1
|
Matos ALSA, Ovens AJ, Jakobsen E, Iglesias-Gato D, Bech JM, Friis S, Bak LK, Madsen GI, Oakhill JS, Puustinen P, Moreira JMA. Salicylate-Elicited Activation of AMP-Activated Protein Kinase Directly Triggers Degradation of C-Myc in Colorectal Cancer Cells. Cells 2025; 14:294. [PMID: 39996767 PMCID: PMC11854256 DOI: 10.3390/cells14040294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/03/2024] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
Aspirin has consistently shown preventive effects in some solid cancers, notably colorectal cancer. However, the precise molecular mechanisms underlying this positive effect have remained elusive. In this study, we used an azoxymethane-induced mouse model of colon carcinogenesis to identify aspirin-associated molecular alterations that could account for its cancer-preventive effect. Transcriptomic analysis of aspirin-treated mice showed a strong reduction in c-Myc protein levels and effects on the Myc-dependent transcriptional program in colonic cells. Proto-oncogene c-Myc cooperates with AMP-activated protein kinase (AMPK) to control cellular energetics. Here, we show that salicylate, the active metabolite of aspirin, reduces c-Myc protein expression levels through multiple mechanisms that are both AMPK dependent and independent. This effect is cell-type dependent and occurs at both the transcriptional and post-translational levels. Salicylate-induced AMPK activation leads to the phosphorylation of c-Myc at Thr400, as well as its destabilization and degradation. Our results reveal a complex, multilayered, negative effect of salicylate on c-Myc protein abundance and suggest that chronic depletion of c-Myc can counteract the neoplastic transformation of colorectal epithelium, underpinning the preventive effect of aspirin on colorectal cancer.
Collapse
Affiliation(s)
- Ana Laura S. A. Matos
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- CAPES Foundation, Ministry of Education of Brazil, Brasília DF 70040-020, Brazil
| | - Ashley J. Ovens
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia (J.S.O.)
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Emil Jakobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Diego Iglesias-Gato
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jacob M. Bech
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Sino-Danish Center for Education and Research, Aarhus University, 8000 Aarhus, Denmark
| | - Stine Friis
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Lasse Kristoffer Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, 2600 Glostrup, Denmark
- Translational Research Center (TRACE), Copenhagen University Hospital-Rigshospitalet, 2600 Glostrup, Denmark
| | - Gunvor I. Madsen
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark
| | - Jonathan S. Oakhill
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia (J.S.O.)
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pietri Puustinen
- Cell Death and Metabolism, Danish Cancer Society Research Center (DCRC), 2100 Copenhagen, Denmark
| | - José M. A. Moreira
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Liu F, Liao Z, Zhang Z. MYC in liver cancer: mechanisms and targeted therapy opportunities. Oncogene 2023; 42:3303-3318. [PMID: 37833558 DOI: 10.1038/s41388-023-02861-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
MYC, a major oncogenic transcription factor, regulates target genes involved in various pathways such as cell proliferation, metabolism and immune evasion, playing a critical role in the tumor initiation and development in multiple types of cancer. In liver cancer, MYC and its signaling pathways undergo significant changes, exerting a profound impact on liver cancer progression, including tumor proliferation, metastasis, dedifferentiation, metabolism, immune microenvironment, and resistance to comprehensive therapies. This makes MYC an appealing target, despite it being previously considered an undruggable protein. In this review, we discuss the role and mechanisms of MYC in liver physiology, chronic liver diseases, hepatocarcinogenesis, and liver cancer progression, providing a theoretical basis for targeting MYC as an ideal therapeutic target for liver cancer. We also summarize and prospect the strategies for targeting MYC, including direct and indirect approaches to abolish the oncogenic function of MYC in liver cancer.
Collapse
Affiliation(s)
- Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
3
|
Sporbeck K, Haas ML, Pastor-Maldonado CJ, Schüssele DS, Hunter C, Takacs Z, Diogo de Oliveira AL, Franz-Wachtel M, Charsou C, Pfisterer SG, Gubas A, Haller PK, Knorr RL, Kaulich M, Macek B, Eskelinen EL, Simonsen A, Proikas-Cezanne T. The ABL-MYC axis controls WIPI1-enhanced autophagy in lifespan extension. Commun Biol 2023; 6:872. [PMID: 37620393 PMCID: PMC10449903 DOI: 10.1038/s42003-023-05236-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Human WIPI β-propellers function as PI3P effectors in autophagy, with WIPI4 and WIPI3 being able to link autophagy control by AMPK and TORC1 to the formation of autophagosomes. WIPI1, instead, assists WIPI2 in efficiently recruiting the ATG16L1 complex at the nascent autophagosome, which in turn promotes lipidation of LC3/GABARAP and autophagosome maturation. However, the specific role of WIPI1 and its regulation are unknown. Here, we discovered the ABL-ERK-MYC signalling axis controlling WIPI1. As a result of this signalling, MYC binds to the WIPI1 promoter and represses WIPI1 gene expression. When ABL-ERK-MYC signalling is counteracted, increased WIPI1 gene expression enhances the formation of autophagic membranes capable of migrating through tunnelling nanotubes to neighbouring cells with low autophagic activity. ABL-regulated WIPI1 function is relevant to lifespan control, as ABL deficiency in C. elegans increased gene expression of the WIPI1 orthologue ATG-18 and prolonged lifespan in a manner dependent on ATG-18. We propose that WIPI1 acts as an enhancer of autophagy that is physiologically relevant for regulating the level of autophagic activity over the lifespan.
Collapse
Affiliation(s)
- Katharina Sporbeck
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Maximilian L Haas
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Carmen J Pastor-Maldonado
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - David S Schüssele
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Catherine Hunter
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Zsuzsanna Takacs
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- Institute of Molecular Biotechnology, A-1030, Vienna, Austria
| | - Ana L Diogo de Oliveira
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tübingen, Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Chara Charsou
- Institute of Basic Medical Sciences, University of Oslo, 0372, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway
| | - Simon G Pfisterer
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- Department of Anatomy, Faculty of Medicine, University of Helsinki, FI-00290, Helsinki, Finland
| | - Andrea Gubas
- Institute of Biochemistry II, Frankfurt Cancer Institute, Goethe University Medical School, D-60590, Frankfurt, Germany
| | - Patricia K Haller
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Roland L Knorr
- Humboldt University of Berlin, Institute of Biology, D-10115, Berlin, Germany
- Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- International Research Frontiers Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Manuel Kaulich
- Institute of Biochemistry II, Frankfurt Cancer Institute, Goethe University Medical School, D-60590, Frankfurt, Germany
| | - Boris Macek
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- Proteome Center Tübingen, Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Eeva-Liisa Eskelinen
- Department of Biosciences, University of Helsinki, Fl-00790, Helsinki, Finland
- Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland
| | - Anne Simonsen
- Institute of Basic Medical Sciences, University of Oslo, 0372, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway
| | - Tassula Proikas-Cezanne
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany.
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany.
| |
Collapse
|
4
|
Leow BCS, Kok CH, Yeung DT, Hughes TP, White DL, Eadie LN. The acquisition order of leukemic drug resistance mutations is directed by the selective fitness associated with each resistance mechanism. Sci Rep 2023; 13:13110. [PMID: 37567965 PMCID: PMC10421868 DOI: 10.1038/s41598-023-40279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023] Open
Abstract
In Chronic Myeloid Leukemia, the transition from drug sensitive to drug resistant disease is poorly understood. Here, we used exploratory sequencing of gene transcripts to determine the mechanisms of drug resistance in a dasatinib resistant cell line model. Importantly, cell samples were collected sequentially during drug exposure and dose escalation, revealing several resistance mechanisms which fluctuated over time. BCR::ABL1 overexpression, BCR::ABL1 kinase domain mutation, and overexpression of the small molecule transporter ABCG2, were identified as dasatinib resistance mechanisms. The acquisition of mutations followed an order corresponding with the increase in selective fitness associated with each resistance mechanism. Additionally, it was demonstrated that ABCG2 overexpression confers partial ponatinib resistance. The results of this study have broad applicability and help direct effective therapeutic drug usage and dosing regimens and may be useful for clinicians to select the most efficacious therapy at the most beneficial time.
Collapse
Affiliation(s)
- Benjamin C S Leow
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Chung H Kok
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
| | - David T Yeung
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
- Australasian Leukaemia & Lymphoma Group, Richmond, VIC, 3121, Australia
- Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Timothy P Hughes
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
- Australasian Leukaemia & Lymphoma Group, Richmond, VIC, 3121, Australia
- Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Deborah L White
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
- Australasian Leukaemia & Lymphoma Group, Richmond, VIC, 3121, Australia
- Australian & New Zealand Children's Haematology/Oncology Group, Clayton, VIC, 3168, Australia
- Australian Genomics Health Alliance, Parkville, VIC, 3052, Australia
| | - Laura N Eadie
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia.
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia.
| |
Collapse
|
5
|
Chen X, Du Q, Guo H, He Q, Yang B, Ding L. Bafetinib Suppresses the Transcription of PD-L1 Through c-Myc in Lung Cancer. Front Pharmacol 2022; 13:897747. [PMID: 35721177 PMCID: PMC9201485 DOI: 10.3389/fphar.2022.897747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Given the limitations of the existing antibody-based therapies, including immune-related adverse events, poor response rates, and intravenous route of dosing, small molecules inhibitors targeting PD-L1 are highly desirable. By cell-based screening, we found that tyrosine kinase inhibitor Bafetinib dramatically suppresses PD-L1 protein expression in a dose-dependent manner. In parallel, cell membrane PD-L1 is also reduced by Bafetinib. We confirm that Bafetinib doesn’t affect the protein half-life of PD-L1 but significantly inhibits the transcription of PD-L1. Among the transcription factors that regulate PD-L1 expression, c-Myc is downregulated by Bafetinib. Bafetinib caused PD-L1 inhibition is abolished when c-Myc is knocked-down. Further, we identified that Bafetinib reduced c-Myc expression because of transcription inhibition. By using the CT26 tumor model, we further confirm that Bafetinib suppressed PD-L1 expression in vivo. In conclusion, our study shows that Bafetinib inhibits the transcription of PD-L1 through transcription factor c-Myc, suggesting that Bafetinib might be a small molecule drug targeting PD-L1.
Collapse
Affiliation(s)
- Xi Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qianqian Du
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Wu PS, Wang CY, Chen PS, Hung JH, Yen JH, Wu MJ. 8-Hydroxydaidzein Downregulates JAK/STAT, MMP, Oxidative Phosphorylation, and PI3K/AKT Pathways in K562 Cells. Biomedicines 2021; 9:biomedicines9121907. [PMID: 34944720 PMCID: PMC8698423 DOI: 10.3390/biomedicines9121907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
A metabolite isolated from fermented soybean, 8-hydroxydaidzein (8-OHD, 7,8,4′-trihydroxyisoflavone, NSC-678112), is widely used in ethnopharmacological research due to its anti-proliferative and anti-inflammatory effects. We reported previously that 8-OHD provoked reactive oxygen species (ROS) overproduction, and induced autophagy, apoptosis, breakpoint cluster region-Abelson murine leukemia viral oncogene (BCR-ABL) degradation, and differentiation in K562 human chronic myeloid leukemia (CML) cells. However, how 8-OHD regulates metabolism, the extracellular matrix during invasion and metastasis, and survival signaling pathways in CML remains largely unexplored. High-throughput technologies have been widely used to discover the therapeutic targets and pathways of drugs. Bioinformatics analysis of 8-OHD-downregulated differentially expressed genes (DEGs) revealed that Janus kinase/signal transducer and activator of transcription (JAK/STAT), matrix metalloproteinases (MMPs), c-Myc, phosphoinositide 3-kinase (PI3K)/AKT, and oxidative phosphorylation (OXPHOS) metabolic pathways were significantly altered by 8-OHD treatment. Western blot analyses validated that 8-OHD significantly downregulated cytosolic JAK2 and the expression and phosphorylation of STAT3 dose- and time-dependently in K562 cells. Zymography and transwell assays also confirmed that K562-secreted MMP9 and invasion activities were dose-dependently inhibited by 8-OHD after 24 h of treatment. RT-qPCR analyses verified that 8-OHD repressed metastasis and OXPHOS-related genes. In combination with DisGeNET, it was found that 8-OHD’s downregulation of PI3K/AKT is crucial for controlling CML development. A STRING protein–protein interaction analysis further revealed that AKT and MYC are hub proteins for cancer progression. Western blotting revealed that AKT phosphorylation and nuclear MYC expression were significantly inhibited by 8-OHD. Collectively, this systematic investigation revealed that 8-OHD exerts anti-CML effects by downregulating JAK/STAT, PI3K/AKT, MMP, and OXPHOS pathways, and MYC expression. These results could shed new light on the development of 8-OHD for CML therapy.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Department of Applied Life Science and Health, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan; (P.-S.W.); (P.-S.C.)
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - Pin-Shern Chen
- Department of Applied Life Science and Health, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan; (P.-S.W.); (P.-S.C.)
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
| | - Ming-Jiuan Wu
- Department of Applied Life Science and Health, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan; (P.-S.W.); (P.-S.C.)
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
- Correspondence: or ; Tel.: +886-6-2664911 (ext. 2520)
| |
Collapse
|
7
|
Donati G, Ravà M, Filipuzzi M, Nicoli P, Cassina L, Verrecchia A, Doni M, Rodighiero S, Parodi F, Boletta A, Vellano CP, Marszalek JR, Draetta GF, Amati B. Targeting mitochondrial respiration and the BCL2 family in high-grade MYC-associated B-cell lymphoma. Mol Oncol 2021; 16:1132-1152. [PMID: 34632715 PMCID: PMC8895457 DOI: 10.1002/1878-0261.13115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/27/2021] [Accepted: 10/08/2021] [Indexed: 01/02/2023] Open
Abstract
Multiple molecular features, such as activation of specific oncogenes (e.g., MYC, BCL2) or a variety of gene expression signatures, have been associated with disease course in diffuse large B‐cell lymphoma (DLBCL), although their relationships and implications for targeted therapy remain to be fully unraveled. We report that MYC activity is closely correlated with—and most likely a driver of—gene signatures related to oxidative phosphorylation (OxPhos) in DLBCL, pointing to OxPhos enzymes, in particular mitochondrial electron transport chain (ETC) complexes, as possible therapeutic targets in high‐grade MYC‐associated lymphomas. In our experiments, indeed, MYC sensitized B cells to the ETC complex I inhibitor IACS‐010759. Mechanistically, IACS‐010759 triggered the integrated stress response (ISR) pathway, driven by the transcription factors ATF4 and CHOP, which engaged the intrinsic apoptosis pathway and lowered the apoptotic threshold in MYC‐overexpressing cells. In line with these findings, the BCL2‐inhibitory compound venetoclax synergized with IACS‐010759 against double‐hit lymphoma (DHL), a high‐grade malignancy with concurrent activation of MYC and BCL2. In BCL2‐negative lymphoma cells, instead, killing by IACS‐010759 was potentiated by the Mcl‐1 inhibitor S63845. Thus, combining an OxPhos inhibitor with select BH3‐mimetic drugs provides a novel therapeutic principle against aggressive, MYC‐associated DLBCL variants.
Collapse
Affiliation(s)
- Giulio Donati
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | - Micol Ravà
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | | | - Paola Nicoli
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | - Laura Cassina
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Mirko Doni
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | | | | | | | - Christopher P Vellano
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION), Houston, TX, USA
| | - Joseph R Marszalek
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION), Houston, TX, USA
| | - Giulio F Draetta
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bruno Amati
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| |
Collapse
|
8
|
Liefwalker DF, Ryan M, Wang Z, Pathak KV, Plaisier S, Shah V, Babra B, Dewson GS, Lai IK, Mosley AR, Fueger PT, Casey SC, Jiang L, Pirrotte P, Swaminathan S, Sears RC. Metabolic convergence on lipogenesis in RAS, BCR-ABL, and MYC-driven lymphoid malignancies. Cancer Metab 2021; 9:31. [PMID: 34399819 PMCID: PMC8369789 DOI: 10.1186/s40170-021-00263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/23/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Metabolic reprogramming is a central feature in many cancer subtypes and a hallmark of cancer. Many therapeutic strategies attempt to exploit this feature, often having unintended side effects on normal metabolic programs and limited efficacy due to integrative nature of metabolic substrate sourcing. Although the initiating oncogenic lesion may vary, tumor cells in lymphoid malignancies often share similar environments and potentially similar metabolic profiles. We examined cells from mouse models of MYC-, RAS-, and BCR-ABL-driven lymphoid malignancies and find a convergence on de novo lipogenesis. We explore the potential role of MYC in mediating lipogenesis by 13C glucose tracing and untargeted metabolic profiling. Inhibition of lipogenesis leads to cell death both in vitro and in vivo and does not induce cell death of normal splenocytes. METHODS We analyzed RNA-seq data sets for common metabolic convergence in lymphoma and leukemia. Using in vitro cell lines derived in from conditional MYC, RAS, and BCR-ABL transgenic murine models and oncogene-driven human cell lines, we determined gene regulation, metabolic profiles, and sensitivity to inhibition of lipogenesis in lymphoid malignancies. We utilize preclinical murine models and transgenic primary model of T-ALL to determine the effect of lipogenesis blockade across BCR-ABL-, RAS-, and c-MYC-driven lymphoid malignancies. Statistical significance was calculated using unpaired t-tests and one-way ANOVA. RESULTS This study illustrates that de novo lipid biogenesis is a shared feature of several lymphoma subtypes. Using cell lines derived from conditional MYC, RAS, and BCR-ABL transgenic murine models, we demonstrate shared responses to inhibition of lipogenesis by the acetyl-coA carboxylase inhibitor 5-(tetradecloxy)-2-furic acid (TOFA), and other lipogenesis inhibitors. We performed metabolic tracing studies to confirm the influence of c-MYC and TOFA on lipogenesis. We identify specific cell death responses to TOFA in vitro and in vivo and demonstrate delayed engraftment and progression in vivo in transplanted lymphoma cell lines. We also observe delayed progression of T-ALL in a primary transgenic mouse model upon TOFA administration. In a panel of human cell lines, we demonstrate sensitivity to TOFA treatment as a metabolic liability due to the general convergence on de novo lipogenesis in lymphoid malignancies driven by MYC, RAS, or BCR-ABL. Importantly, cell death was not significantly observed in non-malignant cells in vivo. CONCLUSIONS These studies suggest that de novo lipogenesis may be a common survival strategy for many lymphoid malignancies and may be a clinically exploitable metabolic liability. TRIAL REGISTRATION This study does not include any clinical interventions on human subjects.
Collapse
Affiliation(s)
- Daniel F Liefwalker
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97201, USA.
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA.
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Meital Ryan
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Zhichao Wang
- Department of Molecular & Cellular Endocrinology, Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Khyatiben V Pathak
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 85004, USA
| | - Seema Plaisier
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 85004, USA
| | - Vidhi Shah
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Bobby Babra
- Molecular & Cellular Biology, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Gabrielle S Dewson
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Ian K Lai
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Adriane R Mosley
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Patrick T Fueger
- Department of Molecular & Cellular Endocrinology, Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
- Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Stephanie C Casey
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lei Jiang
- Department of Molecular & Cellular Endocrinology, Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
- Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 85004, USA
| | - Srividya Swaminathan
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Monrovia, CA, 91016, USA
- Department of Hematological Malignancies, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, 97201, USA
| |
Collapse
|
9
|
Wang F, Hou W, Chitsike L, Xu Y, Bettler C, Perera A, Bank T, Cotler SJ, Dhanarajan A, Denning MF, Ding X, Breslin P, Qiang W, Li J, Koleske AJ, Qiu W. ABL1, Overexpressed in Hepatocellular Carcinomas, Regulates Expression of NOTCH1 and Promotes Development of Liver Tumors in Mice. Gastroenterology 2020; 159:289-305.e16. [PMID: 32171747 PMCID: PMC7387191 DOI: 10.1053/j.gastro.2020.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/31/2020] [Accepted: 03/04/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS We investigated whether ABL proto-oncogene 1, non-receptor tyrosine kinase (ABL1) is involved in development of hepatocellular carcinoma (HCC). METHODS We analyzed clinical and gene expression data from The Cancer Genome Atlas. Albumin-Cre (HepWT) mice and mice with hepatocyte-specific disruption of Abl1 (HepAbl-/- mice) were given hydrodynamic injections of plasmids encoding the Sleeping Beauty transposase and transposons with the MET gene and a catenin β1 gene with an N-terminal truncation, which induces development of liver tumors. Some mice were then gavaged with the ABL1 inhibitor nilotinib or vehicle (control) daily for 4 weeks. We knocked down ABL1 with short hairpin RNAs in Hep3B and Huh7 HCC cells and analyzed their proliferation and growth as xenograft tumors in mice. We performed RNA sequencing and gene set enrichment analysis of tumors. We knocked down or overexpressed NOTCH1 and MYC in HCC cells and analyzed proliferation. We measured levels of phosphorylated ABL1, MYC, and NOTCH1 by immunohistochemical analysis of an HCC tissue microarray. RESULTS HCC tissues had higher levels of ABL1 than non-tumor liver tissues, which correlated with shorter survival times of patients. HepWT mice with the MET and catenin β1 transposons developed liver tumors and survived a median 64 days; HepAbl-/- mice with these transposons developed tumors that were 50% smaller and survived a median 81 days. Knockdown of ABL1 in human HCC cells reduced proliferation, growth as xenograft tumors in mice, and expression of MYC, which reduced expression of NOTCH1. Knockdown of NOTCH1 or MYC in HCC cells significantly reduced cell growth. NOTCH1 or MYC overexpression in human HCC cells promoted proliferation and rescued the phenotype caused by ABL1 knockdown. The level of phosphorylated (activated) ABL1 correlated with levels of MYC and NOTCH1 in human HCC specimens. Nilotinib decreased expression of MYC and NOTCH1 in HCC cell lines, reduced the growth of xenograft tumors in mice, and slowed growth of liver tumors in mice with MET and catenin β1 transposons, reducing tumor levels of MYC and NOTCH1. CONCLUSIONS HCC samples have increased levels of ABL1 compared with nontumor liver tissues, and increased levels of ABL1 correlate with shorter survival times of patients. Loss or inhibition of ABL1 reduces proliferation of HCC cells and slows growth of liver tumors in mice. Inhibitors of ABL1 might be used for treatment of HCC.
Collapse
Affiliation(s)
- Fang Wang
- Departments of Surgery and Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA
| | - Wei Hou
- Departments of Surgery and Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA
| | - Lennox Chitsike
- Departments of Surgery and Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA
| | - Yingchen Xu
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University
| | - Carlee Bettler
- Departments of Surgery and Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA
| | - Aldeb Perera
- Departments of Surgery and Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA
| | - Thomas Bank
- Departments of Surgery and Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA
| | - Scott J. Cotler
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA
| | - Asha Dhanarajan
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA
| | - Mitchell F. Denning
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA
| | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA
| | - Peter Breslin
- Departments of Molecular/Cellular Physiology and Oncology Institute, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA,Department of Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA
| | - Wenan Qiang
- Department of Obstetrics and Gynecology and Pathology, Northwestern University
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame
| | | | - Wei Qiu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Chicago, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Chicago, Illinois.
| |
Collapse
|
10
|
Cohn GM, Liefwalker DF, Langer EM, Sears RC. PIN1 Provides Dynamic Control of MYC in Response to Extrinsic Signals. Front Cell Dev Biol 2020; 8:224. [PMID: 32300594 PMCID: PMC7142217 DOI: 10.3389/fcell.2020.00224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/16/2020] [Indexed: 01/05/2023] Open
Abstract
PIN1 is a phosphorylation-directed member of the peptidyl-prolyl cis/trans isomerase (PPIase) family that facilitates conformational changes in phosphorylated targets such as c-MYC (MYC). Following signaling events that mediate phosphorylation of MYC at Serine 62, PIN1 establishes structurally distinct pools of MYC through its trans-cis and cis-trans isomerization activity at Proline 63. Through these isomerization steps, PIN1 functionally regulates MYC's stability, the molecular timing of its DNA binding and transcriptional activity, and its subnuclear localization. Recently, our group showed that Serine 62 phosphorylated MYC can associate with the inner basket of the nuclear pore (NP) in a PIN1-dependent manner. The poised euchromatin at the NP basket enables rapid cellular response to environmental signals and cell stress, and PIN1-mediated trafficking of MYC calibrates this response. In this perspective, we describe the molecular aspects of PIN1 target recognition and PIN1's function in the context of its temporal and spatial regulation of MYC.
Collapse
Affiliation(s)
- Gabriel M Cohn
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Daniel F Liefwalker
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Ellen M Langer
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, United States.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, United States.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States.,Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
11
|
Hu X, Chen LF. Pinning Down the Transcription: A Role for Peptidyl-Prolyl cis-trans Isomerase Pin1 in Gene Expression. Front Cell Dev Biol 2020; 8:179. [PMID: 32266261 PMCID: PMC7100383 DOI: 10.3389/fcell.2020.00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Pin1 is a peptidyl-prolyl cis-trans isomerase that specifically binds to a phosphorylated serine or threonine residue preceding a proline (pSer/Thr-Pro) motif and catalyzes the cis-trans isomerization of proline imidic peptide bond, resulting in conformational change of its substrates. Pin1 regulates many biological processes and is also involved in the development of human diseases, like cancer and neurological diseases. Many Pin1 substrates are transcription factors and transcription regulators, including RNA polymerase II (RNAPII) and factors associated with transcription initiation, elongation, termination and post-transcription mRNA decay. By changing the stability, subcellular localization, protein-protein or protein-DNA/RNA interactions of these transcription related proteins, Pin1 modulates the transcription of many genes related to cell proliferation, differentiation, apoptosis and immune response. Here, we will discuss how Pin regulates the properties of these transcription relevant factors for effective gene expression and how Pin1-mediated transcription contributes to the diverse pathophysiological functions of Pin1.
Collapse
Affiliation(s)
- Xiangming Hu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lin-Feng Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
12
|
Qiao X, Liu Y, Prada ML, Mohan AK, Gupta A, Jaiswal A, Sharma M, Merisaari J, Haikala HM, Talvinen K, Yetukuri L, Pylvänäinen JW, Klefström J, Kronqvist P, Meinander A, Aittokallio T, Hietakangas V, Eilers M, Westermarck J. UBR5 Is Coamplified with MYC in Breast Tumors and Encodes an Ubiquitin Ligase That Limits MYC-Dependent Apoptosis. Cancer Res 2020; 80:1414-1427. [PMID: 32029551 DOI: 10.1158/0008-5472.can-19-1647] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/21/2019] [Accepted: 01/28/2020] [Indexed: 11/16/2022]
Abstract
For maximal oncogenic activity, cellular MYC protein levels need to be tightly controlled so that they do not induce apoptosis. Here, we show how ubiquitin ligase UBR5 functions as a molecular rheostat to prevent excess accumulation of MYC protein. UBR5 ubiquitinates MYC and its effects on MYC protein stability are independent of FBXW7. Silencing of endogenous UBR5 induced MYC protein expression and regulated MYC target genes. Consistent with the tumor suppressor function of UBR5 (HYD) in Drosophila, HYD suppressed dMYC-dependent overgrowth of wing imaginal discs. In contrast, in cancer cells, UBR5 suppressed MYC-dependent priming to therapy-induced apoptosis. Of direct cancer relevance, MYC and UBR5 genes were coamplified in MYC-driven human cancers. Functionally, UBR5 suppressed MYC-mediated apoptosis in p53-mutant breast cancer cells with UBR5/MYC coamplification. Furthermore, single-cell immunofluorescence analysis demonstrated reciprocal expression of UBR5 and MYC in human basal-type breast cancer tissues. In summary, UBR5 is a novel MYC ubiquitin ligase and an endogenous rheostat for MYC activity. In MYC-amplified, and p53-mutant breast cancer cells, UBR5 has an important role in suppressing MYC-mediated apoptosis priming and in protection from drug-induced apoptosis. SIGNIFICANCE: These findings identify UBR5 as a novel MYC regulator, the inactivation of which could be very important for understanding of MYC dysregulation on cancer cells. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/7/1414/F1.large.jpg.
Collapse
Affiliation(s)
- Xi Qiao
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland.,TuDMM Doctoral Programme, University of Turku, Turku, Finland
| | - Ying Liu
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Maria Llamazares Prada
- Theodor Boveri Institute and Comprehensive Cancer Center, Mainfranken, Biocenter, University of Würzburg, Würzburg, Germany
| | - Aravind K Mohan
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Abhishekh Gupta
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Alok Jaiswal
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Mukund Sharma
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland.,TuDMM Doctoral Programme, University of Turku, Turku, Finland
| | - Joni Merisaari
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland.,TuDMM Doctoral Programme, University of Turku, Turku, Finland
| | - Heidi M Haikala
- Research Programs Unit/Translational Cancer Medicine & HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kati Talvinen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Laxman Yetukuri
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Joanna W Pylvänäinen
- Turku BioImaging, University of Turku and Åbo Akademi University, Turku, Finland
| | - Juha Klefström
- Research Programs Unit/Translational Cancer Medicine & HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Annika Meinander
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Ville Hietakangas
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Martin Eilers
- Theodor Boveri Institute and Comprehensive Cancer Center, Mainfranken, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland. .,Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
13
|
Narla G, Sangodkar J, Ryder CB. The impact of phosphatases on proliferative and survival signaling in cancer. Cell Mol Life Sci 2018; 75:2695-2718. [PMID: 29725697 PMCID: PMC6023766 DOI: 10.1007/s00018-018-2826-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/24/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
Abstract
The dynamic and stringent coordination of kinase and phosphatase activity controls a myriad of physiologic processes. Aberrations that disrupt the balance of this interplay represent the basis of numerous diseases. For a variety of reasons, early work in this area portrayed kinases as the dominant actors in these signaling events with phosphatases playing a secondary role. In oncology, these efforts led to breakthroughs that have dramatically altered the course of certain diseases and directed vast resources toward the development of additional kinase-targeted therapies. Yet, more recent scientific efforts have demonstrated a prominent and sometimes driving role for phosphatases across numerous malignancies. This maturation of the phosphatase field has brought with it the promise of further therapeutic advances in the field of oncology. In this review, we discuss the role of phosphatases in the regulation of cellular proliferation and survival signaling using the examples of the MAPK and PI3K/AKT pathways, c-Myc and the apoptosis machinery. Emphasis is placed on instances where these signaling networks are perturbed by dysregulation of specific phosphatases to favor growth and persistence of human cancer.
Collapse
Affiliation(s)
| | - Jaya Sangodkar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
14
|
Cryptotanshinone suppresses key onco-proliferative and drug-resistant pathways of chronic myeloid leukemia by targeting STAT5 and STAT3 phosphorylation. SCIENCE CHINA-LIFE SCIENCES 2018; 61:999-1009. [DOI: 10.1007/s11427-018-9324-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022]
|
15
|
D'Artista L, Bisso A, Piontini A, Doni M, Verrecchia A, Kress TR, Morelli MJ, Del Sal G, Amati B, Campaner S. Pin1 is required for sustained B cell proliferation upon oncogenic activation of Myc. Oncotarget 2017; 7:21786-98. [PMID: 26943576 PMCID: PMC5008323 DOI: 10.18632/oncotarget.7846] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 02/21/2016] [Indexed: 12/23/2022] Open
Abstract
The c-myc proto-oncogene is activated by translocation in Burkitt's lymphoma and substitutions in codon 58 stabilize the Myc protein or augment its oncogenic potential. In wild-type Myc, phosphorylation of Ser 62 and Thr 58 provides a landing pad for the peptidyl prolyl-isomerase Pin1, which in turn promotes Ser 62 dephosphorylation and Myc degradation. However, the role of Pin1 in Myc-induced lymphomagenesis remains unknown. We show here that genetic ablation of Pin1 reduces lymphomagenesis in Eμ-myc transgenic mice. In both Pin1-deficient B-cells and MEFs, the proliferative response to oncogenic Myc was selectively impaired, with no alterations in Myc-induced apoptosis or mitogen-induced cell cycle entry. This proliferative defect wasn't attributable to alterations in either Ser 62 phosphorylation or Myc-regulated transcription, but instead relied on the activity of the ARF-p53 pathway. Pin1 silencing in lymphomas retarded disease progression in mice, making Pin1 an attractive therapeutic target in Myc-driven tumors.
Collapse
Affiliation(s)
- Luana D'Artista
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy.,Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Andrea Bisso
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Andrea Piontini
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Mirko Doni
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Alessandro Verrecchia
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Theresia R Kress
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Marco J Morelli
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy.,Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Bruno Amati
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy.,Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Stefano Campaner
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| |
Collapse
|
16
|
Aurora A Kinase Inhibitor AKI603 Induces Cellular Senescence in Chronic Myeloid Leukemia Cells Harboring T315I Mutation. Sci Rep 2016; 6:35533. [PMID: 27824120 PMCID: PMC5099696 DOI: 10.1038/srep35533] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/29/2016] [Indexed: 12/27/2022] Open
Abstract
The emergence of resistance to imatinib mediated by mutations in the BCR-ABL has become a major challenge in the treatment of chronic myeloid leukemia (CML). Alternative therapeutic strategies to override imatinib-resistant CML are urgently needed. In this study, we investigated the effect of AKI603, a novel small molecule inhibitor of Aurora kinase A (AurA) to overcome resistance mediated by BCR-ABL-T315I mutation. Our results showed that AKI603 exhibited strong anti-proliferative activity in leukemic cells. AKI603 inhibited cell proliferation and colony formation capacities in imatinib-resistant CML cells by inducing cell cycle arrest with polyploidy accumulation. Surprisingly, inhibition of AurA by AKI603 induced leukemia cell senescence in both BCR-ABL wild type and T315I mutation cells. Furthermore, the induction of senescence was associated with enhancing reactive oxygen species (ROS) level. Moreover, the anti-tumor effect of AKI603 was proved in the BALB/c nude mice KBM5-T315I xenograft model. Taken together, our data demonstrate that the small molecule AurA inhibitor AKI603 may be used to overcome drug resistance induced by BCR-ABL-T315I mutation in CML.
Collapse
|
17
|
Haura EB, Beg AA, Rix U, Antonia S. Charting Immune Signaling Proteomes En Route to New Therapeutic Strategies. Cancer Immunol Res 2015; 3:714-20. [PMID: 26081226 DOI: 10.1158/2326-6066.cir-15-0094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/01/2015] [Indexed: 01/12/2023]
Abstract
The activation state of an antitumor effector T cell in a tumor depends on the sum of all stimulatory signals and inhibitory signals that it receives in the tumor microenvironment. Accumulating data address the increasing complexity of these signals produced by a myriad of immune checkpoint molecules, cytokines, and metabolites. While reductionist experiments have identified key molecules and their importance in signaling, less clear is the integration of all these signals that allows T cells to guide their responses in health and in disease. Mass spectrometry-based proteomics is well poised to offer such insights, including monitoring emergence of resistance mechanisms to immunotherapeutics during treatments. A major application of this technology is in the discovery and characterization of small-molecule agents capable of enhancing the response to immunotherapeutic agents. Such an approach would reinvigorate small-molecule drug development aimed not at tumor cells but rather at tumor-resident T cells capable of producing dramatic and durable antitumor responses.
Collapse
Affiliation(s)
- Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Amer A Beg
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Scott Antonia
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
18
|
Mei Z, Zhang D, Hu B, Wang J, Shen X, Xiao W. FBXO32 Targets c-Myc for Proteasomal Degradation and Inhibits c-Myc Activity. J Biol Chem 2015; 290:16202-14. [PMID: 25944903 DOI: 10.1074/jbc.m115.645978] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Indexed: 11/06/2022] Open
Abstract
FBXO32 (MAFbx/Atrogin-1) is an E3 ubiquitin ligase that is markedly up-regulated in muscle atrophy. Although some data indicate that FBXO32 may play an important role in tumorigenesis, the molecular mechanism of FBXO32 in tumorigenesis has been poorly understood. Here, we present evidence that FBXO32 targets the oncogenic protein c-Myc for ubiquitination and degradation through the proteasome pathway. Phosphorylation of c-Myc at Thr-58 and Ser-62 is dispensable for FBXO32 to induce c-Myc degradation. Mutation of the lysine 326 in c-Myc reduces c-Myc ubiquitination and prevents the c-Myc degradation induced by FBXO32. Furthermore, overexpression of FBXO32 suppresses c-Myc activity and inhibits cell growth, but knockdown of FBXO32 enhances c-Myc activity and promotes cell growth. Finally, we show that FBXO32 is a direct downstream target of c-Myc, highlighting a negative feedback regulation loop between c-Myc and FBXO32. Thus, FBXO32 may function by targeting c-Myc. This work explains the function of FBXO32 and highlights its mechanisms in tumorigenesis.
Collapse
Affiliation(s)
- Zhichao Mei
- From the Key Laboratory of Aquatic Biodiversity and Conservation and
| | - Dawei Zhang
- From the Key Laboratory of Aquatic Biodiversity and Conservation and
| | - Bo Hu
- From the Key Laboratory of Aquatic Biodiversity and Conservation and
| | - Jing Wang
- From the Key Laboratory of Aquatic Biodiversity and Conservation and
| | - Xian Shen
- the First Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Wuhan Xiao
- From the Key Laboratory of Aquatic Biodiversity and Conservation and the State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China and
| |
Collapse
|
19
|
Pagani IS, Spinelli O, Mattarucchi E, Pirrone C, Pigni D, Amelotti E, Lilliu S, Boroni C, Intermesoli T, Giussani U, Caimi L, Bolda F, Baffelli R, Candi E, Pasquali F, Lo Curto F, Lanfranchi A, Porta F, Rambaldi A, Porta G. Genomic quantitative real-time PCR proves residual disease positivity in more than 30% samples with negative mRNA-based qRT-PCR in Chronic Myeloid Leukemia. Oncoscience 2014; 1:510-21. [PMID: 25594053 PMCID: PMC4278316 DOI: 10.18632/oncoscience.65] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 07/23/2014] [Indexed: 12/20/2022] Open
Abstract
Imatinib mesylate (IM) is the first line therapy against Chronic Myeloid Leukemia, effectively prolonging overall survival. Because discontinuation of treatment is associated with relapse, IM is required indefinitely to maintain operational cure. To assess minimal residual disease, cytogenetic analysis is insensitive in a high background of normal lymphocytes. The qRT-PCR provides highly sensitive detection of BCR-ABL1 transcripts, but mRNA levels are not directly related to the number of leukemic cells, and undetectable results are difficult to interpret. We developed a sensitive approach to detect the number of leukemic cells by a genomic DNA (gDNA) Q-PCR assay based on the break-point sequence, with a formula to calculate the number of Ph-positive cells. We monitored 8 CML patients treated with IM for more than 8 years. We tested each samples by patient specific gDNA Q-PCR in parallel by the conventional techniques. In all samples positive for chimeric transcripts we showed corresponding chimeric gDNA by Q-PCR, and in 32.8% (42/128) of samples with undetectable levels of mRNA we detected the persistence of leukemic cells. The gDNA Q-PCR assay could be a new diagnostic tool used in parallel to conventional techniques to support the clinician's decision to vary or to STOP IM therapy.
Collapse
Affiliation(s)
- Ilaria S Pagani
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy ; Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Orietta Spinelli
- Hematology laboratory, USC Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Elia Mattarucchi
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy
| | - Cristina Pirrone
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy
| | - Diana Pigni
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy
| | - Elisabetta Amelotti
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy
| | - Silvia Lilliu
- Hematology laboratory, USC Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Chiara Boroni
- Hematology laboratory, USC Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Tamara Intermesoli
- Hematology laboratory, USC Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Ursula Giussani
- Laboratory of Medical Genetics, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Luigi Caimi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Federica Bolda
- Laboratory of chemical-clinical analysis, Section of Hematology and blood coagulation, Stem Cells laboratory, Spedali Civili of Brescia, Brescia, Italy
| | - Renata Baffelli
- Laboratory of chemical-clinical analysis, Section of Hematology and blood coagulation, Stem Cells laboratory, Spedali Civili of Brescia, Brescia, Italy
| | - Eleonora Candi
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Francesco Pasquali
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy
| | - Francesco Lo Curto
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy
| | - Arnalda Lanfranchi
- Laboratory of chemical-clinical analysis, Section of Hematology and blood coagulation, Stem Cells laboratory, Spedali Civili of Brescia, Brescia, Italy
| | - Fulvio Porta
- Laboratory of chemical-clinical analysis, Section of Hematology and blood coagulation, Stem Cells laboratory, Spedali Civili of Brescia, Brescia, Italy
| | - Alessandro Rambaldi
- Hematology laboratory, USC Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Giovanni Porta
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy
| |
Collapse
|
20
|
Abstract
The MYC oncoprotein is an essential transcription factor that regulates the expression of many genes involved in cell growth, proliferation, and metabolic pathways. Thus, it is important to keep MYC activity in check in normal cells in order to avoid unwanted oncogenic changes. Normal cells have adapted several ways to control MYC levels, and these mechanisms can be disrupted in cancer cells. One of the major ways in which MYC levels are controlled in cells is through targeted degradation by the ubiquitin-proteasome system (UPS). Here, we discuss the role of the UPS in the regulation of MYC protein levels and review some of the many proteins that have been shown to regulate MYC protein stability. In addition, we discuss how this relates to MYC transcriptional activity, human cancers, and therapeutic targeting.
Collapse
Affiliation(s)
- Amy S Farrell
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | | |
Collapse
|
21
|
Growth factor receptor/steroid receptor cross talk in trastuzumab-treated breast cancer. Oncogene 2014; 34:525-30. [PMID: 24469058 DOI: 10.1038/onc.2013.586] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/04/2013] [Accepted: 12/07/2013] [Indexed: 12/13/2022]
Abstract
Treatment with tyrosine kinase inhibitors (TKIs) including trastuzumab has revolutionized the management of HER2-positive breast cancer. Recent evaluation of clinical trial data suggests that a subset of HER2/ER double-positive cancers may not receive significant benefit from the TKI therapy. Here we investigate the cross talk between HER2 and ER in breast cancer and monitor the effect of trastuzumab on the tyrosine kinase effector transcription factor Myc. In HER2-positive breast cancer patients treated with neoadjuvant trastuzumab, steroid receptor-negative status (ER and PR negative) of pre-treatment biopsies predicted pathological complete response (pCR) (n=31 patients, P=0.0486), whereas elevated Myc protein inversely associated with pCR (P=0.0446). Liquid chromatography mass spectrometry identified the corepressor SMRT as a novel Myc-interacting protein. Trastuzumab treatment enhanced Myc-SMRT interactions in HER2-overexpressing breast cancer cells (LCC1) and inhibited expression of the Myc target gene survivin. In HER2-low, ER-positive steroid-dominant cells (MCF7), trastuzumab therapy repressed Myc-SMRT interactions and upregulated survivin expression. Trastuzumab treatment induced ER-CBP interactions, enhanced ER transcriptional activity and upregulated expression of the ER target gene pS2. The absence of pS2 expression in pre-treatment biopsies predicted pCR to neoadjuvant trastuzumab in breast cancer patients (n=25, P=0.0089) and pS2 expression associated with residual cancer burden (P=0.0196). Furthermore, metastatic tissues from patients who had failed trastuzumab therapy were pS2 positive. In HER2-overexpressing cells, trastuzumab treatment can repress Myc transcriptional activity and clinical response is favorable. However, with co-expression of the steroid pathway, this inhibition is lost and response to treatment is often poor.
Collapse
|
22
|
Filtz TM, Vogel WK, Leid M. Regulation of transcription factor activity by interconnected post-translational modifications. Trends Pharmacol Sci 2013; 35:76-85. [PMID: 24388790 DOI: 10.1016/j.tips.2013.11.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/20/2013] [Accepted: 11/25/2013] [Indexed: 01/03/2023]
Abstract
Transcription factors comprise just over 7% of the human proteome and serve as gatekeepers of cellular function, integrating external signal information into gene expression programs that reconfigure cellular physiology at the most basic levels. Surface-initiated cell signaling pathways converge on transcription factors, decorating these proteins with an array of post-translational modifications (PTMs) that are often interdependent, being linked in time, space, and combinatorial function. These PTMs orchestrate every activity of a transcription factor over its entire lifespan--from subcellular localization to protein-protein interactions, sequence-specific DNA binding, transcriptional regulatory activity, and protein stability--and play key roles in the epigenetic regulation of gene expression. The multitude of PTMs of transcription factors also offers numerous potential points of intervention for development of therapeutic agents to treat a wide spectrum of diseases. We review PTMs most commonly targeting transcription factors, focusing on recent reports of sequential and linked PTMs of individual factors.
Collapse
Affiliation(s)
- Theresa M Filtz
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA.
| | - Walter K Vogel
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Mark Leid
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA; Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
23
|
Mutual interaction between YAP and c-Myc is critical for carcinogenesis in liver cancer. Biochem Biophys Res Commun 2013; 439:167-72. [PMID: 23994632 DOI: 10.1016/j.bbrc.2013.08.071] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 08/20/2013] [Indexed: 01/28/2023]
Abstract
Yes-associated protein (YAP), the downstream effector of Hippo signaling pathway as well as c-Myc has been linked to hepatocarcinogenesis. However, little is known about whether and how YAP and c-Myc interacts with each other. In this study, we find YAP-c-Myc interaction is critical for liver cancer cell both in vitro and in vivo. Moreover, both c-Myc and YAP proteins are closely correlated in human liver cancer samples. Mechanistically, YAP promotes c-Myc transcriptional output through c-Abl. By contrast, c-Myc enhances protein expression independent of transcription. Taken together, our study uncovers a novel positive auto-regulatory feedback loop underlying the interaction between YAP and c-Myc in liver cancer, suggesting YAP and c-Myc links Hippo/YAP and c-Myc pathways, and thus may be helpful in the development of effective diagnosis and treatment strategies against liver cancer.
Collapse
|
24
|
Yang S, Roselli F, Patchev AV, Yu S, Almeida OFX. Non-receptor-tyrosine kinases integrate fast glucocorticoid signaling in hippocampal neurons. J Biol Chem 2013; 288:23725-39. [PMID: 23818519 DOI: 10.1074/jbc.m113.470146] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite numerous descriptions of rapid effects of corticosterone on neuronal function, the intracellular mechanisms responsible for these changes remain elusive. The present comprehensive analysis reveals that signaling from a membrane-located G protein-coupled receptor activates PKC, Akt/PKB, and PKA, which subsequently trigger the phosphorylation of the tyrosine kinases Pyk2, Src, and Abl. These changes induce rapid cytoskeletal rearrangements (increased PSD-95 co-clustering) within the post-synaptic density; these events are accompanied by increased surface NMDA receptor expression, reflecting corticosterone-induced inhibition of NMDA receptor endocytosis. Notably, none of these signaling mechanisms require de novo protein synthesis. The observed up-regulation of ERK1/2 (downstream of NMDA receptor signaling) together with the fact that c-Abl integrates cytoplasmic and nuclear functions introduces a potential mechanism through which rapid signaling initiated at the plasma membrane may eventually determine the long term integrated response to corticosterone by impacting on the transcriptional machinery that is regulated by classical, nuclear mineralocorticoid, and glucocorticoid receptors.
Collapse
Affiliation(s)
- Silei Yang
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | | | | | | | |
Collapse
|
25
|
Pin1 regulates the dynamics of c-Myc DNA binding to facilitate target gene regulation and oncogenesis. Mol Cell Biol 2013; 33:2930-49. [PMID: 23716601 DOI: 10.1128/mcb.01455-12] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Myc oncoprotein is considered a master regulator of gene transcription by virtue of its ability to modulate the expression of a large percentage of all genes. However, mechanisms that direct Myc's recruitment to DNA and target gene selection to elicit specific cellular functions have not been well elucidated. Here, we report that the Pin1 prolyl isomerase enhances recruitment of serine 62-phosphorylated Myc and its coactivators to select promoters during gene activation, followed by promoting Myc's release associated with its degradation. This facilitates Myc's activation of genes involved in cell growth and metabolism, resulting in enhanced proproliferative activity, even while controlling Myc levels. In cancer cells with impaired Myc degradation, Pin1 still enhances Myc DNA binding, although it no longer facilitates Myc degradation. Thus, we find that Pin1 and Myc are cooverexpressed in cancer, and this drives a gene expression pattern that we show is enriched in poor-outcome breast cancer subtypes. This study provides new insight into mechanisms regulating Myc DNA binding and oncogenic activity, it reveals a novel role for Pin1 in the regulation of transcription factors, and it elucidates a mechanism that can contribute to oncogenic cooperation between Pin1 and Myc.
Collapse
|