior of endothelial cells in vitro. CONCLUSIONS Overall, our findings suggest that exosomal transfer of miR-100 may be a novel mechanism underlying the paracrine effects of MSC-derived exosomes and may provide a means by which these vesicles can modulate vascular responses within the microenvironment of breast cancer cells.
Collapse
Affiliation(s)
- Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | | | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Javan
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
33
|
Ahram M, Mustafa E, Zaza R, Abu Hammad S, Alhudhud M, Bawadi R, Zihlif M. Differential expression and androgen regulation of microRNAs and metalloprotease 13 in breast cancer cells. Cell Biol Int 2017; 41:1345-1355. [PMID: 28816390 DOI: 10.1002/cbin.10841] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/14/2017] [Indexed: 01/11/2023]
Abstract
MicroRNA molecules (miRNAs) play important roles in regulating cell behavior. The expression of certain miRNAs has been shown to be regulated by the androgen receptor (AR), which seems to have a critical role in the tumorigenic process of breast cancer. The differential expression of 84 miRNAs was first examined in three breast cancer cell lines: the luminal MCF-7 and T47D cells and the molecular apocrine MDA-MB-453 cells. Analysis of basal expression of miRNAs revealed that each cell line had distinct miRNA expression where let-7a and -7b were markers of MDA-MB-453 cells, whereas miR-205 was a marker for the luminal cell lines. Treating the cells with the AR agonist, CI-4AS-1, resulted in unique alterations in the expression of specific miRNA among the three cell lines. Particularly, the expression of miR-100 and miR-125 was reduced in MDA-MB-453 cells by five and three folds, respectively. This effect was simultaneous with AR-induced increase in the expression and extracellular release of metalloprotease-13 (MMP13). Transfection of cells with either miR-100 or miR-125b negated the induction of MMP13 release. Additionally, AR activation induced a morphological alteration of MDA-MB-453 cells, which was blocked by miR-125b only. Collectively, these data indicate that AR may control the biological behavior of breast cancer cells and protein expression via miRNAs.
Collapse
Affiliation(s)
- Mamoun Ahram
- School of Medicine, Department of Physiology and Biochemistry, The University of Jordan, Amman, Jordan
| | - Ebtihal Mustafa
- School of Medicine, Department of Physiology and Biochemistry, The University of Jordan, Amman, Jordan
| | - Rand Zaza
- School of Medicine, Department of Physiology and Biochemistry, The University of Jordan, Amman, Jordan
| | - Shatha Abu Hammad
- School of Medicine, Department of Physiology and Biochemistry, The University of Jordan, Amman, Jordan
| | - Mariam Alhudhud
- School of Medicine, Department of Physiology and Biochemistry, The University of Jordan, Amman, Jordan
| | - Randa Bawadi
- School of Medicine, Department of Physiology and Biochemistry, The University of Jordan, Amman, Jordan
| | - Malek Zihlif
- School of Medicine, Department of Pharmacology, The University of Jordan, Amman, Jordan
| |
Collapse
|
34
|
Ren J, Zhou Q, Li H, Li J, Pang L, Su L, Gu Q, Zhu Z, Liu B. Characterization of exosomal RNAs derived from human gastric cancer cells by deep sequencing. Tumour Biol 2017; 39:1010428317695012. [PMID: 28381156 DOI: 10.1177/1010428317695012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Exosomes secreted from the cell to the extracellular environment play an important role in intercellular communication. Next-generation sequencing technology, which has achieved great development recently, allows us to detect more complete data and gain even deeper analyses of RNA transcriptomes. In our research, we extracted exosomes from different gastric cancer cell lines and immortalized normal gastric mucosal epithelial cell line and examined the amounts of exosomal proteins and RNAs. Our data showed that the secreted amount of cancer cell-derived exosomes, which contain proteins and RNAs, was much higher than that of normal cell-derived exosomes. Moreover, next-generation sequencing technology confirmed the presence of small non-coding RNAs in exosomes. Based on publicly available databases, we classified small non-coding RNAs. According to the microRNA profiles of exosomes, hsa-miR-21-5p and hsa-miR-30a-5p were two of the most abundant sequences among all libraries. The expression levels of the two microRNAs, miR-100 and miR-148a, in exosomes were validated through reverse transcription polymerase chain reaction. The reverse transcription polymerase chain reaction result, consistent with the trend of sequencing result, indicated a significant difference in exosomes between gastric cancer and gastric mucosal epithelial cell lines. We also predicted novel microRNA candidates but they need to be validated. This research provided an atlas of small non-coding RNA in exosomes and may make a little contribution to the understanding of exosomal RNA composition and finding parts of differential expression of RNAs in exosomes.
Collapse
Affiliation(s)
- Jia Ren
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Zhou
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Pang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Su
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinlong Gu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenggang Zhu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
MicroRNA 100 sensitizes luminal A breast cancer cells to paclitaxel treatment in part by targeting mTOR. Oncotarget 2016; 7:5702-14. [PMID: 26744318 PMCID: PMC4868715 DOI: 10.18632/oncotarget.6790] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/23/2015] [Indexed: 12/17/2022] Open
Abstract
Luminal A breast cancer usually responds to hormonal therapies but does not benefit from chemotherapies, including microtubule-targeted paclitaxel. MicroRNAs could play a role in mediating this differential response. In this study, we examined the role of micro RNA 100 (miR-100) in the sensitivity of breast cancer to paclitaxel treatment. We found that while miR-100 was downregulated in both human breast cancer primary tumors and cell lines, the degree of downregulation was greater in the luminal A subtype than in other subtypes. The IC50 of paclitaxel was much higher in luminal A than in basal-like breast cancer cell lines. Ectopic miR-100 expression in the MCF-7 luminal A cell line enhanced the effect of paclitaxel on cell cycle arrest, multinucleation, and apoptosis, while knockdown of miR-100 in the MDA-MB-231 basal-like line compromised these effects. Similarly, overexpression of miR-100 enhanced the effects of paclitaxel on tumorigenesis in MCF-7 cells. Rapamycin-mediated inhibition of the mammalian target of rapamycin (mTOR), a target of miR-100, also sensitized MCF-7 cells to paclitaxel. Gene set enrichment analysis showed that genes that are part of the known paclitaxel-sensitive signature had a significant expression correlation with miR-100 in breast cancer samples. In addition, patients with lower levels of miR-100 expression had worse overall survival. These results suggest that miR-100 plays a causal role in determining the sensitivity of breast cancers to paclitaxel treatment.
Collapse
|
36
|
Guo P, Xiong X, Zhang S, Peng D. miR-100 resensitizes resistant epithelial ovarian cancer to cisplatin. Oncol Rep 2016; 36:3552-3558. [PMID: 27748936 DOI: 10.3892/or.2016.5140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/05/2016] [Indexed: 11/05/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the malignant tumors that seriously affects women's health and chemotherapy resistance is an important reason for the poor prognosis. The present study was conducted to investigate whether microRNA-100 (miR-100) can be used to modulate the tolerance to cisplatin in EOC. Expression of miR-100 was compared between ovarian cancer cells tolerant and not tolerant to cisplatin. Mimic and antisense were used to study the roles and related mechanisms of miR-100 in cisplatin sensitivity in EOC. The alternation in the cisplatin sensitivity was investigated using grafted tumors derived from SKOV3/DDP cells with upregulated or downregulated miR-100 expression. miR-100 was lower in cisplatin resistant cell line SKOV3/DDP than in cisplatin sensitive cell line SKOV3. miR-100 might increase cisplatin sensitivity by inhibiting cell proliferation and conversion from G1 to S phase and increasing apoptosis. We showed that mTOR and PLK1 are targets of miR-100 and the cells were resensitized probably due to targeted downregulation of mTOR and PLK1 by miR-100. In vivo study with nude mice showed that tumors derived from miR-100 mimic-transfected cells were more sensitive to cisplatin and had reduced expression of mTOR and PLK1. miR-100 resensitizes resistant epithelial ovarian cancer to cisplatin probably by inhibiting cell proliferation, inducing apoptosis and arresting cell cycle and by targeted downregulation of mTOR and PLK1 expression.
Collapse
Affiliation(s)
- Peng Guo
- Department of Obstetrics and Gynecology, Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Xiangpeng Xiong
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Sainan Zhang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Dongxian Peng
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
37
|
Erbes T, Hirschfeld M, Waldeck S, Rücker G, Jäger M, Willmann L, Kammerer B, Mayer S, Gitsch G, Stickeler E. Hyperthermia-driven aberrations of secreted microRNAs in breast cancer in vitro. Int J Hyperthermia 2016; 32:630-42. [PMID: 27380148 DOI: 10.3109/02656736.2016.1161832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Expression profile alterations of nine breast cancer (BC)-associated secreted microRNAs (miRs) were determined under microenvironmental alterations occurring in tumour progression, metastasis or specific oncological treatment modalities. Thereto, the potential influence of the exogenic stimuli hypoxia, acidosis and hyperthermia was investigated in vitro. MATERIAL AND METHODS Four established BC cell lines were applied as in vitro BC model systems. Quantitative analyses of secreted microRNA specimens were performed by RNA isolation from cell culture supernatant and subsequent real-time PCR in cells under physiological versus hypoxic, acidic or hyperthermia conditions. RESULTS The in vitro application of exogenic stimuli hypoxia, extracellular acidosis and hyperthermia caused heterogeneous expression alterations for the investigated secreted miRNA phenotypes. The majority of relevant exogenic stimuli-dependent microRNA expression alterations were restricted to single events displaying distinct cell type and stimulus dependent correlations only. Most remarkably, hyperthermia triggered a uniform significant down-regulatory effect on the expression levels of the three secreted microRNAs miR-10b, miR-15b and miR-139, respectively. The marked decrease in miR-10b and miR-15b levels was detectable in all four, while miR-139 was found significantly reduced in three out of four BC cell lines. CONCLUSION Hyperthermia-dependent down-regulatory influence on three distinct BC-related microRNAs in vitro generates translational aspects for clinical BC treatment, since the identified microRNAs miR-10b, miR-15b and miR-139 are known to have oncogenic as well as tumour suppressor functions in BC. However, an evaluation regarding the potential impact of microRNA-related hyperthermia-dependent alterations for innovative BC treatment approaches demands further analysis including in vivo data.
Collapse
Affiliation(s)
- Thalia Erbes
- a Department of Gynaecology and Obstetrics, Medical Centre , University of Freiburg , Freiburg , Germany
| | - Marc Hirschfeld
- a Department of Gynaecology and Obstetrics, Medical Centre , University of Freiburg , Freiburg , Germany ;,b German Cancer Consortium (DKTK) , German Cancer Research Center (DKFZ) , Heidelberg , Germany ;,c Institute of Veterinary Medicine , Georg-August-University , Göttingen , Germany
| | - Silvia Waldeck
- d Department of Internal Medicine I, Medical Centre , University of Freiburg , Freiburg , Germany
| | - Gerta Rücker
- e Institute for Medical Biometry and Statistics, Medical Centre , University of Freiburg , Freiburg , Germany
| | - Markus Jäger
- a Department of Gynaecology and Obstetrics, Medical Centre , University of Freiburg , Freiburg , Germany
| | - Lucas Willmann
- f Centre for Biological Systems Analysis (ZBSA) , Albert-Ludwigs University , Freiburg , Germany ;,g Institute of Biology II , Albert-Ludwigs University , Freiburg , Germany
| | - Bernd Kammerer
- f Centre for Biological Systems Analysis (ZBSA) , Albert-Ludwigs University , Freiburg , Germany
| | - Sebastian Mayer
- a Department of Gynaecology and Obstetrics, Medical Centre , University of Freiburg , Freiburg , Germany
| | - Gerald Gitsch
- a Department of Gynaecology and Obstetrics, Medical Centre , University of Freiburg , Freiburg , Germany
| | - Elmar Stickeler
- a Department of Gynaecology and Obstetrics, Medical Centre , University of Freiburg , Freiburg , Germany ;,h Department of Gynaecology and Obstetrics , University Medical Centre, RWTH , Pauwelsstrasse 30 , 52074 Aachen , Germany
| |
Collapse
|
38
|
Zheng T, Zhang X, Wang Y, Yu X. Predicting associations between microRNAs and target genes in breast cancer by bioinformatics analyses. Oncol Lett 2016; 12:1067-1073. [PMID: 27446395 DOI: 10.3892/ol.2016.4731] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/26/2016] [Indexed: 11/06/2022] Open
Abstract
Breast cancer is the leading type of cancer among females. However, the association between microRNAs (miRNAs) and target genes in breast tumorigenesis is poorly studied. The original data set GSE26659 was downloaded from the Gene Expression Omnibus, and then the differentially expressed miRNAs among 77 breast cancer patients and 17 controls were identified using the Limma package in R software. Furthermore, breast cancer-related differentially expressed miRNAs were selected from a human miRNA disease database and their target genes were selected from five miRNA databases. Then, functional analysis was performed for the target genes followed by construction of a miRNA-target gene network. A total of 34 differentially expressed miRNAs were identified, including 13 breast cancer-related miRNAs. Moreover, the target genes of the 13 miRNAs were significantly enriched in regulation of transcription (P=7.43E-09) and pathways related to cancer (P=3.33E-11). Finally, eight upregulated miRNAs (including hsa-miR-425) and five downregulated miRNAs (including hsa-miR-143, hsa-miR-145 and hsa-miR-125b) were identified in the miRNA-target gene network. In conclusion, using bioinformatics approaches, we demonstrate that the changes in regulation of transcription and cancer pathways may play significant roles in the process of breast cancerogenesis. Differentially expressed miRNAs and their target genes may be new targets for breast cancer therapy.
Collapse
Affiliation(s)
- Tianying Zheng
- Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xing Zhang
- Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yonggang Wang
- Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiucui Yu
- Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
39
|
Saeidimehr S, Ebrahimi A, Saki N, Goodarzi P, Rahim F. MicroRNA-Based Linkage between Aging and Cancer: from Epigenetics View Point. CELL JOURNAL 2016; 18:117-26. [PMID: 27540517 PMCID: PMC4988411 DOI: 10.22074/cellj.2016.4303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 10/01/2015] [Indexed: 02/01/2023]
Abstract
Ageing is a complex process and a broad spectrum of physical, psychological, and
social changes over time. Accompanying diseases and disabilities, which can interfere
with cancer treatment and recovery, occur in old ages. MicroRNAs (miRNAs) are a
set of small non-coding RNAs, which have considerable roles in post-transcriptional
regulation at gene expression level. In this review, we attempted to summarize the current knowledge of miRNAs functions in ageing, with mainly focuses on malignancies
and all underlying genetic, molecular and epigenetics mechanisms. The evidences indicated the complex and dynamic nature of miRNA-based linkage of ageing and cancer
at genomics and epigenomics levels which might be generally crucial for understanding
the mechanisms of age-related cancer and ageing. Recently in the field of cancer and
ageing, scientists claimed that uric acid can be used to regulate reactive oxygen species (ROS), leading to cancer and ageing prevention; these findings highlight the role of
miRNA-based inhibition of the SLC2A9 antioxidant pathway in cancer, as a novel way to
kill malignant cells, while a patient is fighting with cancer.
Collapse
Affiliation(s)
| | - Ammar Ebrahimi
- Department of Medical Biotechnology, School of Advanced Medical Technology, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmaldin Saki
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parisa Goodarzi
- School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
40
|
Managing Pancreatic Adenocarcinoma: A Special Focus in MicroRNA Gene Therapy. Int J Mol Sci 2016; 17:ijms17050718. [PMID: 27187371 PMCID: PMC4881540 DOI: 10.3390/ijms17050718] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 01/17/2023] Open
Abstract
Pancreatic cancer is an aggressive disease and the fourth most lethal cancer in developed countries. Despite all progress in medicine and in understanding the molecular mechanisms of carcinogenesis, pancreatic cancer still has a poor prognosis, the median survival after diagnosis being around 3 to 6 months and the survival rate of 5 years being less than 4%. For pancreatic ductal adenocarcinoma (PDAC), which represents more than 90% of new pancreatic cancer cases, the prognosis is worse than for the other cancers with a patient mortality of approximately 99%. Therefore, there is a pressing need for developing new and efficient therapeutic strategies for pancreatic cancer. In this regard, microRNAs not only have been seen as potential diagnostic and prognostic molecular markers but also as promising therapeutic agents. In this context, this review provides an examination of the most frequently deregulated microRNAs (miRNAs) in PDAC and their putative molecular targets involved in the signaling pathways of pancreatic
carcinogenesis. Additionally, it is presented a summary of gene therapy clinical trials involving miRNAs and it is illustrated the therapeutic potential associated to these small non-coding RNAs, for PDAC treatment. The facts presented here constitute a strong evidence of the remarkable opportunity associated to the application of microRNA-based therapeutic strategies as a novel approach for cancer therapy.
Collapse
|
41
|
Zhou SM, Zhang F, Chen XB, Jun CM, Jing X, Wei DX, Xia Y, Zhou YB, Xiao XQ, Jia RQ, Li JT, Sheng W, Zeng Y. miR-100 suppresses the proliferation and tumor growth of esophageal squamous cancer cells via targeting CXCR7. Oncol Rep 2016; 35:3453-9. [PMID: 27035873 DOI: 10.3892/or.2016.4701] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 09/14/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs are highly conserved non-coding RNAs that regulate gene expression at the post-transcriptional level, and play pivotal roles in cancer development and progression. miR-100 has been reported to be significantly downregulated in a variety of cancers, including esophageal cancer. However, the role of miR-100 in human esophageal cancer has not been fully elucidated. We demonstrated that overexpression of miR-100 in esophageal cancer cells markedly inhibited cell proliferation, migration and invasion as well as tumor growth. We subsequently showed that CXCR7 is a direct target gene of miR-100. Our results indicated that miR-100 plays a tumor-suppressor role in esophageal cancer and suggest its potential application for esophageal cancer treatment.
Collapse
Affiliation(s)
- Shao-Mei Zhou
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Fang Zhang
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Xue-Bin Chen
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Cao-Ming Jun
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Xin Jing
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Deng-Xiong Wei
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Yang Xia
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Yu-Bai Zhou
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Xiang-Qian Xiao
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Run-Qing Jia
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Jing-Tao Li
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Wang Sheng
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| | - Yi Zeng
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang, Beijing 100124, P.R. China
| |
Collapse
|
42
|
Ge YY, Shi Q, Zheng ZY, Gong J, Zeng C, Yang J, Zhuang SM. MicroRNA-100 promotes the autophagy of hepatocellular carcinoma cells by inhibiting the expression of mTOR and IGF-1R. Oncotarget 2015; 5:6218-28. [PMID: 25026290 PMCID: PMC4171624 DOI: 10.18632/oncotarget.2189] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We found that restoration of miR-100 expression resulted in accumulation of LC3B-II and decrease of p62 in hepatocellular carcinoma (HCC) cells, whereas antagonism of miR-100 reduced the level of LC3B-II. Moreover, a significant correlation between miR-100 downregulation and p62 upregulation was observed in human HCC tissues, suggesting an autophagy-promoting effect of miR-100. Subsequent investigations disclosed that knockdown of Atg7 but not Beclin-1 attenuated the miR-100-induced LC3B-II elevation. Furthermore, miR-100 overexpression caused massive cell death, which was abrogated by both the Atg7 silencing and chloroquine treatment. Simultaneously, miR-100 expression led to increased fraction of cells with Annexin V-staining and loss of mitochondrial potential, implying that miR-100 may promote the Atg7-dependent autophagy and subsequent apoptotic cell death. Consistently, mouse xenograft models revealed that miR-100 inhibited the in vivo growth of HCC cells. We further showed that miR-100 suppressed the expression of mTOR and IGF-1R by binding to their 3′ untranslated region, and knockdown of mTOR or IGF-1R phenocopied the pro-autophagy effect of miR-100, indicating that miR-100 may promote autophagy by reducing mTOR and IGF-1R level. Collectively, our data uncover a new regulatory mechanism of autophagy and a novel function of miR-100, and provide a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Yi-Yuan Ge
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Guangzhou, P.R. China; These authors contributed equally to this work
| | - Qing Shi
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Guangzhou, P.R. China; These authors contributed equally to this work
| | - Zhi-Yuan Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Guangzhou, P.R
| | - Jiao Gong
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Guangzhou, P.R. China; Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital; Sun Yat-sen University, Guangzhou, P.R. China
| | - Chunxian Zeng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Guangzhou, P.R
| | - Jine Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Guangzhou, P.R
| | - Shi-Mei Zhuang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Guangzhou, P.R. China; Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital; Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
43
|
Lo PK, Wolfson B, Zhou X, Duru N, Gernapudi R, Zhou Q. Noncoding RNAs in breast cancer. Brief Funct Genomics 2015; 15:200-21. [PMID: 26685283 DOI: 10.1093/bfgp/elv055] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mammalian transcriptome has recently been revealed to encompass a large number of noncoding RNAs (ncRNAs) that play a variety of important regulatory roles in gene expression and other biological processes. MicroRNAs (miRNAs), the best studied of the short noncoding RNAs (sncRNAs), have been extensively characterized with regard to their biogenesis, function and importance in tumorigenesis. Another class of sncRNAs called piwi-interacting RNAs (piRNAs) has also gained attention recently in cancer research owing to their critical role in stem cell regulation. Long noncoding RNAs (lncRNAs) of >200 nucleotides in length have recently emerged as key regulators of developmental processes, including mammary gland development. lncRNA dysregulation has also been implicated in the development of various cancers, including breast cancer. In this review, we describe and discuss the roles of sncRNAs (including miRNAs and piRNAs) and lncRNAs in the initiation and progression of breast tumorigenesis, with a focus on outlining the molecular mechanisms of oncogenic and tumor-suppressor ncRNAs. Moreover, the current and potential future applications of ncRNAs to clinical breast cancer research are also discussed, with an emphasis on ncRNA-based diagnosis, prognosis and future therapeutics.
Collapse
|
44
|
Ye X, Luo H, Chen Y, Wu Q, Xiong Y, Zhu J, Diao Y, Wu Z, Miao J, Wan J. MicroRNAs 99b-5p/100-5p Regulated by Endoplasmic Reticulum Stress are Involved in Abeta-Induced Pathologies. Front Aging Neurosci 2015; 7:210. [PMID: 26635599 PMCID: PMC4649061 DOI: 10.3389/fnagi.2015.00210] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/26/2015] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Amyloid β (Abeta, Aβ) deposition and intracellular tangles are the pathological hallmarks of AD. MicroRNAs (miRNAs) are small non-coding RNAs, which have been found to play very important roles, and have the potential to serve as diagnostic markers during neuronal pathogenesis. In this study, we aimed to determine the roles of miR-99b-5p and miR-100-5p in Aβ-induced neuronal pathologies. We detected the expression levels of miR-99b-5p and miR-100-5p in the brains of APPswe/PS1ΔE9 double-transgenic mice (APP/PS1 mice) at different age stages and found that both miRNAs were decreased at early stages while increased at late stages of APP/PS1 mice when compared with the age-matched wild type (WT) mice. Similar phenomenon was also observed in Aβ-treated cultured cells. We also confirmed that mammalian target of rapamycin (mTOR) is one of the targets of miR-99b-5p/100-5p, which is consistent with previous studies in cancer. MiR-99b-5p/100-5p has been found to promote cell apoptosis with the Aβ treatment. This effect may be induced via the mTOR pathway. In our study, we find both miR-99b-5p and miR-100-5p affect neuron survival by targeting mTOR. We also speculate that dynamic change of miR-99b-5p/100-5p levels during Aβ-associated pathologies might be attributed to Aβ-induced endoplasmic reticulum stress (ER stress), suggesting the potential role of the "ER stress-miRNAs-mTOR" axis in Aβ-related AD pathogenesis.
Collapse
Affiliation(s)
- Xiaoyang Ye
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Hongxue Luo
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Yan Chen
- Division of Life Science, The Hong Kong University of Science and Technology , Hong Kong , China
| | - Qi Wu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Yi Xiong
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Jinyong Zhu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Yarui Diao
- Ludwig Institute for Cancer Research , San Diego, CA , USA
| | - Zhenguo Wu
- Division of Life Science, The Hong Kong University of Science and Technology , Hong Kong , China
| | - Jianting Miao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University , Xi'an City , China
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center , Shenzhen , China ; Division of Life Science, The Hong Kong University of Science and Technology , Hong Kong , China
| |
Collapse
|
45
|
MicroRNA-100 suppresses the migration and invasion of breast cancer cells by targeting FZD-8 and inhibiting Wnt/β-catenin signaling pathway. Tumour Biol 2015; 37:5001-11. [PMID: 26537584 DOI: 10.1007/s13277-015-4342-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/28/2015] [Indexed: 12/31/2022] Open
Abstract
Wnt/β-catenin signaling pathway plays a major role in the cancer metastasis. Several microRNAs (miRNAs) are contributed to the inhibition of breast cancer metastasis. Here, we attempted to find novel targets and mechanisms of microRNA-100 (miR-100) in regulating the migration and invasion of breast cancer cells. In this study, we found that miR-100 expression was downregulated in human breast cancer tissues and cell lines. The overexpression of miR-100 inhibited the migration and invasion of MDA-MB-231 breast cancer cells. Inversely, the downregulation of miR-100 increased the migration and invasion of MCF-7 breast cancer cells. Furthermore, FZD-8, a receptor of Wnt/β-catenin signaling pathway, was demonstrated a direct target of miR-100. The overexpression of miR-100 decreased the expression levels not only FZD-8 but also the key components of Wnt/β-catenin pathway, including β-catenin, metalloproteniase-7 (MMP-7), T-cell factor-4 (TCF-4), and lymphoid enhancing factor-1 (LEF-1), and increased the protein expression levels of GSK-3β and p-GSK-3β in MDA-MB-231 cells, and the transfection of miR-100 inhibitor in MCF-7 cells showed the opposite effects. In addition, the expression of miR-100 was negatively correlated with the FZD-8 expression in human breast cancer tissues. Overall, these findings suggest that miR-100 suppresses the migration and invasion of breast cancer cells by targeting FZD-8 and inhibiting Wnt/β-catenin signaling pathway and manipulation of miR-100 may provide a promoting therapeutic strategy for cancer breast treatment.
Collapse
|
46
|
Saha S, Choudhury J, Ain R. MicroRNA-141-3p and miR-200a-3p regulate insulin-like growth factor 2 during mouse placental development. Mol Cell Endocrinol 2015; 414:186-93. [PMID: 26247408 DOI: 10.1016/j.mce.2015.07.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 12/21/2022]
Abstract
Insulin-like growth factor 2 (IGF2) plays a vital role in fetal and placental development throughout gestation. Placental expression of IGF2 decreases substantially in intra-uterine growth restriction (IUGR) and Igf2 null mice develop small placentas. In this report, we examined the role of microRNAs in regulating Igf2 gene expression during mouse placental development. Using bioinformatic analysis, we have identified microRNAs that have conserved binding sites in the 3'-UTR of Igf2. Using luciferase reporter assay, we demonstrated that miR141-3p and miR-200a-3p mimics substantially down regulated relative luciferase activity by binding to 3'-UTR of Igf2, which was reversed by using miR141-3p and miR-200a-3p inhibitors. Furthermore, in a similar assay, use of Igf2 3'-UTR that lacked the binding site for the microRNAs did not have any effect on luceiferase activity. Interestingly, the expression of miR141-3p and miR-200a-3p were inversely and temporally correlated to the expression of IGF2 during mouse placental development. Overexpression of miR141-3p and miR-200a-3p in mouse trophoblast stem cells suppressed endogenous expression of IGF2. Consequently, IGF2 silencing by miR141-3p and miR-200a-3p diminished Akt activation in mouse trophoblast stem cells. Our study provides evidence for regulation of Igf2 by microRNAs and further elucidates the role of miR141-3p and miR-200a-3p in the mouse placental development.
Collapse
Affiliation(s)
- Sarbani Saha
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| | - Jaganmoy Choudhury
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India.
| |
Collapse
|
47
|
Downregulation of microRNA-100 enhances the ICMT-Rac1 signaling and promotes metastasis of hepatocellular carcinoma cells. Oncotarget 2015; 5:12177-88. [PMID: 25361001 PMCID: PMC4322964 DOI: 10.18632/oncotarget.2601] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/18/2014] [Indexed: 01/10/2023] Open
Abstract
Metastasis is responsible for rapid recurrence of hepatocellular carcinoma (HCC) and poor survival of HCC patients. Here we showed that miR-100 downregulation in HCC tissues was significantly associated with venous invasion, advanced TNM stage, tumor nodule without complete capsule, poorer cell differentiation, and shorter recurrence-free survival. Both gain- and loss-of-function studies showed that miR-100 dramatically suppressed the ability of HCC cells to migrate and to invade through Matrigel in vitro. Analyses using mouse orthotopic xenograft model further revealed that xenografts of miR-100-stable-expressing HCC cells displayed a significant reduction in pulmonary metastasis, compared with control group. Subsequent investigations revealed that miR-100 directly inhibited the expression of isoprenylcysteine carboxyl methyltransferase (ICMT) and ras-related C3 botulinum toxin substrate 1 (Rac1) by binding to their 3′-UTRs, and in turn suppressed lamellipodia formation and matrix metallopeptidase 2 (MMP2) activation. Furthermore, knockdown of ICMT and Rac1 phenocopied the anti-metastasis effect of miR-100, whereas overexpression of the constitutively active Rac1 (Q61L) antagonized the function of miR-100. Taken together, miR-100 represses metastasis of HCC cells by abrogating the ICMT-Rac1 signaling. Downregulation of miR-100 contributes to HCC metastasis and the restoration of miR-100 is a potential strategy for cancer therapy.
Collapse
|
48
|
Liu R, Wang M, Su L, Li X, Zhao S, Yu M. The Expression Pattern of MicroRNAs and the Associated Pathways Involved in the Development of Porcine Placental Folds That Contribute to the Expansion of the Exchange Surface Area. Biol Reprod 2015; 93:62. [PMID: 26157073 DOI: 10.1095/biolreprod.114.126540] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 07/06/2015] [Indexed: 01/12/2023] Open
Abstract
The development of the microscopically folded structure of the diffuse epitheliochorial placenta in pigs is important because it expands the surface area for maternal-fetal exchange, resulting in an increase in placental efficiency. To better understand the regulatory mechanisms involved in this process, we characterized miRNA expression profiles in porcine placentas during the initiation and establishment of placental fold development. A total of 42 miRNAs were found to be differentially expressed, and their putative target genes were predicted using four target prediction programs. Following a comparative analysis with published gene expression pattern data obtained from porcine placentas in the corresponding stages of placental fold development, only those genes that were negatively correlated with miRNA expression were retained for further function and pathway enrichment analysis. The results showed that the up-regulated miRNAs were associated mainly with extracellular matrix remodeling and tissue morphogenesis, while the down-regulated miRNAs were related to cell proliferation and signal transduction. Furthermore, we provide evidence that miR-130b may facilitate the expression of HPSE, which has been reported to be a regulator of the folding of the pig placenta, by suppressing the expression of PPARG. In addition, we also reveal that the miRNA-target pairs expressed in the pig placenta may trigger the degradation of the stromal matrix and basement membrane (miR-29a-COL1A2, COL3A1, and LAMC1) and regulate trophoblast epithelial cell adherens junctions (the miR-200 family and miR-205-ZEB2-CDH1) and proliferation (miR-17-92 cluster-HBP1 and ULK1). Taken together, these results indicate that miRNAs and related pathways may have potential roles in porcine placental fold development.
Collapse
Affiliation(s)
- Ruize Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Min Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Lijie Su
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China College of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoping Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Mei Yu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
49
|
Gong Y, He T, Yang L, Yang G, Chen Y, Zhang X. The role of miR-100 in regulating apoptosis of breast cancer cells. Sci Rep 2015; 5:11650. [PMID: 26130569 PMCID: PMC4486956 DOI: 10.1038/srep11650] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/22/2015] [Indexed: 11/25/2022] Open
Abstract
Breast cancer is a serious health problem worldwide. Inhibition of apoptosis plays a major role in breast cancer tumorigenesis. MicroRNAs (miRNAs) play crucial roles in the regulation of apoptosis. However, the regulation of breast cancer apoptosis by miRNAs has not been intensively investigated. To address this issue, the effect of miR-100 on the cell proliferation of different breast cancer cells was characterized in the present study. The results showed that miR-100 was significantly upregulated in SK-BR-3 cells compared with other human breast cancer cells (MCF7, MDA-MB-453, T47D, HCC1954 and SUM149). Silencing miR-100 expression with anti-miRNA-100 oligonucleotide (AMO-miR-100) initiated apoptosis of SK-BR-3 cells in vitro and in vivo. However, the overexpression of miR-100 led to the proliferation inhibition of the miR-100-downregulated breast cancer cells. Antagonism of miR-100 in SK-BR-3 cells increased the expression of MTMR3, a target gene of miR-100, which resulted in the activation of p27 and eventually led to G2/M cell-cycle arrest and apoptosis. The downregulation of miR-100 sensitized SK-BR-3 cells to chemotherapy. Therefore, our finding highlights a novel aspect of the miR-100-MTMR3-p27 pathway in the molecular etiology of breast cancer.
Collapse
Affiliation(s)
- Yi Gong
- Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou 310058, The People's Republic of China
| | - Tianliang He
- Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou 310058, The People's Republic of China
| | - Lu Yang
- Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou 310058, The People's Republic of China
| | - Geng Yang
- Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou 310058, The People's Republic of China
| | - Yulei Chen
- Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou 310058, The People's Republic of China
| | - Xiaobo Zhang
- Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou 310058, The People's Republic of China
| |
Collapse
|
50
|
Cha DJ, Franklin JL, Dou Y, Liu Q, Higginbotham JN, Demory Beckler M, Weaver AM, Vickers K, Prasad N, Levy S, Zhang B, Coffey RJ, Patton JG. KRAS-dependent sorting of miRNA to exosomes. eLife 2015; 4:e07197. [PMID: 26132860 PMCID: PMC4510696 DOI: 10.7554/elife.07197] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/29/2015] [Indexed: 12/13/2022] Open
Abstract
Mutant KRAS colorectal cancer (CRC) cells release protein-laden exosomes that can alter the tumor microenvironment. To test whether exosomal RNAs also contribute to changes in gene expression in recipient cells, and whether mutant KRAS might regulate the composition of secreted microRNAs (miRNAs), we compared small RNAs of cells and matched exosomes from isogenic CRC cell lines differing only in KRAS status. We show that exosomal profiles are distinct from cellular profiles, and mutant exosomes cluster separately from wild-type KRAS exosomes. miR-10b was selectively increased in wild-type exosomes, while miR-100 was increased in mutant exosomes. Neutral sphingomyelinase inhibition caused accumulation of miR-100 only in mutant cells, suggesting KRAS-dependent miRNA export. In Transwell co-culture experiments, mutant donor cells conferred miR-100-mediated target repression in wild-type-recipient cells. These findings suggest that extracellular miRNAs can function in target cells and uncover a potential new mode of action for mutant KRAS in CRC.
Collapse
Affiliation(s)
- Diana J Cha
- Department of Biological Sciences, Vanderbilt University Medical Center, Nashville, United States
- Vanderbilt University, Nashville, United States
| | - Jeffrey L Franklin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
- Affairs Medical Center, Nashville, United States
| | - Yongchao Dou
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, United States
| | - Qi Liu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, United States
| | - James N Higginbotham
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
| | | | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, United States
| | - Kasey Vickers
- Department of Cardiology, Vanderbilt University Medical Center, Nashville, United States
| | - Nirpesh Prasad
- HudsonAlpha Institute for Biotechnology, Huntsville, United States
| | - Shawn Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, United States
| | - Bing Zhang
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, United States
| | - Robert J Coffey
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
- Affairs Medical Center, Nashville, United States
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University Medical Center, Nashville, United States
- Vanderbilt University, Nashville, United States
| |
Collapse
|