1
|
Pani S, Mohapatra S, Sahoo A, Baral B, Debata PR. Shifting of cell cycle arrest from the S-phase to G2/M phase and downregulation of EGFR expression by phytochemical combinations in HeLa cervical cancer cells. J Biochem Mol Toxicol 2021; 36:e22947. [PMID: 34726804 DOI: 10.1002/jbt.22947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022]
Abstract
Cervical cancer is a major human papillomavirus-related disease and is the fourth leading cause of death by cancer among women. Plants are an important source of anticancer compounds and many of them are currently used in the treatment of cancer. Several reports suggest the efficacy of plant-derived compounds increases when used in combination. This study was carried out to evaluate the effect of four plant-derived compounds such as curcumin (C), ellagic acid (E), quercetin (Q), and resveratrol (R) when used alone or in combinations using HeLa cervical cancer cells. All four phytocompounds showed effective cytotoxic activities in targeting HeLa cervical cancer cells as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium assay. The selected phytocompound combinations C + E, C + Q, and Q + R work synergistically while the combination C + R shows additive effects. All four phytocompounds reduce cell migration as determined by in vitro wound-healing assay. The expression level of the epidermal growth factor receptor is significantly downregulated both in individual and combination. The flow cytometry analysis of cell cycle indicates that individual drugs curcumin, ellagic acid, quercetin, and resveratrol, each with 20 µM effectively arrested cell cycle at the S-phase while the combination of drugs (10 + 10 µM) at the G2/M phase.
Collapse
Affiliation(s)
- Sarita Pani
- P. G. Department of Zoology, North Orissa University, Mayurbhanj, Odisha, India
| | | | - Amrita Sahoo
- P. G. Department of Zoology, North Orissa University, Mayurbhanj, Odisha, India
| | - Budhadev Baral
- P. G. Department of Zoology, North Orissa University, Mayurbhanj, Odisha, India
| | - Priya R Debata
- P. G. Department of Zoology, North Orissa University, Mayurbhanj, Odisha, India
| |
Collapse
|
2
|
Marinelli O, Romagnoli E, Maggi F, Nabissi M, Amantini C, Morelli MB, Santoni M, Battelli N, Santoni G. Exploring treatment with Ribociclib alone or in sequence/combination with Everolimus in ER +HER2 -Rb wild-type and knock-down in breast cancer cell lines. BMC Cancer 2020; 20:1119. [PMID: 33213401 PMCID: PMC7678099 DOI: 10.1186/s12885-020-07619-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/06/2020] [Indexed: 11/10/2022] Open
Abstract
Background Breast cancer (BC) is the second most common type of cancer worldwide. Among targeted therapies for Hormone Receptor-positive (HR+) and Human Epidermal growth factor Receptor 2-negative (HER2−) BC, the Cyclin-Dependent Kinases (CDK4/6) are targeted by inhibitors such as Ribociclib (Rib); however, resistance to CDK4/6 inhibitors frequently develops. The aim of this work is to assess in vitro activity of Rib and Everolimus (Eve) in HR+HER2− MCF-7 and HR−HER2−BT-549 BC cell lines. Methods HR+HER2− MCF-7 and HR−HER2− BT-549 BC cell lines were treated with increasing concentration of Rib and Eve (up to 80 μg/mL) for 48–72 h. Subsequently, HR+HER2− MCF-7 cells were silenced for Retinoblastoma (Rb) gene, and thus, the effect of Rib in sequential or concurrent schedule with Eve for the treatment of both Rb wild type or Rb knock-down MCF-7 in vitro was evaluated. Cell viability of HR+HER2− MCF-7cells treated with sequential and concurrent dosing schedule was analyzed by MTT assay. Moreover, cell cycle phases, cell death and senescence were evaluated by cytofluorimetric analysis after treatment with Rib or Eve alone or in combination. Results The sequential treatment didn’t produce a significant increase of cytotoxicity, compared to Rib alone. Instead, the cotreatment synergized to increase the cytotoxicity compared to Rib alone. The cotreatment reduced the percentage of cells in S and G2/M phases and induced apoptosis. Rib triggered senescence and Eve completely reversed this effect in Rb wild type BC cells. Rib also showed Rb-independent effects as shown by results in Rb knock-down MCF-7. Conclusion Overall, the Rib/Eve concurrent therapy augmented the in vitro cytotoxic effect, compared to Rib/Eve sequential therapy or single treatments. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07619-1.
Collapse
Affiliation(s)
| | | | - Federica Maggi
- School of Pharmacy, University of Camerino, 62032, Camerino, MC, Italy.,Department of Molecular Medicine, University of Rome Sapienza, Rome, Italy
| | - Massimo Nabissi
- School of Pharmacy, University of Camerino, 62032, Camerino, MC, Italy
| | - Consuelo Amantini
- School of Bioscience and Veterinary Medicine, University of Camerino, Camerino, MC, Italy
| | | | - Matteo Santoni
- Medical Oncology Unit, Hospital of Macerata, Macerata, Italy
| | - Nicola Battelli
- Medical Oncology Unit, Hospital of Macerata, Macerata, Italy
| | - Giorgio Santoni
- School of Pharmacy, University of Camerino, 62032, Camerino, MC, Italy.
| |
Collapse
|
3
|
Terracciano F, Capone A, Montori A, Rinzivillo M, Partelli S, Panzuto F, Pilozzi E, Arcidiacono PG, Sette C, Capurso G. MYC Upregulation Confers Resistance to Everolimus and Establishes Vulnerability to Cyclin-Dependent Kinase Inhibitors in Pancreatic Neuroendocrine Neoplasm Cells. Neuroendocrinology 2020; 111:739-751. [PMID: 32615570 DOI: 10.1159/000509865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/01/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Dysregulation of the mechanistic target of rapamycin complex 1 (mTORC1)-dependent pathways in pancreatic neuroendocrine neoplasms (PanNENs) underlies the introduction of the mTORC1 inhibitor everolimus as treatment of advanced progressive PanNENs. Although everolimus significantly increases progression-free survival, most patients acquire secondary resistance to the drug. This study aimed at identifying mechanisms involved in acquisition of resistance to everolimus. METHODS BON-1 and everolimus-resistant (ER) BON-1 cells were used as in vitro system of sensitivity and acquired resistance. Transcriptome changes occurring in BON-1 and ER-BON-1 were investigated by RNA sequencing and validated by quantitative PCR analysis. RNA extracted from patients' biopsies was used to validate MYC upregulation. Drug screening and functional assays were performed using ER-BON-1 cells. Cell cycle progression was evaluated by FACS analysis. RESULTS Our results show that MYC overexpression is a key event in the development of secondary resistance to everolimus in PanNEN cell lines and in metastatic lesions from neuroendocrine neoplasm patients. MYC knockdown restored ER-BON-1 sensitivity to everolimus. Pharmacological inhibition of MYC mediated by the cyclin-dependent kinase inhibitor dinaciclib strongly reduced viability of ER-BON-1. Dinaciclib synergized with everolimus and inhibited ER-BON-1 cell cycle progression. DISCUSSION Our findings suggest that MYC upregulation drives the development of secondary resistance to everolimus in PanNENs and that its inhibition is an exploitable vulnerability. Indeed, our results indicate that combined treatments with cyclin-dependent kinase and mTOR inhibitors may counteract secondary resistance to everolimus in PanNENs and may pave the ground for new therapeutic regimens for these tumors.
Collapse
Affiliation(s)
- Francesca Terracciano
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, Rome, Italy
- PancreatoBiliary Endoscopy and EUS Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita Salute San Raffaele University, Milan, Italy
| | - Alessia Capone
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Andrea Montori
- Department Of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Maria Rinzivillo
- Digestive and Liver Disease Unit, S. Andrea Hospital, Rome, Italy
| | - Stefano Partelli
- Pancreatic Surgery Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita Salute San Raffaele University, Milan, Italy
| | | | - Emanuela Pilozzi
- Department Of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Paolo Giorgio Arcidiacono
- PancreatoBiliary Endoscopy and EUS Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita Salute San Raffaele University, Milan, Italy
| | - Claudio Sette
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, Rome, Italy
- Section of Human Anatomy, Department of Neuroscience, Catholic University of the Sacred Heart, Rome, Italy
| | - Gabriele Capurso
- PancreatoBiliary Endoscopy and EUS Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita Salute San Raffaele University, Milan, Italy,
- Digestive and Liver Disease Unit, S. Andrea Hospital, Rome, Italy,
| |
Collapse
|
4
|
Simioni C, Bergamini F, Ferioli M, Rimondi E, Caruso L, Neri LM. New biomarkers and therapeutic strategies in acute lymphoblastic leukemias: Recent advances. Hematol Oncol 2019; 38:22-33. [PMID: 31487068 DOI: 10.1002/hon.2678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/28/2022]
Abstract
Acute lymphoblastic leukemia (ALL) represents a heterogeneous group of hematologic malignancies, and it is normally characterized by an aberrant proliferation of immature lymphoid cells. Moreover, dysregulation of multiple signaling pathways that normally regulate cellular transcription, growth, translation, and proliferation is frequently encountered in this malignancy. ALL is the most frequent tumor in childhood, and adult ALL patients still correlate with poor survival. This review focuses on modern therapies in ALL that move beyond standard chemotherapy, with a particular emphasis on immunotherapeutic approaches as new treatment strategies. Bi-specific T-cell Engagers (BiTE) antibodies, the chimeric antigen receptor (CAR)-T cells, or CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats [CRISPR]-associated nuclease 9) represent other new innovative approaches for this disease. Target and tailored therapy could make the difference in previously untreatable cases, i.e., precision and personalized medicine. Clinical trials will help to select the most efficient novel therapies in ALL management and to integrate them with existing treatments to achieve durable cures.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fabio Bergamini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Ferioli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Erika Rimondi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - Lorenzo Caruso
- Department of Biomedical and Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Chen G, Ding XF, Bouamar H, Pressley K, Sun LZ. Everolimus induces G 1 cell cycle arrest through autophagy-mediated protein degradation of cyclin D1 in breast cancer cells. Am J Physiol Cell Physiol 2019; 317:C244-C252. [PMID: 31116586 PMCID: PMC6732424 DOI: 10.1152/ajpcell.00390.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 11/22/2022]
Abstract
Everolimus inhibits mammalian target of rapamycin complex 1 (mTORC1) and is known to cause induction of autophagy and G1 cell cycle arrest. However, it remains unknown whether everolimus-induced autophagy plays a critical role in its regulation of the cell cycle. We, for the first time, suggested that everolimus could stimulate autophagy-mediated cyclin D1 degradation in breast cancer cells. Everolimus-induced cyclin D1 degradation through the autophagy pathway was investigated in MCF-10DCIS.COM and MCF-7 cell lines upon autophagy inhibitor treatment using Western blot assay. Everolimus-stimulated autophagy and decrease in cyclin D1 were also tested in explant human breast tissue. Inhibiting mTORC1 with everolimus rapidly increased cyclin D1 degradation, whereas 3-methyladenine, chloroquine, and bafilomycin A1, the classic autophagy inhibitors, could attenuate everolimus-induced cyclin D1 degradation. Similarly, knockdown of autophagy-related 7 (Atg-7) also repressed everolimus-triggered cyclin D1 degradation. In addition, everolimus-induced autophagy occurred earlier than everolimus-induced G1 arrest, and blockade of autophagy attenuated everolimus-induced G1 arrest. We also found that everolimus stimulated autophagy and decreased cyclin D1 levels in explant human breast tissue. These data support the conclusion that the autophagy induced by everolimus in human mammary epithelial cells appears to cause cyclin D1 degradation resulting in G1 cell cycle arrest. Our findings contribute to our knowledge of the interplay between autophagy and cell cycle regulation mediated by mTORC1 signaling and cyclin D1 regulation.
Collapse
Affiliation(s)
- Guang Chen
- Department of Cell Systems & Anatomy, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Department of Pharmacology, School of Medicine, Taizhou University, Taizhou, China
| | - Xiao-Fei Ding
- Department of Cell Systems & Anatomy, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Department of Experimental and Clinical Medicine, School of Medicine, Taizhou University, Taizhou, China
| | - Hakim Bouamar
- Department of Cell Systems & Anatomy, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Kyle Pressley
- Department of Cell Systems & Anatomy, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Lu-Zhe Sun
- Department of Cell Systems & Anatomy, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
6
|
Targeting mTOR in Acute Lymphoblastic Leukemia. Cells 2019; 8:cells8020190. [PMID: 30795552 PMCID: PMC6406494 DOI: 10.3390/cells8020190] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022] Open
Abstract
Acute Lymphoblastic Leukemia (ALL) is an aggressive hematologic disorder and constitutes approximately 25% of cancer diagnoses among children and teenagers. Pediatric patients have a favourable prognosis, with 5-years overall survival rates near 90%, while adult ALL still correlates with poorer survival. However, during the past few decades, the therapeutic outcome of adult ALL was significantly ameliorated, mainly due to intensive pediatric-based protocols of chemotherapy. Mammalian (or mechanistic) target of rapamycin (mTOR) is a conserved serine/threonine kinase belonging to the phosphatidylinositol 3-kinase (PI3K)-related kinase family (PIKK) and resides in two distinct signalling complexes named mTORC1, involved in mRNA translation and protein synthesis and mTORC2 that controls cell survival and migration. Moreover, both complexes are remarkably involved in metabolism regulation. Growing evidence reports that mTOR dysregulation is related to metastatic potential, cell proliferation and angiogenesis and given that PI3K/Akt/mTOR network activation is often associated with poor prognosis and chemoresistance in ALL, there is a constant need to discover novel inhibitors for ALL treatment. Here, the current knowledge of mTOR signalling and the development of anti-mTOR compounds are documented, reporting the most relevant results from both preclinical and clinical studies in ALL that have contributed significantly into their efficacy or failure.
Collapse
|
7
|
Place AE, Pikman Y, Stevenson KE, Harris MH, Pauly M, Sulis ML, Hijiya N, Gore L, Cooper TM, Loh ML, Roti G, Neuberg DS, Hunt SK, Orloff-Parry S, Stegmaier K, Sallan SE, Silverman LB. Phase I trial of the mTOR inhibitor everolimus in combination with multi-agent chemotherapy in relapsed childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 2018; 65:e27062. [PMID: 29603593 DOI: 10.1002/pbc.27062] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 02/06/2018] [Accepted: 02/25/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND We sought to determine the feasibility of co-administering everolimus with a four-drug reinduction in children and adolescents with acute lymphoblastic leukemia (ALL) experiencing a first marrow relapse. PROCEDURE This phase I study tested everolimus with vincristine, prednisone, pegaspargase and doxorubicin in patients with marrow relapse occurring >18 months after first complete remission (CR). The primary aim was to identify the maximum tolerated dose of everolimus. Three dose levels (DLs) were tested during dose escalation (2, 3, and 5 mg/m2 /day). Additional patients were enrolled at the 3- and 5 mg/m2 /day DLs to further evaluate toxicity (dose expansion). RESULTS Thirteen patients enrolled during dose escalation and nine during dose expansion. During dose escalation, one dose-limiting toxicity occurred (grade 4 hyperbilirubinemia) in six evaluable patients at DL3 (5 mg/m2 /day). The most common grade ≥3 adverse events were febrile neutropenia, infections, transaminitis, hyperbilirubinemia, and hypophosphatemia. Two of the 12 patients treated at DL3 developed Rothia mucilaginosa meningitis. Nineteen patients (86%) achieved a second CR (CR2). Of those, 13 (68%) had a low end-reinduction minimal residual disease (MRD) level (≤10-3 by polymerase chain reaction-based assay). The CR2 rate for patients with B-cell ALL treated at DL3 (n = 12) was 92%; 82% of these patients had low MRD. CONCLUSIONS Everolimus combined with four-drug reinduction chemotherapy was generally well tolerated and associated with favorable rates of CR2 and low end-reinduction MRD. The recommended phase 2 dose of everolimus given in combination with a four-drug reinduction is 5 mg/m2 /day. This promising combination should be further evaluated in a larger patient cohort.
Collapse
Affiliation(s)
- Andrew E Place
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts
| | - Kristen E Stevenson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marian H Harris
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Melinda Pauly
- Department of Pediatrics, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, Georgia
| | - Maria-Luisa Sulis
- Division of Pediatric Hematology, Oncology, and Stem Cell Transplant, Columbia University, New York City, New York
| | - Nobuko Hijiya
- Division of Hematology, Oncology, and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital/Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lia Gore
- Section of Hematology, Oncology, and Bone Marrow Transplantation, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado
| | - Todd M Cooper
- Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, Washington
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital, University of California at San Francisco, San Francisco, California
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Donna S Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sarah K Hunt
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts
| | - Sarah Orloff-Parry
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts
| | - Stephen E Sallan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts
| | - Lewis B Silverman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
8
|
Du L, Li X, Zhen L, Chen W, Mu L, Zhang Y, Song A. Everolimus inhibits breast cancer cell growth through PI3K/AKT/mTOR signaling pathway. Mol Med Rep 2018; 17:7163-7169. [PMID: 29568883 PMCID: PMC5928673 DOI: 10.3892/mmr.2018.8769] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/30/2017] [Indexed: 01/14/2023] Open
Abstract
Breast cancer is one of the most prevalent malignancies and the leading cause of cancer‑associated mortality in women worldwide and in China. Everolimus (C53H83NO14) is an efficient anti-cancer drug for breast cancer which targets mammalian target of rapamycin (mTOR). The present study investigated the inhibitory effects of everolimus on breast cancer cells and an MCF‑7‑bearing mouse model. The potential mechanism of the everolimus‑mediated decrease in growth and aggressiveness of breast cancer cells was reported. Results demonstrated that everolimus significantly inhibited breast cancer cell growth, migration and invasion. It was demonstrated that everolimus induced apoptosis through decreasing B cell lymphoma (Bcl)‑2 and Bcl‑w and increasing caspase‑3 and caspase‑8 expression levels in breast cancer cells. It was observed that everolimus decreased phosphoinositide 3‑kinase (PI3K), protein kinase B (AKT) and mTOR expression levels in breast cancer cells. Results additionally demonstrated that PI3 K overexpression prevented that everolimus‑mediated inhibition of growth and aggressiveness in MCF‑7 cells. In vivo assays demonstrated that everolimus treatment markedly inhibited tumor growth in the MCF‑7 bearing mouse model. Overall, these data indicate that everolimus inhibits growth and aggressiveness of breast cancer cells through the PI3K/AKT/mTOR signaling pathways, suggesting the PI3K/AKT/mTOR signaling pathway may act as a therapeutic target for the treatment of human cancer.
Collapse
Affiliation(s)
- Liyan Du
- Department of Breast Surgery, Xingtai First Hospital, Xingtai, Hebei 054001, P.R. China
| | - Xiaomei Li
- Department of Breast Surgery, Xingtai First Hospital, Xingtai, Hebei 054001, P.R. China
| | - Linhong Zhen
- Department of Breast Surgery, Xingtai First Hospital, Xingtai, Hebei 054001, P.R. China
| | - Weiling Chen
- Department of Breast Surgery, Xingtai First Hospital, Xingtai, Hebei 054001, P.R. China
| | - Lingguang Mu
- Department of Breast Surgery, Xingtai First Hospital, Xingtai, Hebei 054001, P.R. China
| | - Yang Zhang
- Department of Breast Surgery, Xingtai First Hospital, Xingtai, Hebei 054001, P.R. China
| | - Ailin Song
- Department of Breast Surgery, Xingtai First Hospital, Xingtai, Hebei 054001, P.R. China
| |
Collapse
|
9
|
Simioni C, Martelli AM, Zauli G, Vitale M, McCubrey JA, Capitani S, Neri LM. Targeting the phosphatidylinositol 3-kinase/Akt/mechanistic target of rapamycin signaling pathway in B-lineage acute lymphoblastic leukemia: An update. J Cell Physiol 2018; 233:6440-6454. [PMID: 29667769 DOI: 10.1002/jcp.26539] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/12/2018] [Indexed: 12/26/2022]
Abstract
Despite considerable progress in treatment protocols, B-lineage acute lymphoblastic leukemia (B-ALL) displays a poor prognosis in about 15-20% of pediatric cases and about 60% of adult patients. In addition, life-long irreversible late effects from chemo- and radiation therapy, including secondary malignancies, are a growing problem for leukemia survivors. Targeted therapy holds promising perspectives for cancer treatment as it may be more effective and have fewer side effects than conventional therapies. The phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway is a key regulatory cascade which controls proliferation, survival and drug-resistance of cancer cells, and it is frequently upregulated in the different subtypes of B-ALL, where it plays important roles in the pathophysiology, maintenance and progression of the disease. Moreover, activation of this signaling cascade portends a poorer prognosis in both pediatric and adult B-ALL patients. Promising preclinical data on PI3K/Akt/mTOR inhibitors have documented their anticancer activity in B-ALL and some of these novel drugs have entered clinical trials as they could lead to a longer event-free survival and reduce therapy-associated toxicity for patients with B-ALL. This review highlights the current status of PI3K/Akt/mTOR inhibitors in B-ALL, with an emphasis on emerging evidence of the superior efficacy of synergistic combinations involving the use of traditional chemotherapeutics or other novel, targeted agents.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Navarro-Villarán E, Tinoco J, Jiménez G, Pereira S, Wang J, Aliseda S, Rodríguez-Hernández MA, González R, Marín-Gómez LM, Gómez-Bravo MA, Padillo FJ, Álamo-Martínez JM, Muntané J. Differential Antitumoral Properties and Renal-Associated Tissue Damage Induced by Tacrolimus and Mammalian Target of Rapamycin Inhibitors in Hepatocarcinoma: In Vitro and In Vivo Studies. PLoS One 2016; 11:e0160979. [PMID: 27518575 PMCID: PMC4982663 DOI: 10.1371/journal.pone.0160979] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/27/2016] [Indexed: 12/30/2022] Open
Abstract
Orthotopic liver transplantation (OLT) is the recommended treatment for patients at early stages of hepatocarcinoma (HCC) with potential portal hypertension and/or bilirubinemia, but without vascular-associated diseases. The patients are receiving immunosuppressive therapy to reduce graft rejection, but differential side effects have been related to calcineurin and mTOR inhibitor administration regarding tumor recurrence and nephrotoxicity. The in vitro studies showed that Tacrolimus exerted a more potent pro-apoptotic effect than Everolimus (Huh 7>Hep 3B>HepG2), being sirolimus only active in Hep3B cell line. Tacrolimus and Everolimus exerted potent antiproliferative properties in Huh 7 and Hep3B in which cells Sirolimus was inactive. Interestingly, Tacrolimus- and Everolimus-dependent G0/G1 cell accumulation occurred as a consequence of drastic reduction in S, as well as in S and G2+M phases, respectively. The in vivo studies support data on the more effective antitumoral properties of Everolimus, eventual risk of pro-angiogenic tumoral properties and nephrotoxicity of Tacrolimus, and pro-proliferative properties of Sirolimus in tumors developed in nude mice.
Collapse
Affiliation(s)
- Elena Navarro-Villarán
- Institute of Biomedicine of Seville (IBIS), “Virgen del Rocío”-“Virgen Macarena” University Hospital/CSIC/University of Seville, Seville, Spain
| | - José Tinoco
- Department of General Surgery, “Virgen del Rocío”-“Virgen Macarena” University Hospital/CSIC/University of Seville/IBIS/CSIC/University of Seville, Seville, Spain
| | - Granada Jiménez
- Department of General Surgery, “Virgen del Rocío”-“Virgen Macarena” University Hospital/CSIC/University of Seville/IBIS/CSIC/University of Seville, Seville, Spain
| | - Sheila Pereira
- Institute of Biomedicine of Seville (IBIS), “Virgen del Rocío”-“Virgen Macarena” University Hospital/CSIC/University of Seville, Seville, Spain
| | - Jize Wang
- Department of General Surgery, “Virgen del Rocío”-“Virgen Macarena” University Hospital/CSIC/University of Seville/IBIS/CSIC/University of Seville, Seville, Spain
| | - Sara Aliseda
- Institute of Biomedicine of Seville (IBIS), “Virgen del Rocío”-“Virgen Macarena” University Hospital/CSIC/University of Seville, Seville, Spain
| | - María A. Rodríguez-Hernández
- Institute of Biomedicine of Seville (IBIS), “Virgen del Rocío”-“Virgen Macarena” University Hospital/CSIC/University of Seville, Seville, Spain
| | - Raúl González
- Institute of Biomedicine of Seville (IBIS), “Virgen del Rocío”-“Virgen Macarena” University Hospital/CSIC/University of Seville, Seville, Spain
| | - Luís M. Marín-Gómez
- Department of General Surgery, “Virgen del Rocío”-“Virgen Macarena” University Hospital/CSIC/University of Seville/IBIS/CSIC/University of Seville, Seville, Spain
| | - Miguel A. Gómez-Bravo
- Department of General Surgery, “Virgen del Rocío”-“Virgen Macarena” University Hospital/CSIC/University of Seville/IBIS/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Francisco J. Padillo
- Department of General Surgery, “Virgen del Rocío”-“Virgen Macarena” University Hospital/CSIC/University of Seville/IBIS/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - José M. Álamo-Martínez
- Department of General Surgery, “Virgen del Rocío”-“Virgen Macarena” University Hospital/CSIC/University of Seville/IBIS/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Jordi Muntané
- Department of General Surgery, “Virgen del Rocío”-“Virgen Macarena” University Hospital/CSIC/University of Seville/IBIS/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- * E-mail:
| |
Collapse
|
11
|
Investigation of cellular mechanisms involved in apoptosis induced by a synthetic naphthylchalcone in acute leukemia cell lines. Anticancer Drugs 2016; 27:738-47. [PMID: 27337110 DOI: 10.1097/cad.0000000000000384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have previously reported the cytotoxic effects of chalcone A1, derived from 1-naphthaldehyde, in leukemia cell lines. On the basis of these findings, the main aim of this study was to elucidate some of the molecular mechanisms involved in apoptosis induced by chalcone A1 toward K562 and Jurkat cells. In both cell lines, chalcone A1 decreased the mitochondrial membrane potential, increased the expression of Bax proapoptotic protein, and decreased the expression of Bcl-2 antiapoptotic protein (resulting in the inversion of the Bcl-2/Bax ratio), which indicates the involvement of the intrinsic pathway. In addition, chalcone A1 increased the expression of FasR in Jurkat cells, which also indicates the involvement of the extrinsic pathway in this cell line. The results also showed an increased expression of effector caspase-3 and cleaved PARP-1 and a decreased expression of IAP protein survivin, which are consistent with apoptotic cell death. The decreased expression of Ki67 suggests that the mechanism involved in cell death induced by chalcone A1 also involves a decrease in cell proliferation. In ex-vivo experiments, chalcone A1 reduced the cell viability of blast cells collected from eight patients with different types of acute leukemia, confirming the cytotoxicity results found in vitro. The results obtained so far are very promising and further studies need to be carried out so that chalcone A1 can be used as a prototype for the development of new antileukemia agents.
Collapse
|
12
|
Welschinger R, Bendall LJ. Temporal Tracking of Cell Cycle Progression Using Flow Cytometry without the Need for Synchronization. J Vis Exp 2015:e52840. [PMID: 26327278 PMCID: PMC4692543 DOI: 10.3791/52840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This protocol describes a method to permit the tracking of cells through the cell cycle without requiring the cells to be synchronized. Achieving cell synchronization can be difficult for many cell systems. Standard practice is to block cell cycle progression at a specific stage and then release the accumulated cells producing a wave of cells progressing through the cycle in unison. However, some cell types find this block toxic resulting in abnormal cell cycling, or even mass death. Bromodeoxyuridine (BrdU) uptake can be used to track the cell cycle stage of individual cells. Cells incorporate this synthetic thymidine analog, while synthesizing new DNA during S phase. By providing BrdU for a brief period it is possible to mark a pool of cells that were in S phase while the BrdU was present. These cells can then be tracked through the remainder of the cell cycle and into the next round of replication, permitting the duration of the cell cycle phases to be determined without the need to induce a potentially toxic cell cycle block. It is also possible to determine and correlate the expression of both internal and external proteins during subsequent stages of the cell cycle. These can be used to further refine the assignment of cell cycle stage or assess effects on other cellular functions such as checkpoint activation or cell death.
Collapse
Affiliation(s)
- Robert Welschinger
- Centre for Cancer Research, Westmead Millennium Institute for Medical Research and University of Sydney
| | - Linda J Bendall
- Centre for Cancer Research, Westmead Millennium Institute for Medical Research and University of Sydney;
| |
Collapse
|
13
|
Simioni C, Cani A, Martelli AM, Zauli G, Tabellini G, McCubrey J, Capitani S, Neri LM. Activity of the novel mTOR inhibitor Torin-2 in B-precursor acute lymphoblastic leukemia and its therapeutic potential to prevent Akt reactivation. Oncotarget 2014; 5:10034-47. [PMID: 25296981 PMCID: PMC4259403 DOI: 10.18632/oncotarget.2490] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/15/2014] [Indexed: 01/10/2023] Open
Abstract
The PI3K/Akt/mTOR signaling cascade is a key regulatory pathway controlling cell growth and survival, and its dysregulation is a reported feature of B-precursor acute lymphoblastic leukemia (B-pre ALL). Torin-2 is a novel, second-generation ATP-competitive inhibitor that is potent and selective for mTOR with a superior pharmacokinetic profile to previous inhibitors. It has been shown that Torin-2 displayed dramatic antiproliferative activity across a panel of cancer cell lines. To investigate if Torin-2 could represent a new option for the treatment of B-pre ALL, we tested its activity on a panel of B-pre ALL cell lines. In all of them Torin-2 showed a powerful cytotoxic activity, inhibiting the growth of each cell line in a dose-dependent manner, with an IC₅₀ in the nanomolar range. Torin-2 caused both apoptosis and autophagy, induced cell cycle arrest in G₀/G₁ phase and affected both mTORC1 and mTORC2 activities as assessed by their specific substrate dephosphorylation. Torin-2 alone suppressed feedback activation of PI3K/Akt, whereas the mTORC1 inhibitor RAD001 required the addition of the Akt inhibitor MK-2206 to achieve the same effect. These pharmacological strategies targeting PI3K/Akt/mTOR at different points of the signaling pathway cascade might represent a new promising therapeutic strategy for treatment of B-pre ALL patients.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alice Cani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Zauli
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - James McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- LTTA Center, University of Ferrara, Ferrara, Italy
| | - Luca M. Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
14
|
Combining molecular targeted drugs to inhibit both cancer cells and activated stromal cells in gastric cancer. Neoplasia 2014; 15:1391-9. [PMID: 24403861 DOI: 10.1593/neo.131668] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 09/20/2013] [Accepted: 11/06/2013] [Indexed: 11/18/2022] Open
Abstract
Recent studies have revealed that PDGF plays a role in promoting progressive tumor growth in several cancers, including gastric cancer. Cancer-associated fibroblasts, pericytes, and lymphatic endothelial cells in stroma express high levels of PDGF receptor (PDGF-R); cancer cells and vascular endothelial cells do not. Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that increases the production of proteins that stimulate key cellular processes such as cell growth and proliferation, cell metabolism, and angiogenesis. In the present study, we examined the effects of PDGF-R tyrosine kinase inhibitor (nilotinib) and mTOR inhibitor (everolimus) on tumor stroma in an orthotopic nude mice model of human gastric cancer. Expression of PDGF-B and PDGF-Rβ mRNAs was associated with stromal volume. Treatment with nilotinib did not suppress tumor growth but significantly decreased stromal reactivity, lymphatic invasion, lymphatic vessel area, and pericyte coverage of tumor microvessels. In contrast, treatment with everolimus decreased tumor growth and microvessel density but not stromal reactivity. Nilotinib and everolimus in combination reduced both the growth rate and stromal reaction. Target molecule-based inhibition of cancer-stromal cell interaction appears promising as an effective antitumor therapy.
Collapse
|
15
|
Baraz R, Cisterne A, Saunders PO, Hewson J, Thien M, Weiss J, Basnett J, Bradstock KF, Bendall LJ. mTOR inhibition by everolimus in childhood acute lymphoblastic leukemia induces caspase-independent cell death. PLoS One 2014; 9:e102494. [PMID: 25014496 PMCID: PMC4094511 DOI: 10.1371/journal.pone.0102494] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 06/19/2014] [Indexed: 12/11/2022] Open
Abstract
Increasingly, anti-cancer medications are being reported to induce cell death mechanisms other than apoptosis. Activating alternate death mechanisms introduces the potential to kill cells that have defects in their apoptotic machinery, as is commonly observed in cancer cells, including in hematological malignancies. We, and others, have previously reported that the mTOR inhibitor everolimus has pre-clinical efficacy and induces caspase-independent cell death in acute lymphoblastic leukemia cells. Furthermore, everolimus is currently in clinical trial for acute lymphoblastic leukemia. Here we characterize the death mechanism activated by everolimus in acute lymphoblastic leukemia cells. We find that cell death is caspase-independent and lacks the morphology associated with apoptosis. Although mitochondrial depolarization is an early event, permeabilization of the outer mitochondrial membrane only occurs after cell death has occurred. While morphological and biochemical evidence shows that autophagy is clearly present it is not responsible for the observed cell death. There are a number of features consistent with paraptosis including morphology, caspase-independence, and the requirement for new protein synthesis. However in contrast to some reports of paraptosis, the activation of JNK signaling was not required for everolimus-induced cell death. Overall in acute lymphoblastic leukemia cells everolimus induces a cell death that resembles paraptosis.
Collapse
Affiliation(s)
- Rana Baraz
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Adam Cisterne
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Philip O. Saunders
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - John Hewson
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Marilyn Thien
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Jocelyn Weiss
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Jordan Basnett
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | | | - Linda J. Bendall
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
- * E-mail:
| |
Collapse
|