1
|
Johnson D, Dixit M, Kirubakaran S. Biochemical and Structural Studies of Protein Tyrosine Phosphatase PTP-PEST (PTPN12) in Search of Small Molecule Inhibitors. Chem Biol Drug Des 2025; 105:e70058. [PMID: 39895370 DOI: 10.1111/cbdd.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
PTP-PEST (also known as PTPN12) regulates cellular signaling and transduction pathways by dephosphorylating its substrate. PTP-PEST is considered an important drug target owing to its involvement in cancer progression and myocardial injury. Till now only a few inhibitors are currently being studied in the inhibition of PTP-PEST, majorly belonging to the class of metal-based drugs. In this study, we aimed to investigate small molecules that could potentially inhibit PTP-PEST for further development of PTP-PEST inhibitors. As an approach, we used an in silico molecular docking technique to screen an in-house synthesized molecular library. Further, we validated the docking results by in vitro inhibition screening of the best molecules using the purified catalytic domain of human PTP-PEST, which was over-expressed in E.coli. We identified a myo-inositol based derivative, J1-65, which binds to PTP-PEST and results in the competitive inhibition of the protein. Further, we confirmed this protein-ligand binding using binding affinity studies based on protein thermal shift assay and in silico molecular dynamic simulations. Our efforts to discover a novel scaffold for inhibiting hPTP-PEST mark a crucial stride in laying the groundwork for the future development of selective PTP-PEST inhibitors.
Collapse
Affiliation(s)
- Delna Johnson
- Department of Chemistry, Indian Institute of Technology, Gandhinagar, Gujarat, India
| | - Madhulika Dixit
- Centre of Excellence (CoE) in Molecular Medicine, Department of Biotechnology, Indian Institute of Technology, Chennai, Tamil Nadu, India
| | - Sivapriya Kirubakaran
- Department of Chemistry, Indian Institute of Technology, Gandhinagar, Gujarat, India
| |
Collapse
|
2
|
Liu X, Wei D, Wang F, Yan F, Zhang X, Zhou Y, Zhang P, Liu Y. PIK3R3 regulates differentiation and senescence of periodontal ligament stem cells and mitigates age-related alveolar bone loss by modulating FOXO1 expression. J Adv Res 2025:S2090-1232(25)00050-5. [PMID: 39862908 DOI: 10.1016/j.jare.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
INTRODUCTION Periodontal diseases are prevalent among middle-aged and elderly individuals. There's still no satisfactory solution for tooth loss caused by periodontal diseases. Human periodontal ligament stem cells (hPDLSCs) is a distinctive subgroup of mesenchymal stem cells, which play a crucial role in periodontal supportive tissues, but their application value hasn't been fully explored yet. As a regulatory subunit of PI3K, PIK3R3's role in stem cell regulation remains poorly comprehended. OBJECTIVES This study aims to explore the regulatory effect of PIK3R3 on differentiation and senescence of hPDLSCs and the underlying mechanism, as well as whether overexpression of PIK3R3 mitigate alveolar bone loss in aged rats. METHODS Human PDLSC lines with both PIK3R3 knockdown and overexpression are established. Osteogenic, adipogenic, chondrogenic and senescent induction are used to test the effect of PIK3R3 on senescence in vitro. Model of alveolar bone loss in aged mice is used to reveal the effect of PIK3R3 in vivo. FOXO1 siRNA is used for mechanism exploration. RESULTS Knockdown of PIK3R3 inhibits the mRNA and protein expression of markers in osteogenic, adipogenic, and chondrogenic differentiation of hPDLSCs but promotes in vitro senescence of hPDLSCs, including senescence markers expression, telomerase density and reactive oxygen species. Overexpression of PIK3R3 has the opposite effect. Furthermore, the result of Micro-CT and tissue section shows that overexpression of PIK3R3 in elder rats mitigates alveolar bone loss. Mechanistically, PIK3R3 regulates senescence of hPDLSCs through modulating FOXO1 expression. Expression of FOXO1 is altered when PIK3R3 is knocked down or overexpressed in senescent medium. Knockdown of FOXO1 promotes senescence of hPDLSCs and the senescence promoting effect of knocking down PIK3R3 is weakened when FOXO1 is highly expressed. CONCLUSION These findings indicate that PIK3R3 modulates senescence of hPDLSCs by regulating FOXO1 expression and shows promise as a therapeutic target for mitigating age-related alveolar bone loss.
Collapse
Affiliation(s)
- Xuenan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Donghao Wei
- Department of Oral Implantology, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Feilong Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Fanyu Yan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China.
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China.
| |
Collapse
|
3
|
Gu X, Mu C, Zheng R, Zhang Z, Zhang Q, Liang T. The Cancer Antioxidant Regulation System in Therapeutic Resistance. Antioxidants (Basel) 2024; 13:778. [PMID: 39061847 PMCID: PMC11274344 DOI: 10.3390/antiox13070778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Antioxidants play a pivotal role in neutralizing reactive oxygen species (ROS), which are known to induce oxidative stress. In the context of cancer development, cancer cells adeptly maintain elevated levels of both ROS and antioxidants through a process termed "redox reprogramming". This balance optimizes the proliferative influence of ROS while simultaneously reducing the potential for ROS to cause damage to the cell. In some cases, the adapted antioxidant machinery can hamper the efficacy of treatments for neoplastic diseases, representing a significant facet of the resistance mechanisms observed in cancer therapy. In this review, we outline the contribution of antioxidant systems to therapeutic resistance. We detail the fundamental constituents of these systems, encompassing the central regulatory mechanisms involving transcription factors (of particular importance is the KEAP1/NRF2 signaling axis), the molecular effectors of antioxidants, and the auxiliary systems responsible for NADPH generation. Furthermore, we present recent clinical trials based on targeted antioxidant systems for the treatment of cancer, assessing the potential as well as challenges of this strategy in cancer therapy. Additionally, we summarize the pressing issues in the field, with the aim of illuminating a path toward the emergence of novel anticancer therapeutic approaches by orchestrating redox signaling.
Collapse
Affiliation(s)
- Xuanhao Gu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.G.); (C.M.); (Z.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
| | - Chunyang Mu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.G.); (C.M.); (Z.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
| | - Rujia Zheng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
| | - Zhe Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.G.); (C.M.); (Z.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310003, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.G.); (C.M.); (Z.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310003, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.G.); (C.M.); (Z.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310003, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
4
|
Xu L, Cao Y, Xu Y, Li R, Xu X. Redox-Responsive Polymeric Nanoparticle for Nucleic Acid Delivery and Cancer Therapy: Progress, Opportunities, and Challenges. Macromol Biosci 2024; 24:e2300238. [PMID: 37573033 DOI: 10.1002/mabi.202300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Cancer development and progression of cancer are closely associated with the activation of oncogenes and loss of tumor suppressor genes. Nucleic acid drugs (e.g., siRNA, mRNA, and DNA) are widely used for cancer therapy due to their specific ability to regulate the expression of any cancer-associated genes. However, nucleic acid drugs are negatively charged biomacromolecules that are susceptible to serum nucleases and cannot cross cell membrane. Therefore, specific delivery tools are required to facilitate the intracellular delivery of nucleic acid drugs. In the past few decades, a variety of nanoparticles (NPs) are designed and developed for nucleic acid delivery and cancer therapy. In particular, the polymeric NPs in response to the abnormal redox status in cancer cells have garnered much more attention as their potential in redox-triggered nanostructure dissociation and rapid intracellular release of nucleic acid drugs. In this review, the important genes or signaling pathways regulating the abnormal redox status in cancer cells are briefly introduced and the recent development of redox-responsive NPs for nucleic acid delivery and cancer therapy is systemically summarized. The future development of NPs-mediated nucleic acid delivery and their challenges in clinical translation are also discussed.
Collapse
Affiliation(s)
- Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
5
|
Zhang C, Xiao J, Fa L, Jiang F, Jiang H, Zhou L, Xu Z. Identification of co-expressed gene networks promoting CD8 + T cell infiltration and having prognostic value in uveal melanoma. BMC Ophthalmol 2023; 23:354. [PMID: 37563735 PMCID: PMC10416479 DOI: 10.1186/s12886-023-03098-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
Current immunotherapies are unsatisfactory against uveal melanoma (UM); however, elevated CD8+ T cell infiltration level indicates poor prognosis in UM. Here, we aimed to identify co-expressed gene networks promoting CD8+ T cell infiltration in UM and created a prognostic hazard model based on the identified hub genes. Raw data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Stromal-immune comprehensive score (ESTIMATE) was used to evaluate the immune-infiltration landscape of the tumor microenvironment. Single-Sample Gene Set Enrichment Analysis (ssGSEA) and Weighted Correlation Network Analysis (WGCNA) were used to quantify CD8+ T cell infiltration level and identify hub genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to analyze the biological processes. Least absolute shrinkage and selection operator (LASSO) Cox regression were used to establish a prognostic model, which was further validated. Finally, pan-cancer analysis evaluated these genes to be associated with CD8+ T cell infiltration in other tumors. In conclusion, the proposed four-gene (PTPN12, IDH2, P2RX4, and KDELR2) prognostic hazard model had satisfactory prognostic ability. These hub genes may promote CD8+ T cell infiltration in UM through antigen presentation, and CD8+ T cell possibly function as Treg, resulting in poor prognosis. These findings might facilitate the development of novel immunotherapies.
Collapse
Affiliation(s)
- Chun Zhang
- Department of ophthalmology, West China Hospital, Sichuan University, Sichuan Province, 610041, Chengdu, China
| | - Jing Xiao
- Department of ophthalmology, West China Hospital, Sichuan University, Sichuan Province, 610041, Chengdu, China
| | - Luzhong Fa
- Department of ophthalmology, West China Hospital, Sichuan University, Sichuan Province, 610041, Chengdu, China
| | - Fanwen Jiang
- Department of ophthalmology, West China Hospital, Sichuan University, Sichuan Province, 610041, Chengdu, China
| | - Hui Jiang
- Department of ophthalmology, West China Hospital, Sichuan University, Sichuan Province, 610041, Chengdu, China
| | - Lin Zhou
- Department of ophthalmology, West China Hospital, Sichuan University, Sichuan Province, 610041, Chengdu, China
| | - Zhuping Xu
- Department of ophthalmology, West China Hospital, Sichuan University, Sichuan Province, 610041, Chengdu, China.
| |
Collapse
|
6
|
Tang X, Qi C, Zhou H, Liu Y. Critical roles of PTPN family members regulated by non-coding RNAs in tumorigenesis and immunotherapy. Front Oncol 2022; 12:972906. [PMID: 35957898 PMCID: PMC9360549 DOI: 10.3389/fonc.2022.972906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 12/22/2022] Open
Abstract
Since tyrosine phosphorylation is reversible and dynamic in vivo, the phosphorylation state of proteins is controlled by the opposing roles of protein tyrosine kinases (PTKs) and protein tyrosine phosphatase (PTPs), both of which perform critical roles in signal transduction. Of these, intracellular non-receptor PTPs (PTPNs), which belong to the largest class I cysteine PTP family, are essential for the regulation of a variety of biological processes, including but not limited to hematopoiesis, inflammatory response, immune system, and glucose homeostasis. Additionally, a substantial amount of PTPNs have been identified to hold crucial roles in tumorigenesis, progression, metastasis, and drug resistance, and inhibitors of PTPNs have promising applications due to striking efficacy in antitumor therapy. Hence, the aim of this review is to summarize the role played by PTPNs, including PTPN1/PTP1B, PTPN2/TC-PTP, PTPN3/PTP-H1, PTPN4/PTPMEG, PTPN6/SHP-1, PTPN9/PTPMEG2, PTPN11/SHP-2, PTPN12/PTP-PEST, PTPN13/PTPL1, PTPN14/PEZ, PTPN18/PTP-HSCF, PTPN22/LYP, and PTPN23/HD-PTP, in human cancer and immunotherapy and to comprehensively describe the molecular pathways in which they are implicated. Given the specific roles of PTPNs, identifying potential regulators of PTPNs is significant for understanding the mechanisms of antitumor therapy. Consequently, this work also provides a review on the role of non-coding RNAs (ncRNAs) in regulating PTPNs in tumorigenesis and progression, which may help us to find effective therapeutic agents for tumor therapy.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Clinical Laboratory Diagnostics, Binzhou Medical University, Binzhou, China
| | - Chumei Qi
- Department of Clinical Laboratory, Dazhou Women and Children’s Hospital, Dazhou, China
| | - Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| |
Collapse
|
7
|
Aldughaim MS, Al-Anazi MR, Bohol MFF, Colak D, Alothaid H, Wakil SM, Hagos ST, Ali D, Alarifi S, Rout S, Alkahtani S, Al-Ahdal MN, Al-Qahtani AA. Gene Expression and Transcriptome Profiling of Changes in a Cancer Cell Line Post-Exposure to Cadmium Telluride Quantum Dots: Possible Implications in Oncogenesis. Dose Response 2021; 19:15593258211019880. [PMID: 34177396 PMCID: PMC8202281 DOI: 10.1177/15593258211019880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022] Open
Abstract
Cadmium telluride quantum dots (CdTe-QDs) are acquiring great interest in terms of their applications in biomedical sciences. Despite earlier sporadic studies on possible oncogenic roles and anticancer properties of CdTe-QDs, there is limited information regarding the oncogenic potential of CdTe-QDs in cancer progression. Here, we investigated the oncogenic effects of CdTe-QDs on the gene expression profiles of Chang cancer cells. Chang cancer cells were treated with 2 different doses of CdTe-QDs (10 and 25 μg/ml) at different time intervals (6, 12, and 24 h). Functional annotations helped identify the gene expression profile in terms of its biological process, canonical pathways, and gene interaction networks activated. It was found that the gene expression profiles varied in a time and dose-dependent manner. Validation of transcriptional changes of several genes through quantitative PCR showed that several genes upregulated by CdTe-QD exposure were somewhat linked with oncogenesis. CdTe-QD-triggered functional pathways that appear to associate with gene expression, cell proliferation, migration, adhesion, cell-cycle progression, signal transduction, and metabolism. Overall, CdTe-QD exposure led to changes in the gene expression profiles of the Chang cancer cells, highlighting that this nanoparticle can further drive oncogenesis and cancer progression, a finding that indicates the merit of immediate in vivo investigation.
Collapse
Affiliation(s)
| | - Mashael R Al-Anazi
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Marie Fe F Bohol
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, Research Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Hani Alothaid
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Salma Majid Wakil
- Genotyping Core Facility, Research Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Samya T Hagos
- Genotyping Core Facility, Research Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sashmita Rout
- Advanced Centre for Treatment, Research, and Education in Cancer, Tata memorial Hospital, Mumbai, India
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed N Al-Ahdal
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Alfaisal University, School of Medicine, Riyadh, Saudi Arabia
| | - Ahmed A Al-Qahtani
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Alfaisal University, School of Medicine, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Ismail T, Kim Y, Lee H, Lee DS, Lee HS. Interplay Between Mitochondrial Peroxiredoxins and ROS in Cancer Development and Progression. Int J Mol Sci 2019; 20:ijms20184407. [PMID: 31500275 PMCID: PMC6770548 DOI: 10.3390/ijms20184407] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are multifunctional cellular organelles that are major producers of reactive oxygen species (ROS) in eukaryotes; to maintain the redox balance, they are supplemented with different ROS scavengers, including mitochondrial peroxiredoxins (Prdxs). Mitochondrial Prdxs have physiological and pathological significance and are associated with the initiation and progression of various cancer types. In this review, we have focused on signaling involving ROS and mitochondrial Prdxs that is associated with cancer development and progression. An upregulated expression of Prdx3 and Prdx5 has been reported in different cancer types, such as breast, ovarian, endometrial, and lung cancers, as well as in Hodgkin's lymphoma and hepatocellular carcinoma. The expression of Prdx3 and Prdx5 in different types of malignancies involves their association with different factors, such as transcription factors, micro RNAs, tumor suppressors, response elements, and oncogenic genes. The microenvironment of mitochondrial Prdxs plays an important role in cancer development, as cancerous cells are equipped with a high level of antioxidants to overcome excessive ROS production. However, an increased production of Prdx3 and Prdx5 is associated with the development of chemoresistance in certain types of cancers and it leads to further complications in cancer treatment. Understanding the interplay between mitochondrial Prdxs and ROS in carcinogenesis can be useful in the development of anticancer drugs with better proficiency and decreased resistance. However, more targeted studies are required for exploring the tumor microenvironment in association with mitochondrial Prdxs to improve the existing cancer therapies and drug development.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Youni Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Hongchan Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Dong-Seok Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
9
|
Stewart PA, Welsh EA, Slebos RJC, Fang B, Izumi V, Chambers M, Zhang G, Cen L, Pettersson F, Zhang Y, Chen Z, Cheng CH, Thapa R, Thompson Z, Fellows KM, Francis JM, Saller JJ, Mesa T, Zhang C, Yoder S, DeNicola GM, Beg AA, Boyle TA, Teer JK, Ann Chen Y, Koomen JM, Eschrich SA, Haura EB. Proteogenomic landscape of squamous cell lung cancer. Nat Commun 2019; 10:3578. [PMID: 31395880 PMCID: PMC6687710 DOI: 10.1038/s41467-019-11452-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
How genomic and transcriptomic alterations affect the functional proteome in lung cancer is not fully understood. Here, we integrate DNA copy number, somatic mutations, RNA-sequencing, and expression proteomics in a cohort of 108 squamous cell lung cancer (SCC) patients. We identify three proteomic subtypes, two of which (Inflamed, Redox) comprise 87% of tumors. The Inflamed subtype is enriched with neutrophils, B-cells, and monocytes and expresses more PD-1. Redox tumours are enriched for oxidation-reduction and glutathione pathways and harbor more NFE2L2/KEAP1 alterations and copy gain in the 3q2 locus. Proteomic subtypes are not associated with patient survival. However, B-cell-rich tertiary lymph node structures, more common in Inflamed, are associated with better survival. We identify metabolic vulnerabilities (TP63, PSAT1, and TFRC) in Redox. Our work provides a powerful resource for lung SCC biology and suggests therapeutic opportunities based on redox metabolism and immune cell infiltrates. Squamous cell lung cancer has dismal prognosis due to the dearth of effective treatments. Here, the authors perform an integrated proteogenomic analysis of the disease, revealing three proteomics-based subtypes and suggesting potential therapeutic opportunities.
Collapse
Affiliation(s)
- Paul A Stewart
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Eric A Welsh
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Robbert J C Slebos
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Bin Fang
- Proteomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Victoria Izumi
- Proteomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Matthew Chambers
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Guolin Zhang
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Ling Cen
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Fredrik Pettersson
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Yonghong Zhang
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Zhihua Chen
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Chia-Ho Cheng
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Ram Thapa
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Zachary Thompson
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Katherine M Fellows
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jewel M Francis
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - James J Saller
- Department of Anatomical Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Tania Mesa
- Molecular Genomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Chaomei Zhang
- Molecular Genomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Sean Yoder
- Molecular Genomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Amer A Beg
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Theresa A Boyle
- Department of Anatomical Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Yian Ann Chen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - John M Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Steven A Eschrich
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
10
|
Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol 2019; 98:139-153. [PMID: 31154010 DOI: 10.1016/j.semcdb.2019.05.022] [Citation(s) in RCA: 353] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022]
Abstract
Mitochondria are the key energy-producing organelles and cellular source of reactive species. They are responsible for managing cell life and death by a balanced homeostasis passing through a network of structures, regulated principally via fission and fusion. Herein we discuss about the most advanced findings considering mitochondria as dynamic biophysical systems playing compelling roles in the regulation of energy metabolism in both physiologic and pathologic processes controlling cell death and survival. Precisely, we focus on the mitochondrial commitment to the onset, maintenance and counteraction of apoptosis, autophagy and senescence in the bioenergetic reprogramming of cancer cells. In this context, looking for a pharmacological manipulation of cell death processes as a successful route for future targeted therapies, there is major biotechnological challenge in underlining the location, function and molecular mechanism of mitochondrial proteins. Based on the critical role of mitochondrial functions for cellular health, a better knowledge of the main molecular players in mitochondria disfunction could be decisive for the therapeutical control of degenerative diseases, including cancer.
Collapse
|
11
|
Lee C, Rhee I. Important roles of protein tyrosine phosphatase PTPN12 in tumor progression. Pharmacol Res 2019; 144:73-78. [DOI: 10.1016/j.phrs.2019.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 12/27/2022]
|
12
|
Guan Y, Li T, Zhang H, Zhu F, Omenn GS. Prioritizing predictive biomarkers for gene essentiality in cancer cells with mRNA expression data and DNA copy number profile. Bioinformatics 2018; 34:3975-3982. [PMID: 29912344 PMCID: PMC6247930 DOI: 10.1093/bioinformatics/bty467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 05/15/2018] [Accepted: 06/12/2018] [Indexed: 01/02/2023] Open
Abstract
Motivation Finding driver genes that are responsible for the aberrant proliferation rate of cancer cells is informative for both cancer research and the development of targeted drugs. The established experimental and computational methods are labor-intensive. To make algorithms feasible in real clinical settings, methods that can predict driver genes using less experimental data are urgently needed. Results We designed an effective feature selection method and used Support Vector Machines (SVM) to predict the essentiality of the potential driver genes in cancer cell lines with only 10 genes as features. The accuracy of our predictions was the highest in the Broad-DREAM Gene Essentiality Prediction Challenge. We also found a set of genes whose essentiality could be predicted much more accurately than others, which we called Accurately Predicted (AP) genes. Our method can serve as a new way of assessing the essentiality of genes in cancer cells. Availability and implementation The raw data that support the findings of this study are available at Synapse. https://www.synapse.org/#! Synapse: syn2384331/wiki/62825. Source code is available at GitHub. https://github.com/GuanLab/DREAM-Gene-Essentiality-Challenge. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Tingyang Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Hongjiu Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Fan Zhu
- Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Departments of Internal Medicine and Human Genetics and School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Ashtekar A, Huk D, Magner A, La Perle KMD, Boucai L, Kirschner LS. Alterations in Sod2-Induced Oxidative Stress Affect Endocrine Cancer Progression. J Clin Endocrinol Metab 2018; 103:4135-4145. [PMID: 30165401 PMCID: PMC6194813 DOI: 10.1210/jc.2018-01039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Abstract
CONTEXT Although important advances have been made in understanding the genetics of endocrine tumors, cellular physiology is relatively understudied as a determinant of tumor behavior. Oxidative stress and reactive oxygen species are metabolic factors that may affect tumor behavior, and these are, in part, controlled by manganese-dependent superoxide dismutase (MnSod), the mitochondrial superoxide dismutase (encoded by SOD2). OBJECTIVE We sought to understand the role of MnSod in the prognosis of aggressive human endocrine cancers and directly assessed the effect of MnSod under- or overexpression on tumor behavior, using established mouse thyroid cancer models. METHODS We performed transcriptome analysis of human and mouse models of endocrine cancer. To address the role of Sod2 in endocrine tumors, we introduced a Sod2 null allele or a transgenic Sod2 overexpression allele into mouse models of benign thyroid follicular neoplasia or aggressive, metastatic follicular thyroid cancer (FTC) and monitored phenotypic changes in tumor initiation and progression. RESULTS In the thyroid, SOD2/Sod2 was downregulated in FTC but not papillary thyroid cancer. Reduced expression of SOD2 was correlated with poorer survival of patients with aggressive thyroid or adrenal cancers. In mice with benign thyroid tumors, Sod2 overexpression increased tumor burden. In contrast, in mice with aggressive FTC, overexpression of Sod2 reduced tumor proliferation and improved mortality rates, whereas its deficiency enhanced tumor growth. CONCLUSION Overall, our results indicate that SOD2 has dichotomous roles in cancer progression and acts in a context-specific manner.
Collapse
Affiliation(s)
- Amruta Ashtekar
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Danielle Huk
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Alexa Magner
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Krista M D La Perle
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Laura Boucai
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Lawrence S Kirschner
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University, Columbus, Ohio
- Correspondence and Reprint Requests: Lawrence S. Kirschner, MD, PhD, The Ohio State University, BRT 510, 460 W 12th Avenue, Columbus, Ohio 43210. E-mail:
| |
Collapse
|
14
|
Ha JR, Ahn R, Smith HW, Sabourin V, Hébert S, Cepeda Cañedo E, Im YK, Kleinman CL, Muller WJ, Ursini-Siegel J. Integration of Distinct ShcA Signaling Complexes Promotes Breast Tumor Growth and Tyrosine Kinase Inhibitor Resistance. Mol Cancer Res 2018; 16:894-908. [PMID: 29453318 DOI: 10.1158/1541-7786.mcr-17-0623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/20/2017] [Accepted: 01/26/2018] [Indexed: 11/16/2022]
Abstract
The commonality between most phospho-tyrosine signaling networks is their shared use of adaptor proteins to transduce mitogenic signals. ShcA (SHC1) is one such adaptor protein that employs two phospho-tyrosine binding domains (PTB and SH2) and key phospho-tyrosine residues to promote mammary tumorigenesis. Receptor tyrosine kinases (RTK), such as ErbB2, bind the ShcA PTB domain to promote breast tumorigenesis by engaging Grb2 downstream of the ShcA tyrosine phosphorylation sites to activate AKT/mTOR signaling. However, breast tumors also rely on the ShcA PTB domain to bind numerous negative regulators that limit activation of secondary mitogenic signaling networks. This study examines the role of PTB-independent ShcA pools in controlling breast tumor growth and resistance to tyrosine kinase inhibitors. We demonstrate that PTB-independent ShcA complexes predominately rely on the ShcA SH2 domain to activate multiple Src family kinases (SFK), including Src and Fyn, in ErbB2-positive breast cancers. Using genetic and pharmacologic approaches, we show that PTB-independent ShcA complexes augment mammary tumorigenesis by increasing the activity of the Src and Fyn tyrosine kinases in an SH2-dependent manner. This bifurcation of signaling complexes from distinct ShcA pools transduces non-redundant signals that integrate the AKT/mTOR and SFK pathways to cooperatively increase breast tumor growth and resistance to tyrosine kinase inhibitors, including lapatinib and PP2. This study mechanistically dissects how the interplay between diverse intracellular ShcA complexes impacts the tyrosine kinome to affect breast tumorigenesis.Implications: The ShcA adaptor, within distinct signaling complexes, impacts tyrosine kinase signaling, breast tumor growth, and resistance to tyrosine kinase inhibitors. Mol Cancer Res; 16(5); 894-908. ©2018 AACR.
Collapse
Affiliation(s)
- Jacqueline R Ha
- Lady Davis Institute for Medical Research, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Ryuhjin Ahn
- Lady Davis Institute for Medical Research, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Harvey W Smith
- Department of Biochemistry, McIntyre Medical Building, McGill University, Montréal, Quebec, Canada
- Goodman Cancer Research Centre, Montréal, Quebec, Canada
| | - Valerie Sabourin
- Lady Davis Institute for Medical Research, Montréal, Quebec, Canada
| | - Steven Hébert
- Lady Davis Institute for Medical Research, Montréal, Quebec, Canada
| | - Eduardo Cepeda Cañedo
- Lady Davis Institute for Medical Research, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Young Kyuen Im
- Lady Davis Institute for Medical Research, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Claudia L Kleinman
- Lady Davis Institute for Medical Research, Montréal, Quebec, Canada
- Department of Human Genetics, Strathcona Anatomy & Dentistry Building, McGill University, Montréal, Quebec, Canada
| | - William J Muller
- Department of Biochemistry, McIntyre Medical Building, McGill University, Montréal, Quebec, Canada
- Department of Human Genetics, Strathcona Anatomy & Dentistry Building, McGill University, Montréal, Quebec, Canada
| | - Josie Ursini-Siegel
- Lady Davis Institute for Medical Research, Montréal, Quebec, Canada.
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
- Department of Biochemistry, McIntyre Medical Building, McGill University, Montréal, Quebec, Canada
- Goodman Cancer Research Centre, Montréal, Quebec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
15
|
Tassi E, Lai EY, Li L, Solis G, Chen Y, Kietzman WE, Ray PE, Riegel AT, Welch WJ, Wilcox CS, Wellstein A. Blood Pressure Control by a Secreted FGFBP1 (Fibroblast Growth Factor-Binding Protein). Hypertension 2018; 71:160-167. [PMID: 29158353 PMCID: PMC5730494 DOI: 10.1161/hypertensionaha.117.10268] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/06/2017] [Accepted: 10/13/2017] [Indexed: 12/29/2022]
Abstract
Fibroblast growth factors (FGFs) participate in organ development and tissue maintenance, as well as the control of vascular function. The paracrine-acting FGFs are stored in the extracellular matrix, and their release is controlled by a secreted FGF-binding protein (FGF-BP, FGFBP1, and BP1) that modulates FGF receptor signaling. A genetic polymorphism in the human FGFBP1 gene was associated with higher gene expression and an increased risk of familial hypertension. Here, we report on the effects of inducible BP1 expression in a transgenic mouse model. Induction of BP1 expression in adult animals leads to a sustained rise in mean arterial pressure by >30 mm Hg. The hypertensive effect of BP1 expression is prevented by candesartan, an angiotensin II (AngII) receptor antagonist, or by tempol, an inhibitor of reactive oxygen species. In vivo, BP1 expression sensitizes peripheral resistance vessels to AngII constriction by 20-fold but does not alter adrenergic vasoconstriction. FGF receptor kinase inhibition reverses the sensitization to AngII. Also, constriction of isolated renal afferent arterioles by AngII is enhanced after BP1 expression and blocked by FGF receptor kinase inhibition. Furthermore, AngII-mediated constriction of renal afferent arterioles is abolished in FGF2-/- mice but can be restored by add-back of FGF2 plus BP1 proteins. In contrast to AngII, adrenergic constriction is not affected in the FGF2-/- model. Proteomics and gene expression analysis of kidney tissues after BP1 induction show that MAPK (mitogen-activated protein kinase) signaling via MKK4 (MAPK kinase 4), p38, and JNK (c-Jun N-terminal kinase) integrates the crosstalk of the FGF receptor and AngII pathways and thus impact vascular tone and blood pressure.
Collapse
Affiliation(s)
- Elena Tassi
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - En Yin Lai
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - Lingli Li
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - Glenn Solis
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - Yifan Chen
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - William E Kietzman
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - Patricio E Ray
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - Anna T Riegel
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - William J Welch
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - Christopher S Wilcox
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - Anton Wellstein
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.).
| |
Collapse
|
16
|
Idelchik MDPS, Begley U, Begley TJ, Melendez JA. Mitochondrial ROS control of cancer. Semin Cancer Biol 2017; 47:57-66. [PMID: 28445781 PMCID: PMC5653465 DOI: 10.1016/j.semcancer.2017.04.005] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 04/07/2017] [Accepted: 04/14/2017] [Indexed: 02/06/2023]
Abstract
Mitochondria serves a primary role in energy maintenance but also function to govern levels of mitochondria-derived reactive oxygen species (mROS). ROS have long been established to play a critical role in tumorigenesis and are now considered to be integral to the regulation of diverse signaling networks that drive proliferation, tumor cell survival and malignant progression. mROS can damage DNA, activate oncogenes, block the function of tumor suppressors and drive migratory signaling. The mitochondrion's oxidant scavenging systems including SOD2, Grx2, GPrx, Trx and TrxR are key of the cellular redox tone. These mitochondrial antioxidant systems serve to tightly control the levels of the primary ROS signaling species, H2O2. The coordinated control of mROS levels is also coupled to the activity of the primary H2O2 consuming enzymes of the mitochondria which are reliant on the epitranscriptomic control of selenocysteine incorporation. This review highlights the interplay between these many oncogenic signaling networks, mROS and the H2O2 emitting and consuming capacity of the mitochondria.
Collapse
Affiliation(s)
- María Del Pilar Sosa Idelchik
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, NFE-4313, Albany, NY 12203, United States
| | - Ulrike Begley
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, NFE-4313, Albany, NY 12203, United States
| | - Thomas J Begley
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, NFE-4313, Albany, NY 12203, United States
| | - J Andrés Melendez
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, NFE-4313, Albany, NY 12203, United States.
| |
Collapse
|
17
|
Hou T, Li Z, Zhao Y, Zhu WG. Mechanisms controlling the anti-neoplastic functions of FoxO proteins. Semin Cancer Biol 2017; 50:101-114. [PMID: 29155239 DOI: 10.1016/j.semcancer.2017.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/18/2017] [Accepted: 11/14/2017] [Indexed: 02/06/2023]
Abstract
The Forkhead box O (FoxO) proteins comprise a family of evolutionarily conserved transcription factors that predominantly function as tumor suppressors. These proteins assume diverse roles in the cellular anti-neoplastic response, including regulation of apoptosis and autophagy, cancer metabolism, cell-cycle arrest, oxidative stress and the DNA damage response. More recently, FoxO proteins have been implicated in cancer immunity and cancer stem-cell (CSC) homeostasis. Interestingly, in some sporadic sub-populations, FoxO protein function may also be manipulated by factors such as β-catenin whereby they instead can facilitate cancer progression via maintenance of CSC properties or promoting drug resistance or metastasis and invasion. This review highlights the essential biological functions of FoxOs and explores the areas that may be exploited in FoxO protein signaling pathways in the development of novel cancer therapeutic agents.
Collapse
Affiliation(s)
- Tianyun Hou
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhiming Li
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ying Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
18
|
Zhang S, Fan G, Hao Y, Hammell M, Wilkinson JE, Tonks NK. Suppression of protein tyrosine phosphatase N23 predisposes to breast tumorigenesis via activation of FYN kinase. Genes Dev 2017; 31:1939-1957. [PMID: 29066500 PMCID: PMC5710140 DOI: 10.1101/gad.304261.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/06/2017] [Indexed: 12/18/2022]
Abstract
Zhang et al. identified PTPN23 as a suppressor of cell motility and invasion in mammary epithelial and breast cancer cells. They validated the underlying mechanism of PTPN23 function in breast tumorigenesis as that of a key phosphatase that normally suppresses the activity of FYN in two different models. Disruption of the balanced modulation of reversible tyrosine phosphorylation has been implicated in the etiology of various human cancers, including breast cancer. Protein Tyrosine Phosphatase N23 (PTPN23) resides in chromosomal region 3p21.3, which is hemizygously or homozygously lost in some breast cancer patients. In a loss-of-function PTPome screen, our laboratory identified PTPN23 as a suppressor of cell motility and invasion in mammary epithelial and breast cancer cells. Now, our TCGA (The Cancer Genome Atlas) database analyses illustrate a correlation between low PTPN23 expression and poor survival in breast cancers of various subtypes. Therefore, we investigated the tumor-suppressive function of PTPN23 in an orthotopic transplantation mouse model. Suppression of PTPN23 in Comma 1Dβ cells induced breast tumors within 56 wk. In PTPN23-depleted tumors, we detected hyperphosphorylation of the autophosphorylation site tyrosine in the SRC family kinase (SFK) FYN as well as Tyr142 in β-catenin. We validated the underlying mechanism of PTPN23 function in breast tumorigenesis as that of a key phosphatase that normally suppresses the activity of FYN in two different models. We demonstrated that tumor outgrowth from PTPN23-deficient BT474 cells was suppressed in a xenograft model in vivo upon treatment with AZD0530, an SFK inhibitor. Furthermore, double knockout of FYN and PTPN23 via CRISPR/CAS9 also attenuated tumor outgrowth from PTPN23 knockout Cal51 cells. Overall, this mechanistic analysis of the tumor-suppressive function of PTPN23 in breast cancer supports the identification of FYN as a therapeutic target for breast tumors with heterozygous or homozygous loss of PTPN23.
Collapse
Affiliation(s)
- Siwei Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.,Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Gaofeng Fan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuan Hao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Molly Hammell
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - John Erby Wilkinson
- Unit for Laboratory Animal Medicine, Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
19
|
Li H, Yang D, Ning S, Xu Y, Yang F, Yin R, Feng T, Han S, Guo L, Zhang P, Qu W, Guo R, Song C, Xiao P, Zhou C, Xu Z, Sun J, Yu X. Switching of the substrate specificity of protein tyrosine phosphatase N12 by cyclin‐dependent kinase 2 phosphorylation orchestrating 2 oncogenic pathways. FASEB J 2017; 32:73-82. [PMID: 28842430 DOI: 10.1096/fj.201700418r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/14/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Hui Li
- Key Laboratory Experimental Teratology of the Ministry of EducationShangdong University Jinan China
- Department of PhysiologyShangdong University Jinan China
- Second Hospital, Shangdong University Jinan China
| | - Duxiao Yang
- Department of Molecular Biology and BiochemistryShandong University School of Medicine, Shangdong University Jinan China
| | - Shanglei Ning
- Qilu Hospital and School of Life Science, Shangdong University Jinan China
| | - Yinghui Xu
- Cancer CenterFirst Hospital of Jilin University Jilin China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of EducationShangdong University Jinan China
- Department of PhysiologyShangdong University Jinan China
| | - Rusha Yin
- Key Laboratory Experimental Teratology of the Ministry of EducationShangdong University Jinan China
- Department of PhysiologyShangdong University Jinan China
| | - Taihu Feng
- Key Laboratory Experimental Teratology of the Ministry of EducationShangdong University Jinan China
- Department of PhysiologyShangdong University Jinan China
| | - Shouqing Han
- Key Laboratory Experimental Teratology of the Ministry of EducationShangdong University Jinan China
- Department of PhysiologyShangdong University Jinan China
| | - Lu Guo
- Second Hospital, Shangdong University Jinan China
| | - Pengju Zhang
- Department of Molecular Biology and BiochemistryShandong University School of Medicine, Shangdong University Jinan China
| | - Wenjie Qu
- Key Laboratory Experimental Teratology of the Ministry of EducationShangdong University Jinan China
- Department of PhysiologyShangdong University Jinan China
| | - Renbo Guo
- Key Laboratory Experimental Teratology of the Ministry of EducationShangdong University Jinan China
- Department of PhysiologyShangdong University Jinan China
| | - Chen Song
- Center for Quantitative BiologyPeking University Beijing China
| | - Peng Xiao
- Department of Molecular Biology and BiochemistryShandong University School of Medicine, Shangdong University Jinan China
| | | | - Zhigang Xu
- Key Laboratory Experimental Teratology of the Ministry of EducationShangdong University Jinan China
| | - Jin‐Peng Sun
- Department of Molecular Biology and BiochemistryShandong University School of Medicine, Shangdong University Jinan China
- Duke University School of Medicine, Duke University Durham North Carolina USA
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of EducationShangdong University Jinan China
- Department of PhysiologyShangdong University Jinan China
| |
Collapse
|
20
|
Saha SK, Lee SB, Won J, Choi HY, Kim K, Yang GM, Dayem AA, Cho SG. Correlation between Oxidative Stress, Nutrition, and Cancer Initiation. Int J Mol Sci 2017; 18:E1544. [PMID: 28714931 PMCID: PMC5536032 DOI: 10.3390/ijms18071544] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
Inadequate or excessive nutrient consumption leads to oxidative stress, which may disrupt oxidative homeostasis, activate a cascade of molecular pathways, and alter the metabolic status of various tissues. Several foods and consumption patterns have been associated with various cancers and approximately 30-35% of the cancer cases are correlated with overnutrition or malnutrition. However, several contradictory studies are available regarding the association between diet and cancer risk, which remains to be elucidated. Concurrently, oxidative stress is a crucial factor for cancer progression and therapy. Nutritional oxidative stress may be induced by an imbalance between antioxidant defense and pro-oxidant load due to inadequate or excess nutrient supply. Oxidative stress is a physiological state where high levels of reactive oxygen species (ROS) and free radicals are generated. Several signaling pathways associated with carcinogenesis can additionally control ROS generation and regulate ROS downstream mechanisms, which could have potential implications in anticancer research. Cancer initiation may be modulated by the nutrition-mediated elevation in ROS levels, which can stimulate cancer initiation by triggering DNA mutations, damage, and pro-oncogenic signaling. Therefore, in this review, we have provided an overview of the relationship between nutrition, oxidative stress, and cancer initiation, and evaluated the impact of nutrient-mediated regulation of antioxidant capability against cancer therapy.
Collapse
Affiliation(s)
- Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Soo Bin Lee
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Jihye Won
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Hye Yeon Choi
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Kyeongseok Kim
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Gwang-Mo Yang
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
21
|
Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol 2017; 80:50-64. [PMID: 28587975 DOI: 10.1016/j.semcdb.2017.05.023] [Citation(s) in RCA: 1288] [Impact Index Per Article: 161.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/17/2017] [Accepted: 05/29/2017] [Indexed: 12/19/2022]
Abstract
Increased reactive oxygen species (ROS) production has been detected in various cancers and has been shown to have several roles, for example, they can activate pro-tumourigenic signalling, enhance cell survival and proliferation, and drive DNA damage and genetic instability. Counterintuitively ROS can also promote anti-tumourigenic signalling, initiating oxidative stress-induced tumour cell death. Tumour cells express elevated levels of antioxidant proteins to detoxify elevated ROS levels, establish a redox balance, while maintaining pro-tumourigenic signalling and resistance to apoptosis. Tumour cells have an altered redox balance to that of their normal counterparts and this identifies ROS manipulation as a potential target for cancer therapies. This review discusses the generation and sources of ROS within tumour cells, the regulation of ROS by antioxidant defence systems, as well as the effect of elevated ROS production on their signalling targets in cancer. It also provides an insight into how pro- and anti-tumourigenic ROS signalling pathways could be manipulated in the treatment of cancer.
Collapse
Affiliation(s)
- Jennifer N Moloney
- Tumour Biology Laboratory, School of Biochemistry and Cell Biology, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Thomas G Cotter
- Tumour Biology Laboratory, School of Biochemistry and Cell Biology, Bioscience Research Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
22
|
Baek MK, Lee H, Kim KO, Kwon HJ, Chung MH, Park HM, Woo JH, Kim DY. Age-Related Changes in Nuclear Factor Erythroid 2-Related Factor 2 and Reactive Oxygen Species and Mitochondrial Structure in the Tongues of Fischer 344 Rats. Clin Exp Otorhinolaryngol 2016; 10:357-362. [PMID: 28002926 PMCID: PMC5678042 DOI: 10.21053/ceo.2016.01095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/13/2016] [Accepted: 12/01/2016] [Indexed: 12/30/2022] Open
Abstract
Objectives Previously the authors reported age-related changes in the activities of anti-oxidative enzyme activities and protein expressions in the tongues of rats. Because more information is required about relations between aging and oxidative stress and anti-oxidative enzyme efficiency, the authors investigated differences between the expression of master regulator of anti-oxidative enzymes (nuclear factor erythroid 2-related factor 2 [Nrf2]), levels of reactive oxygen species (ROS), and mitochondrial structures in the tongues of young and aged Fischer 344 rats. Methods Age-dependent changes in Nrf2 protein and ROS were determined by Western blotting and using chemical kits, respectively. Tongue specimens were examined by electron microscopy. The study was conducted using rats aged 7 months (young, n=8) or 22 months (old, n=8). Results Nrf2 protein levels in the tongues of aged rats were lower than in young rats. ROS levels were higher in older rats and mitochondrial structural deficits were observed their tongues. Three young rats showed moderate mitochondrial degeneration, whereas profound degeneration with mitochondrial cristae disruption, swelling, rupture, or intramitochondrial vacuole formation was observed in all 8 old rats. Notably, mitochondrial rupture was observed in 5 old rats. Conclusion Antioxidant defense systems of old rats were compromised by Nrf2 deficiency, which could lead to the deleterious accumulation and release of ROS and probably mitochondrial structural deficits in aged tongue tissues.
Collapse
Affiliation(s)
- Min-Kwan Baek
- Department of Otolaryngology Head and Neck Surgery, Gachon University Gil Hospital, Incheon, Korea
| | - Hyon Lee
- Department of Neurology, Gachon University Gil Hospital, Incheon, Korea
| | - Kyung-Ok Kim
- Department of Medical Research Institute, Gachon University Gil Hospital, Incheon, Korea
| | - Hyun-Jin Kwon
- Department of Medical Research Institute, Gachon University Gil Hospital, Incheon, Korea
| | - Myung-Hee Chung
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Hyoung-Min Park
- Department of Otolaryngology Head and Neck Surgery, Gachon University Gil Hospital, Incheon, Korea
| | - Joo-Hyun Woo
- Department of Otolaryngology Head and Neck Surgery, Gachon University Gil Hospital, Incheon, Korea
| | - Dong-Young Kim
- Department of Otolaryngology Head and Neck Surgery, Gachon University Gil Hospital, Incheon, Korea
| |
Collapse
|
23
|
Ha JR, Siegel PM, Ursini-Siegel J. The Tyrosine Kinome Dictates Breast Cancer Heterogeneity and Therapeutic Responsiveness. J Cell Biochem 2016; 117:1971-90. [PMID: 27392311 DOI: 10.1002/jcb.25561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/24/2016] [Indexed: 12/13/2022]
Abstract
Phospho-tyrosine signaling networks control numerous biological processes including cellular differentiation, cell growth and survival, motility, and invasion. Aberrant regulation of the tyrosine kinome is a hallmark of malignancy and influences all stages of breast cancer progression, from initiation to the development of metastatic disease. The success of specific tyrosine kinase inhibitors strongly validates the clinical relevance of tyrosine phosphorylation networks in breast cancer pathology. However, a significant degree of redundancy exists within the tyrosine kinome. Numerous receptor and cytoplasmic tyrosine kinases converge on a core set of signaling regulators, including adaptor proteins and tyrosine phosphatases, to amplify pro-tumorigenic signal transduction pathways. Mutational activation, amplification, or overexpression of one or more components of the tyrosine kinome represents key contributing events responsible for the tumor heterogeneity that is observed in breast cancers. It is this molecular heterogeneity that has become the most significant barrier to durable clinical responses due to the development of therapeutic resistance. This review focuses on recent literature that supports a prominent role for specific components of the tyrosine kinome in the emergence of unique breast cancer subtypes and in shaping breast cancer plasticity, sensitivity to targeted therapies, and the eventual emergence of acquired resistance. J. Cell. Biochem. 117: 1971-1990, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jacqueline R Ha
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Peter M Siegel
- Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Josie Ursini-Siegel
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Cebula M, Schmidt EE, Arnér ESJ. TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid Redox Signal 2015; 23:823-53. [PMID: 26058897 PMCID: PMC4589110 DOI: 10.1089/ars.2015.6378] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE All cells must maintain a balance between oxidants and reductants, while allowing for fluctuations in redox states triggered by signaling, altered metabolic flow, or extracellular stimuli. Furthermore, they must be able to rapidly sense and react to various challenges that would disrupt the redox homeostasis. RECENT ADVANCES Many studies have identified Keap1 as a key sensor for oxidative or electrophilic stress, with modification of Keap1 by oxidation or electrophiles triggering Nrf2-mediated transcriptional induction of enzymes supporting reductive and detoxification pathways. However, additional mechanisms for Nrf2 regulation are likely to exist upstream of, or in parallel with, Keap1. CRITICAL ISSUES Here, we propose that the mammalian selenoprotein thioredoxin reductase 1 (TrxR1) is a potent regulator of Nrf2. A high chemical reactivity of TrxR1 and its vital role for the thioredoxin (Trx) system distinguishes TrxR1 as a prime target for electrophilic challenges. Chemical modification of the selenocysteine (Sec) in TrxR1 by electrophiles leads to rapid inhibition of thioredoxin disulfide reductase activity, often combined with induction of NADPH oxidase activity of the derivatized enzyme, thereby affecting many downstream redox pathways. The notion of TrxR1 as a regulator of Nrf2 is supported by many publications on effects in human cells of selenium deficiency, oxidative stress or electrophile exposure, as well as the phenotypes of genetic mouse models. FUTURE DIRECTIONS Investigation of the role of TrxR1 as a regulator of Nrf2 activation will facilitate further studies of redox control in diverse cells and tissues of mammals, and possibly also in animals of other classes.
Collapse
Affiliation(s)
- Marcus Cebula
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Edward E Schmidt
- 2 Microbiology and Immunology, Montana State University , Bozeman, Montana
| | - Elias S J Arnér
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
25
|
Loss of PTPN12 Stimulates Progression of ErbB2-Dependent Breast Cancer by Enhancing Cell Survival, Migration, and Epithelial-to-Mesenchymal Transition. Mol Cell Biol 2015; 35:4069-82. [PMID: 26391955 DOI: 10.1128/mcb.00741-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/17/2015] [Indexed: 12/15/2022] Open
Abstract
PTPN12 is a cytoplasmic protein tyrosine phosphatase (PTP) reported to be a tumor suppressor in breast cancer, through its capacity to dephosphorylate oncogenic receptor protein tyrosine kinases (PTKs), such as ErbB2. However, the precise molecular and cellular impact of PTPN12 deficiency in breast cancer progression remains to be fully clarified. Here, we addressed this issue by examining the effect of PTPN12 deficiency on breast cancer progression in vivo, in a mouse model of ErbB2-dependent breast cancer using a conditional PTPN12-deficient mouse. Our studies showed that lack of PTPN12 in breast epithelial cells accelerated breast cancer development and lung metastases in vivo. PTPN12-deficient breast cancer cells displayed enhanced tyrosine phosphorylation of the adaptor Cas, the adaptor paxillin, and the kinase Pyk2. They exhibited no detectable increase in ErbB2 tyrosine phosphorylation. PTPN12-deficient cells were more resistant to anoikis and had augmented migratory and invasive properties. Enhanced migration was corrected by inhibiting Pyk2. PTPN12-deficient breast cancer cells also acquired partial features of epithelial-to-mesenchymal transition (EMT), a feature of more aggressive forms of breast cancer. Hence, loss of PTPN12 promoted tumor progression in a mouse model of breast cancer, supporting the notion that PTPN12 is a tumor suppressor in human breast cancer. This function was related to the ability of PTPN12 to suppress cell survival, migration, invasiveness, and EMT and to inhibit tyrosine phosphorylation of Cas, Pyk2, and paxillin. These findings enhance our understanding of the role and mechanism of action of PTPN12 in the control of breast cancer progression.
Collapse
|
26
|
Klotz LO, Sánchez-Ramos C, Prieto-Arroyo I, Urbánek P, Steinbrenner H, Monsalve M. Redox regulation of FoxO transcription factors. Redox Biol 2015; 6:51-72. [PMID: 26184557 PMCID: PMC4511623 DOI: 10.1016/j.redox.2015.06.019] [Citation(s) in RCA: 555] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/25/2015] [Accepted: 06/30/2015] [Indexed: 12/19/2022] Open
Abstract
Transcription factors of the forkhead box, class O (FoxO) family are important regulators of the cellular stress response and promote the cellular antioxidant defense. On one hand, FoxOs stimulate the transcription of genes coding for antioxidant proteins located in different subcellular compartments, such as in mitochondria (i.e. superoxide dismutase-2, peroxiredoxins 3 and 5) and peroxisomes (catalase), as well as for antioxidant proteins found extracellularly in plasma (e.g., selenoprotein P and ceruloplasmin). On the other hand, reactive oxygen species (ROS) as well as other stressful stimuli that elicit the formation of ROS, may modulate FoxO activity at multiple levels, including posttranslational modifications of FoxOs (such as phosphorylation and acetylation), interaction with coregulators, alterations in FoxO subcellular localization, protein synthesis and stability. Moreover, transcriptional and posttranscriptional control of the expression of genes coding for FoxOs is sensitive to ROS. Here, we review these aspects of FoxO biology focusing on redox regulation of FoxO signaling, and with emphasis on the interplay between ROS and FoxOs under various physiological and pathophysiological conditions. Of particular interest are the dual role played by FoxOs in cancer development and their key role in whole body nutrient homeostasis, modulating metabolic adaptations and/or disturbances in response to low vs. high nutrient intake. Examples discussed here include calorie restriction and starvation as well as adipogenesis, obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Lars-Oliver Klotz
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, Dornburger Straße 29, 07743 Jena, Germany.
| | - Cristina Sánchez-Ramos
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain
| | - Ignacio Prieto-Arroyo
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain
| | - Pavel Urbánek
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, Dornburger Straße 29, 07743 Jena, Germany
| | - Holger Steinbrenner
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, Dornburger Straße 29, 07743 Jena, Germany
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain.
| |
Collapse
|
27
|
Deletion of PDK1 causes cardiac sodium current reduction in mice. PLoS One 2015; 10:e0122436. [PMID: 25781322 PMCID: PMC4363661 DOI: 10.1371/journal.pone.0122436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/14/2015] [Indexed: 01/01/2023] Open
Abstract
Background The AGC protein kinase family regulates multiple cellular functions. 3-phosphoinositide-dependent protein kinase-1 (PDK1) is involved in the pathogenesis of arrhythmia, and its downstream factor, Forkhead box O1 (Foxo1), negatively regulates the expression of the cardiac sodium channel, Nav1.5. Mice are known to die suddenly after PDK1 deletion within 11 weeks, but the underlying electrophysiological bases are unclear. Thus, the aim of this study was to investigate the potential mechanisms between PDK1 signaling pathway and cardiac sodium current. Methods and Results Using patch clamp and western blotting techniques, we investigated the role of the PDK1-Foxo1 pathway in PDK1 knockout mice and cultured cardiomyocytes. We found that PDK1 knockout mice undergo slower heart rate, prolonged QRS and QTc intervals and abnormal conduction within the first few weeks of birth. Furthermore, the peak sodium current is decreased by 33% in cells lacking PDK1. The phosphorylation of Akt (308T) and Foxo1 (24T) and the expression of Nav1.5 in the myocardium of PDK1-knockout mice are decreased, while the nuclear localization of Foxo1 is increased. The role of the PDK1-Foxo1 pathway in regulating Nav1.5 levels and sodium current density was verified using selective PDK1, Akt and Foxo1 inhibitors and isolated neonatal rat cardiomyocytes. Conclusion These results indicate that PDK1 participates in the dysregulation of electrophysiological basis by regulating the PDK1-Foxo1 pathway, which in turn regulates the expression of Nav1.5 and cardiac sodium channel function.
Collapse
|
28
|
Morén C, Hernández S, Guitart-Mampel M, Garrabou G. Mitochondrial toxicity in human pregnancy: an update on clinical and experimental approaches in the last 10 years. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:9897-918. [PMID: 25247430 PMCID: PMC4199057 DOI: 10.3390/ijerph110909897] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/05/2014] [Accepted: 09/17/2014] [Indexed: 01/19/2023]
Abstract
Mitochondrial toxicity can be one of the most dreadful consequences of exposure to a wide range of external agents including pathogens, therapeutic agents, abuse drugs, toxic gases and other harmful chemical substances. However, little is known about the effects of mitochondrial toxicity on pregnant women exposed to these agents that may exert transplacental activity and condition fetal remodeling. It has been hypothesized that mitochondrial toxicity may be involved in some adverse obstetric outcomes. In the present study, we investigated the association between exposure to mitochondrial toxic agents and pathologic conditions ranging from fertility defects, detrimental fetal development and impaired newborn health due to intra-uterine exposure. We have reviewed data from studies in human subjects to propose mechanisms of mitochondrial toxicity that could be associated with the symptoms present in both exposed pregnant and fetal patients. Since some therapeutic interventions or accidental exposure cannot be avoided, further research is needed to gain insight into the molecular pathways leading to mitochondrial toxicity during pregnancy. The ultimate objective of these studies should be to reduce the mitochondrial toxicity of these agents and establish biomarkers for gestational monitoring of harmful effects.
Collapse
Affiliation(s)
- Constanza Morén
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS-Faculty of Medicine-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, Barcelona 08036, Spain.
| | - Sandra Hernández
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras, CIBERER, Valencia 46010, Spain.
| | - Mariona Guitart-Mampel
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS-Faculty of Medicine-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, Barcelona 08036, Spain.
| | - Glòria Garrabou
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS-Faculty of Medicine-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, Barcelona 08036, Spain.
| |
Collapse
|
29
|
Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 2014; 12:931-47. [PMID: 24287781 DOI: 10.1038/nrd4002] [Citation(s) in RCA: 2596] [Impact Index Per Article: 236.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The regulation of oxidative stress is an important factor in both tumour development and responses to anticancer therapies. Many signalling pathways that are linked to tumorigenesis can also regulate the metabolism of reactive oxygen species (ROS) through direct or indirect mechanisms. High ROS levels are generally detrimental to cells, and the redox status of cancer cells usually differs from that of normal cells. Because of metabolic and signalling aberrations, cancer cells exhibit elevated ROS levels. The observation that this is balanced by an increased antioxidant capacity suggests that high ROS levels may constitute a barrier to tumorigenesis. However, ROS can also promote tumour formation by inducing DNA mutations and pro-oncogenic signalling pathways. These contradictory effects have important implications for potential anticancer strategies that aim to modulate levels of ROS. In this Review, we address the controversial role of ROS in tumour development and in responses to anticancer therapies, and elaborate on the idea that targeting the antioxidant capacity of tumour cells can have a positive therapeutic impact.
Collapse
Affiliation(s)
- Chiara Gorrini
- 1] The Campbell Family Institute for Breast Cancer Research, University Health Network, 620 University Avenue, Toronto, Ontario M5G 2C1, Canada. [2]
| | | | | |
Collapse
|
30
|
Lehmann BD, Pietenpol JA. Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. J Pathol 2014; 232:142-50. [PMID: 24114677 PMCID: PMC4090031 DOI: 10.1002/path.4280] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 09/03/2013] [Accepted: 09/24/2013] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease with distinct molecular subtypes that respond differentially to chemotherapy and targeted agents. The absence of high-frequency molecular alterations and a limited number of known biomarkers have limited the development of therapeutic strategies for the disease. Herein, we summarize the results of the first round of targeted therapy approaches in TNBC and discuss new preclinical strategies. Common themes emerge from the proposed strategies, such as the use of biomarkers to identify tumours with genomic instability, targeting adapted molecular states resulting from tumour suppressor loss, and targeting altered metabolic pathways.
Collapse
Affiliation(s)
- Brian D Lehmann
- Department of Biochemistry, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | |
Collapse
|
31
|
PTPN12 inhibits oral squamous epithelial carcinoma cell proliferation and invasion and can be used as a prognostic marker. Med Oncol 2013; 30:618. [DOI: 10.1007/s12032-013-0618-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 05/23/2013] [Indexed: 01/24/2023]
|