1
|
Kim JE, Wang SH, Lee DS, Kim TH, Kang TC. Neuronal PLPP/CIN exaggerates the immune response of hippocampal microglia to LPS challenge dependent on PAK1-NF-κB-COX-2 signaling pathway. Brain Res 2025; 1849:149345. [PMID: 39581524 DOI: 10.1016/j.brainres.2024.149345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Recently, we have reported that pyridoxal-5'-phosphate phosphatase/chronophin (PLPP/CIN) selectively dephosphorylates neurofibromin 2 (NF2, also known as merlin) at serine (S) 10 site. Since NF2 inhibits p21-activated kinase 1 (PAK1)-mediated nuclear factor-κB (NF-κB) activation, in the present study, we investigated the role of PLPP/CIN-mediated NF2 S10 dephosphorylation in lipopolysaccharide (LPS)-induced neuroinflammation and explored its related signaling pathways in the mouse hippocampus. PLPP/CIN overexpression increased NF2 S10 dephosphorylation and PAK1 S204 autophosphorylation under physiological condition, which were reversed by PLPP/CIN deletion. Following LPS injection, PLPP/CIN overexpression exacerbated microglial activation, although microglial PLPP/CIN expression was undetectable. In addition, PLPP/CIN overexpression enhanced PAK1 and NF-κB phosphorylations, and upregulated cyclooxygenase-2 (COX-2) and prostaglandin E synthase 2 (PTGES2) expressions in CA1 neurons. PLPP/CIN overexpression also augmented microglial interleukin-1β induction. PLPP/CIN ablation and 1,1'-dithiodi-2-naphthtol (IPA-3, a PAK1 inhibitor) pretreatment ameliorated these LPS-induced neuroinflammatory responses. These findings indicate that PLPP/CIN-mediated NF2 S10 dephosphorylation may facilitate PAK1-NF-κB-COX-2-PTGES2 signaling pathway in CA1 neurons, which would subsequently exaggerate immune response of microglia following LPS treatment. Therefore, our findings suggest that this PLPP/CIN-mediated neuron-microglia interaction may play an important role in the pathogenesis of inflammation-related neurological diseases.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Su Hyeon Wang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea.
| |
Collapse
|
2
|
Lateef OM, Foote C, Power G, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. LIM kinases in cardiovascular health and disease. Front Physiol 2024; 15:1506356. [PMID: 39744707 PMCID: PMC11688343 DOI: 10.3389/fphys.2024.1506356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/28/2024] [Indexed: 01/14/2025] Open
Abstract
The Lim Kinase (LIMK) family of serine/threonine kinases is comprised of LIMK1 and LIMK2, which are central regulators of cytoskeletal dynamics via their well-characterized roles in promoting actin polymerization and destabilizing the cellular microtubular network. The LIMKs have been demonstrated to modulate several fundamental physiological processes, including cell cycle progression, cell motility and migration, and cell differentiation. These processes play important roles in maintaining cardiovascular health. However, LIMK activity in healthy and pathological states of the cardiovascular system is poorly characterized. This review highlights the cellular and molecular mechanisms involved in LIMK activation and inactivation, examining its roles in the pathophysiology of vascular and cardiac diseases such as hypertension, aneurysm, atrial fibrillation, and valvular heart disease. It addresses the LIMKs' involvement in processes that support cardiovascular health, including vasculogenesis, angiogenesis, and endothelial mechanotransduction. The review also features how LIMK activity participates in endothelial cell, vascular smooth muscle cell, and cardiomyocyte physiology and its implications in pathological states. A few recent preclinical studies demonstrate the therapeutic potential of LIMK inhibition. We conclude by proposing that future research should focus on the potential clinical relevance of LIMK inhibitors as therapeutic agents to reduce the burden of cardiovascular disease and improve patient outcomes.
Collapse
Affiliation(s)
- Olubodun M. Lateef
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri Columbia, Columbia, MO, United States
| | - Christopher Foote
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Gavin Power
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Camila Manrique-Acevedo
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Columbia, MO, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
| | - Luis A. Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri Columbia, Columbia, MO, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
3
|
Baudouin L, Adès N, Kanté K, Bachelin C, Hmidan H, Deboux C, Panic R, Ben Messaoud R, Velut Y, Hamada S, Pionneau C, Duarte K, Poëa-Guyon S, Barnier JV, Nait Oumesmar B, Bouslama-Oueghlani L. Antagonistic actions of PAK1 and NF2/Merlin drive myelin membrane expansion in oligodendrocytes. Glia 2024; 72:1518-1540. [PMID: 38794866 DOI: 10.1002/glia.24570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
In the central nervous system, the formation of myelin by oligodendrocytes (OLs) relies on the switch from the polymerization of the actin cytoskeleton to its depolymerization. The molecular mechanisms that trigger this switch have yet to be elucidated. Here, we identified P21-activated kinase 1 (PAK1) as a major regulator of actin depolymerization in OLs. Our results demonstrate that PAK1 accumulates in OLs in a kinase-inhibited form, triggering actin disassembly and, consequently, myelin membrane expansion. Remarkably, proteomic analysis of PAK1 binding partners enabled the identification of NF2/Merlin as its endogenous inhibitor. Our findings indicate that Nf2 knockdown in OLs results in PAK1 activation, actin polymerization, and a reduction in OL myelin membrane expansion. This effect is rescued by treatment with a PAK1 inhibitor. We also provide evidence that the specific Pak1 loss-of-function in oligodendroglia stimulates the thickening of myelin sheaths in vivo. Overall, our data indicate that the antagonistic actions of PAK1 and NF2/Merlin on the actin cytoskeleton of the OLs are critical for proper myelin formation. These findings have broad mechanistic and therapeutic implications in demyelinating diseases and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lucas Baudouin
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Noémie Adès
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Kadia Kanté
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Corinne Bachelin
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Hatem Hmidan
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Al-Quds University, Faculty of Medicine, Jerusalem, Palestine
| | - Cyrille Deboux
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Radmila Panic
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Rémy Ben Messaoud
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Yoan Velut
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Soumia Hamada
- Sorbonne Université, Inserm, UMS Production et Analyse des Données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Cédric Pionneau
- Sorbonne Université, Inserm, UMS Production et Analyse des Données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Kévin Duarte
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Sandrine Poëa-Guyon
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Brahim Nait Oumesmar
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Lamia Bouslama-Oueghlani
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
4
|
Chong ZX, Ho WY, Yeap SK. Decoding the tumour-modulatory roles of LIMK2. Life Sci 2024; 347:122609. [PMID: 38580197 DOI: 10.1016/j.lfs.2024.122609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
LIM domains kinase 2 (LIMK2) is a 72 kDa protein that regulates actin and cytoskeleton reorganization. Once phosphorylated by its upstream activator (ROCK1), LIMK2 can phosphorylate cofilin to inactivate it. This relieves the levering stress on actin and allows polymerization to occur. Actin rearrangement is essential in regulating cell cycle progression, apoptosis, and migration. Dysregulation of the ROCK1/LIMK2/cofilin pathway has been reported to link to the development of various solid cancers such as breast, lung, and prostate cancer and liquid cancer like leukemia. This review aims to assess the findings from multiple reported in vitro, in vivo, and clinical studies on the potential tumour-regulatory role of LIMK2 in different human cancers. The findings of the selected literature unraveled that activated AKT, EGF, and TGF-β pathways can upregulate the activities of the ROCK1/LIMK2/cofilin pathway. Besides cofilin, LIMK2 can modulate the cellular levels of other proteins, such as TPPP1, to promote microtubule polymerization. The tumour suppressor protein p53 can transactivate LIMK2b, a splice variant of LIMK2, to induce cell cycle arrest and allow DNA repair to occur before the cell enters the next phase of the cell cycle. Additionally, several non-coding RNAs, such as miR-135a and miR-939-5p, could also epigenetically regulate the expression of LIMK2. Since the expression of LIMK2 is dysregulated in several human cancers, measuring the tissue expression of LIMK2 could potentially help diagnose cancer and predict patient prognosis. As LIMK2 could play tumour-promoting and tumour-inhibiting roles in cancer development, more investigation should be conducted to carefully evaluate whether introducing a LIMK2 inhibitor in cancer patients could slow cancer progression without posing clinical harms.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| |
Collapse
|
5
|
Kim JE, Lee DS, Kim TH, Park H, Kim MJ, Kang TC. PLPP/CIN-mediated NF2 S10 dephosphorylation distinctly regulates kainate-induced seizure susceptibility and neuronal death through PAK1-NF-κB-COX-2-PTGES2 signaling pathway. J Neuroinflammation 2023; 20:99. [PMID: 37118736 PMCID: PMC10141957 DOI: 10.1186/s12974-023-02788-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/23/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Pyridoxal-5'-phosphate phosphatase/chronophin (PLPP/CIN) selectively dephosphorylates serine (S) 10 site on neurofibromin 2 (NF2, also known as merlin (moesin-ezrin-radixin-like protein) or schwannomin). p21-activated kinase 1 (PAK1) is a serine/threonine protein kinase, which is involved in synaptic activity and plasticity in neurons. NF2 and PAK1 reciprocally regulate each other in a positive feedback manner. Thus, the aim of the present study is to investigate the effects of PLPP/CIN-mediated NF2 S10 dephosphorylation on PAK1-related signaling pathways under physiological and neuroinflammatory conditions, which are largely unknown. METHODS After kainate (KA) injection in wild-type, PLPP/CIN-/- and PLPP/CINTg mice, seizure susceptibility, PAK1 S204 autophosphorylation, nuclear factor-κB (NF-κB) p65 S276 phosphorylation, cyclooxygenase-2 (COX-2) upregulation, prostaglandin E synthase 2 (PTGES2) induction and neuronal damage were measured. The effects of 1,1'-dithiodi-2-naphthtol (IPA-3, a selective inhibitor of PAK1) pretreatment on these responses to KA were also validated. RESULTS PLPP/CIN overexpression increased PAK1 S204 autophosphorylation concomitant with the enhanced NF2 S10 dephosphorylation in hippocampal neurons under physiological condition. Following KA treatment, PLPP/CIN overexpression delayed the seizure on-set and accelerated PAK1 S204 phosphorylation, NF-κB p65 S276 phosphorylation, COX-2 upregulation and PTGES2 induction, which were ameliorated by PLPP/CIN deletion or IPA-3. Furthermore, IPA-3 pretreatment shortened the latency of seizure on-set without affecting seizure severity (intensity) and ameliorated CA3 neuronal death induced by KA. CONCLUSIONS These findings indicate that PLPP/CIN may regulate seizure susceptibility (the latency of seizure on-set) and CA3 neuronal death in response to KA through NF2-PAK1-NF-κB-COX-2-PTGES2 signaling pathway.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea
| | - Hana Park
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea
| | - Min-Ju Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea.
| |
Collapse
|
6
|
Villalonga E, Mosrin C, Normand T, Girardin C, Serrano A, Žunar B, Doudeau M, Godin F, Bénédetti H, Vallée B. LIM Kinases, LIMK1 and LIMK2, Are Crucial Node Actors of the Cell Fate: Molecular to Pathological Features. Cells 2023; 12:cells12050805. [PMID: 36899941 PMCID: PMC10000741 DOI: 10.3390/cells12050805] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
LIM kinase 1 (LIMK1) and LIM kinase 2 (LIMK2) are serine/threonine and tyrosine kinases and the only two members of the LIM kinase family. They play a crucial role in the regulation of cytoskeleton dynamics by controlling actin filaments and microtubule turnover, especially through the phosphorylation of cofilin, an actin depolymerising factor. Thus, they are involved in many biological processes, such as cell cycle, cell migration, and neuronal differentiation. Consequently, they are also part of numerous pathological mechanisms, especially in cancer, where their involvement has been reported for a few years and has led to the development of a wide range of inhibitors. LIMK1 and LIMK2 are known to be part of the Rho family GTPase signal transduction pathways, but many more partners have been discovered over the decades, and both LIMKs are suspected to be part of an extended and various range of regulation pathways. In this review, we propose to consider the different molecular mechanisms involving LIM kinases and their associated signalling pathways, and to offer a better understanding of their variety of actions within the physiology and physiopathology of the cell.
Collapse
Affiliation(s)
- Elodie Villalonga
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Christine Mosrin
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Thierry Normand
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Caroline Girardin
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Amandine Serrano
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Bojan Žunar
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Michel Doudeau
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Fabienne Godin
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Béatrice Vallée
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
- Correspondence: ; Tel.: +33-(0)2-38-25-76-11
| |
Collapse
|
7
|
LIM Kinases, Promising but Reluctant Therapeutic Targets: Chemistry and Preclinical Validation In Vivo. Cells 2022; 11:cells11132090. [PMID: 35805176 PMCID: PMC9265711 DOI: 10.3390/cells11132090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
LIM Kinases are important actors in the regulation of cytoskeleton dynamics by controlling microtubule and actin filament turnover. The signaling pathways involving LIM kinases for actin filament remodeling are well established. They are downstream effectors of small G proteins of the Rho-GTPases family and have become promising targets for the treatment of several major diseases because of their position at the lower end of these signaling cascades. Cofilin, which depolymerizes actin filaments, is the best-known substrate of these enzymes. The phosphorylation of cofilin to its inactive form by LIM kinases avoids actin filament depolymerization. The balance between phosphorylated and non-phosphorylated cofilin is thought to play an important role in tumor cell invasion and metastasis. Since 2006, many small molecules have been developed for LIMK inhibition, and in this review article, we will discuss the structure–activity relationships of the few inhibitor families that have been tested in vivo on different pathological models.
Collapse
|
8
|
Chatterjee D, Preuss F, Dederer V, Knapp S, Mathea S. Structural Aspects of LIMK Regulation and Pharmacology. Cells 2022; 11:cells11010142. [PMID: 35011704 PMCID: PMC8750758 DOI: 10.3390/cells11010142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Malfunction of the actin cytoskeleton is linked to numerous human diseases including neurological disorders and cancer. LIMK1 (LIM domain kinase 1) and its paralogue LIMK2 are two closely related kinases that control actin cytoskeleton dynamics. Consequently, they are potential therapeutic targets for the treatment of such diseases. In the present review, we describe the LIMK conformational space and its dependence on ligand binding. Furthermore, we explain the unique catalytic mechanism of the kinase, shedding light on substrate recognition and how LIMK activity is regulated. The structural features are evaluated for implications on the drug discovery process. Finally, potential future directions for targeting LIMKs pharmacologically, also beyond just inhibiting the kinase domain, are discussed.
Collapse
Affiliation(s)
- Deep Chatterjee
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str 15, 60438 Frankfurt am Main, Germany; (D.C.); (F.P.); (V.D.); (S.K.)
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str 9, 60438 Frankfurt am Main, Germany
| | - Franziska Preuss
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str 15, 60438 Frankfurt am Main, Germany; (D.C.); (F.P.); (V.D.); (S.K.)
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str 9, 60438 Frankfurt am Main, Germany
| | - Verena Dederer
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str 15, 60438 Frankfurt am Main, Germany; (D.C.); (F.P.); (V.D.); (S.K.)
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str 9, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str 15, 60438 Frankfurt am Main, Germany; (D.C.); (F.P.); (V.D.); (S.K.)
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str 9, 60438 Frankfurt am Main, Germany
| | - Sebastian Mathea
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str 15, 60438 Frankfurt am Main, Germany; (D.C.); (F.P.); (V.D.); (S.K.)
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str 9, 60438 Frankfurt am Main, Germany
- Correspondence:
| |
Collapse
|
9
|
Shen LW, Jiang XX, Li ZQ, Li J, Wang M, Jia GF, Ding X, Lei L, Gong QH, Gao N. Cepharanthine sensitizes human triple negative breast cancer cells to chemotherapeutic agent epirubicin via inducing cofilin oxidation-mediated mitochondrial fission and apoptosis. Acta Pharmacol Sin 2022; 43:177-193. [PMID: 34294886 PMCID: PMC8724299 DOI: 10.1038/s41401-021-00715-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
Inhibition of autophagy has been accepted as a promising therapeutic strategy in cancer, but its clinical application is hindered by lack of effective and specific autophagy inhibitors. We previously identified cepharanthine (CEP) as a novel autophagy inhibitor, which inhibited autophagy/mitophagy through blockage of autophagosome-lysosome fusion in human breast cancer cells. In this study we investigated whether and how inhibition of autophagy/mitophagy by cepharanthine affected the efficacy of chemotherapeutic agent epirubicin in triple negative breast cancer (TNBC) cells in vitro and in vivo. In human breast cancer MDA-MB-231 and BT549 cells, application of CEP (2 μM) greatly enhanced cepharanthine-induced inhibition on cell viability and colony formation. CEP interacted with epirubicin synergistically to induce apoptosis in TNBC cells via the mitochondrial pathway. We demonstrated that co-administration of CEP and epirubicin induced mitochondrial fission in MDA-MB-231 cells, and the production of mitochondrial superoxide was correlated with mitochondrial fission and apoptosis induced by the combination. Moreover, we revealed that co-administration of CEP and epirubicin markedly increased the generation of mitochondrial superoxide, resulting in oxidation of the actin-remodeling protein cofilin, which promoted formation of an intramolecular disulfide bridge between Cys39 and Cys80 as well as Ser3 dephosphorylation, leading to mitochondria translocation of cofilin, thus causing mitochondrial fission and apoptosis. Finally, in mice bearing MDA-MB-231 cell xenografts, co-administration of CEP (12 mg/kg, ip, once every other day for 36 days) greatly enhanced the therapeutic efficacy of epirubicin (2 mg/kg) as compared with administration of either drug alone. Taken together, our results implicate that a combination of cepharanthine with chemotherapeutic agents could represent a novel therapeutic strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Li-wen Shen
- grid.417409.f0000 0001 0240 6969Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006 China
| | - Xiu-xing Jiang
- grid.410570.70000 0004 1760 6682College of Pharmacy, Army Medical University, Chongqing, 400038 China
| | - Zhi-qiang Li
- grid.410570.70000 0004 1760 6682College of Pharmacy, Army Medical University, Chongqing, 400038 China
| | - Jie Li
- grid.410570.70000 0004 1760 6682College of Pharmacy, Army Medical University, Chongqing, 400038 China
| | - Mei Wang
- grid.417409.f0000 0001 0240 6969Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006 China
| | - Guan-fei Jia
- grid.410570.70000 0004 1760 6682College of Pharmacy, Army Medical University, Chongqing, 400038 China
| | - Xin Ding
- grid.410570.70000 0004 1760 6682College of Pharmacy, Army Medical University, Chongqing, 400038 China
| | - Ling Lei
- grid.410570.70000 0004 1760 6682College of Pharmacy, Army Medical University, Chongqing, 400038 China
| | - Qi-hai Gong
- grid.417409.f0000 0001 0240 6969Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006 China
| | - Ning Gao
- grid.417409.f0000 0001 0240 6969Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006 China ,grid.410570.70000 0004 1760 6682College of Pharmacy, Army Medical University, Chongqing, 400038 China
| |
Collapse
|
10
|
PLPP/CIN-mediated NF2-serine 10 dephosphorylation regulates F-actin stability and Mdm2 degradation in an activity-dependent manner. Cell Death Dis 2021; 12:37. [PMID: 33414453 PMCID: PMC7791067 DOI: 10.1038/s41419-020-03325-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
Neurofibromin 2 (NF2, also known as merlin) is a tumor suppressor protein encoded by the neurofibromatosis type 2 gene NF2. NF2 is also an actin-binding protein that functions in an intrinsic signaling network critical for actin dynamics. Although protein kinase A (PKA)-mediated NF2-serin (S) 10 phosphorylation stabilizes filamentous actin (F-actin), the underlying mechanisms of NF2-S10 dephosphorylation and the role of NF2 in seizures have been elusive. Here, we demonstrate that pyridoxal-5′-phosphate phosphatase/chronophin (PLPP/CIN) dephosphorylated NF2-S10 site as well as cofilin-S3 site. In addition, NF2-S10 dephosphorylation reversely regulated murine double minute-2 (Mdm2) and postsynaptic density 95 (PSD95) degradations in an activity-dependent manner, which increased seizure intensity and its progression in response to kainic acid (KA). In addition, NF2 knockdown facilitated seizure intensity and its progress through F-actin instability independent of cofilin-mediated actin dynamics. Therefore, we suggest that PLPP/CIN may be a potential therapeutic target for epileptogenesis and NF2-associated diseases.
Collapse
|
11
|
Gao TT, Wang Y, Liu L, Wang JL, Wang YJ, Guan W, Chen TT, Zhao J, Jiang B. LIMK1/2 in the mPFC Plays a Role in Chronic Stress-Induced Depressive-Like Effects in Mice. Int J Neuropsychopharmacol 2020; 23:821-836. [PMID: 32827213 PMCID: PMC7770523 DOI: 10.1093/ijnp/pyaa067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Depression is one of the most common forms of mental illness and also a leading cause of disability worldwide. Developing novel antidepressant targets beyond the monoaminergic systems is now popular and necessary. LIM kinases, including LIM domain kinase 1 and 2 (LIMK1/2), play a key role in actin and microtubule dynamics through phosphorylating cofilin. Since depression is associated with atrophy of neurons and reduced connectivity, here we speculate that LIMK1/2 may play a role in the pathogenesis of depression. METHODS In this study, the chronic unpredictable mild stress (CUMS), chronic restraint stress (CRS), and chronic social defeat stress (CSDS) models of depression, various behavioral tests, stereotactic injection, western blotting, and immunofluorescence methods were adopted. RESULTS CUMS, CRS, and CSDS all significantly enhanced the phosphorylation levels of LIMK1 and LIMK2 in the medial prefrontal cortex (mPFC) but not the hippocampus of mice. Administration of fluoxetine, the most commonly used selective serotonin reuptake inhibitor in clinical practice, fully reversed the effects of CUMS, CRS, and CSDS on LIMK1 and LIMK2 in the mPFC. Moreover, pharmacological inhibition of LIMK1 and LIMK2 in the mPFC by LIMKi 3 infusions notably prevented the pro-depressant effects of CUMS, CRS, and CSDS in mice. CONCLUSIONS In summary, these results suggest that LIMK1/2 in the mPFC has a role in chronic stress-induced depressive-like effects in mice and could be a novel pharmacological target for developing antidepressants.
Collapse
Affiliation(s)
- Ting-Ting Gao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China,Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Yuan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China,Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Ling Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China,Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Jin-Liang Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China,Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Ying-Jie Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China,Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China,Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Ting-Ting Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China,Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Jie Zhao
- Department of Pharmacy, The Sixth People’s Hospital of Nantong, Nantong, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China,Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China,Correspondence: Bo Jiang, MD, PhD, Department of Pharmacology, School of Pharmacy, Nantong University, No. 19 QiXiu Road, Nantong 226001, Jiangsu, China ()
| |
Collapse
|
12
|
Jensen P, Carlet M, Schlenk RF, Weber A, Kress J, Brunner I, Słabicki M, Grill G, Weisemann S, Cheng YY, Jeremias I, Scholl C, Fröhling S. Requirement for LIM kinases in acute myeloid leukemia. Leukemia 2020; 34:3173-3185. [PMID: 32591645 DOI: 10.1038/s41375-020-0943-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 02/08/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive disease for which only few targeted therapies are available. Using high-throughput RNA interference (RNAi) screening in AML cell lines, we identified LIM kinase 1 (LIMK1) as a potential novel target for AML treatment. High LIMK1 expression was significantly correlated with shorter survival of AML patients and coincided with FLT3 mutations, KMT2A rearrangements, and elevated HOX gene expression. RNAi- and CRISPR-Cas9-mediated suppression as well as pharmacologic inhibition of LIMK1 and its close homolog LIMK2 reduced colony formation and decreased proliferation due to slowed cell-cycle progression of KMT2A-rearranged AML cell lines and patient-derived xenograft (PDX) samples. This was accompanied by morphologic changes indicative of myeloid differentiation. Transcriptome analysis showed upregulation of several tumor suppressor genes as well as downregulation of HOXA9 targets and mitosis-associated genes in response to LIMK1 suppression, providing a potential mechanistic basis for the anti-leukemic phenotype. Finally, we observed a reciprocal regulation between LIM kinases (LIMK) and CDK6, a kinase known to be involved in the differentiation block of KMT2A-rearranged AML, and addition of the CDK6 inhibitor palbociclib further enhanced the anti-proliferative effect of LIMK inhibition. Together, these data suggest that LIMK are promising targets for AML therapy.
Collapse
Affiliation(s)
- Patrizia Jensen
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Michela Carlet
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, German Center for Environmental Health, Munich, Germany
| | - Richard F Schlenk
- Clinical Trials Center, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrea Weber
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Jana Kress
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Ines Brunner
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mikołaj Słabicki
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gregor Grill
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Simon Weisemann
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Ya-Yun Cheng
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, German Center for Environmental Health, Munich, Germany.,Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Claudia Scholl
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany. .,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.
| | - Stefan Fröhling
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany. .,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.
| |
Collapse
|
13
|
Verin AD, Batori R, Kovacs-Kasa A, Cherian-Shaw M, Kumar S, Czikora I, Karoor V, Strassheim D, Stenmark KR, Gerasimovskaya EV. Extracellular adenosine enhances pulmonary artery vasa vasorum endothelial cell barrier function via Gi/ELMO1/Rac1/PKA-dependent signaling mechanisms. Am J Physiol Cell Physiol 2020; 319:C183-C193. [PMID: 32432925 DOI: 10.1152/ajpcell.00505.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vasa vasorum (VV), the microvascular network around large vessels, has been recognized as an important contributor to the pathological vascular remodeling in cardiovascular diseases. In bovine and rat models of hypoxic pulmonary hypertension (PH), we have previously shown that chronic hypoxia profoundly increased pulmonary artery (PA) VV permeability, associated with infiltration of inflammatory and progenitor cells in the arterial wall, perivascular inflammation, and structural vascular remodeling. Extracellular adenosine was shown to exhibit a barrier-protective effect on VV endothelial cells (VVEC) via cAMP-independent mechanisms, which involved adenosine A1 receptor-mediated activation of Gi-phosphoinositide 3-kinase-Akt pathway and actin cytoskeleton remodeling. Using VVEC isolated from the adventitia of calf PA, in this study we investigated in more detail the mechanisms linking Gi activation to downstream barrier protection pathways. Using a small-interference RNA (siRNA) technique and transendothelial electrical resistance assay, we found that the adaptor protein, engulfment and cell motility 1 (ELMO1), the tyrosine phosphatase Src homology region 2 domain-containing phosphatase-2, and atypical Gi- and Rac1-mediated protein kinase A activation are implicated in VVEC barrier enhancement. In contrast, the actin-interacting GTP-binding protein, girdin, and the p21-activated kinase 1 downstream target, LIM kinase, are not involved in this response. In addition, adenosine-dependent cytoskeletal rearrangement involves activation of cofilin and inactivation of ezrin-radixin-moesin regulatory cytoskeletal proteins, consistent with a barrier-protective mechanism. Collectively, our data indicate that targeting adenosine receptors and downstream barrier-protective pathways in VVEC may have a potential translational significance in developing pharmacological approach for the VV barrier protection in PH.
Collapse
Affiliation(s)
| | - Robert Batori
- Augusta University Vascular Biology Center, Augusta, Georgia
| | | | | | - Sanjiv Kumar
- Augusta University Vascular Biology Center, Augusta, Georgia
| | - Istvan Czikora
- Augusta University Vascular Biology Center, Augusta, Georgia
| | - Vijaya Karoor
- Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Derek Strassheim
- Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | | |
Collapse
|
14
|
Mao R, Deng R, Wei Y, Han L, Meng Y, Xie W, Jia Z. LIMK1 and LIMK2 regulate cortical development through affecting neural progenitor cell proliferation and migration. Mol Brain 2019; 12:67. [PMID: 31319858 PMCID: PMC6637558 DOI: 10.1186/s13041-019-0487-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
LIMK1 and LIMK2 are key downstream targets to mediate the effects of the Rho family small GTPases and p21-activated kinases (PAK) in the regulation of the actin cytoskeleton. LIMKs are also critical for synaptic transmission, plasticity and memory formation. Changes in LIMK signaling are associated with several neurodevelopmental and neurodegenerative diseases, including autism, intellectual disability and Alzheimer's disease. However, the role of LIMK signaling in brain development remains unknown. In this study, we used LIMK1 KO and LIMK2 KO mice to investigate the role of LIMK signaling in the cerebral cortical development. We found that these KO mice are reduced in the number of pyramidal neurons in upper cortical layers and this reduction is accompanied by a smaller pool of neural progenitor cells and impaired neuronal migration. These results are similar to those found in PAK1 KO mice and suggest that LIMK-dependent actin regulation may play a key role in mediating the effects of PAK1 and Rho signaling in the regulation of cortical development.
Collapse
Affiliation(s)
- Rui Mao
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Rui Deng
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Yan Wei
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Lifang Han
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Yanghong Meng
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, 210096, China.
| | - Zhengping Jia
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, 210096, China. .,Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada. .,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
15
|
Pestoni JC, Klingeman Plati S, Valdivia Camacho OD, Fuse MA, Onatunde M, Sparrow NA, Karajannis MA, Fernández-Valle C, Franco MC. Peroxynitrite supports a metabolic reprogramming in merlin-deficient Schwann cells and promotes cell survival. J Biol Chem 2019; 294:11354-11368. [PMID: 31171721 PMCID: PMC6663865 DOI: 10.1074/jbc.ra118.007152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/31/2019] [Indexed: 12/22/2022] Open
Abstract
Neurofibromatosis type 2 (NF2) is an autosomal-dominant disorder characterized by the development of bilateral vestibular schwannomas. The NF2 gene encodes the tumor suppressor merlin, and loss of merlin activity promotes tumorigenesis and causes NF2. Cellular redox signaling has been implicated in different stages of tumor development. Among reactive nitrogen species, peroxynitrite is the most powerful oxidant produced by cells. We recently showed that peroxynitrite-mediated tyrosine nitration down-regulates mitochondrial metabolism in tumor cells. However, whether peroxynitrite supports a metabolic shift that could be exploited for therapeutic development is unknown. Here, we show that vestibular schwannomas from NF2 patients and human, merlin-deficient (MD) Schwann cells have high levels of endogenous tyrosine nitration, indicating production of peroxynitrite. Furthermore, scavenging or inhibiting peroxynitrite formation significantly and selectively decreased survival of human and mouse MD-Schwann cells. Using multiple complementary methods, we also found that merlin deficiency leads to a reprogramming of energy metabolism characterized by a peroxynitrite-dependent decrease of oxidative phosphorylation and increased glycolysis and glutaminolysis. In MD-Schwann cells, scavenging of peroxynitrite increased mitochondrial oxygen consumption and membrane potential, mediated by the up-regulation of the levels and activity of mitochondrial complex IV. This increase in mitochondrial activity correlated with a decrease in the glycolytic rate and glutamine dependence. This is the first demonstration of a peroxynitrite-dependent reprogramming of energy metabolism in tumor cells. Oxidized proteins constitute a novel target for therapeutic development not only for the treatment of NF2 schwannomas but also other tumors in which peroxynitrite plays a regulatory role.
Collapse
Affiliation(s)
- Jeanine C Pestoni
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, Oregon 97331
| | - Stephani Klingeman Plati
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Oliver D Valdivia Camacho
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, Oregon 97331
| | - Marisa A Fuse
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Maria Onatunde
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Nicklaus A Sparrow
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Matthias A Karajannis
- Department of Pediatrics and Otolaryngology, NYU Langone Health, New York, New York 10016
| | - Cristina Fernández-Valle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Maria Clara Franco
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
16
|
Caracci MO, Fuentealba LM, Marzolo MP. Golgi Complex Dynamics and Its Implication in Prevalent Neurological Disorders. Front Cell Dev Biol 2019; 7:75. [PMID: 31134199 PMCID: PMC6514153 DOI: 10.3389/fcell.2019.00075] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Coupling of protein synthesis with protein delivery to distinct subcellular domains is essential for maintaining cellular homeostasis, and defects thereof have consistently been shown to be associated with several diseases. This function is particularly challenging for neurons given their polarized nature and differential protein requirements in synaptic boutons, dendrites, axons, and soma. Long-range trafficking is greatly enhanced in neurons by discrete mini-organelles resembling the Golgi complex (GC) referred to as Golgi outposts (GOPs) which play an essential role in the development of dendritic arborization. In this context, the morphology of the GC is highly plastic, and the polarized distribution of this organelle is necessary for neuronal migration and polarized growth. Furthermore, synaptic components are readily trafficked and modified at GOP suggesting a function for this organelle in synaptic plasticity. However, little is known about GOPs properties and biogenesis and the role of GOP dysregulation in pathology. In this review, we discuss current literature supporting a role for GC dynamics in prevalent neurological disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and epilepsy, and examine the association of these disorders with the wide-ranging effects of GC function on common cellular pathways regulating neuronal excitability, polarity, migration, and organellar stress. First, we discuss the role of Golgins and Golgi-associated proteins in the regulation of GC morphology and dynamics. Then, we consider abnormal GC arrangements observed in neurological disorders and associations with common neuronal defects therein. Finally, we consider the cell signaling pathways involved in the modulation of GC dynamics and argue for a master regulatory role for Reelin signaling, a well-known regulator of neuronal polarity and migration. Determining the cellular pathways involved in shaping the Golgi network will have a direct and profound impact on our current understanding of neurodevelopment and neuropathology and aid the development of novel therapeutic strategies for improved patient care and prognosis.
Collapse
Affiliation(s)
- Mario O Caracci
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luz M Fuentealba
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María-Paz Marzolo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
Nikhil K, Chang L, Viccaro K, Jacobsen M, McGuire C, Satapathy SR, Tandiary M, Broman MM, Cresswell G, He YJ, Sandusky GE, Ratliff TL, Chowdhury D, Shah K. Identification of LIMK2 as a therapeutic target in castration resistant prostate cancer. Cancer Lett 2019; 448:182-196. [PMID: 30716360 PMCID: PMC7079209 DOI: 10.1016/j.canlet.2019.01.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/08/2019] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
This study identified LIMK2 kinase as a disease-specific target in castration resistant prostate cancer (CRPC) pathogenesis, which is upregulated in response to androgen deprivation therapy, the current standard of treatment for prostate cancer. Surgical castration increases LIMK2 expression in mouse prostates due to increased hypoxia. Similarly, human clinical specimens showed highest LIMK2 levels in CRPC tissues compared to other stages, while minimal LIMK2 was observed in normal prostates. Most notably, inducible knockdown of LIMK2 fully reverses CRPC tumorigenesis in castrated mice, underscoring its potential as a clinical target for CRPC. We also identified TWIST1 as a direct substrate of LIMK2, which uncovered the molecular mechanism of LIMK2-induced malignancy. TWIST1 is strongly associated with CRPC initiation, progression and poor prognosis. LIMK2 increases TWIST1 mRNA levels upon hypoxia; and stabilizes TWIST1 by direct phosphorylation. TWIST1 also stabilizes LIMK2 by inhibiting its ubiquitylation. Phosphorylation-dead TWIST1 acts as dominant negative and fully prevents EMT and tumor formation in vivo, thereby highlighting the significance of LIMK2-TWIST1 signaling axis in CRPC. As LIMK2 null mice are viable, targeting LIMK2 should have minimal collateral toxicity, thereby improving the overall survival of CRPC patients.
Collapse
Affiliation(s)
- Kumar Nikhil
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Lei Chang
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Keith Viccaro
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Drive, Room A-128, Indianapolis, IN, 46202, USA
| | - Callista McGuire
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Drive, Room A-128, Indianapolis, IN, 46202, USA
| | - Shakti R Satapathy
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Michael Tandiary
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Meaghan M Broman
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, 625 Harrison Street, West Lafayette, IN, 47907, USA
| | - Gregory Cresswell
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, 625 Harrison Street, West Lafayette, IN, 47907, USA
| | - Yizhou J He
- Dana Farber Cancer Institute, Harvard Institute of Medicine, Room HIM-229, 4 Blackfan Cir, Boston, MA, 02215, USA
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Drive, Room A-128, Indianapolis, IN, 46202, USA
| | - Timothy L Ratliff
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, 625 Harrison Street, West Lafayette, IN, 47907, USA
| | - Dipanjan Chowdhury
- Dana Farber Cancer Institute, Harvard Institute of Medicine, Room HIM-229, 4 Blackfan Cir, Boston, MA, 02215, USA
| | - Kavita Shah
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
18
|
Singla B, Lin HP, Ghoshal P, Cherian-Shaw M, Csányi G. PKCδ stimulates macropinocytosis via activation of SSH1-cofilin pathway. Cell Signal 2018; 53:111-121. [PMID: 30261270 DOI: 10.1016/j.cellsig.2018.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/19/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
Macropinocytosis is an actin-dependent endocytic mechanism mediating internalization of extracellular fluid and associated solutes into cells. The present study was designed to identify the specific protein kinase C (PKC) isoform(s) and downstream effectors regulating actin dynamics during macropinocytosis. We utilized various cellular and molecular biology techniques, pharmacological inhibitors and genetically modified mice to study the signaling mechanisms mediating macropinocytosis in macrophages. The qRT-PCR experiments identified PKCδ as the predominant PKC isoform in macrophages. Scanning electron microscopy and flow cytometry analysis of FITC-dextran internalization demonstrated the functional role of PKCδ in phorbol ester- and hepatocyte growth factor (HGF)-induced macropinocytosis. Western blot analysis demonstrated that phorbol ester and HGF stimulate activation of slingshot phosphatase homolog 1 (SSH1) and induce cofilin Ser-3 dephosphorylation via PKCδ in macrophages. Silencing of SSH1 inhibited cofilin dephosphorylation and macropinocytosis stimulation. Interestingly, we also found that incubation of macrophages with BMS-5, a potent inhibitor of LIM kinase, does not stimulate macropinocytosis. In conclusion, the findings of the present study demonstrate a previously unidentified mechanism by which PKCδ via activation of SSH1 and cofilin dephosphorylation stimulates membrane ruffle formation and macropinocytosis. The results of the present study may contribute to a better understanding of the regulatory mechanisms during macrophage macropinocytosis.
Collapse
Affiliation(s)
- Bhupesh Singla
- Vascular Biology Center, 1460 Laney Walker Blvd., Augusta University, Medical College of Georgia, Augusta, GA 30912, USA
| | - Hui-Ping Lin
- Vascular Biology Center, 1460 Laney Walker Blvd., Augusta University, Medical College of Georgia, Augusta, GA 30912, USA
| | - Pushpankur Ghoshal
- Vascular Biology Center, 1460 Laney Walker Blvd., Augusta University, Medical College of Georgia, Augusta, GA 30912, USA
| | - Mary Cherian-Shaw
- Vascular Biology Center, 1460 Laney Walker Blvd., Augusta University, Medical College of Georgia, Augusta, GA 30912, USA
| | - Gábor Csányi
- Vascular Biology Center, 1460 Laney Walker Blvd., Augusta University, Medical College of Georgia, Augusta, GA 30912, USA; Department of Pharmacology and Toxicology, 1460 Laney Walker Blvd., Augusta University, Medical College of Georgia, Augusta, GA 30912, USA.
| |
Collapse
|
19
|
Allaway RJ, La Rosa S, Guinney J, Gosline SJC. Probing the chemical-biological relationship space with the Drug Target Explorer. J Cheminform 2018; 10:41. [PMID: 30128806 PMCID: PMC6102167 DOI: 10.1186/s13321-018-0297-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/16/2018] [Indexed: 01/29/2023] Open
Abstract
Modern phenotypic high-throughput screens (HTS) present several challenges including identifying the target(s) that mediate the effect seen in the screen, characterizing ‘hits’ with a polypharmacologic target profile, and contextualizing screen data within the large space of drugs and screening models. To address these challenges, we developed the Drug–Target Explorer. This tool allows users to query molecules within a database of experimentally-derived and curated compound-target interactions to identify structurally similar molecules and their targets. It enables network-based visualizations of the compound-target interaction space, and incorporates comparisons to publicly-available in vitro HTS datasets. Furthermore, users can identify molecules using a query target or set of targets. The Drug Target Explorer is a multifunctional platform for exploring chemical space as it relates to biological targets, and may be useful at several steps along the drug development pipeline including target discovery, structure–activity relationship, and lead compound identification studies.
Collapse
Affiliation(s)
- Robert J Allaway
- Sage Bionetworks, 1100 Fairview Avenue N, Seattle, WA, 98109, USA
| | | | - Justin Guinney
- Sage Bionetworks, 1100 Fairview Avenue N, Seattle, WA, 98109, USA
| | - Sara J C Gosline
- Sage Bionetworks, 1100 Fairview Avenue N, Seattle, WA, 98109, USA.
| |
Collapse
|
20
|
Zhang Y, Li A, Shi J, Fang Y, Gu C, Cai J, Lin C, Zhao L, Liu S. Imbalanced LIMK1 and LIMK2 expression leads to human colorectal cancer progression and metastasis via promoting β-catenin nuclear translocation. Cell Death Dis 2018; 9:749. [PMID: 29970879 PMCID: PMC6030168 DOI: 10.1038/s41419-018-0766-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/05/2018] [Accepted: 05/30/2018] [Indexed: 12/18/2022]
Abstract
Epithelial–mesenchymal transition (EMT)-induced metastasis contributes to human colorectal cancer (CRC) progression, especially in advanced CRC. However, the underlying mechanism of β-catenin in this process is elusive. We identified that LIM domain kinase (LIMK)2 was progressively downregulated with tumor progression from precancerous lesions to advanced cancer. Gain- and loss-of-function assays revealed that LIMK2 inhibits cell proliferation via cell cycle arrest at the G1–S transition and suppresses the ability of cell metastasis by restricting the EMT process. Reduced LIMK2 expression enhanced the nuclear accumulation of β-catenin and activated the Wnt signaling pathway, thus contributing to tumor progression. A homolog of the LIMK family, LIMK1, which was overexpressed throughout tumor progression, served as a competitive inhibitor of LIMK2 via β-catenin nuclear translocation. The imbalanced expression of LIMK1 and LIMK2 is important in CRC progression, and the combined effects provide a new insight into the mechanism of CRC progression. These findings provide a new understanding for LIMK-based anticancer therapy.
Collapse
Affiliation(s)
- Yue Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaolong Shi
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guandong, China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuncai Gu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianqun Cai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuang Lin
- Department of pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guandong, China
| | - Liang Zhao
- Department of pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guandong, China.
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
Schulze M, Hutterer M, Sabo A, Hoja S, Lorenz J, Rothhammer-Hampl T, Herold-Mende C, Floßbach L, Monoranu C, Riemenschneider MJ. Chronophin regulates active vitamin B6 levels and transcriptomic features of glioblastoma cell lines cultured under non-adherent, serum-free conditions. BMC Cancer 2018; 18:524. [PMID: 29724193 PMCID: PMC5934884 DOI: 10.1186/s12885-018-4440-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The phosphatase chronophin (CIN/PDXP) has been shown to be an important regulator of glioma cell migration and invasion. It has two known substrates: p-Ser3-cofilin, the phosphorylated form of the actin binding protein cofilin, and pyridoxal 5'-phosphate, the active form of vitamin B6. Phosphoregulation of cofilin, among other functions, plays an important role in cell migration, whereas active vitamin B6 is a cofactor for more than one hundred enzymatic reactions. The role of CIN has yet only been examined in glioblastoma cell line models derived under serum culture conditions. RESULTS We found that CIN is highly expressed in cells cultured under non-adherent, serum-free conditions that are thought to better mimic the in vivo situation. Furthermore, the substrates of CIN, p-Ser3-cofilin and active vitamin B6, were significantly reduced as compared to cell lines cultured in serum-containing medium. To further examine its molecular role we stably knocked down the CIN protein with two different shRNA hairpins in the glioblastoma cell lines NCH421k and NCH644. Both cell lines did not show any significant alterations in proliferation but expression of differentiation markers (such as GFAP or TUBB3) was increased in the knockdown cell lines. In addition, colony formation was significantly impaired in NCH644. Of note, in both cell lines CIN knockdown increased active vitamin B6 levels with vitamin B6 being known to be important for S-adenosylmethionine biosynthesis. Nevertheless, global histone and DNA methylation remained unaltered as was chemoresistance towards temozolomide. To further elucidate the role of phosphocofilin in glioblastoma cells we applied inhibitors for ROCK1/2 and LIMK1/2 to our model. LIMK- and ROCK-inhibitor treatment alone was not toxic for glioblastoma cells. However, it had profound, but antagonistic effects in NCH421k and NCH644 under chemotherapy. CONCLUSION In non-adherent glioblastoma cell lines cultured in serum-free medium, chronophin knockdown induces phenotypic changes, e.g. in colony formation and transcription, but these are highly dependent on the cellular background. The same is true for phenotypes observed after treatment with inhibitors for kinases regulating cofilin phosphorylation (ROCKs and LIMKs). Targeting the cofilin phosphorylation pathway might therefore not be a straightforward therapeutic option in glioblastoma.
Collapse
Affiliation(s)
- Markus Schulze
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Maria Hutterer
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Anja Sabo
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Sabine Hoja
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Julia Lorenz
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Tanja Rothhammer-Hampl
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Christel Herold-Mende
- Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Lucia Floßbach
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Camelia Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Markus J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany. .,Wilhelm Sander-NeuroOncology Unit, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
22
|
Yu Q, Gratzke C, Wang Y, Herlemann A, Sterr CM, Rutz B, Ciotkowska A, Wang X, Strittmatter F, Stief CG, Hennenberg M. Inhibition of human prostate smooth muscle contraction by the LIM kinase inhibitors, SR7826 and LIMKi3. Br J Pharmacol 2018; 175:2077-2096. [PMID: 29574791 DOI: 10.1111/bph.14201] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/04/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE In men with benign prostatic hyperplasia, increased smooth muscle tone in the prostate may lead to bladder outlet obstruction and subsequent lower urinary tract symptoms. Consequently, medical treatment aims to inhibit prostate smooth muscle contraction. However, the efficacy of the treatment options available is limited, and improved understanding of mechanisms of prostate smooth muscle contraction and identification of new targets for medical intervention are mandatory. Several studies suggest that LIM kinases (LIMKs) promote smooth muscle contraction; however, this has not yet been examined. Here, we studied effects of the LIMK inhibitors on prostate smooth muscle contraction. EXPERIMENTAL APPROACH Human prostate tissues were obtained from radical prostatectomy. Phosphorylation of cofilin, a LIMK substrate, was examined using a phospho-specific antibody. Smooth muscle contractions were studied in organ bath experiments. KEY RESULTS Real-time PCR, Western blot and immunofluorescence suggested LIMKs are expressed in smooth muscle cells of prostate tissues. Two different LIMK inhibitors, SR7826 (1 μM) and LIMKi3 (1 μM), inhibited contractions of prostate strips, which were induced by electrical field stimulation, α1 -adrenoceptor agonists phenylephrine and methoxamine and the TXA2 analogue, U46619. LIMK inhibition in prostate tissues and cultured stromal cells (WPMY-1) was confirmed by cofilin phosphorylation, which was reduced by SR7826 and LIMKi3. In WPMY-1 cells, SR7826 and LIMKi3 caused breakdown of actin filaments and reduced viability. CONCLUSIONS AND IMPLICATIONS Smooth muscle tone in the hyperplastic human prostate may underlie the effects of LIMKs, which promote contraction. Contraction of prostate strips can be inhibited by small molecule LIMK inhibitors.
Collapse
Affiliation(s)
- Qingfeng Yu
- Department of Urology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christian Gratzke
- Department of Urology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Yiming Wang
- Department of Urology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Annika Herlemann
- Department of Urology, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Beata Rutz
- Department of Urology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Anna Ciotkowska
- Department of Urology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Xiaolong Wang
- Department of Urology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Frank Strittmatter
- Department of Urology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christian G Stief
- Department of Urology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
23
|
Prunier C, Prudent R, Kapur R, Sadoul K, Lafanechère L. LIM kinases: cofilin and beyond. Oncotarget 2018; 8:41749-41763. [PMID: 28445157 PMCID: PMC5522193 DOI: 10.18632/oncotarget.16978] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 03/10/2017] [Indexed: 11/25/2022] Open
Abstract
LIM kinases are common downstream effectors of several signalization pathways and function as a signaling node that controls cytoskeleton dynamics through the phosphorylation of the cofilin family proteins. These last 10 years, several reports indicate that the functions of LIM kinases are more extended than initially described and, specifically, that LIM kinases also control microtubule dynamics, independently of their regulation of actin microfilament. In this review we analyze the data supporting these conclusions and the possible mechanisms that could be involved in the control of microtubules by LIM kinases. The demonstration that LIM kinases also control microtubule dynamics has pointed to new therapeutic opportunities. Consistently, several new LIM kinase inhibitors have been recently developed. We provide a comprehensive comparison of these inhibitors, of their chemical structure, their specificity, their cellular effects as well as their effects in animal models of various diseases including cancer.
Collapse
Affiliation(s)
- Chloé Prunier
- Institute for Advanced Biosciences, INSERM, CNRS UMR, Université Grenoble Alpes, Grenoble, France.,Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Karin Sadoul
- Institute for Advanced Biosciences, INSERM, CNRS UMR, Université Grenoble Alpes, Grenoble, France
| | - Laurence Lafanechère
- Institute for Advanced Biosciences, INSERM, CNRS UMR, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
24
|
Petrilli AM, Garcia J, Bott M, Klingeman Plati S, Dinh CT, Bracho OR, Yan D, Zou B, Mittal R, Telischi FF, Liu XZ, Chang LS, Welling DB, Copik AJ, Fernández-Valle C. Ponatinib promotes a G1 cell-cycle arrest of merlin/NF2-deficient human schwann cells. Oncotarget 2018; 8:31666-31681. [PMID: 28427224 PMCID: PMC5458238 DOI: 10.18632/oncotarget.15912] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/20/2017] [Indexed: 02/04/2023] Open
Abstract
Neurofibromatosis type 2 (NF2) is a genetic syndrome that predisposes individuals to multiple benign tumors of the central and peripheral nervous systems, including vestibular schwannomas. Currently, there are no FDA approved drug therapies for NF2. Loss of function of merlin encoded by the NF2 tumor suppressor gene leads to activation of multiple mitogenic signaling cascades, including platelet-derived growth factor receptor (PDGFR) and SRC in Schwann cells. The goal of this study was to determine whether ponatinib, an FDA-approved ABL/SRC inhibitor, reduced proliferation and/or survival of merlin-deficient human Schwann cells (HSC). Merlin-deficient HSC had higher levels of phosphorylated PDGFRα/β, and SRC than merlin-expressing HSC. A similar phosphorylation pattern was observed in phospho-protein arrays of human vestibular schwannoma samples compared to normal HSC. Ponatinib reduced merlin-deficient HSC viability in a dose-dependent manner by decreasing phosphorylation of PDGFRα/β, AKT, p70S6K, MEK1/2, ERK1/2 and STAT3. These changes were associated with decreased cyclin D1 and increased p27Kip1levels, leading to a G1 cell-cycle arrest as assessed by Western blotting and flow cytometry. Ponatinib did not modulate ABL, SRC, focal adhesion kinase (FAK), or paxillin phosphorylation levels. These results suggest that ponatinib is a potential therapeutic agent for NF2-associated schwannomas and warrants further in vivo investigation.
Collapse
Affiliation(s)
- Alejandra M Petrilli
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| | - Jeanine Garcia
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| | - Marga Bott
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| | - Stephani Klingeman Plati
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| | - Christine T Dinh
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Olena R Bracho
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Denise Yan
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Bing Zou
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Rahul Mittal
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Fred F Telischi
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Xue-Zhong Liu
- University of Miami Miller School of Medicine, Department of Otolaryngology, Miami, FL 33136, USA
| | - Long-Sheng Chang
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - D Bradley Welling
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.,Current Affiliation: Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital and Harvard University, Boston, MA 02114, USA
| | - Alicja J Copik
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| | - Cristina Fernández-Valle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, FL 32827, USA
| |
Collapse
|
25
|
Sparrow AJ, Sweetman D, Welham SJM. LIM kinase function and renal growth: Potential role for LIM kinases in fetal programming of kidney development. Life Sci 2017; 186:17-24. [PMID: 28774704 DOI: 10.1016/j.lfs.2017.07.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/27/2017] [Accepted: 07/30/2017] [Indexed: 12/24/2022]
Abstract
AIMS Maternal dietary restriction during pregnancy impairs nephron development and results in offspring with fewer nephrons. Cell turnover in the early developing kidney is altered by exposure to maternal dietary restriction and may be regulated by the LIM-kinase family of enzymes. We set out to establish whether disturbance of LIM-kinase activity might play a role in the impairment of nephron formation. MAIN METHODS E12.5 metanephric kidneys and HK2 cells were grown in culture with the pharmacological LIM-kinase inhibitor BMS5. Organs were injected with DiI, imaged and cell numbers measured over 48h to assess growth. Cells undergoing mitosis were visualised by pH3 labelling. KEY FINDINGS Growth of cultured kidneys reduced to 83% of controls after exposure to BMS5 and final cell number to 25% of control levels after 48h. Whilst control and BMS5 treated organs showed cells undergoing mitosis (100±11 cells/field vs 113±18 cells/field respectively) the proportion in anaphase was considerably diminished with BMS5 treatment (7.8±0.8% vs 0.8±0.6% respectively; P<0.01). This was consistent with effects on HK2 cells highlighting a severe impact of BMS5 on formation of the mitotic spindle and centriole positioning. DiI labelled cells migrated in 100% of control cultures vs 0% BMS5 treated organs. The number of nephrogenic precursor cells appeared depleted in whole organs and formation of new nephrons was blocked by exposure to BMS5. SIGNIFICANCE Pharmacological blockade of LIM-kinase function in the early developing kidney results in failure of renal development. This is likely due to prevention of dividing cells from completion of mitosis with their resultant loss.
Collapse
Affiliation(s)
- Alexander J Sparrow
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Dylan Sweetman
- Zoetis VMRD GTR, Livestock Wellness and Performance, 333 Portage Street, Kalamazoo, MI 49007, USA
| | - Simon J M Welham
- School of Biosciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
26
|
Su B, Su J, Zeng Y, Liu F, Xia H, Ma YH, Zhou ZG, Zhang S, Yang BM, Wu YH, Zeng X, Ai XH, Ling H, Jiang H, Su Q. Diallyl disulfide suppresses epithelial-mesenchymal transition, invasion and proliferation by downregulation of LIMK1 in gastric cancer. Oncotarget 2016; 7:10498-512. [PMID: 26871290 PMCID: PMC4891135 DOI: 10.18632/oncotarget.7252] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/24/2016] [Indexed: 11/25/2022] Open
Abstract
Diallyl disulfide (DADS) has been shown to have multi-targeted antitumor activities. We have previously discovered that it has a repressive effect on LIM kinase-1 (LIMK1) expression in gastric cancer MGC803 cells. This suggests that DADS may inhibit epithelial-mesenchymal transition (EMT) by downregulating LIMK1, resulting in the inhibition of invasion and growth in gastric cancer. In this study, we reveal that LIMK1 expression is correlated with tumor differentiation, invasion depth, clinical stage, lymph node metastasis, and poor prognosis. DADS downregulated the Rac1-Pak1/Rock1-LIMK1 pathway in MGC803 cells, as shown by decreased p-LIMK1 and p-cofilin1 levels, and suppressed cell migration and invasion. Knockdown and overexpression experiments performed in vitro demonstrated that downregulating LIMK1 with DADS resulted in restrained EMT that was coupled with decreased matrix metalloproteinase-9 (MMP-9) and increased tissue inhibitor of metalloproteinase-3 (TIMP-3) expression. In in vitro and in vivo experiments, the DADS-induced suppression of cell proliferation was enhanced and antagonized by the knockdown and overexpression of LIMK1, respectively. Similar results were observed for DADS-induced changes in the expression of vimentin, CD34, Ki-67, and E-cadherin in xenografted tumors. These results indicate that downregulation of LIMK1 by DADS could explain the inhibition of EMT, invasion and proliferation in gastric cancer cells.
Collapse
Affiliation(s)
- Bo Su
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, 421001 Hunan, China.,Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, 421001 Hunan, China.,Key Laboratory for Pharmacoproteomics of Hunan Provincial University, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, 421001 Hunan, China
| | - Jian Su
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, 421001 Hunan, China.,Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, 421001 Hunan, China.,Department of Pathology, Second Affiliated Hospital, University of South China, Hengyang, 421001 Hunan, China
| | - Ying Zeng
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, 421001 Hunan, China.,Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, 421001 Hunan, China
| | - Fang Liu
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, 421001 Hunan, China.,Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, 421001 Hunan, China
| | - Hong Xia
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, 421001 Hunan, China.,Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, 421001 Hunan, China
| | - Yan-Hua Ma
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, 421001 Hunan, China.,Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, 421001 Hunan, China
| | - Zhi-Gang Zhou
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, 421001 Hunan, China.,Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, 421001 Hunan, China
| | - Shuo Zhang
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, 421001 Hunan, China.,Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, 421001 Hunan, China
| | - Bang-Min Yang
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, 421001 Hunan, China.,Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, 421001 Hunan, China
| | - You-Hua Wu
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, 421001 Hunan, China
| | - Xi Zeng
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, 421001 Hunan, China.,Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, 421001 Hunan, China
| | - Xiao-Hong Ai
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, 421001 Hunan, China
| | - Hui Ling
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, 421001 Hunan, China.,Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, 421001 Hunan, China
| | - Hao Jiang
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, 421001 Hunan, China
| | - Qi Su
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, 421001 Hunan, China.,Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, 421001 Hunan, China
| |
Collapse
|
27
|
Su F, Zhou Z, Su W, Wang Z, Wu Q. A novel alternative splicing isoform of NF2 identified in human Schwann cells. Oncol Lett 2016; 12:977-982. [PMID: 27446380 DOI: 10.3892/ol.2016.4685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/01/2016] [Indexed: 12/31/2022] Open
Abstract
Vestibular schwannoma (VS) is a benign, slow-growing cranial tumor that originates from the hypertrophy of Schwann cells. The majority of sporadic VS are unilateral, and the mechanisms underlying VS tumorigenesis are not fully understood. The human neurofibromin 2 (NF2) gene encodes the tumor suppressor protein merlin and the NF2 transcript can be alternatively spliced to form numerous isoforms. The present study investigated human Schwann cells (HSCs) at the mRNA and protein level to understand the function of the alternative splicing (AS) isoform of NF2. The total RNA of HSCs was isolated and the full-length coding sequence of NF2 was amplified. The amplified products were excised from agarose gels, purified and sequenced. NF2 at a protein level was assayed by immunoprecipitation and western blot analysis. The full-length and spliced NF2 forms were amplified by polymerase chain reaction (PCR) from the HSC complementary DNA and ligated into eukaryotic expression vector pcDNA3.1(+). The plasmids were transfected into the HSC HEI-193 cell line and cell proliferation assays were performed using Cell Counting Kit-8. PCR analysis using HSC total RNA as a template revealed the presence of a shortened NF2 transcript, which was due to splicing at the 3'-end of the NF2 mRNA. Sequence analysis confirmed that this AS isoform omitted exons 11, 12, 13, 14, 15 and 16. Immunoprecipitation and western blot analysis demonstrated that the AS isoform was highly expressed in the HSCs at 38 kDa, while the wild-type (WT) isoform, which was expected at 66 kDa, was undetectable. Transfection and cell proliferation assays revealed that the WT isoform exhibited significant growth inhibition, while the AS isoform did not suppress cell growth. In conclusion, the present study detected AS NF2 isoforms in HSC for the first time, and investigated the function of the principle AS isoform. The present study suggests that although HSCs have an undetectable level of WT isoform of the NF2 protein merlin, they are not merlin-null, since they express the AS isoform. Although the AS merlin isoform has no suppressive effect on cell growth, certain mechanisms may exist that underlie this phenomenon, and this may be associated with the genesis and development of VS.
Collapse
Affiliation(s)
- Fang Su
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Zhengguang Zhou
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Wen Su
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Zishu Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Qiong Wu
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
28
|
Photo-enhancement of macrophage phagocytic activity via Rac1-mediated signaling pathway: Implications for bacterial infection. Int J Biochem Cell Biol 2016; 78:206-216. [PMID: 27345261 DOI: 10.1016/j.biocel.2016.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/12/2016] [Accepted: 06/19/2016] [Indexed: 11/20/2022]
Abstract
Phagocytosis and the subsequent destruction of invading pathogens by macrophages are indispensable steps in host immune responses to microbial infections. Low-power laser irradiation (LPLI) has been found to exert photobiological effects on immune responses, but the signaling mechanisms underlying this photobiomodulation of phagocytosis remains largely unknown. Here, we demonstrated for the first time that LPLI enhanced the phagocytic activity of macrophages by stimulating the activation of Rac1. The overexpression of constitutively activated Rac1 clearly enhanced LPLI-induced phagocytosis, whereas the overexpression of dominant negative Rac1 exerted the opposite effect. The phosphorylation of cofilin was involved in the effects of LPLI on phagocytosis, which was regulated by the membrane translocation and activation of Rac1. Furthermore, the photoactivation of Rac1 was dependent on the Src/PI3K/Vav1 pathway. The inhibition of the Src/PI3K pathway significantly suppressed LPLI-induced actin polymerization and phagocytosis enhancement. Additionally, LPLI-treated mice exhibited increased survival and a decreased organ bacterial load when challenged with Listeria monocytogenes, indicating that LPLI enhanced macrophage phagocytosis in vivo. These findings highlight the important roles of the Src/PI3K/Vav1/Rac1/cofilin pathway in regulating macrophage phagocytosis and provide a potential strategy for treating phagocytic deficiency via LPLI.
Collapse
|
29
|
Wang W, Townes-Anderson E. LIM Kinase, a Newly Identified Regulator of Presynaptic Remodeling by Rod Photoreceptors After Injury. Invest Ophthalmol Vis Sci 2016; 56:7847-58. [PMID: 26658506 DOI: 10.1167/iovs.15-17278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Rod photoreceptors retract their axon terminals and develop neuritic sprouts in response to retinal detachment and reattachment, respectively. This study examines the role of LIM kinase (LIMK), a component of RhoA and Rac pathways, in the presynaptic structural remodeling of rod photoreceptors. METHODS Phosphorylated LIMK (p-LIMK), the active form of LIMK, was examined in salamander retina with Western blot and confocal microscopy. Axon length within the first 7 hours and process growth after 3 days of culture were assessed in isolated rod photoreceptors treated with inhibitors of upstream regulators ROCK and p21-activated kinase (Pak) (Y27632 and IPA-3) and a direct LIMK inhibitor (BMS-5). Porcine retinal explants were also treated with BMS-5 and analyzed 24 hours after detachment. Because Ca2+ influx contributes to axonal retraction, L-type channels were blocked in some experiments with nicardipine. RESULTS Phosphorylated LIMK is present in rod terminals during retraction and in newly formed processes. Axonal retraction over 7 hours was significantly reduced by inhibition of LIMK or its regulators, ROCK and Pak. Process growth was reduced by LIMK or Pak inhibition especially at the basal (axon-bearing) region of the rod cells. Combining Ca2+ channel and LIMK inhibition had no additional effect on retraction but did further inhibit sprouting after 3 days. In detached porcine retina, LIMK inhibition reduced rod axonal retraction and improved retinal morphology. CONCLUSIONS Thus structural remodeling, in the form of either axonal retraction or neuritic growth, requires LIMK activity. LIM kinase inhibition may have therapeutic potential for reducing pathologic rod terminal plasticity after retinal injury.
Collapse
|
30
|
Petrilli AM, Fernández-Valle C. Role of Merlin/NF2 inactivation in tumor biology. Oncogene 2016; 35:537-48. [PMID: 25893302 PMCID: PMC4615258 DOI: 10.1038/onc.2015.125] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/20/2015] [Accepted: 03/16/2015] [Indexed: 01/13/2023]
Abstract
Merlin (Moesin-ezrin-radixin-like protein, also known as schwannomin) is a tumor suppressor protein encoded by the neurofibromatosis type 2 gene NF2. Loss of function mutations or deletions in NF2 cause neurofibromatosis type 2 (NF2), a multiple tumor forming disease of the nervous system. NF2 is characterized by the development of bilateral vestibular schwannomas. Patients with NF2 can also develop schwannomas on other cranial and peripheral nerves, as well as meningiomas and ependymomas. The only potential treatment is surgery/radiosurgery, which often results in loss of function of the involved nerve. There is an urgent need for chemotherapies that slow or eliminate tumors and prevent their formation in NF2 patients. Interestingly NF2 mutations and merlin inactivation also occur in spontaneous schwannomas and meningiomas, as well as other types of cancer including mesothelioma, glioma multiforme, breast, colorectal, skin, clear cell renal cell carcinoma, hepatic and prostate cancer. Except for malignant mesotheliomas, the role of NF2 mutation or inactivation has not received much attention in cancer, and NF2 might be relevant for prognosis and future chemotherapeutic approaches. This review discusses the influence of merlin loss of function in NF2-related tumors and common human cancers. We also discuss the NF2 gene status and merlin signaling pathways affected in the different tumor types and the molecular mechanisms that lead to tumorigenesis, progression and pharmacological resistance.
Collapse
Affiliation(s)
- Alejandra M. Petrilli
- Department of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Cristina Fernández-Valle
- Department of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
31
|
Mardilovich K, Baugh M, Crighton D, Kowalczyk D, Gabrielsen M, Munro J, Croft DR, Lourenco F, James D, Kalna G, McGarry L, Rath O, Shanks E, Garnett MJ, McDermott U, Brookfield J, Charles M, Hammonds T, Olson MF. LIM kinase inhibitors disrupt mitotic microtubule organization and impair tumor cell proliferation. Oncotarget 2015; 6:38469-86. [PMID: 26540348 PMCID: PMC4770715 DOI: 10.18632/oncotarget.6288] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/01/2015] [Indexed: 12/31/2022] Open
Abstract
The actin and microtubule cytoskeletons are critically important for cancer cell proliferation, and drugs that target microtubules are widely-used cancer therapies. However, their utility is compromised by toxicities due to dose and exposure. To overcome these issues, we characterized how inhibition of the actin and microtubule cytoskeleton regulatory LIM kinases could be used in drug combinations to increase efficacy. A previously-described LIMK inhibitor (LIMKi) induced dose-dependent microtubule alterations that resulted in significant mitotic defects, and increased the cytotoxic potency of microtubule polymerization inhibitors. By combining LIMKi with 366 compounds from the GSK Published Kinase Inhibitor Set, effective combinations were identified with kinase inhibitors including EGFR, p38 and Raf. These findings encouraged a drug discovery effort that led to development of CRT0105446 and CRT0105950, which potently block LIMK1 and LIMK2 activity in vitro, and inhibit cofilin phosphorylation and increase αTubulin acetylation in cells. CRT0105446 and CRT0105950 were screened against 656 cancer cell lines, and rhabdomyosarcoma, neuroblastoma and kidney cancer cells were identified as significantly sensitive to both LIMK inhibitors. These large-scale screens have identified effective LIMK inhibitor drug combinations and sensitive cancer types. In addition, the LIMK inhibitory compounds CRT0105446 and CRT0105950 will enable further development of LIMK-targeted cancer therapy.
Collapse
Affiliation(s)
| | - Mark Baugh
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Diane Crighton
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | | | - Mads Gabrielsen
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - June Munro
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Daniel R. Croft
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Filipe Lourenco
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Daniel James
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Gabriella Kalna
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Lynn McGarry
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Oliver Rath
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Emma Shanks
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | | | - Ultan McDermott
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Joanna Brookfield
- Cancer Research Technology Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Mark Charles
- Cancer Research Technology Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Tim Hammonds
- Cancer Research Technology Discovery Laboratories, London Bioscience Innovation Centre, London, UK
| | - Michael F. Olson
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| |
Collapse
|
32
|
Xishan Z, Bin Z, Haiyue Z, Xiaowei D, Jingwen B, Guojun Z. Jagged-2 enhances immunomodulatory activity in adipose derived mesenchymal stem cells. Sci Rep 2015; 5:14284. [PMID: 26412454 PMCID: PMC4585933 DOI: 10.1038/srep14284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/06/2015] [Indexed: 02/05/2023] Open
Abstract
Adipose derived Mesenchymal stem cells (AMSCs) are able to expand in vitro and undergo differentiation into multiple cell lineages, yet have low immunogenicity while exhibiting several immunoregulatory characteristics. We sought to investigate the immunomodulatory mechanisms of AMSCs to better understand their immunogenic properties. Following 10 days of chondrogenic differentiation or 48 hours of IFN-γ pretreatment, AMSCs retained low level immunogenicity but prominent immunoregulatory activity and AMSC immunogenicity was enhanced by chondrogenic differentiation or IFN-γ treatment. We found Jagged-2 expression was significantly elevated following chondrogenic differentiation or IFN-γ pretreatment. Jagged-2-RNA interference experiments suggested that Jagged-2-siRNA2 suppresses Jagged-2 expression during chondrogenic differentiation and in IFN-γ pretreated AMSCs. Besides, Jagged-2 interference attenuated immunosuppressive activity by mixed lymphocyte culture and mitogen stimulation experiments. So, the immunoregulatory activity of AMSCs, to some extent dependent upon Jagged-2, might be stronger after multilineage differentiation or influence from inflammatory factors. This may also be why rejection does not occur after allogeneic AMSCs differentiate into committed cells.
Collapse
Affiliation(s)
- Zhu Xishan
- The Breast Center, Cancer Hospital, Shantou University Medical College, Shantou, China
| | - Zhang Bin
- Institute of Basic medicine. Peking Union Medical College, Chinese Academy of Medical Science, China
| | - Zhao Haiyue
- Clinical department, Capital Medical University
| | - Dou Xiaowei
- The Breast Center, Cancer Hospital, Shantou University Medical College, Shantou, China
| | - Bai Jingwen
- The Breast Center, Cancer Hospital, Shantou University Medical College, Shantou, China
| | - Zhang Guojun
- The Breast Center, Cancer Hospital, Shantou University Medical College, Shantou, China
| |
Collapse
|
33
|
Pak2 restrains endomitosis during megakaryopoiesis and alters cytoskeleton organization. Blood 2015; 125:2995-3005. [PMID: 25824689 DOI: 10.1182/blood-2014-10-604504] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/17/2015] [Indexed: 12/13/2022] Open
Abstract
Megakaryocyte maturation and polyploidization are critical for platelet production; abnormalities in these processes are associated with myeloproliferative disorders, including thrombocytopenia. Megakaryocyte maturation signals through cascades that involve p21-activated kinase (Pak) function; however, the specific role for Pak kinases in megakaryocyte biology remains elusive. Here, we identify Pak2 as an essential effector of megakaryocyte maturation, polyploidization, and proplatelet formation. Genetic deletion of Pak2 in murine bone marrow is associated with macrothrombocytopenia, altered megakaryocyte ultrastructure, increased bone marrow megakaryocyte precursors, and an elevation of mature CD41(+) megakaryocytes, as well as an increased number of polyploid cells. In Pak2(-/-) mice, platelet clearance rate was increased, as was production of newly synthesized, reticulated platelets. In vitro, Pak2(-/-) megakaryocytes demonstrate increased polyploidization associated with alterations in β1-tubulin expression and organization, decreased proplatelet extensions, and reduced phosphorylation of the endomitosis regulators LIM domain kinase 1, cofilin, and Aurora A/B/C. Together, these data establish a novel role for Pak2 as an important regulator of megakaryopoiesis, polyploidization, and cytoskeletal dynamics in developing megakaryocytes.
Collapse
|
34
|
Petrilli A, Bott M, Fernández-Valle C. Inhibition of SIRT2 in merlin/NF2-mutant Schwann cells triggers necrosis. Oncotarget 2014; 4:2354-65. [PMID: 24259290 PMCID: PMC3926832 DOI: 10.18632/oncotarget.1422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mutations in the NF2 gene cause Neurofibromatosis Type 2 (NF2), a disorder characterized by the development of schwannomas, meningiomas and ependymomas in the nervous system. Merlin, a tumor suppressor encoded by the NF2 gene, modulates activity of many essential signaling pathways. Yet despite increasing knowledge of merlin function, there are no NF2 drug therapies. In a pilot high-throughput screen of the Library of Pharmacologically Active Compounds, we assayed for compounds capable of reducing viability of mouse Schwann cells (MSC) with Nf2 inactivation as a cellular model for human NF2 schwannomas. AGK2, a SIRT2 (sirtuin 2) inhibitor, was identified as a candidate compound. SIRT2 is one of seven mammalian sirtuins that are NAD+ -dependent protein deacetylases. We show that merlin-mutant MSC have higher expression levels of SIRT2 and lower levels of overall lysine acetylation than wild-type control MSC. Pharmacological inhibition of SIRT2 decreases merlin-mutant MSC viability in a dose dependent manner without substantially reducing wild-type MSC viability. Inhibition of SIRT2 activity in merlin-mutant MSC is accompanied by release of lactate dehydrogenase and high mobility group box 1 protein into the medium in the absence of significant apoptosis, autophagy, or cell cycle arrest. These findings suggest that SIRT2 inhibition triggers necrosis of merlin-mutant MSCs and that SIRT2 is a potential NF2 drug target.
Collapse
Affiliation(s)
- Alejandra Petrilli
- Department of Biomedical Science, College of Medicine, University of Central Florida, Lake Nona-Orlando, Florida, USA
| | | | | |
Collapse
|
35
|
Prudnikova TY, Rawat SJ, Chernoff J. Molecular pathways: targeting the kinase effectors of RHO-family GTPases. Clin Cancer Res 2014; 21:24-9. [PMID: 25336694 DOI: 10.1158/1078-0432.ccr-14-0827] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RHO GTPases, members of the RAS superfamily of small GTPases, are adhesion and growth factor-activated molecular switches that play important roles in tumor development and progression. When activated, RHO-family GTPases such as RAC1, CDC42, and RHOA, transmit signals by recruiting a variety of effector proteins, including the protein kinases PAK, ACK, MLK, MRCK, and ROCK. Genetically induced loss of RHO function impedes transformation by a number of oncogenic stimuli, leading to an interest in developing small-molecule inhibitors that either target RHO GTPases directly, or that target their downstream protein kinase effectors. Although inhibitors of RHO GTPases and their downstream signaling kinases have not yet been widely adopted for clinical use, their potential value as cancer therapeutics continues to facilitate pharmaceutical research and development and is a promising therapeutic strategy.
Collapse
Affiliation(s)
| | - Sonali J Rawat
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania. Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Jonathan Chernoff
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
36
|
Petrilli AM, Fuse MA, Donnan MS, Bott M, Sparrow NA, Tondera D, Huffziger J, Frenzel C, Malany CS, Echeverri CJ, Smith L, Fernández-Valle C. A chemical biology approach identified PI3K as a potential therapeutic target for neurofibromatosis type 2. Am J Transl Res 2014; 6:471-493. [PMID: 25360213 PMCID: PMC4212923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/16/2014] [Indexed: 06/04/2023]
Abstract
Mutations in the merlin tumor suppressor gene cause Neurofibromatosis type 2 (NF2), which is a disease characterized by development of multiple benign tumors in the nervous system. The current standard of care for NF2 calls for surgical resection of the characteristic tumors, often with devastating neurological consequences. There are currently no approved non-surgical therapies for NF2. In an attempt to identify much needed targets and therapeutically active compounds for NF2 treatment, we employed a chemical biology approach using ultra-high-throughput screening. To support this goal, we created a merlin-null mouse Schwann cell (MSC) line to screen for compounds that selectively decrease their viability and proliferation. We optimized conditions for 384-well plate assays and executed a proof-of-concept screen of the Library of Pharmacologically Active Compounds. Further confirmatory and selectivity assays identified phosphatidylinositol 3-kinase (PI3K) as a potential NF2 drug target. Notably, loss of merlin function is associated with activation of the PI3K/Akt pathway in human schwannomas. We report that AS605240, a PI3K inhibitor, decreased merlin-null MSC viability in a dose-dependent manner without significantly decreasing viability of control Schwann cells. AS605240 exerted its action on merlin-null MSCs by promoting caspase-dependent apoptosis and inducing autophagy. Additional PI3K inhibitors tested also decreased viability of merlin-null MSCs in a dose-dependent manner. In summary, our chemical genomic screen and subsequent hit validation studies have identified PI3K as potential target for NF2 therapy.
Collapse
Affiliation(s)
- Alejandra M Petrilli
- Burnett School of Biomedical Sciences, College of Medicine, University of Central FloridaFlorida, U.S.A.
| | - Marisa A Fuse
- Burnett School of Biomedical Sciences, College of Medicine, University of Central FloridaFlorida, U.S.A.
| | - Mathew S Donnan
- Burnett School of Biomedical Sciences, College of Medicine, University of Central FloridaFlorida, U.S.A.
| | - Marga Bott
- Burnett School of Biomedical Sciences, College of Medicine, University of Central FloridaFlorida, U.S.A.
| | - Nicklaus A Sparrow
- Burnett School of Biomedical Sciences, College of Medicine, University of Central FloridaFlorida, U.S.A.
| | - Daniel Tondera
- Cenix BioScience GmbHDresden, Germany
- Current affiliation: Silence TherapeuticsBerlin, Germany
| | | | | | - C Siobhan Malany
- Drug Discovery and Pharmacology, Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research InstituteOrlando-Lake Nona, Florida, U.S.A.
| | | | - Layton Smith
- Drug Discovery and Pharmacology, Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research InstituteOrlando-Lake Nona, Florida, U.S.A.
| | - Cristina Fernández-Valle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central FloridaFlorida, U.S.A.
| |
Collapse
|
37
|
Zhang X, Ma D, Caruso M, Lewis M, Qi Y, Yi Z. Quantitative phosphoproteomics reveals novel phosphorylation events in insulin signaling regulated by protein phosphatase 1 regulatory subunit 12A. J Proteomics 2014; 109:63-75. [PMID: 24972320 DOI: 10.1016/j.jprot.2014.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/11/2014] [Accepted: 06/14/2014] [Indexed: 01/07/2023]
Abstract
UNLABELLED Serine/threonine protein phosphatase 1 regulatory subunit 12A (PPP1R12A) modulates the activity and specificity of the catalytic subunit of protein phosphatase 1, regulating various cellular processes via dephosphorylation. Nonetheless, little is known about phosphorylation events controlled by PPP1R12A in skeletal muscle insulin signaling. Here, we used quantitative phosphoproteomics to generate a global picture of phosphorylation events regulated by PPP1R12A in a L6 skeletal muscle cell line, which were engineered for inducible PPP1R12A knockdown. Phosphoproteomics revealed 3876 phosphorylation sites (620 were novel) in these cells. Furthermore, PPP1R12A knockdown resulted in increased overall phosphorylation in L6 cells at the basal condition, and changed phosphorylation levels for 698 sites (assigned to 295 phosphoproteins) at the basal and/or insulin-stimulated conditions. Pathway analysis on the 295 phosphoproteins revealed multiple significantly enriched pathways related to insulin signaling, such as mTOR signaling and RhoA signaling. Moreover, phosphorylation levels for numerous regulatory sites in these pathways were significantly changed due to PPP1R12A knockdown. These results indicate that PPP1R12A indeed plays a role in skeletal muscle insulin signaling, providing novel insights into the biology of insulin action. This new information may facilitate the design of experiments to better understand mechanisms underlying skeletal muscle insulin resistance and type 2 diabetes. BIOLOGICAL SIGNIFICANCE These results identify a large number of potential new substrates of serine/threonine protein phosphatase 1 and suggest that serine/threonine protein phosphatase 1 regulatory subunit 12A indeed plays a regulatory role in multiple pathways related to insulin action, providing novel insights into the biology of skeletal muscle insulin signaling. This information may facilitate the design of experiments to better understand the molecular mechanism responsible for skeletal muscle insulin resistance and associated diseases, such as type 2 diabetes and cardiovascular diseases.
Collapse
Affiliation(s)
- Xiangmin Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Danjun Ma
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Michael Caruso
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Monique Lewis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Yue Qi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
38
|
Oku Y, Tareyanagi C, Takaya S, Osaka S, Ujiie H, Yoshida K, Nishiya N, Uehara Y. Multimodal effects of small molecule ROCK and LIMK inhibitors on mitosis, and their implication as anti-leukemia agents. PLoS One 2014; 9:e92402. [PMID: 24642638 PMCID: PMC3958508 DOI: 10.1371/journal.pone.0092402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 02/22/2014] [Indexed: 11/18/2022] Open
Abstract
Accurate chromosome segregation is vital for cell viability. Many cancer cells show chromosome instability (CIN) due to aberrant expression of the genes involved in chromosome segregation. The induction of massive chromosome segregation errors in such cancer cells by small molecule inhibitors is an emerging strategy to kill these cells selectively. Here we screened and characterized small molecule inhibitors which cause mitotic chromosome segregation errors to target cancer cell growth. We screened about 300 chemicals with known targets, and found that Rho-associated coiled-coil kinase (ROCK) inhibitors bypassed the spindle assembly checkpoint (SAC), which delays anaphase onset until proper kinetochore-microtubule interactions are established. We investigated how ROCK inhibitors affect chromosome segregation, and found that they induced microtubule-dependent centrosome fragmentation. Knockdown of ROCK1 and ROCK2 revealed their additive roles in centrosome integrity. Pharmacological inhibition of LIMK also induced centrosome fragmentation similar to that by ROCK inhibitors. Inhibition of ROCK or LIMK hyper-stabilized mitotic spindles and impaired Aurora-A activation. These results suggested that ROCK and LIMK are directly or indirectly involved in microtubule dynamics and activation of Aurora-A. Furthermore, inhibition of ROCK or LIMK suppressed T cell leukemia growth in vitro, but not peripheral blood mononuclear cells. They induced centrosome fragmentation and apoptosis in T cell leukemia cells. These results suggested that ROCK and LIMK can be a potential target for anti-cancer drugs.
Collapse
Affiliation(s)
- Yusuke Oku
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmaceutical Sciences, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Chiaki Tareyanagi
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmaceutical Sciences, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Shinichi Takaya
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmaceutical Sciences, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Sayaka Osaka
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmaceutical Sciences, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Haruki Ujiie
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmaceutical Sciences, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Kentaro Yoshida
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmaceutical Sciences, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Naoyuki Nishiya
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmaceutical Sciences, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Yoshimasa Uehara
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmaceutical Sciences, Yahaba-cho, Shiwa-gun, Iwate, Japan
- * E-mail:
| |
Collapse
|