1
|
Ranjan A, Thoenen EA, Kaida A, Wood S, Van Dyke T, Iwakuma T. Characterization of an Mtbp Hypomorphic Allele in a Diethylnitrosamine-Induced Liver Carcinogenesis Model. Cancers (Basel) 2023; 15:4596. [PMID: 37760565 PMCID: PMC10526184 DOI: 10.3390/cancers15184596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
MTBP is implicated in cell cycle progression, DNA replication, and cancer metastasis. However, the function of MTBP remains enigmatic and is dependent on cellular contexts and its cellular localization. To understand the in vivo physiological role of MTBP, it is important to generate Mtbp knockout mice. However, complete deletion of the Mtbp gene in mice results in early embryonic lethality, while its heterozygous deletion shows modest biological phenotypes, including enhanced cancer metastasis. To overcome this and better characterize the in vivo physiological function of MTBP, we, for the first time, generated mice that carry an Mtbp hypomorphic allele (MtbpH) in which Mtbp protein is expressed at approximately 30% of that in the wild-type allele. We treated wild-type, Mtbp+/-, and MtbpH/- mice with a liver carcinogen, diethylnitrosamine (DEN), and found that the MtbpH/- mice showed worse overall survival when compared to the wild-type mice. Consistent with previous reports using human liver cancer cells, mouse embryonic fibroblasts (MEFs) from the MtbpH/- mice showed an increase in the nuclear localization of p-Erk1/2 and migratory potential. Thus, MtbpH/- mice and cells from MtbpH/- mice are valuable to understand the in vivo physiological role of Mtbp and validate the diverse functions of MTBP that have been observed in human cells.
Collapse
Affiliation(s)
- Atul Ranjan
- Department of Pediatrics, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
| | - Elizabeth A. Thoenen
- Department of Pediatrics, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
| | - Atsushi Kaida
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Stephanie Wood
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | - Tomoo Iwakuma
- Department of Pediatrics, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
2
|
Choudhary HB, Mandlik SK, Mandlik DS. Role of p53 suppression in the pathogenesis of hepatocellular carcinoma. World J Gastrointest Pathophysiol 2023; 14:46-70. [PMID: 37304923 PMCID: PMC10251250 DOI: 10.4291/wjgp.v14.i3.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/01/2023] Open
Abstract
In the world, hepatocellular carcinoma (HCC) is among the top 10 most prevalent malignancies. HCC formation has indeed been linked to numerous etiological factors, including alcohol usage, hepatitis viruses and liver cirrhosis. Among the most prevalent defects in a wide range of tumours, notably HCC, is the silencing of the p53 tumour suppressor gene. The control of the cell cycle and the preservation of gene function are both critically important functions of p53. In order to pinpoint the core mechanisms of HCC and find more efficient treatments, molecular research employing HCC tissues has been the main focus. Stimulated p53 triggers necessary reactions that achieve cell cycle arrest, genetic stability, DNA repair and the elimination of DNA-damaged cells’ responses to biological stressors (like oncogenes or DNA damage). To the contrary hand, the oncogene protein of the murine double minute 2 (MDM2) is a significant biological inhibitor of p53. MDM2 causes p53 protein degradation, which in turn adversely controls p53 function. Despite carrying wt-p53, the majority of HCCs show abnormalities in the p53-expressed apoptotic pathway. High p53 in-vivo expression might have two clinical impacts on HCC: (1) Increased levels of exogenous p53 protein cause tumour cells to undergo apoptosis by preventing cell growth through a number of biological pathways; and (2) Exogenous p53 makes HCC susceptible to various anticancer drugs. This review describes the functions and primary mechanisms of p53 in pathological mechanism, chemoresistance and therapeutic mechanisms of HCC.
Collapse
Affiliation(s)
- Heena B Choudhary
- Department of Pharmacology, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| | - Satish K Mandlik
- Department of Pharmaceutics, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| | - Deepa S Mandlik
- Department of Pharmacology, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| |
Collapse
|
3
|
Nair NU, Jiang Q, Wei JS, Misra VA, Morrow B, Kesserwan C, Hermida LC, Lee JS, Mian I, Zhang J, Lebensohn A, Miettinen M, Sengupta M, Khan J, Ruppin E, Hassan R. Genomic and transcriptomic analyses identify a prognostic gene signature and predict response to therapy in pleural and peritoneal mesothelioma. Cell Rep Med 2023; 4:100938. [PMID: 36773602 PMCID: PMC9975319 DOI: 10.1016/j.xcrm.2023.100938] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/23/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023]
Abstract
Malignant mesothelioma is an aggressive cancer with limited treatment options and poor prognosis. A better understanding of mesothelioma genomics and transcriptomics could advance therapies. Here, we present a mesothelioma cohort of 122 patients along with their germline and tumor whole-exome and tumor RNA sequencing data as well as phenotypic and drug response information. We identify a 48-gene prognostic signature that is highly predictive of mesothelioma patient survival, including CCNB1, the expression of which is highly predictive of patient survival on its own. In addition, we analyze the transcriptomics data to study the tumor immune microenvironment and identify synthetic-lethality-based signatures predictive of response to therapy. This germline and somatic whole-exome sequencing as well as transcriptomics data from the same patient are a valuable resource to address important biological questions, including prognostic biomarkers and determinants of treatment response in mesothelioma.
Collapse
Affiliation(s)
- Nishanth Ulhas Nair
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Qun Jiang
- Thoracic and GI Malignancies Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | | | | | - Betsy Morrow
- Thoracic and GI Malignancies Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | | | - Leandro C Hermida
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joo Sang Lee
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; School of Medicine and Department of Artificial Intelligence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Idrees Mian
- Thoracic and GI Malignancies Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Jingli Zhang
- Thoracic and GI Malignancies Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | | | | | - Manjistha Sengupta
- Thoracic and GI Malignancies Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Javed Khan
- Genetics Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Raffit Hassan
- Thoracic and GI Malignancies Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Kriger D, Novitskaya K, Vasileva G, Lomert E, Aksenov ND, Barlev NA, Tentler D. Alpha-actnin-4 (ACTN4) selectively affects the DNA double-strand breaks repair in non-small lung carcinoma cells. Biol Direct 2022; 17:40. [PMID: 36476259 PMCID: PMC9730676 DOI: 10.1186/s13062-022-00354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND ACTN4 is an actin-binding protein involved in many cellular processes, including cancer development. High ACTN4 expression is often associated with a poor prognosis. However, it has been identified as a positive marker for platinum-based adjuvant chemotherapy for non-small cell lung cancer (NSCLC). The goal of our study was to investigate the involvement of ACTN4 in the NSCLC cells' response to the genotoxic drugs. RESULTS We generated H1299 cells with the ACTN4 gene knock-out (ACTN4 KO), using the CRISPR/Cas9 system. The resistance of the cells to the cisplatin and etoposide was analyzed with the MTT assay. We were also able to estimate the efficiency of DNA repair through the DNA comet assay and gamma-H2AX staining. Possible ACTN4 effects on the non-homologous end joining (NHEJ) and homologous recombination (HR) were investigated using pathway-specific reporter plasmids and through the immunostaining of the key proteins. We found that the H1299 cells with the ACTN4 gene knock-out did not show cisplatin-resistance, but did display a higher resistance to the topoisomerase II inhibitors etoposide and doxorubicin, suggesting that ACTN4 might be somehow involved in the repair of DNA strand breaks. Indeed, the H1299 ACTN4 KO cells repaired etoposide- and doxorubicin-induced DNA breaks more effectively than the control cells. Moreover, the ACTN4 gene knock-out enhanced NHEJ and suppressed HR efficiency. Supporting the data, the depletion of ACTN4 resulted in the faster assembly of the 53BP1 foci with a lower number of the phospho-BRCA1 foci after the etoposide treatment. CONCLUSIONS Thus, we are the first to demonstrate that ACTN4 may influence the resistance of cancer cells to the topoisomerase II inhibitors, and affect the efficiency of the DNA double strand breaks repair. We hypothesize that ACTN4 interferes with the assembly of the NHEJ and HR complexes, and hence regulates balance between these DNA repair pathways.
Collapse
Affiliation(s)
- Daria Kriger
- grid.4886.20000 0001 2192 9124Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St Petersburg, Russian Federation 194064
| | - Ksenia Novitskaya
- grid.4886.20000 0001 2192 9124Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St Petersburg, Russian Federation 194064
| | - Giomar Vasileva
- grid.4886.20000 0001 2192 9124Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St Petersburg, Russian Federation 194064
| | - Ekaterina Lomert
- grid.4886.20000 0001 2192 9124Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St Petersburg, Russian Federation 194064
| | - Nikolai D. Aksenov
- grid.4886.20000 0001 2192 9124Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St Petersburg, Russian Federation 194064
| | - Nikolai A. Barlev
- grid.4886.20000 0001 2192 9124Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St Petersburg, Russian Federation 194064 ,grid.428191.70000 0004 0495 7803Nazarbayev University, 020000 Astana, Kazakhstan
| | - Dmitri Tentler
- grid.4886.20000 0001 2192 9124Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St Petersburg, Russian Federation 194064
| |
Collapse
|
5
|
Grieb BC, Eischen CM. MTBP and MYC: A Dynamic Duo in Proliferation, Cancer, and Aging. BIOLOGY 2022; 11:881. [PMID: 35741402 PMCID: PMC9219613 DOI: 10.3390/biology11060881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 12/21/2022]
Abstract
The oncogenic transcription factor c-MYC (MYC) is highly conserved across species and is frequently overexpressed or dysregulated in human cancers. MYC regulates a wide range of critical cellular and oncogenic activities including proliferation, metabolism, metastasis, apoptosis, and differentiation by transcriptionally activating or repressing the expression of a large number of genes. This activity of MYC is not carried out in isolation, instead relying on its association with a myriad of protein cofactors. We determined that MDM Two Binding Protein (MTBP) indirectly binds MYC and is a novel MYC transcriptional cofactor. MTBP promotes MYC-mediated transcriptional activity, proliferation, and cellular transformation by binding in a protein complex with MYC at MYC-bound promoters. This discovery provided critical context for data linking MTBP to aging as well as a rapidly expanding body of evidence demonstrating MTBP is overexpressed in many human malignancies, is often linked to poor patient outcomes, and is necessary for cancer cell survival. As such, MTBP represents a novel and potentially broad reaching oncologic drug target, particularly when MYC is dysregulated. Here we have reviewed the discovery of MTBP and the initial controversy with its function as well as its associations with proliferation, MYC, DNA replication, aging, and human cancer.
Collapse
Affiliation(s)
- Brian C. Grieb
- Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Christine M. Eischen
- Department of Cancer Biology and the Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Zaffar E, Ferreira P, Sanchez-Pulido L, Boos D. The Role of MTBP as a Replication Origin Firing Factor. BIOLOGY 2022; 11:biology11060827. [PMID: 35741348 PMCID: PMC9219753 DOI: 10.3390/biology11060827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022]
Abstract
The initiation step of replication at replication origins determines when and where in the genome replication machines, replisomes, are generated. Tight control of replication initiation helps facilitate the two main tasks of genome replication, to duplicate the genome accurately and exactly once each cell division cycle. The regulation of replication initiation must ensure that initiation occurs during the S phase specifically, that no origin fires more than once per cell cycle, that enough origins fire to avoid non-replicated gaps, and that the right origins fire at the right time but only in favorable circumstances. Despite its importance for genetic homeostasis only the main molecular processes of eukaryotic replication initiation and its cellular regulation are understood. The MTBP protein (Mdm2-binding protein) is so far the last core replication initiation factor identified in metazoan cells. MTBP is the orthologue of yeast Sld7. It is essential for origin firing, the maturation of pre-replicative complexes (pre-RCs) into replisomes, and is emerging as a regulation focus targeted by kinases and by regulated degradation. We present recent insight into the structure and cellular function of the MTBP protein in light of recent structural and biochemical studies revealing critical molecular details of the eukaryotic origin firing reaction. How the roles of MTBP in replication and other cellular processes are mutually connected and are related to MTBP's contribution to tumorigenesis remains largely unclear.
Collapse
Affiliation(s)
- Eman Zaffar
- Molecular Genetics II, Centre for Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany; (E.Z.); (P.F.)
| | - Pedro Ferreira
- Molecular Genetics II, Centre for Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany; (E.Z.); (P.F.)
| | - Luis Sanchez-Pulido
- Medical Research Council Human Genetics Unit, IGC, University of Edinburgh, Edinburgh EH9 3JR, UK;
| | - Dominik Boos
- Molecular Genetics II, Centre for Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany; (E.Z.); (P.F.)
- Correspondence: ; Tel.: +49-201-183-4132
| |
Collapse
|
7
|
Zhang X, Hu C, Huang C, Wei Y, Li X, Hu M, Li H, Wu J, Czajkowsky DM, Guo Y, Shao Z. Robust Acquisition of Spatial Transcriptional Programs in Tissues With Immunofluorescence-Guided Laser Capture Microdissection. Front Cell Dev Biol 2022; 10:853188. [PMID: 35399504 PMCID: PMC8990165 DOI: 10.3389/fcell.2022.853188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/24/2022] [Indexed: 12/22/2022] Open
Abstract
The functioning of tissues is fundamentally dependent upon not only the phenotypes of the constituent cells but also their spatial organization in the tissue, as local interactions precipitate intra-cellular events that often lead to changes in expression. However, our understanding of these processes in tissues, whether healthy or diseased, is limited at present owing to the difficulty in acquiring comprehensive transcriptional programs of spatially- and phenotypically-defined cells in situ. Here we present a robust method based on immunofluorescence-guided laser capture microdissection (immuno-LCM-RNAseq) to acquire finely resolved transcriptional programs with as few as tens of cells from snap-frozen or RNAlater-treated clinical tissues sufficient to resolve even isoforms. The protocol is optimized to protect the RNA with a small molecule inhibitor, the ribonucleoside vanadyl complex (RVC), which thereby enables the typical time-consuming immunostaining and laser capture steps of this procedure during which RNA is usually severely degraded in existing approaches. The efficacy of this approach is exemplified by the characterization of differentially expressed genes between the mouse small intestine lacteal cells at the tip versus the main capillary body, including those that function in sensing and responding to local environmental cues to stimulate intra-cellular signalling. With the extensive repertoire of specific antibodies that are presently available, our method provides an unprecedented capability for the analysis of transcriptional networks and signalling pathways during development, pathogenesis, and aging of specific cell types within native tissues.
Collapse
Affiliation(s)
- Xiaodan Zhang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chuansheng Hu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Huang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wei
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowei Li
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Miaomiao Hu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Li
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ji Wu
- Bio-X Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Daniel M. Czajkowsky
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Daniel M. Czajkowsky, ; Yan Guo, ; Zhifeng Shao,
| | - Yan Guo
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Daniel M. Czajkowsky, ; Yan Guo, ; Zhifeng Shao,
| | - Zhifeng Shao
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Daniel M. Czajkowsky, ; Yan Guo, ; Zhifeng Shao,
| |
Collapse
|
8
|
Honda K. Development of biomarkers for predicting recurrence by determining the metastatic ability of cancer cells. J NIPPON MED SCH 2021; 89:24-32. [PMID: 34526453 DOI: 10.1272/jnms.jnms.2022_89-118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adjuvant chemotherapy has been carried out for patients with cancer who underwent curative resection, but it is basically not needed for patients without micro-metastatic lesions who undergo a perfectly curative surgical operation. The patients who need adjuvant chemotherapy are defined as those whose micro-metastases cannot be detected by imaging modalities in the other sites of the resective areas, despite curative resection for the primary sites. If biomarkers to efficiently evaluate the metastatic potential of each patient could be developed, we may be able to provide personalized adjuvant chemotherapy in the clinical setting. Actinin-4 (ACTN4, gene name ACTN4) is an actin-bundling protein that we identified in 1998 as a novel molecule involved in cancer invasion and metastasis. Protein overexpression of actinin-4 in cancer cells leads to the invasive phenotype, and patients with gene amplification of ACTN4 have a worse prognosis than patients with a normal copy number in some cancers, including pancreas, lung, and salivary gland cancers. In this review, the biological roles of actinin-4 for cancer invasion and metastasis are summarized, and the potential usefulness of actinin-4 as a biomarker for evaluation of metastatic ability is examined.
Collapse
Affiliation(s)
- Kazufumi Honda
- Department of Bioregulation, Institution for Advanced Medical Science, Nippon Medical School
| |
Collapse
|
9
|
Jiang Q, Ma Y, Han J, Chu J, Ma X, Shen L, Liu B, Li BA, Hou J, Bi Q. MDM2 Binding Protein Induces the Resistance of Hepatocellular Carcinoma Cells to Molecular Targeting Agents via Enhancing the Transcription Factor Activity of the Pregnane X Receptor. Front Oncol 2021; 11:715193. [PMID: 34249768 PMCID: PMC8264664 DOI: 10.3389/fonc.2021.715193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
The MDM2 binding protein (MTBP) has been considered an important regulator of human malignancies. In this study, we demonstrate that the high level of MTBP’s endogenous expression is correlated with poor prognosis of advanced hepatocellular carcinoma (HCC) patients who received sorafenib. MTBP interacted with the Pregnane X receptor (PXR) and enhanced the transcription factor activity of PXR. Moreover, MTBP enhanced the accumulation of PXR in HCC cells’ nuclear and the recruitment of PXR to its downstream gene’s (cyp3a4’s) promoter region. Mechanically, the knockdown of MTBP in MHCC97-H cells with high levels of MTBP decelerated the clearance or metabolism of sorafenib in HCC cells and led to the resistance of HCC cells to sorafenib. Whereas overexpression of MTBP in in MHCC97-L cells with low levels of MTBP showed the opposite trend. By establishing the interaction between MTBP and PXR, our results indicate that MTBP could function as a co-activator of PXR and could be a promising therapeutic target to enhance the sensitivity of HCC cells to molecular targeting agents.
Collapse
Affiliation(s)
- Qiyu Jiang
- Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Ma
- Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jingjing Han
- Department of Gastroenterology, Sangzhi County National Hospital, Zhangjiajie City, China
| | - Jingdong Chu
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xuemei Ma
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lijun Shen
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bo Liu
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bo-An Li
- Department of Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Hou
- Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qian Bi
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Wu A, Tang J, Guo Z, Dai Y, Nie J, Hu W, Liu N, Ye C, Li S, Pei H, Zhou G. Long Non-Coding RNA CRYBG3 Promotes Lung Cancer Metastasis via Activating the eEF1A1/MDM2/MTBP Axis. Int J Mol Sci 2021; 22:3211. [PMID: 33809929 PMCID: PMC8048704 DOI: 10.3390/ijms22063211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
The occurrence of distant tumor metastases is a major barrier in non-small cell lung cancer (NSCLC) therapy, and seriously affects clinical treatment and patient prognosis. Recently, long non-coding RNAs (lncRNAs) have been demonstrated to be crucial regulators of metastasis in lung cancer. The aim of this study was to reveal the underlying mechanisms of a novel lncRNA LNC CRYBG3 in regulating NSCLC metastasis. Experimental results showed that LNC CRYBG3 was upregulated in NSCLC cells compared with normal tissue cells, and its level was involved in these cells' metastatic ability. Exogenously overexpressed LNC CRYBG3 increased the metastatic ability and the protein expression level of the metastasis-associated proteins Snail and Vimentin in low metastatic lung cancer HCC827 cell line. In addition, LNC CRYBG3 contributed to HCC827 cell metastasis in vivo. Mechanistically, LNC CRYBG3 could directly combine with eEF1A1 and promote it to move into the nucleus to enhance the transcription of MDM2. Overexpressed MDM2 combined with MDM2 binding protein (MTBP) to reduce the binding of MTBP with ACTN4 and consequently increased cell migration mediated by ACTN4. In conclusion, the LNC CRYBG3/eEF1A1/MDM2/MTBP axis is a novel signaling pathway regulating tumor metastasis and may be a potential therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Anqing Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Jiaxin Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Ziyang Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Yingchu Dai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Ningang Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Caiyong Ye
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Shihong Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|
11
|
MTBP phosphorylation controls DNA replication origin firing. Sci Rep 2021; 11:4242. [PMID: 33608586 PMCID: PMC7895959 DOI: 10.1038/s41598-021-83287-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
Faithful genome duplication requires regulation of origin firing to determine loci, timing and efficiency of replisome generation. Established kinase targets for eukaryotic origin firing regulation are the Mcm2-7 helicase, Sld3/Treslin/TICRR and Sld2/RecQL4. We report that metazoan Sld7, MTBP (Mdm2 binding protein), is targeted by at least three kinase pathways. MTBP was phosphorylated at CDK consensus sites by cell cycle cyclin-dependent kinases (CDK) and Cdk8/19-cyclin C. Phospho-mimetic MTBP CDK site mutants, but not non-phosphorylatable mutants, promoted origin firing in human cells. MTBP was also phosphorylated at DNA damage checkpoint kinase consensus sites. Phospho-mimetic mutations at these sites inhibited MTBP’s origin firing capability. Whilst expressing a non-phospho MTBP mutant was insufficient to relieve the suppression of origin firing upon DNA damage, the mutant induced a genome-wide increase of origin firing in unperturbed cells. Our work establishes MTBP as a regulation platform of metazoan origin firing.
Collapse
|
12
|
Yao L, Shippy T, Li Y. Genetic analysis of the molecular regulation of electric fields-guided glia migration. Sci Rep 2020; 10:16821. [PMID: 33033380 PMCID: PMC7546725 DOI: 10.1038/s41598-020-74085-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/31/2020] [Indexed: 11/09/2022] Open
Abstract
In a developing nervous system, endogenous electric field (EF) influence embryonic growth. We reported the EF-directed migration of both rat Schwann cells (SCs) and oligodendrocyte precursor cells (OPCs) and explored the molecular mechanism using RNA-sequencing assay. However, previous studies revealed the differentially expressed genes (DEGs) associated with EF-guided migration of SCs or OPCs alone. In this study, we performed joint differential expression analysis on the RNA-sequencing data from both cell types. We report a number of significantly enriched gene ontology (GO) terms that are related to the cytoskeleton, cell adhesion, and cell migration. Of the DEGs associated with these terms, nine up-regulated DEGs and 32 down-regulated DEGs showed the same direction of effect in both SCs and OPCs stimulated with EFs, while the remaining DEGs responded differently. Thus, our study reveals the similarities and differences in gene expression and cell migration regulation of different glial cell types in response to EF stimulation.
Collapse
Affiliation(s)
- Li Yao
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, KS, 67260, USA.
| | - Teresa Shippy
- Bioinformatics Specialist, KSU Bioinformatics Center, Kansas State University, Manhattan, KS, 66506, USA
| | - Yongchao Li
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, KS, 67260, USA
| |
Collapse
|
13
|
Huang Z, Zhou JK, Wang K, Chen H, Qin S, Liu J, Luo M, Chen Y, Jiang J, Zhou L, Zhu L, He J, Li J, Pu W, Gong Y, Li J, Ye Q, Dong D, Hu H, Zhou Z, Dai L, Huang C, Wei X, Peng Y. PDLIM1 Inhibits Tumor Metastasis Through Activating Hippo Signaling in Hepatocellular Carcinoma. Hepatology 2020; 71:1643-1659. [PMID: 31509262 DOI: 10.1002/hep.30930] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/02/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Tumor metastasis is a major factor of high recurrence and mortality in hepatocellular carcinoma (HCC), but its underlying mechanism remains elusive. We report that PDZ and LIM domain protein 1 (PDLIM1) is significantly down-regulated in metastatic human HCC tissues, which predicts unfavorable prognosis, suggesting that PDLIM1 may play an important inhibitory role during HCC metastasis. APPROACH AND RESULTS Functional studies indicate that PDLIM1 knockdown induces epithelial-to-mesenchymal transition (EMT) of HCC cells, elevates their invasive capacity, and promotes metastasis in vitro and in vivo, whereas overexpression of PDLIM1 exhibits opposite phenotypes. Mechanistically, PDLIM1 competitively binds to the cytoskeleton cross-linking protein alpha-actinin 4 (ACTN4), leading to the disassociation of ACTN4 from F-actin, thus preventing F-actin overgrowth. In contrast, loss of PDLIM1 induces excessive F-actin formation, resulting in dephosphorylation of large tumor suppressor kinase 1 and activation of Yes-associated protein, thereby promoting HCC metastasis. Moreover, Asn145 (N145) of PDLIM1 is critical for its interaction with ACTN4, and N145A mutation abolishes its regulatory function in Hippo signaling and HCC metastasis. CONCLUSIONS Our findings indicate that PDLIM1 suppresses HCC metastasis by modulating Hippo signaling, suggesting that PDLIM1 may be a potential prognostic marker for metastatic HCC.
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jian-Kang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Kui Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Haining Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jiayang Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lei Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Juan He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jiao Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wenchen Pu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yanqiu Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jianbo Li
- Department of Liver Surgery and Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Ye
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dandan Dong
- Department of Pathology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Hongbo Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
14
|
Hu C, Zhang Q, Tang Q, Zhou H, Liu W, Huang J, Liu Y, Wang Q, Zhang J, Zhou M, Sheng F, Lai W, Tian J, Li G, Zhang R. CBX4 promotes the proliferation and metastasis via regulating BMI-1 in lung cancer. J Cell Mol Med 2020; 24:618-631. [PMID: 31724308 PMCID: PMC6933416 DOI: 10.1111/jcmm.14771] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022] Open
Abstract
Proliferation and metastasis are significantly malignant characteristics of human lung cancer, but the underlying molecular mechanisms are poorly understood. Chromobox 4 (CBX4), a member of the Polycomb group (PcG) family of epigenetic regulatory factors, enhances cellular proliferation and promotes cancer cell migration. However, the effect of CBX4 in the progression of lung cancer is not fully understood. We found that CBX4 is highly expressed in lung tumours compared with adjacent normal tissues. Overexpression of CBX4 significantly promotes cell proliferation and migration in human lung cancer cell lines. The knockdown of CBX4 obviously suppresses the cell growth and migration of human lung cancer cells in vitro. Also, the proliferation and metastasis in vivo are blocked by CBX4 knockdown. Furthermore, CBX4 knockdown effectively arrests cell cycle at the G0/G1 phase through suppressing the expression of CDK2 and Cyclin E and decreases the formation of filopodia through suppressing MMP2, MMP9 and CXCR4. Additionally, CBX4 promotes proliferation and metastasis via regulating the expression of BMI-1 which is a significant regulator of proliferation and migration in lung cancer cells. Taken together, these data suggest that CBX4 is not only a novel prognostic marker but also may be a potential therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Changpeng Hu
- Department of PharmacyThe Second Affiliated HospitalArmy Medical UniversityChongqingChina
| | - Qian Zhang
- Department of PharmacyThe Second Affiliated HospitalArmy Medical UniversityChongqingChina
| | - Qin Tang
- Department of PharmacyThe Second Affiliated HospitalArmy Medical UniversityChongqingChina
| | - Huyue Zhou
- Department of PharmacyThe Second Affiliated HospitalArmy Medical UniversityChongqingChina
| | - Wuyi Liu
- Department of PharmacyThe Second Affiliated HospitalArmy Medical UniversityChongqingChina
| | - Jingbin Huang
- Department of PharmacyThe Second Affiliated HospitalArmy Medical UniversityChongqingChina
| | - Yali Liu
- Department of PharmacyThe Second Affiliated HospitalArmy Medical UniversityChongqingChina
| | - Qin Wang
- Department of PharmacyThe Second Affiliated HospitalArmy Medical UniversityChongqingChina
| | - Jing Zhang
- Department of PharmacyThe Second Affiliated HospitalArmy Medical UniversityChongqingChina
| | - Min Zhou
- Department of PharmacyThe Second Affiliated HospitalArmy Medical UniversityChongqingChina
| | - Fangfang Sheng
- Department of PharmacyThe Second Affiliated HospitalArmy Medical UniversityChongqingChina
| | - Wenjing Lai
- Department of PharmacyThe Second Affiliated HospitalArmy Medical UniversityChongqingChina
| | - Jing Tian
- Department of Teaching SupportArmy Medical UniversityChongqingChina
| | - Guobing Li
- Department of PharmacyThe Second Affiliated HospitalArmy Medical UniversityChongqingChina
| | - Rong Zhang
- Department of PharmacyThe Second Affiliated HospitalArmy Medical UniversityChongqingChina
| |
Collapse
|
15
|
Tentler D, Lomert E, Novitskaya K, Barlev NA. Role of ACTN4 in Tumorigenesis, Metastasis, and EMT. Cells 2019; 8:cells8111427. [PMID: 31766144 PMCID: PMC6912194 DOI: 10.3390/cells8111427] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 12/11/2022] Open
Abstract
The actin-binding protein ACTN4 belongs to a family of actin-binding proteins and is a non-muscle alpha-actinin that has long been associated with cancer development. Numerous clinical studies showed that changes in ACTN4 gene expression are correlated with aggressiveness, invasion, and metastasis in certain tumors. Amplification of the 19q chromosomal region where the gene is located has also been reported. Experimental manipulations with ACTN4 expression further confirmed its involvement in cell proliferation, motility, and epithelial-mesenchymal transition (EMT). However, both clinical and experimental data suggest that the effects of ACTN4 up- or down-regulation may vary a lot between different types of tumors. Functional studies demonstrated its engagement in a number of cytoplasmic and nuclear processes, ranging from cytoskeleton reorganization to regulation of different signaling pathways. Such a variety of functions may be the reason behind cell type and cell line specific responses. Herein, we will review research progress and controversies regarding the prognostic and functional significance of ACTN4 for tumorigenesis.
Collapse
Affiliation(s)
- Dmitri Tentler
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 Saint Petersburg, Russia; (E.L.); (K.N.); (N.A.B.)
- Correspondence: or ; Tel.: +7-921-406-2058
| | - Ekaterina Lomert
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 Saint Petersburg, Russia; (E.L.); (K.N.); (N.A.B.)
| | - Ksenia Novitskaya
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 Saint Petersburg, Russia; (E.L.); (K.N.); (N.A.B.)
| | - Nikolai A. Barlev
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 Saint Petersburg, Russia; (E.L.); (K.N.); (N.A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Moscow, Russia
| |
Collapse
|
16
|
Song Y, Zhang L, Jiang Y, Hu T, Zhang D, Qiao Q, Wang R, Wang M, Han S. MTBP regulates cell survival and therapeutic sensitivity in TP53 wildtype glioblastomas. Am J Cancer Res 2019; 9:6019-6030. [PMID: 31534534 PMCID: PMC6735364 DOI: 10.7150/thno.35747] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/25/2019] [Indexed: 01/21/2023] Open
Abstract
Background: Glioblastoma (GBM) is highly proliferative and resistant to radio-chemotherapy. Loss of tumor suppressor gene TP53 function frequently occurs at protein level in GBMs. This inhibition is often mediated by other components within the p53 signaling axis, including MDM2, whose binding protein (MTBP) plays an important role in the regulation of MDM2 and p53 activity. We investigated the role of MTBP in the biology of TP53-wildtype (TP53wt) GBMs. Methods: MTBP expression was examined in TCGA and REMBRANDT datasets. MTBP was silenced or overexpressed in TP53wt GBM cells and glioma stem cells (GSCs). The effects on cell viability, apoptosis, and clonogenicity were assessed. The transcriptional regulation of MTBP was investigated. Results: Upregulation of MTBP was correlated with the Classical molecular subtype, and it predicted poor survival. In TP53wt GBM cells, the protein levels of MTBP were positively associated with those of MDM2 but negatively correlated with those of p53. MTBP knockdown promoted apoptosis and inhibited clonogenicity, while overexpression of this protein enhanced tumorigenicity in vitro and in vivo. The pro-survival effect of MTBP depended on the activity of MDM2 and p53. MTBP was transcriptionally regulated by c-myc, thereby forming a positive regulatory loop. Finally, MTBP silencing increased the sensitivity of TP53wt GSCs to radiation and TMZ treatment in vitro and in vivo. Conclusion: MTBP regulates the cell survival and treatment sensitivity of TP53wt GBMs through MDM2-dependent post-translational modification of p53. MTBP-targeting treatments are potentially useful in increasing patients' survival.
Collapse
|
17
|
ACTN4 Promotes the Proliferation, Migration, Metastasis of Osteosarcoma and Enhances its Invasive Ability through the NF-κB Pathway. Pathol Oncol Res 2019; 26:893-904. [PMID: 30879239 PMCID: PMC7242246 DOI: 10.1007/s12253-019-00637-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/06/2019] [Indexed: 01/15/2023]
Abstract
Alpha-actinin-4 (ACTN4) is associated with different types of tumors, but its role in osteosarcoma (OS) is not known. We aimed to investigate the effect of ACTN4 on the growth, migration, invasion and metastasis of OS. We further explored the possible mechanism of how ACTN4 affects the development of OS. First, the expression of ACTN4 in OS tissues and OS cell lines was analyzed by PCR. Second, the role of ACTN4 in the development of OS was explored by the proliferation, scratch, and invasion assays. We further explored the effect of ACTN4 on OS growth in an orthotopic xenograft model of nude mice. In addition, we used hematoxylin and eosin (HE) staining of lung tissues in nude mice to observe the effect of ACTN4 on lung metastasis of OS. Finally, rescue experiments further investigated the role of NF-κB on ACTN4 in the development of OS. ACTN4 was highly expressed in OS tissues and OS cell lines. In vitro experiments demonstrated that reducing ACTN4 expression inhibited the proliferation, migration, and invasion of OS. In contrast, overexpression of ACTN4 promotes these effects. In vivo experiments further validated that ACTN4 promoted the growth of OS. The HE staining of lungs in nude mice revealed that ACTN4 promoted lung metastasis of OS. In addition, we found that ACTN4 enhanced the ability of OS to invade, through the NF-κB pathway. ACTN4 promotes the proliferation, migration, metastasis of OS and enhances its invasion ability through the NF-κB pathway.
Collapse
|
18
|
Zhu J, Wu G, Ke Z, Cao L, Tang M, Li Z, Li Q, Zhou J, Tan Z, Song L, Li J. Targeting TRIM3 deletion-induced tumor-associated lymphangiogenesis prohibits lymphatic metastasis in esophageal squamous cell carcinoma. Oncogene 2018; 38:2736-2749. [DOI: 10.1038/s41388-018-0621-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/23/2018] [Indexed: 01/06/2023]
|
19
|
Taniuchi K, Furihata M, Naganuma S, Saibara T. WAVE2 is associated with poor prognosis in pancreatic cancers and promotes cell motility and invasiveness via binding to ACTN4. Cancer Med 2018; 7:5733-5751. [PMID: 30353690 PMCID: PMC6246955 DOI: 10.1002/cam4.1837] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/06/2018] [Accepted: 09/27/2018] [Indexed: 12/24/2022] Open
Abstract
WAVE2 is a member of the WASP/WAVE family of actin cytoskeletal regulatory proteins; unfortunately, little is known about its function in pancreatic cancers. In this study, we report the role of WAVE2 in the motility and invasiveness of pancreatic cancer cells. High WAVE2 expression in human pancreatic cancer tissues was correlated with overall survival. WAVE2 accumulated in the cell protrusions of pancreatic cancer cell lines. Downregulation of WAVE2 by small interfering RNA decreased the cell protrusions and inhibited the motility and invasiveness of pancreatic cancer cells. WAVE2 promoted pancreatic cancer cell motility and invasion by forming a complex with the actin cytoskeletal protein alpha‐actinin 4 (ACTN4). Downregulation of ACTN4 by small interfering RNA also inhibited the motility and invasiveness of the cells through a decrease in cell protrusions. Further investigation showed that WAVE2/ACTN4 signaling selectively stimulated p27 phosphorylation and thereby increased the motility and invasiveness of the cells. These results suggest that WAVE2 and ACTN4 stimulate p27 phosphorylation and provide evidence that WAVE2 promotes the motility and invasiveness of pancreatic cancer cells.
Collapse
Affiliation(s)
- Keisuke Taniuchi
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Kochi, Japan.,Department of Endoscopic Diagnostics and Therapeutics, Kochi Medical School, Kochi University, Kochi, Japan
| | - Mutsuo Furihata
- Department of Pathology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Seiji Naganuma
- Department of Pathology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Toshiji Saibara
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Kochi, Japan.,Department of Endoscopic Diagnostics and Therapeutics, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
20
|
Pan B, Han H, Wu L, Xiong Y, Zhang J, Dong B, Yang Y, Chen J. MTBP promotes migration and invasion by regulation of ZEB2-mediated epithelial-mesenchymal transition in lung cancer cells. Onco Targets Ther 2018; 11:6741-6756. [PMID: 30349307 PMCID: PMC6188014 DOI: 10.2147/ott.s167963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background It is clearly necessary to discover prognostic biomarkers to identify stage I patients at risk of recurrence and give them timely postoperative treatment. Materials and methods Data of stage I lung adenocarcinoma were retrieved from four gene series in Gene Expression Omnibus (GEO) database (GSE50081, GSE30219, GSE37745, and GSE13213). Partek Genomics Suite software was used to identify survival-related genes for finding candidate indicators for early-stage patients at risk of recurrence. Differential expression of MTBP (MDM2 binding protein) in early-stage lung adenocarcinoma tissues was determined by immunohistochemical staining. The effects of MTBP interference expression and overexpression on viability, migration, and invasion capacity of lung cells were evaluated using Cell Counting Kit-8, wound healing, and Transwell assays. The tumor growth and lung metastasis in vivo were observed in chick embryo chorioallantoic membrane model. Human Exon 2.0 ST Array was used to analyze downstream regulation genes of MTBP in lung cancer cells. Involvement of ZEB2 and epithelial–mesenchymal transition (EMT) markers was investigated by Western blot. Results By mining GEO database, we identified MTBP as a poor prognostic indicator of stage I lung adenocarcinomas. In addition, increased expression of MTBP was also associated with poor survival in our early-stage lung adenocarcinoma cohort. Further experiment suggested that knockdown of MTBP suppressed the migration and invasion of A549 and H1975 cells in vitro and in vivo, whereas overexpression of MTBP in HCC827 and PC9 cells promoted the migration and invasion in vitro and in vivo. Furthermore, ZEB2 upregulation directly activated EMT to mediate the downstream effects of MTBP involved in lung cancer cells metastasis. Conclusion MTBP is an independent indicator for poor prognosis in stage I lung adenocarcinomas and might promote the aggressive phenotype of non-small-cell lung cancer by inducing the EMT process through upregulating ZEB2 expression.
Collapse
Affiliation(s)
- Bo Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China, , .,Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China, ,
| | - Haibo Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China, , .,Department of Biobank, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lina Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China, , .,Department of Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ying Xiong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China, , .,Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China, ,
| | - Jianzhi Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China, , .,Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China, ,
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China, , .,Department of Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yue Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China, , .,Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China, ,
| | - Jinfeng Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China, , .,Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China, ,
| |
Collapse
|
21
|
Shoji H, Miura N, Ueno H, Honda K. Measurement of copy number of ACTN4 to optimize the therapeutic strategy for locally advanced pancreatic cancer. Pancreatology 2018; 18:624-629. [PMID: 29921500 DOI: 10.1016/j.pan.2018.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/10/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022]
Abstract
The standard therapeutic strategy recommended for locally advanced pancreatic cancer (LAPC) is typically chemotherapy or chemoradiotherapy (CRT). Although the clinical benefit of chemotherapy alone versus CRT for LAPC has been compared in a number of clinical trials, the optimal therapy for LAPC remains unclear. Moreover, the clinical benefit derived from treatment in each clinical trial is a matter of controversy, and the superiority of one treatment over another has yet to be definitively demonstrated. The poor outcomes seen among patients with LAPC owe largely to the emergence of metastatic disease; therefore, accurately evaluating occult distant metastasis before choosing a therapeutic strategy could be expected to help stratify patients with LAPC into the most appropriate treatment regimen, namely local control or systemic therapy. In 1998, we identified the actinin-4 gene (ACTN4) as an actin-binding protein and showed its molecular mechanisms had clinical implications for cancer metastasis. We also identified ACTN4 gene amplification in pancreatic, ovarian, and salivary gland cancer, and demonstrated its utility as a strong prognostic biomarker for stage I lung adenocarcinoma in patients who had never received chemotherapy. Moreover, we recently reported that ACTN4 gene amplification could be a useful biomarker for predicting the efficacy of CRT for LAPC. In the present review, we summarize current knowledge regarding therapeutic strategies for LAPC and discuss the potential development of personalized medicine using ACTN4 measurement for patients with LAPC.
Collapse
Affiliation(s)
- Hirokazu Shoji
- Department of Biomarker for Early Detection of Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Nami Miura
- Department of Biomarker for Early Detection of Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hideki Ueno
- Hepatobiliary and Pancreatic Oncology Division, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Kazufumi Honda
- Department of Biomarker for Early Detection of Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Japan Agency for Medical Research and Development: AMED-CREST, AMED, Tokyo, 100-0004, Japan.
| |
Collapse
|
22
|
Mao Y, Tian M, Pan B, Zhu Q, Li P, Liu H, Liu W, Dai N, Yu L, Tian Y. Hyper expression of MTBP may be an adverse signal for the survival of some malignant tumors: A data-based analysis and clinical observation. Medicine (Baltimore) 2018; 97:e12021. [PMID: 30170409 PMCID: PMC6392579 DOI: 10.1097/md.0000000000012021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
To explore the relationship between mouse double minute 2 binding protein (MTBP) and the prognosis of cancer patients, a databank-based reanalysis was conducted and a clinical observation about lung adenocarcinoma was taken to verify the result of data analysis.We reanalyzed all the downloaded data in order to make a conclusion about the relationship between MTBP and the prognosis of cancer patients. At last, we collected 112 lung cancer patients with MTBP information to verify the results of data analysis (GSE30219).The overall Kaplan-Meier curve results of 6 eligible data groups were shown in Fig. 1. The Kaplan-Meier curve result of GSE16011 was shown in Fig. 1A (concordance index = 59.48, Log-Rank Equal Curves [P = 5.942e-05], R = 0.045/1, risk groups hazard ratio = 1.69 [conf. int. 1.3-2.9], P = 7.344e-05), while the stratification results were displayed independently in Figs. 2 and 3. The similar results could be seen in other 5 data groups. The tissue sections of 112 patients with lung adenocarcinoma were collected and immunohistochemically stained. The hyper expression rate of MTBP in adenocarcinoma was 23.21% (26/112). The results showed that patients with hyper expression of MTBP had significantly worse prognosis than the control group, and the survival curves were clearly separated from each other (Fig. 4B, P = .000).Hyper expression of MTBP maybe an adverse event for the survival of some cancer patients, especially in glioblastoma, kidney cancer, and lung cancer patients, which has been verified in 112 lung cancer patients with MTBP status.
Collapse
Affiliation(s)
- Yantao Mao
- Department of Oncology, Yantaishan Hospital of Shandong Province, Zhifu District, Yantai City
| | - Mei Tian
- Respiratory Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong
| | - Bo Pan
- Department of Lung Transplantation, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou
| | - Qingshan Zhu
- Department of Radiotherapy Oncology, Anyang Cancer Hospital of Henan Province, Anyang, Henan
| | - Paiyun Li
- Division of Etiology, Peking University Cancer Hospital and Institute, Beijing
| | - Hongmei Liu
- Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Weipeng Liu
- Department of Radiotherapy Oncology, Anyang Cancer Hospital of Henan Province, Anyang, Henan
| | - Ningtao Dai
- Department of Radiotherapy Oncology, Anyang Cancer Hospital of Henan Province, Anyang, Henan
| | - Lili Yu
- Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yuan Tian
- Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
23
|
Li M, Wu X, Guo X, Bao P, Ding X, Chu M, Liang C, Yan P. Comparative iTRAQ proteomics revealed proteins associated with horn development in yak. Proteome Sci 2018; 16:14. [PMID: 30061793 PMCID: PMC6056918 DOI: 10.1186/s12953-018-0141-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/31/2018] [Indexed: 01/15/2023] Open
Abstract
Background The practice of dehorning yak raises animal safety concerns, which have been addressed by selective breeding to obtain genetically hornless yak. The POLLED locus in yak has been studied extensively; however, little is known regarding the proteins that regulate horn bud development. Methods A differential proteomic analysis was performed to compare the skin from the horn bud region of polled yak fetuses and the horn bud tissue of horned yak fetuses using isobaric tags for relative and absolute quantitation (iTRAQ) technology coupled with 2D LC-MS/MS. Results One hundred differentially abundant proteins (DAPs) were identified. Of these, 29 were up-regulated and 71 were down-regulated in skin from the horn bud region of polled fetuses when compared to the horn bud tissue of horned fetuses. Bioinformatics analyses showed that the up-regulated DAPs were mainly associated with metabolic activities, while the down-regulated DAPs were significantly enriched in cell adhesion and cell movement activities. Conclusions We concluded that some important proteins were associated with cell adhesion, cell motility, keratinocyte differentiation, cytoskeleton organization, osteoblast differentiation, and fatty acid metabolism during horn bud development. These results advance our understanding of the molecular mechanisms underlying horn development.
Collapse
Affiliation(s)
- Mingna Li
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Xiaoyun Wu
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Xian Guo
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Pengjia Bao
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Xuezhi Ding
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Min Chu
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Chunnian Liang
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Ping Yan
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| |
Collapse
|
24
|
Ćetković H, Harcet M, Roller M, Bosnar MH. A survey of metastasis suppressors in Metazoa. J Transl Med 2018; 98:554-570. [PMID: 29453400 DOI: 10.1038/s41374-018-0024-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 01/04/2018] [Accepted: 01/18/2018] [Indexed: 01/29/2023] Open
Abstract
Metastasis suppressors are genes/proteins involved in regulation of one or more steps of the metastatic cascade while having little or no effect on tumor growth. The list of putative metastasis suppressors is constantly increasing although thorough understanding of their biochemical mechanism(s) and evolutionary history is still lacking. Little is known about tumor-related genes in invertebrates, especially non-bilaterians and unicellular relatives of animals. However, in the last few years we have been witnessing a growing interest in this subject since it has been shown that many disease-related genes are already present in simple non-bilateral animals and even in their unicellular relatives. Studying human diseases using simpler organisms that may better represent the ancestral conditions in which the specific disease-related genes appeared could provide better understanding of how those genes function. This review represents a compilation of published literature and our bioinformatics analysis to gain a general insight into the evolutionary history of metastasis-suppressor genes in animals (Metazoa). Our survey suggests that metastasis-suppressor genes emerged in three different periods in the evolution of Metazoa: before the origin of metazoans, with the emergence of first animals and at the origin of vertebrates.
Collapse
Affiliation(s)
- Helena Ćetković
- Laboratory for Molecular Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Matija Harcet
- Laboratory for Molecular Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Maša Roller
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102A, Zagreb, Croatia
| | - Maja Herak Bosnar
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.
| |
Collapse
|
25
|
Zhang YY, Tabataba H, Liu XY, Wang JY, Yan XG, Farrelly M, Jiang CC, Guo ST, Liu T, Kao HY, Thorne RF, Zhang XD, Jin L. ACTN4 regulates the stability of RIPK1 in melanoma. Oncogene 2018; 37:4033-4045. [PMID: 29706658 DOI: 10.1038/s41388-018-0260-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 02/24/2018] [Accepted: 03/21/2018] [Indexed: 11/09/2022]
Abstract
The actin crosslinking protein α-actinin-4 (ACTN4) is emerging as an important contributor to the pathogenesis of cancer. This has largely been attributed to its role in regulating cytoskeleton organization and its involvement in transcriptional regulation of gene expression. Here we report a novel function of ACTN4 as a scaffold necessary for stabilization of receptor-interacting protein kinase 1 (RIPK1) that we have recently found to be an oncogenic driver in melanoma. ACTN4 bound to RIPK1 and cellular inhibitor of apoptosis protein 1 (cIAP1) with its actin-binding domain at the N-terminus and the CaM-like domain at the C-terminus, respectively. This facilitated the physical association between RIPK1 and cIAP1 and was critical for stabilization of RIPK1 that in turn activated NF-κB. Functional investigations showed that silencing of ACTN4 suppressed melanoma cell proliferation and retarded melanoma xenograft growth. In contrast, overexpression of ACTN4 promoted melanocyte and melanoma cell proliferation and moreover, prompted melanocyte anchorage-independent growth. Of note, the expression of ACTN4 was transcriptionally activated by NF-κB. Taken together, our findings identify ACTN4 as an oncogenic regulator through driving a feedforward signaling axis of ACTN4-RIPK1-NF-κB, with potential implications for targeting ACTN4 in the treatment of melanoma.
Collapse
Affiliation(s)
- Yuan Yuan Zhang
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Hessam Tabataba
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xiao Ying Liu
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia.,School of Life Science, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Jia Yu Wang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xu Guang Yan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Margaret Farrelly
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Chen Chen Jiang
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, 2305, Australia
| | - Su Tang Guo
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Taiyuan, Shanxi, 030013, China
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, NSW, 2750, Australia
| | - Hung-Ying Kao
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rick F Thorne
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia. .,Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, 2305, Australia.
| | - Lei Jin
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia. .,Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, 2305, Australia.
| |
Collapse
|
26
|
MTBP inhibits the Erk1/2-Elk-1 signaling in hepatocellular carcinoma. Oncotarget 2018; 9:21429-21443. [PMID: 29765550 PMCID: PMC5940416 DOI: 10.18632/oncotarget.25117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/21/2018] [Indexed: 01/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and the prognosis of HCC patients, especially those with metastasis, remains extremely poor. This is partly due to unclear molecular mechanisms underlying HCC metastasis. Our previous study indicates that MDM2 Binding Protein (MTBP) suppresses migration and metastasis of HCC cells. However, signaling pathways regulated by MTBP remain unknown. To identify metastasis-associated signaling pathways governed by MTBP, we have performed unbiased luciferase reporter-based signal array analyses and found that MTBP suppresses the activity of the ETS-domain transcription factor Elk-1, a downstream target of Erk1/2 MAP kinases. MTBP also inhibits phosphorylation of Elk-1 and decreases mRNA expression of Elk-1 target genes. Reduced Elk-1 activity is caused by inhibited nuclear translocation of phosphorylated Erk1/2 (p-Erk) by MTBP and subsequent inhibition of Elk-1 phosphorylation. We also reveal that MTBP inhibits the interaction of p-Erk with importin-7/RanBP7 (IPO7), an importin family member which shuttles p-Erk into the nucleus, by binding to IPO7. Moreover, high levels of MTBP in human HCC tissues are correlated with cytoplasmic localization of p-Erk1/2. Our study suggests that MTBP suppresses metastasis, at least partially, by down-modulating the Erk1/2-Elk-1 signaling pathway, thus identifying a novel regulatory mechanism of HCC metastasis by regulating the subcellular localization of p-Erk.
Collapse
|
27
|
Azer SA. MDM2-p53 Interactions in Human Hepatocellular Carcinoma: What Is the Role of Nutlins and New Therapeutic Options? J Clin Med 2018; 7:64. [PMID: 29584707 PMCID: PMC5920438 DOI: 10.3390/jcm7040064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
Human hepatocellular carcinoma (HCC) is the fifth most common cancer and is associated with poor prognosis worldwide. The molecular mechanisms underlying the pathogenesis of HCC have been an area of continuing interest, and recent studies using next generation sequencing (NGS) have revealed much regarding previously unsettled issues. Molecular studies using HCC samples have been mainly targeted with the aim to identify the fundamental mechanisms contributing to HCC and identify more effective treatments. In response to cellular stresses (e.g., DNA damage or oncogenes), activated p53 elicits appropriate responses that aim at DNA repair, genetic stability, cell cycle arrest, and the deletion of DNA-damaged cells. On the other hand, the murine double minute 2 (MDM2) oncogene protein is an important cellular antagonist of p53. MDM2 negatively regulates p53 activity through the induction of p53 protein degradation. However, current research has shown that the mechanisms underlying MDM2-p53 interactions are more complex than previously thought. Microarray data have added new insight into the transcription changes in HCC. Recently, Nutlin-3 has shown potency against p53-MDM2 binding and the enhancement of p53 stabilization as well as an increment of p53 cellular accumulation with potential therapeutic effects. This review outlines the molecular mechanisms involved in the p53-MDM2 pathways, the biological factors influencing these pathways, and their roles in the pathogenesis of HCC. It also discusses the action of Nutlin-3 treatment in inducing growth arrest in HCC and elaborates on future directions in research in this area. More research on the biology of p53-MDM2 interactions may offer a better understanding of these mechanisms and discover new biomarkers, sensitive prognostic indicators as well as new therapeutic interventions in HCC.
Collapse
Affiliation(s)
- Samy A Azer
- Professor of Medical Education and Gastroenterologist, The Chair of Curriculum Development and Research Unit, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia.
| |
Collapse
|
28
|
Lomert E, Turoverova L, Kriger D, Aksenov ND, Nikotina AD, Petukhov A, Mittenberg AG, Panyushev NV, Khotin M, Volkov K, Barlev NA, Tentler D. Co-expression of RelA/p65 and ACTN4 induces apoptosis in non-small lung carcinoma cells. Cell Cycle 2018; 17:616-626. [PMID: 29251177 DOI: 10.1080/15384101.2017.1417709] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Alpha-actinin 4 (ACTN4) is an actin-binding protein of the spectrin superfamily. ACTN4 is found both in the cytoplasm and nucleus of eukaryotic cells. The main function of cytoplasmic ACTN4 is stabilization of actin filaments and their binding to focal contacts. Nuclear ACTN4 takes part in the regulation of gene expression following by activation of certain transcription factors, but the mechanisms of regulation are not completely understood. Our previous studies have demonstrated the interaction of ACTN4 with the RelA/p65 subunit of NF-kappaB factor and the effect on its transcriptional activity in A431 and HEK293T cells. In the present work, we investigated changes in the composition of nuclear ACTN4-interacting proteins in non-small cell lung cancer cells H1299 upon stable RELA overexpression. We showed that ACTN4 was present in the nuclei of H1299 cells, regardless of the RELA expression level. The presence of ectopic RelA/p65 in H1299 cells increased the number of proteins interacting with nuclear ACTN4. Stable expression of RELA in these cells suppressed cell proliferation, which was further affected by simultaneous ACTN4 overexpression. We detected no significant effect on cell cycle but the apoptosis rate was increased in cells with a double RELA/ACTN4 overexpression. Interestingly, when expressed individually ACTN4 promoted proliferation of lung cancer cells. Furthermore, the bioinformatics analysis of gene expression in lung cancer patients suggested that overexpression of ACTN4 correlated with poor survival prognosis. We hypothesize that the effect of RELA on proliferation and apoptosis of H1299 cells can be mediated via affecting the interactome of ACTN4.
Collapse
Affiliation(s)
- Ekaterina Lomert
- a Institute of Cytology , Russian Academy of Sciences , Tikhoretsky av., 4, 194064 St. Petersburg , Russia
| | - Lidia Turoverova
- a Institute of Cytology , Russian Academy of Sciences , Tikhoretsky av., 4, 194064 St. Petersburg , Russia
| | - Daria Kriger
- a Institute of Cytology , Russian Academy of Sciences , Tikhoretsky av., 4, 194064 St. Petersburg , Russia
| | - Nikolai D Aksenov
- a Institute of Cytology , Russian Academy of Sciences , Tikhoretsky av., 4, 194064 St. Petersburg , Russia
| | - Alina D Nikotina
- a Institute of Cytology , Russian Academy of Sciences , Tikhoretsky av., 4, 194064 St. Petersburg , Russia
| | - Alexey Petukhov
- a Institute of Cytology , Russian Academy of Sciences , Tikhoretsky av., 4, 194064 St. Petersburg , Russia.,b Almazov National Medical Research Centre , Institute of Hematology , Russia, 2 Akkuratova street, 197341 St. Petersburg , Russia
| | - Alexey G Mittenberg
- a Institute of Cytology , Russian Academy of Sciences , Tikhoretsky av., 4, 194064 St. Petersburg , Russia
| | - Nikolai V Panyushev
- a Institute of Cytology , Russian Academy of Sciences , Tikhoretsky av., 4, 194064 St. Petersburg , Russia
| | - Mikhail Khotin
- a Institute of Cytology , Russian Academy of Sciences , Tikhoretsky av., 4, 194064 St. Petersburg , Russia
| | - Kirill Volkov
- c Research Resource Center «Molecular and cell technologies» , St. Petersburg State University , St. Petersburg , Russia
| | - Nikolai A Barlev
- a Institute of Cytology , Russian Academy of Sciences , Tikhoretsky av., 4, 194064 St. Petersburg , Russia
| | - Dmitri Tentler
- a Institute of Cytology , Russian Academy of Sciences , Tikhoretsky av., 4, 194064 St. Petersburg , Russia
| |
Collapse
|
29
|
Desai S, Barai A, Bukhari AB, De A, Sen S. α-Actinin-4 confers radioresistance coupled invasiveness in breast cancer cells through AKT pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:196-208. [PMID: 29055790 DOI: 10.1016/j.bbamcr.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 12/18/2022]
Abstract
Acquired radioresistance accompanied with increased metastatic potential is a major hurdle in effective radiotherapy of breast cancers. However, the nature of their inter-dependence and the underlying mechanism remains largely intangible. By employing radioresistant (RR) cell lines, we herein demonstrate that MCF-7 RR cells display phenotypic and molecular alterations evocative of epithelial to mesenchymal transition (EMT) with increased traction forces and membrane ruffling culminating in boosted invasiveness. We then show that these changes can be attributed to overexpression of alpha-actinin-4 (ACTN4), with ACTN4 knockdown near-completely abrogating both radioresistance and EMT-associated changes. We further found that in MCF-7 RR cells, ACTN4 mediates the observed effects by activating AKT, and downstream AKT/GSK3β signalling. Though ACTN4 plays a similar role in mediating radioresistance and invasiveness in MDA-MB-231 RR cells, co-immunoprecipitation studies reveal that these changes are effected through increased association with AKT and not by overexpression of AKT. Taken together, our study identifies ACTN4/AKT/GSK3β as a novel pathway regulating radioresistance coupled invasion which can be further explored to improve the radiotherapeutic gain.
Collapse
Affiliation(s)
- Sejal Desai
- Biosciences and Bioengineering Department, IIT Bombay, Mumbai, India
| | - Amlan Barai
- Biosciences and Bioengineering Department, IIT Bombay, Mumbai, India
| | | | - Abhijit De
- ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, India.
| | - Shamik Sen
- Biosciences and Bioengineering Department, IIT Bombay, Mumbai, India.
| |
Collapse
|
30
|
Wang W, Chen Z, Jin J, Long Z, Liu X, Cai H, Zhou Y, Huang H, Wang Y. MDM2 binding protein as a predictor of metastasis and a novel prognostic biomarker in patients with gastric cancer. Oncol Lett 2017; 14:6409-6416. [PMID: 29422956 PMCID: PMC5770606 DOI: 10.3892/ol.2017.7031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/06/2017] [Indexed: 12/11/2022] Open
Abstract
MDM2 binding protein (MTBP) has been revealed to be involved in cancer progression and metastasis. However, the role and clinical implication of MTBP expression in gastric cancer (GC) remains poorly understood. The present study aimed to investigate the clinicopathological significance of MTBP and the prognostic determinant in GC. The expression level of MTBP was examined in cancerous and matched adjacent noncancerous gastric mucosa tissues by reverse transcription-quantitative polymerase chain reaction and western blotting. MTBP expression levels were evaluated by immunohistochemical analysis of tissue microarrays for 352 patients, and association between the expression levels and prognosis in patients with GC were investigated. Kaplan-Meier analysis and Cox's regression models were used to investigate the associations between MTBP expression and prognosis of GC patients. The results of the present study revealed decreased MTBP mRNA (P=0.005) and protein (P=0.001) expression levels in tumor tissue compared with in matched adjacent normal tissue mucosa. MTBP expression level in GC was associated with gender (P=0.026), lymph node metastasis (P<0.001), distant metastasis (P=0.026) and pathological tumor-node-metastasis stage (P<0.001). Kaplan-Meier survival analysis demonstrated that patients with high MTBP expression levels exhibited longer survival times compared with patients with low MTBP expression levels. The multivariate logistic regression analysis revealed that MTBP was independently associated with the presence of lymph node [OR, 0.282; 95% confidence interval (CI), 0.161–0.494; P<0.001] and distant metastasis (OR, 0.365; 95% CI, 0.138–0.965; P=0.042). Furthermore, the multivariate Cox analysis revealed that low MTBP expression level was significantly associated with longer overall survival time and was recognized as an independent prognostic factor of patient's survival. MTBP expression level was significantly associated with progression and metastasis in GC, suggesting that MTBP may be used as a predictive marker for patient prognosis of GC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Zhong Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Jiejie Jin
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Ziwen Long
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xiaowen Liu
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hong Cai
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Ye Zhou
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hua Huang
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yanong Wang
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
31
|
Ge H, Yu A, Chen J, Yuan J, Yin Y, Duanmu W, Tan L, Yang Y, Lan C, Chen W, Feng H, Hu R. Poly-L-ornithine enhances migration of neural stem/progenitor cells via promoting α-Actinin 4 binding to actin filaments. Sci Rep 2016; 6:37681. [PMID: 27874083 PMCID: PMC5118728 DOI: 10.1038/srep37681] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022] Open
Abstract
The recruitment of neural stem/progenitor cells (NSPCs) for brain restoration after injury is a promising regenerative therapeutic strategy. This strategy involves enhancing proliferation, migration and neuronal differentation of NSPCs. To date, the lack of biomaterials, which facilitate these processes to enhance neural regeneration, is an obstacle for the cell replacement therapies. Our previous study has shown that NSPCs grown on poly-L-ornithine (PO) could proliferate more vigorously and differentiate into more neurons than that on Poly-L-Lysine (PLL) and Fibronectin (FN). Here, we demonstrate that PO could promote migration of NSPCs in vitro, and the underlying mechanism is PO activates α-Actinins 4 (ACTN4), which is firstly certified to be expessed in NSPCs, to promote filopodia formation and therefore enhances NSPCs migration. Taken together, PO might serve as a better candidate for transplanted biomaterials in the regenerative therapeutic strategy, compared with PLL and FN.
Collapse
Affiliation(s)
- Hongfei Ge
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Anyong Yu
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Jingyu Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jichao Yuan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yi Yin
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Wangsheng Duanmu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Liang Tan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yang Yang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Chuan Lan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Weixiang Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Rong Hu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
32
|
Ranjan A, Bera K, Iwakuma T. Murine double minute 2, a potential p53-independent regulator of liver cancer metastasis. HEPATOMA RESEARCH 2016; 2:114-121. [PMID: 28944296 PMCID: PMC5609474 DOI: 10.20517/2394-5079.2015.67] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) has emerged as one of the most commonly diagnosed forms of human cancer; yet, the mechanisms underlying HCC progression remain unclear. Unlike other cancers, systematic chemotherapy is not effective for HCC patients, while surgical resection and liver transplantation are the most viable treatment options. Thus, identifying factors or pathways that suppress HCC progression would be crucial for advancing treatment strategies for HCC. The murine double minute 2 (MDM2)-p53 pathway is impaired in most of the cancer types, including HCC, and MDM2 is overexpressed in approximately 30% of HCC. Overexpression of MDM2 is reported to be well correlated with metastasis, drug resistance, and poor prognosis of multiple cancer types, including HCC. Importantly, these correlations are observed even when p53 is mutated. Indeed, p53-independent functions of overexpressed MDM2 in cancer progression have been suitably demonstrated. In this review article, we summarize potential effectors of MDM2 that promote or suppress cancer metastasis and discuss the p53-independent roles of MDM2 in liver cancer metastasis from clinical as well as biological perspectives.
Collapse
Affiliation(s)
- Atul Ranjan
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kaustav Bera
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
33
|
Scinderin promotes the invasion and metastasis of gastric cancer cells and predicts the outcome of patients. Cancer Lett 2016; 376:110-7. [PMID: 27033455 DOI: 10.1016/j.canlet.2016.03.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/20/2016] [Accepted: 03/21/2016] [Indexed: 12/31/2022]
Abstract
Invasion and metastasis are major malignant characteristics of human gastric cancer (GC), but the underlying molecular mechanisms are poorly understood. Recent studies have shown that scinderin (SCIN), an actin severing and capping protein that regulates the actin cytoskeleton, is involved in the proliferation and migration of certain cancer cells. Accordingly, this study aimed to investigate the potential role of SCIN in the invasion and metastasis of human GC cells and to evaluate its prognostic value for GC patients. We found that high levels of SCIN expression in GC tumors were correlated with poor overall survival of patients. Silencing of SCIN effectively suppressed the migratory and invasive capabilities of human GC cells in vitro and tumorigenicity and metastasis in vivo. Furthermore, knockdown of SCIN markedly inhibited the formation of filopodia, decreasing GC cell migration and the expression of Cdc42, an important regulator of filopodia by GC cells. These findings suggest that SCIN may be a novel prognostic marker and a potential therapeutic target in human GC.
Collapse
|
34
|
Lu S, Zhou W, Wei H, He L, Li L. MTBP Promotes the Invasion and Metastasis of Hepatocellular Carcinoma by Enhancing the MDM2-Mediated Degradation of E-Cadherin. Dig Dis Sci 2015; 60:3681-90. [PMID: 26280083 DOI: 10.1007/s10620-015-3824-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 07/22/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Emerging evidence suggests that MTBP plays a role in cancer development and possibly progression, but its influence on hepatocellular carcinoma (HCC) remains unclear. METHODS We used real-time PCR and Western blotting to investigate MTBP expression in four HCC cell lines, 120 pairs of tumor and corresponding paracarcinomatous tissues from HCC patients. Immunohistochemistry was performed to examine MTBP expression in HCC and corresponding paracarcinomatous tissues from 120 patients. E-cadherin was only examined in HCC tissues of patients mentioned above. Statistical analyses were applied to evaluate the prognostic value and associations of MTBP expression with clinical parameters. Furthermore, the MTBP gene was overexpressed in HepG2 cell and silenced by siRNA in Hu7 cell, and cell migration and invasion were detected in vitro and in vivo. Moreover, the molecular mechanism of E-cadherin regulation by MTBP was explored. RESULTS In this study, we first showed that MTBP protein expression is positively correlated with distant metastasis and poor prognosis in HCC patients. We also found that MTBP expression was increased in metastatic cell lines when compared with nonmetastatic cell lines. Consistent with these findings, enhanced expression of MTBP promoted HCC cell invasiveness and metastasis both in vitro and in vivo, whereas the knockdown of MTBP with small interfering RNA resulted in reduced HCC migration and invasion. Ectopic expression of MTBP in HCC cells induced epithelial-to-mesenchymal transition, whereas the silencing of MTBP had the opposite effect. Furthermore, our results show that MTBP and E-cadherin protein expression are inversely correlated in primary HCC tissues. Moreover, our findings indicate that MTBP overexpression decreases E-cadherin expression through the modulation of Mdm2 ubiquitination degradation. CONCLUSIONS Our data show that MTBP aggravates the invasion and metastasis of HCC by promoting the MDM2-mediated degradation of E-cadherin.
Collapse
Affiliation(s)
- Shan Lu
- Department of Gastroenterology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China. .,Department of Oncology, Jiangxi Provincial Cancer Hospital, Nanchang, 330029, China. .,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, 330006, China.
| | - Wei Zhou
- Department of Gastrointestinal Surgery, Jiangxi Provincial Cancer Hospital, Nanchang, 330029, China
| | - Haiyun Wei
- Department of Gastrointestinal Surgery, Jiangxi Provincial Cancer Hospital, Nanchang, 330029, China
| | - Leifeng He
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, 330006, China
| | - Liang Li
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, 330006, China
| |
Collapse
|
35
|
Hasegawa Y, Taylor D, Ovchinnikov DA, Wolvetang EJ, de Torrenté L, Mar JC. Variability of Gene Expression Identifies Transcriptional Regulators of Early Human Embryonic Development. PLoS Genet 2015; 11:e1005428. [PMID: 26288249 PMCID: PMC4546122 DOI: 10.1371/journal.pgen.1005428] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/06/2015] [Indexed: 11/18/2022] Open
Abstract
An analysis of gene expression variability can provide an insightful window into how regulatory control is distributed across the transcriptome. In a single cell analysis, the inter-cellular variability of gene expression measures the consistency of transcript copy numbers observed between cells in the same population. Application of these ideas to the study of early human embryonic development may reveal important insights into the transcriptional programs controlling this process, based on which components are most tightly regulated. Using a published single cell RNA-seq data set of human embryos collected at four-cell, eight-cell, morula and blastocyst stages, we identified genes with the most stable, invariant expression across all four developmental stages. Stably-expressed genes were found to be enriched for those sharing indispensable features, including essentiality, haploinsufficiency, and ubiquitous expression. The stable genes were less likely to be associated with loss-of-function variant genes or human recessive disease genes affected by a DNA copy number variant deletion, suggesting that stable genes have a functional impact on the regulation of some of the basic cellular processes. Genes with low expression variability at early stages of development are involved in regulation of DNA methylation, responses to hypoxia and telomerase activity, whereas by the blastocyst stage, low-variability genes are enriched for metabolic processes as well as telomerase signaling. Based on changes in expression variability, we identified a putative set of gene expression markers of morulae and blastocyst stages. Experimental validation of a blastocyst-expressed variability marker demonstrated that HDDC2 plays a role in the maintenance of pluripotency in human ES and iPS cells. Collectively our analyses identified new regulators involved in human embryonic development that would have otherwise been missed using methods that focus on assessment of the average expression levels; in doing so, we highlight the value of studying expression variability for single cell RNA-seq data.
Collapse
Affiliation(s)
- Yu Hasegawa
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America; Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Deanne Taylor
- RMANJ Reproductive Medicine Associates of New Jersey, Morristown, New Jersey, United States of America; Division of Reproductive Endocrinology, Department of Obstetrics, Gynecology, and Reproductive Science, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Dmitry A Ovchinnikov
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Laurence de Torrenté
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jessica C Mar
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
36
|
Honda K. The biological role of actinin-4 (ACTN4) in malignant phenotypes of cancer. Cell Biosci 2015; 5:41. [PMID: 26288717 PMCID: PMC4539665 DOI: 10.1186/s13578-015-0031-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/02/2015] [Indexed: 12/16/2022] Open
Abstract
Invasion and metastasis are malignant phenotypes in cancer that lead to patient death. Cell motility is involved in these processes. In 1998, we identified overexpression of the actin-bundling protein actinin-4 in several types of cancer. Protein expression of actinin-4 is closely associated with the invasive phenotypes of cancers. Actinin-4 is predominantly expressed in the cellular protrusions that stimulate the invasive phenotype in cancer cells and is essential for formation of cellular protrusions such as filopodia and lamellipodia. ACTN4 (gene name encoding actinin-4 protein) is located on human chromosome 19q. ACTN4 amplification is frequently observed in patients with carcinomas of the pancreas, ovary, lung, and salivary gland, and patients with ACTN4 amplifications have worse outcomes than patients without amplification. In addition, nuclear distribution of actinin-4 is frequently observed in small cell lung, breast, and ovarian cancer. Actinin-4, when expressed in cancer cell nuclei, functions as a transcriptional co-activator. In this review, we summarize recent developments regarding the biological roles of actinin-4 in cancer invasion.
Collapse
Affiliation(s)
- Kazufumi Honda
- Department of Chemotherapy and Clinical Research, National Cancer Center Research Institute, 5-1-1 Tsukiji Chuoku, Tokyo, 104-0045 Japan ; AMED-CREST AMED, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda, Tokyo, 100-0004 Japan
| |
Collapse
|
37
|
Wang X, Ren Y, Zhuang H, Meng X, Huang S, Li Y, Hehir M, Wang P. Decrease of phosphorylated proto-oncogene CREB at Ser 133 site inhibits growth and metastatic activity of renal cell cancer. Expert Opin Ther Targets 2015; 19:985-95. [PMID: 26036429 DOI: 10.1517/14728222.2015.1053208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Cyclic-AMP-responsive element-binding protein (CREB) is a proto-oncogenic transcription factor. The authors' previous reports showed that blocking the CREB binding site at Ser 133 inhibited the expression of target genes, which related to the progression of some tumors. In this study, the authors investigated the role of phosphorylated CREB (pCREB) at Ser133 in renal cell carcinoma (RCC) growth and metastases. METHODS Immunohistochemistry, xenograft model in nude mice, cell proliferation assay, cell invasion/migration assay, fluorescent immunocytochemistry and Western analysis were performed in an immortalized proximal tubule epithelial cell line and clear-cell RCC. RESULTS The authors' results showed that knockdown of pCREB inhibited kidney cancer cells growth in vivo. Furthermore, suppression of the pCREB level blunted the capabilities of cell migration and invasion in vitro and was accompanied with significantly decreased expression of MMP-2 and MMP-9, the filopodia formation and epithelial-mesenchymal transition-related proteins. Surprisingly, no changes of expression or location of vimentin were revealed in the experiment. Bioinformatic software explained the possible reason for this is that the promoter of vimentin does not contain the CRE sequence. CONCLUSIONS These data suggest that decreasing the level of pCREB inhibits the growth and metastasis of RCC by targeting the Ser 133 site.
Collapse
Affiliation(s)
- Xue Wang
- Ningbo University, School of Medicine , Ningbo 315211 , China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Bi Q, Ranjan A, Fan R, Agarwal N, Welch DR, Weinman SA, Ding J, Iwakuma T. MTBP inhibits migration and metastasis of hepatocellular carcinoma. Clin Exp Metastasis 2015; 32:301-11. [PMID: 25759210 DOI: 10.1007/s10585-015-9706-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/07/2015] [Indexed: 01/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide with increasing incidence. Despite curative surgical resection and advanced chemotherapy, its survival rate remains low. The presence of microvascular invasion and occult metastasis is one of the major causes for this poor outcome. MDM2 Binding Protein (MTBP) has been implicated in the suppression of cell migration and cancer metastasis. However, clinical significance of MTBP, particularly in human cancer, is poorly understood. Specifically, clinical relevance of MTBP in human HCC has never been investigated. Here we demonstrated that expression of MTBP was significantly reduced in human HCC tissues compared to adjacent non-tumor tissues. MTBP expression was negatively correlated with capsular/vascular invasion and lymph node metastasis. Overexpression of MTBP resulted in the suppression of the migratory and metastatic potential of HCC cells, while its downregulation increased the migration. Consistent with the previous report, MTBP endogenously bound to alpha-actinin 4 (ACTN4) and suppressed ACTN4-mediated cell migration in multiple HCC cell lines. However, MTBP also inhibited migratory potential of PLC/PRF/5 HCC cells whose migration was not altered by manipulation of ACTN4 expression. These results suggest that mechanisms behind MTBP-mediated migration suppression may not be limited to the pathway involving ACTN4 in certain cellular contexts. Additionally, as a potential mechanism for reduced MTBP expression in tumors, we found that MTBP expression was increased following the treatment with histone deacetylase inhibitors (HDIs). Our study, for the first time, provides clinical relevance of MTBP in the suppression of HCC metastasis.
Collapse
Affiliation(s)
- Qian Bi
- Diagnosis and Treatment Center for Liver Cirrhosis, 302 Military Hospital of China, Beijing, 10039, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Grieb BC, Chen X, Eischen CM. MTBP is overexpressed in triple-negative breast cancer and contributes to its growth and survival. Mol Cancer Res 2014; 12:1216-24. [PMID: 24866769 PMCID: PMC4163510 DOI: 10.1158/1541-7786.mcr-14-0069] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED Triple-negative breast cancer (TNBC) is a clinically aggressive subtype of breast cancer commonly resistant to therapeutics that have been successful in increasing survival in patients with estrogen receptor-positive (ER(+)) and HER2(+) breast cancer. As such, identifying factors that contribute to poor patient outcomes and mediate the growth and survival of TNBC cells remain important areas of investigation. MTBP (MDM2-binding protein), a gene linked to cellular proliferation and a transcriptional target of the MYC oncogene, is overexpressed in human malignancies, yet its contribution to cancer remains unresolved. Evaluation of mRNA expression and copy number variation data from The Cancer Genome Atlas (TCGA) revealed that MTBP is commonly overexpressed in breast cancer and 19% show amplification of MTBP. Increased transcript or gene amplification of MTBP significantly correlated with reduced breast cancer patient survival. Further analysis revealed that while MTBP mRNA is overexpressed in both ER(+) and HER2(+) breast cancers, its expression is highest in TNBC. MTBP mRNA and protein levels were also significantly elevated in a panel of human TNBC cell lines. Knockdown of MTBP in TNBC cells induced apoptosis and significantly reduced TNBC cell growth and soft agar colony formation, which was rescued by expression of shRNA-resistant Mtbp. Notably, inducible knockdown of MTBP expression significantly impaired TNBC tumor growth, in vivo, including in established tumors. Thus, these data emphasize that MTBP is important for the growth and survival of TNBC and warrants further investigation as a potential novel therapeutic target. IMPLICATIONS MTBP significantly contributes to breast cancer survival and is a potential novel therapeutic target in TNBC.
Collapse
Affiliation(s)
- Brian C Grieb
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xi Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christine M Eischen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
40
|
Microenvironmental Influences on Metastasis Suppressor Expression and Function during a Metastatic Cell's Journey. CANCER MICROENVIRONMENT 2014; 7:117-31. [PMID: 24938990 DOI: 10.1007/s12307-014-0148-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/08/2014] [Indexed: 12/21/2022]
Abstract
Metastasis is the process of primary tumor cells breaking away and colonizing distant secondary sites. In order for a tumor cell growing in one microenvironment to travel to, and flourish in, a secondary environment, it must survive a series of events termed the metastatic cascade. Before departing the primary tumor, cells acquire genetic and epigenetic changes that endow them with properties not usually associated with related normal differentiated cells. Those cells also induce a subset of bone marrow-derived stem cells to mobilize and establish pre-metastatic niches [1]. Many tumor cells undergo epithelial-to-mesenchymal transition (EMT), where they transiently acquire morphologic changes, reduced requirements for cell-cell contact and become more invasive [2]. Invasive tumor cells eventually enter the circulatory (hematogenous) or lymphatic systems or travel across body cavities. In transit, tumor cells must resist anoikis, survive sheer forces and evade detection by the immune system. For blood-borne metastases, surviving cells then arrest or adhere to endothelial linings before either proliferating or extravasating. Eventually, tumor cells complete the process by proliferating to form a macroscopic mass [3].Up to 90 % of all cancer related morbidity and mortality can be attributed to metastasis. Surgery manages to ablate most primary tumors, especially when combined with chemotherapy and radiation. But if cells have disseminated, survival rates drop precipitously. While multiple parameters of the primary tumor are predictive of local or distant relapse, biopsies remain an imperfect science. The introduction of molecular and other biomarkers [4, 5] continue to improve the accuracy of prognosis. However, the invasive procedure introduces new complications for the patient. Likewise, the heterogeneity of any tumor population [3, 6, 7] means that sampling error (i.e., since it is impractical to examine the entire tumor) necessitates further improvements.In the case of breast cancer, for example, women diagnosed with stage I diseases (i.e., no evidence of invasion through a basement membrane) still have a ~30 % likelihood of developing distant metastases [8]. Many physicians and patients opt for additional chemotherapy in order to "mop up" cells that have disseminated and have the potential to grow into macroscopic metastases. This means that ~ 70 % of patients receive unnecessary therapy, which has undesirable side effects. Therefore, improving prognostic capability is highly desirable.Recent advances allow profiling of primary tumor DNA sequences and gene expression patterns to define a so-called metastatic signature [9-11], which can be predictive of patient outcome. However, the genetic changes that a tumor cell must undergo to survive the initial events of the metastatic cascade and colonize a second location belie a plasticity that may not be adequately captured in a sampling of heterogeneous tumors. In order to tailor or personalize patient treatments, a more accurate assessment of the genetic profile in the metastases is needed. Biopsy of each individual metastasis is not practical, safe, nor particularly cost-effective. In recent years, there has been a resurrection of the notion to do a 'liquid biopsy,' which essentially involves sampling of circulating tumor cells (CTC) and/or cell free nucleic acids (cfDNA, including microRNA (miRNA)) present in blood and lymph [12-16].The rationale for liquid biopsy is that tumors shed cells and/or genetic fragments into the circulation, theoretically making the blood representative of not only the primary tumor but also distant metastases. Logically, one would predict that the proportion of CTC and/or cfDNA would be proportionate to the likelihood of developing metastases [14]. While a linear relationship does not exist, the information within CTC or cfDNA is beginning to show great promise for enabling a global snapshot of the disease. However, the CTC and cfDNA are present at extremely low levels. Nonetheless, newer technologies capture enough material to enrich and sequence the patient's DNA or quantification of some biomarkers.Among the biomarkers showing great promise are metastasis suppressors which, by definition, block a tumor cell's ability to complete the metastatic process without prohibiting primary tumor growth [17]. Since the discovery of the first metastasis suppressor, Nm23, more than 30 have been functionally characterized. They function at various stages of the metastatic cascade, but their mechanisms of action, for the most part, remain ill-defined. Deciphering the molecular interactions of functional metastasis suppressors may provide insights for targeted therapies when these regulators cease to function and result in metastatic disease.In this brief review, we summarize what is known about the various metastasis suppressors and their functions at individual steps of the metastatic cascade (Table 1). Some of the subdivisions are rather arbitrary in nature, since many metastasis suppressors affect more than one step in the metastatic cascade. Nonetheless what emerges is a realization that metastasis suppressors are intimately associated with the microenvironments in which cancer cells find themselves [18].
Collapse
|
41
|
Grieb BC, Gramling MW, Arrate MP, Chen X, Beauparlant SL, Haines DS, Xiao H, Eischen CM. Oncogenic protein MTBP interacts with MYC to promote tumorigenesis. Cancer Res 2014; 74:3591-602. [PMID: 24786788 DOI: 10.1158/0008-5472.can-13-2149] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite its involvement in most human cancers, MYC continues to pose a challenge as a readily tractable therapeutic target. Here we identify the MYC transcriptional cofactors TIP48 and TIP49 and MYC as novel binding partners of Mdm2-binding protein (MTBP), a functionally undefined protein that we show is oncogenic and overexpressed in many human cancers. MTBP associated with MYC at promoters and increased MYC-mediated transcription, proliferation, neoplastic transformation, and tumor development. In breast cancer specimens, we determined overexpression of both MYC and MTBP was associated with a reduction in 10-year patient survival compared with MYC overexpression alone. MTBP was also frequently co-amplified with MYC in many human cancers. Mechanistic investigations implicated associations with TIP48/TIP49 as well as MYC in MTBP function in cellular transformation and the growth of human breast cancer cells. Taken together, our findings show MTBP functions with MYC to promote malignancy, identifying this protein as a novel general therapeutic target in human cancer.
Collapse
Affiliation(s)
- Brian C Grieb
- Authors' Affiliations: Departments of Pathology, Microbiology and Immunology and
| | - Mark W Gramling
- Authors' Affiliations: Departments of Pathology, Microbiology and Immunology and
| | - Maria Pia Arrate
- Authors' Affiliations: Departments of Pathology, Microbiology and Immunology and
| | - Xi Chen
- Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephen L Beauparlant
- Department of Biochemistry, Temple University; Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Dale S Haines
- Department of Biochemistry, Temple University; Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Hua Xiao
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Christine M Eischen
- Authors' Affiliations: Departments of Pathology, Microbiology and Immunology and
| |
Collapse
|
42
|
Nelson M, Millican-Slater R, Forrest LC, Brackenbury WJ. The sodium channel β1 subunit mediates outgrowth of neurite-like processes on breast cancer cells and promotes tumour growth and metastasis. Int J Cancer 2014; 135:2338-51. [PMID: 24729314 PMCID: PMC4200311 DOI: 10.1002/ijc.28890] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/03/2014] [Indexed: 02/03/2023]
Abstract
Voltage-gated Na+ channels (VGSCs) are heteromeric proteins composed of pore-forming α subunits and smaller β subunits. The β subunits are multifunctional channel modulators and are members of the immunoglobulin superfamily of cell adhesion molecules (CAMs). β1, encoded by SCN1B, is best characterized in the central nervous system (CNS), where it plays a critical role in regulating electrical excitability, neurite outgrowth and migration during development. β1 is also expressed in breast cancer (BCa) cell lines, where it regulates adhesion and migration in vitro. In the present study, we found that SCN1B mRNA/β1 protein were up-regulated in BCa specimens, compared with normal breast tissue. β1 upregulation substantially increased tumour growth and metastasis in a xenograft model of BCa. β1 over-expression also increased vascularization and reduced apoptosis in the primary tumours, and β1 over-expressing tumour cells had an elongate morphology. In vitro, β1 potentiated outgrowth of processes from BCa cells co-cultured with fibroblasts, via trans-homophilic adhesion. β1-mediated process outgrowth in BCa cells required the presence and activity of fyn kinase, and Na+ current, thus replicating the mechanism by which β1 regulates neurite outgrowth in CNS neurons. We conclude that when present in breast tumours, β1 enhances pathological growth and cellular dissemination. This study is the first demonstration of a functional role for β1 in tumour growth and metastasis in vivo. We propose that β1 warrants further study as a potential biomarker and targeting β1-mediated adhesion interactions may have value as a novel anti-cancer therapy.
Collapse
Affiliation(s)
- Michaela Nelson
- Department of Biology, University of York, Heslington, York, YO10 5DD, United Kingdom
| | | | | | | |
Collapse
|
43
|
Metastasis suppressors in breast cancers: mechanistic insights and clinical potential. J Mol Med (Berl) 2013; 92:13-30. [PMID: 24311119 DOI: 10.1007/s00109-013-1109-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 01/20/2023]
Abstract
For the most part, normal epithelial cells do not disseminate to other parts of the body and proliferate, as do metastatic cells. Presumably, a class of molecules-termed metastasis suppressors-are involved in this homeostatic control. Metastasis suppressors are, by definition, cellular factors that, when re-expressed in metastatic cells, functionally inhibit metastasis without significantly inhibiting tumor growth. In this brief review, we catalog known metastasis suppressors, what is known about their mechanism(s) of action, and experimental and clinical associations to date.
Collapse
|
44
|
Chen K, Navin NE, Wang Y, Schmidt HK, Wallis JW, Niu B, Fan X, Zhao H, McLellan MD, Hoadley KA, Mardis ER, Ley TJ, Perou CM, Wilson RK, Ding L. BreakTrans: uncovering the genomic architecture of gene fusions. Genome Biol 2013; 14:R87. [PMID: 23972288 PMCID: PMC4054677 DOI: 10.1186/gb-2013-14-8-r87] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/23/2013] [Indexed: 01/18/2023] Open
Abstract
Producing gene fusions through genomic structural rearrangements is a major mechanism for tumor evolution. Therefore, accurately detecting gene fusions and the originating rearrangements is of great importance for personalized cancer diagnosis and targeted therapy. We present a tool, BreakTrans, that systematically maps predicted gene fusions to structural rearrangements. Thus, BreakTrans not only validates both types of predictions, but also provides mechanistic interpretations. BreakTrans effectively validates known fusions and discovers novel events in a breast cancer cell line. Applying BreakTrans to 43 breast cancer samples in The Cancer Genome Atlas identifies 90 genomically validated gene fusions. BreakTrans is available at http://bioinformatics.mdanderson.org/main/BreakTrans.
Collapse
|
45
|
Abstract
MDM2 binding protein (MTBP) is a protein that interacts with oncoprotein murine double minute (MDM2), a major inhibitor of the tumor suppressor p53. Overexpression of MTBP leads to p53-independent cell proliferation arrest, which is in turn blocked by simultaneous overexpression of MDM2. Importantly, reduced expression of MTBP in mice increases tumor metastasis and enhances migratory potential of mouse embryonic fibroblasts regardless of the presence of p53. Clinically, loss of MTBP expression in head and neck squamous cell carcinoma is associated with reduced patient survival, and is shown to serve as an independent prognostic factor when p53 is mutated in tumors. These results indicate the involvement of MTBP in suppressing tumor progression. Our recent findings demonstrate that overexpression of MTBP in human osteosarcoma cells lacking wild-type p53 inhibits metastasis, but not primary tumor growth, when cells are transplanted in femurs of immunocompromised mice. These data indicate that MTBP functions as a metastasis suppressor independent of p53 status. Furthermore, overexpression of MTBP suppresses cell migration and filopodia formation, in part, by inhibiting function of an actin crosslinking protein α-actinin-4. Thus, increasing evidence indicates the significance of MTBP in tumor progression. We summarize published results related to MTBP function and discuss caveats and future directions in this review article.
Collapse
Affiliation(s)
- Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow blvd., Wahl East, Room 2005, Kansas City, KS 66160, USA.
| | | |
Collapse
|
46
|
Shao H, Travers T, Camacho CJ, Wells A. The carboxyl tail of alpha-actinin-4 regulates its susceptibility to m-calpain and thus functions in cell migration and spreading. Int J Biochem Cell Biol 2013; 45:1051-63. [PMID: 23466492 DOI: 10.1016/j.biocel.2013.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/08/2013] [Accepted: 02/20/2013] [Indexed: 11/16/2022]
Abstract
Alpha-actinin-4 links the cytoskeleton to sites of adhesion and has been shown to be modulated to enable cell migration. Such focal adhesions must be labile to accomplish migration, with this detachment occurring at least in part via m-calpain activation (Glading et al., 2001, 2002; Xie et al., 1998). In this study, we report that alpha-actinin-4 is initially cleaved by m-calpain between tyrosine 13 and glycine. Removal of the first 13 amino acids does not affect alpha-actinin-4 binding to actin filaments and its localization within fibroblasts but drives cell migration with less persistence. Binding of phosphoinositides PI(4,5)P2, PI(3,4,5)P3 and PI(3,4)P2 to alpha-actinin-4, as well as binding of alpha-actinin-4 to actin filaments all inhibit m-calpain cleavage of ACTN4 between tyrosine 13 and glycine 14. Interestingly, the carboxyl terminus of alpha-actinin-4 including its calcium binding motifs, is inhibitory for a secondary cleavage of alpha-actinin-4 between lysine 283 and valine 284. The minimal length of inhibitory domain is mapped to the last 11 amino acids of alpha-actinin-4. The C-terminal tail of alpha-actinin-4 is essential for maintaining its normal actin binding activity and localization within cytoplasm and also its colocalization with actin in the lamellipodia of locomoting fibroblasts. Live cell imaging reveals that the 1-890 fragment fails to rescue neither the basal or growth factor-stimulated migration nor the revert the spread area of fibroblasts to the level of NR6WT. These findings suggest that the C-terminal tail of alpha-actinin-4 is essential for its function in cell migration and adhesion to substratum.
Collapse
Affiliation(s)
- Hanshuang Shao
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | | | | | | |
Collapse
|
47
|
Abstract
Alpha-actinins (ACTNs) were originally identified as cytoskeletal proteins which cross-link filamentous actin to establish cytoskeletal architect that protects cells from mechanical stress and controls cell movement. Notably, unlike other ACTNs, alpha-actinin 4 (ACTN4) displays unique characteristics in signaling transduction, nuclear translocation, and gene expression regulation. Initial reports indicated that ACTN4 is part of the breast cancer cell motile apparatus and is highly expressed in the nucleus. These results imply that ACTN4 plays a role in breast cancer tumorigenesis. While several observations in breast cancer and other cancers support this hypothesis, little direct evidence links the tumorigenic phenotype with ACTN4-mediated pathological mechanisms. Recently, several studies have demonstrated that in addition to its role in coordinating cytoskeleton, ACTN4 interacts with signaling mediators, chromatin remodeling factors, and transcription factors including nuclear receptors. Thus, ACTN4 functions as a versatile promoter for breast cancer tumorigenesis and appears to be an ideal drug target for future therapeutic development.
Collapse
Affiliation(s)
- Kuo-Sheng Hsu
- Department of Biochemistry, School of Medicine, Case Western Reserve University-CWRU, The Comprehensive Cancer Center of CWRU, Cleveland, Ohio, USA
| | | |
Collapse
|