1
|
Jiang Y, Tan J, Liao S, Liu X, Yu W, Zhang Z, Liu Y. MicroRNA-6069 ASO inhibits the growth of hepatocellular carcinoma by PLEKHO1. Biochim Biophys Acta Gen Subj 2025; 1869:130774. [PMID: 39956470 DOI: 10.1016/j.bbagen.2025.130774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. And due to the low early diagnostic rate of liver cancer, many patients miss the optimal time for surgical resection, so it is necessitate to identificate the novel therapeutic targets. This study investigates the role of microRNA-6069 (miR-6069) in HCC pathogenesis. We analyzed miR-6069 expression in the TCGA-LIHC cohort, revealing significant upregulation in tumor tissues compared to adjacent normal tissues, and verified it in human tissues. MiR-6069 antisense oligonucleotide(ASO) effectively inhibits HCC cell proliferation in vitro and suppresses subcutaneous HCC tumor growth in nude mice without affecting their weight. Through bioinformatics analysis and immunohistochemistry, we identified PLEKHO1 as a target of miR-6069, and its expression is negatively correlated with miR-6069 expression. Furthermore, using immunohistochemical staining, quantitative PCR (QT-PCR), and Western blot (WB) analysis, we observed that the expression of PLEKHO1 significantly increased in the tumors of nude mice following miR-6069 ASO intervention, and affecting the expression of downstream molecules in the AKT/PI3K signaling pathway. These findings suggest that miR-6069 may influence HCC proliferation by modulating the AKT/PI3K signaling pathway.These findings highlight miR-6069 as a promising therapeutic target in HCC management.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Pothology, The Third Xiangya Hospital of Central South University, Central South Unixersity, Changsha 410013, China
| | - Juan Tan
- Department of Pothology, The Third Xiangya Hospital of Central South University, Central South Unixersity, Changsha 410013, China
| | - Shan Liao
- Department of Pothology, The Third Xiangya Hospital of Central South University, Central South Unixersity, Changsha 410013, China
| | - Xinrong Liu
- Department of Pothology, The Third Xiangya Hospital of Central South University, Central South Unixersity, Changsha 410013, China
| | - Wentao Yu
- Department of Pothology, The Third Xiangya Hospital of Central South University, Central South Unixersity, Changsha 410013, China
| | - Zhen Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Central South Unixersity, Changsha 410013, China.
| | - Yang Liu
- Department of Pothology, The Third Xiangya Hospital of Central South University, Central South Unixersity, Changsha 410013, China.
| |
Collapse
|
2
|
Lu Z, Xu J, Li J. The Transcription Factor ATF2 Accelerates Clear Cell Renal Cell Carcinoma Progression Through Activating the PLEKHO1/NUS1 Pathway. Mol Carcinog 2025; 64:617-628. [PMID: 39777695 DOI: 10.1002/mc.23868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common malignant cancer with high mortality rate. Activating transcription factor 2 (ATF2) and pleckstrin homology domain containing O1 (PLEKHO1) were reported to participate in numerous cancers. However, their roles and the detailed mechanisms in ccRCC development remain largely unknown. RT-qPCR and western blot were used to measure the levels of PLEKHO1, ATF2, and nuclear undecaprenyl pyrophosphate synthase 1 (NUS1). Cell proliferation, apoptosis, invasion, migration and stemness were evaluated using CCK-8 assay, flow cytometry, transwell invasion assay, wound-healing assay and sphere formation assay, respectively. Dual-luciferase reporter assay was conducted to verify the relationship between ATF2 and PLEKHO1. The interaction between PLEKHO1 and NUS1 was proved by Co-IP assay. Xenograft models were utilized to evaluate the tumorigenic capability of ccRCC cells upon PLEKHO1 knockdown. PLEKHO1, ATF2 and NUS1 expression were significantly elevated in ccRCC, and PLEKHO1 might be a prognosis biomarker for ccRCC. PLEKHO1 depletion significantly inhibited cell proliferation, invasion, migration, stemness, and induced cell apoptosis in ccRCC cells. ATF2 activated PLEKHO1 expression via transcription regulation, and PLEKHO1 overexpression could reverse the suppressive effects of ATF2 knockdown on the malignant behaviors of ccRCC cells. Moreover, PLEKHO1 directly bound to NUS1, and PLEKHO1 depletion markedly restrained ccRCC progression through targeting NUS1 in vitro and in vivo. Our findings suggested that ATF2 transcriptionally activated PLEKHO1 to promote the development of ccRCC via regulating NUS1 expression.
Collapse
Affiliation(s)
- Zheng Lu
- Gravel Center, Nanyang First People's Hospital, Nanyang, China
| | - Jinge Xu
- Department of Urology, The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Junyu Li
- Department of Urology, The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Li S, Xiao H, Sun X, Chen Z, Lin Z, Li C, Zeng J, Xu Z, Cheng Y, Huang H. Connexin32 Promotes the Activation of Foxo3a to Ameliorate Diabetic Nephropathy via Inhibiting the Polyubiquitination and Degradation of Sirt1. Antioxid Redox Signal 2023; 39:241-261. [PMID: 36601735 DOI: 10.1089/ars.2022.0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aims: Renal oxidative stress (OSS) is the leading cause of diabetic nephropathy (DN). The silent information regulator 1/forkhead boxo3a (Sirt1/Foxo3a) pathway plays an essential role in regulating the antioxidant enzyme system. In this study, we aimed to investigate the mechanism of connexin32 (Cx32) on the antioxidant enzyme system in DN. Results: In this study, Cx32 overexpression significantly reduced reactive oxygen species generation and effectively inhibited the excessive production of extracellular matrix such as fibronectin (FN) and intercellular adhesion molecule-1 (ICAM-1) in high-glucose (HG)-induced glomerular mesangial cells. In addition, Cx32 overexpression reversed the downregulation of Sirt1, and promoted the nuclear transcription of Foxo3a, subsequently activating the antioxidant enzymes including catalase and manganese superoxide dismutase (MnSOD), however, Cx32 knockdown showed the opposite effects. A further mechanism study showed that Cx32 promoted the autoubiquitination and degradation of Smad ubiquitylation regulatory factor-1 (Smurf1), thereby reducing the ubiquitination of Sirt1 at Lys335 and the degradation of Sirt1. Moreover, the in vivo results showed that adenovirus-mediated Cx32 overexpression activated the Sirt1/Foxo3a pathway, and inhibited OSS in the kidney tissues, eventually improving the renal function and glomerulosclerosis in diabetic mice. Innovation: This study highlighted the antioxidant role of Cx32-Sirt1-Foxo3a axis to alleviate DN, which is a new mechanism of Cx32 alleviating DN. Conclusion: Cx32 alleviated DN via activating the Sirt1/Foxo3a antioxidant pathway. The specific mechanism was that Cx32 upregulated the Sirt1 expression through reducing the ubiquitination of Lys335 of Sirt1 by inhibiting Smurf1. Antioxid. Redox Signal. 39, 241-261.
Collapse
Affiliation(s)
- Shanshan Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haiming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Sun
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, China
| | - Zhiquan Chen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Zeyuan Lin
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chuting Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jingran Zeng
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhanchi Xu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Sun A, Chen Y, Tian X, Lin Q. The Role of HECT E3 Ubiquitin Ligases in Colorectal Cancer. Biomedicines 2023; 11:biomedicines11020478. [PMID: 36831013 PMCID: PMC9953483 DOI: 10.3390/biomedicines11020478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Colorectal cancer (CRC) is estimated to rank as the second reason for cancer-related deaths, and the prognosis of CRC patients remains unsatisfactory. Numerous studies on gastrointestinal cell biology have shown that the E3 ligase-mediated ubiquitination exerts key functions in the pathogenesis of CRC. The homologous to E6-associated protein C-terminus (HECT) family E3 ligases are a major group of E3 enzymes, featured with the presence of a catalytic HECT domain, which participate in multiple cellular processes; thus, alterations in HECT E3 ligases in function or expression are closely related to the occurrence and development of many human malignancies, including-but not limited to-CRC. In this review, we summarize the potential role of HECT E3 ligases in colorectal carcinogenesis and the related underlying molecular mechanism to expand our understanding of their pathological functions. Exploiting specific inhibitors targeting HECT E3 ligases could be a potential therapeutic strategy for CRC therapy in the future.
Collapse
|
5
|
Chen K, Zhang B, Sun Z. MicroRNA 379 Regulates Klotho Deficiency-Induced Cardiomyocyte Apoptosis Via Repression of Smurf1. Hypertension 2021; 78:342-352. [PMID: 34120450 DOI: 10.1161/hypertensionaha.120.16888] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kai Chen
- From the Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis (K.C., B.Z., Z.S.).,Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center (K.C., Z.S.)
| | - Bo Zhang
- From the Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis (K.C., B.Z., Z.S.)
| | - Zhongjie Sun
- From the Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis (K.C., B.Z., Z.S.).,Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center (K.C., Z.S.)
| |
Collapse
|
6
|
Liu S, An G, Cao Q, Li T, Jia X, Lei L. The miR-106b/NR2F2-AS1/PLEKHO2 Axis Regulates Migration and Invasion of Colorectal Cancer through the MAPK Pathway. Int J Mol Sci 2021; 22:ijms22115877. [PMID: 34070923 PMCID: PMC8198404 DOI: 10.3390/ijms22115877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/27/2022] Open
Abstract
Increasing numbers of miRNAs have been observed as oncogenes or tumor suppressors in colorectal cancer (CRC). It was recently reported that hsa-miR-106b-5p (miR-106b) promoted CRC cell migration and invasion. However, there were also studies showing contradictory results. Therefore, in the present study, we further explore the role of miR-106b and its downstream networks in the carcinogenesis of CRC. We observed that the expression of miR-106b is significantly increased in Pan-Cancer and CRC tissues compared with normal tissues from The Cancer Genome Atlas (TCGA) database. Furthermore, we used Transwell, Cell Counting Kit-8, and colony formation assays to clarify that miR-106b promotes the migratory, invasive, and proliferative abilities of CRC cells. For the first time, we systematically screened the target mRNAs and lncRNAs of miR-106b using TCGA database and the bioinformatics algorithms. Dual-luciferase reporter assay confirmed that NR2F2-AS1 and PLEKHO2 are the direct targets of miR-106b. Furthermore, NR2F2-AS1 acts as a competing endogenous RNA (ceRNA) to regulate PLEKHO2 expression by sponging miR-106b. The results of Gene set enrichment analysis (GSEA) and Western blot indicated that they play important roles in CRC progression by regulating MAPK pathway. Thus, miR-106b/NR2F2-AS1/PLEKHO2/MAPK signaling axis may suggest the potential usage in CRC treatment.
Collapse
Affiliation(s)
- Shuzhen Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Medicine, Northwest University, Ministry of Education, Xi’an 710069, China; (S.L.); (G.A.); (Q.C.); (T.L.)
| | - Guoyan An
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Medicine, Northwest University, Ministry of Education, Xi’an 710069, China; (S.L.); (G.A.); (Q.C.); (T.L.)
| | - Qing Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Medicine, Northwest University, Ministry of Education, Xi’an 710069, China; (S.L.); (G.A.); (Q.C.); (T.L.)
| | - Tong Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Medicine, Northwest University, Ministry of Education, Xi’an 710069, China; (S.L.); (G.A.); (Q.C.); (T.L.)
| | - Xinyu Jia
- Health Science Center, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Lei Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Medicine, Northwest University, Ministry of Education, Xi’an 710069, China; (S.L.); (G.A.); (Q.C.); (T.L.)
- Correspondence:
| |
Collapse
|
7
|
Liu Y, Yue M, Li Z. FOSL1 promotes tumorigenesis in colorectal carcinoma by mediating the FBXL2/Wnt/β-catenin axis via Smurf1. Pharmacol Res 2021; 165:105405. [PMID: 33450386 DOI: 10.1016/j.phrs.2020.105405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Colorectal carcinoma (CC), one of the most prevalent digestive cancers with high mortality and morbidity globally, still lacks powerful therapies to improve the prognosis. Here, we established that the expression of fos-like antigen-1 (Fosl1) was elevated in CC tissues versus adjacent tissues. Importantly, high Fosl1 expression was related to dismal prognosis among CC patients. Functional assays displayed that Fosl1 increased the viability, epithelial-to-mesenchymal transition (EMT), migration and invasion of CC cells. Additionally, a xenograft assay showed that silencing of Fosl1 in CC cells retarded lung, liver and kidney metastases in vivo. Further investigation demonstrated that Fosl1 was involved in malignant aggressiveness of CC cells by binding to smad ubiquitination regulatory factor 1 (Smurf1). Mechanistically, Smurf1-induced F-Box and leucine rich repeat protein 2 (FBXL2) ubiquitination resulted in its degradation, while FBXL2 disrupted the activation of the Wnt/β-catenin signaling. In summary, Fosl1 plays a pro-metastatic and carcinogenetic role in CC, and we provided forceful evidence that Fosl1 inhibition might act as a prognostic and therapeutic option in CC.
Collapse
Affiliation(s)
- Yi Liu
- Department of Anorectal, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, 130021, PR China
| | - Meng Yue
- Department of Colorecal & Anal Surgery, the First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Ze Li
- Department of Colorectal and Stomach Cancer Surgery-1, Jilin Cancer Hospital, Changchun, Jilin, 130000, PR China.
| |
Collapse
|
8
|
Ma L, Cao Y, Hu J, Chu M. High expression of the CKIP-1 gene might promote apoptosis through downregulation of the Ras/ERK signalling pathway in the intestinal type of gastric cancer. J Int Med Res 2021; 48:300060520909025. [PMID: 32223671 PMCID: PMC7133087 DOI: 10.1177/0300060520909025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective To investigate the effect of the casein kinase 2 interacting protein 1 (CKIP-1) on the apoptosis of the intestinal type of gastric cancer (GC). Methods The levels of CKIP-1 protein and the rates of apoptosis were measured in tissue samples of the intestinal type of GC and human GC cell lines. The rate of apoptosis and the protein levels of B cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), cleaved cysteinyl aspartate specific protease 3 (cleaved caspase-3), cleaved caspase-9, rat sarcoma (Ras), extracellular signal-regulated kinase 1 and 2 (ERK1/2) and phosphorylated extracellular signal-regulated kinase 1 and 2 (p-ERK1/2) were analysed in SGC7901 cells expressing CKIP-1 short hairpin RNA (shRNA; knockdown) and SGC7901 cells overexpressing CKIP-1. Results The levels of CKIP-1 protein were significantly lower in the intestinal type of GC tissues compared with the samples of intestinal metaplasia. Both the levels of CKIP-1 protein and the levels of apoptosis decreased gradually with decreasing cell differentiation in the intestinal type of GC tissue and cell lines; and they were positively correlated. In the CKIP-1 shRNA group, the rate of apoptosis and the levels of Bax, cleaved caspase-3 and cleaved caspase-9 were decreased; and the levels of Bcl-2, Ras and the ratio of p-ERK/ERK were increased, compared with the control group. Opposite results were observed in the CKIP-1 overexpression group. Conclusion High levels of CKIP-1 protein may promote apoptosis in the intestinal type of GC, possibly via the downregulation of the Ras/ERK signalling pathway.
Collapse
Affiliation(s)
- Liang Ma
- Guizhou University School of Medicine, Guiyang, Guizhou Province, China
| | - Ying Cao
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| | - Jianjun Hu
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| | - Mingliang Chu
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| |
Collapse
|
9
|
Xia Q, Li Y, Han D, Dong L. SMURF1, a promoter of tumor cell progression? Cancer Gene Ther 2020; 28:551-565. [PMID: 33204002 DOI: 10.1038/s41417-020-00255-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022]
Abstract
Overexpression of HECT-type E3 ubiquitin ligase SMURF1 is correlated with poor prognosis in patients with various cancers, such as glioblastoma, colon cancer, and clear cell renal cell carcinoma. SMURF1 acts as a tumor promoter by ubiquitination modification and/or degradation of tumor-suppressing proteins. Combined treatment of Smurf1 knockdown with rapamycin showed collaborative antitumor effects in mice. This review described the role of HECT, WW, and C2 domains in regulating SMURF1 substrate selection. We summarized up to date SMURF1 substrates regulating different type cell signaling, thus, accelerating tumor progression, invasion, and metastasis. Furthermore, the downregulation of SMURF1 expression, inhibition of its E3 activity and regulation of its specificity to substrates prevent tumor progression. The potential application of SMURF1 regulators, specifically, wisely choose certain drugs by blocking SMURF1 selectivity in tumor suppressors, to develop novel anticancer treatments.
Collapse
Affiliation(s)
- Qin Xia
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Da Han
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lei Dong
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
10
|
Casein kinase 2 interacting protein 1 positively regulates caudal-related homeobox 1 in intestinal-type gastric cancer. Chin Med J (Engl) 2020; 133:154-164. [PMID: 31868807 PMCID: PMC7028172 DOI: 10.1097/cm9.0000000000000604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignancies, and intestinal-type GC is the main histopathologic type of GC in China. We previously reported that casein kinase 2 interacting protein 1 (CKIP-1) acts as a candidate tumor suppressor in intestinal-type GC. CKIP-1 participates in the regulation of multiple signaling pathways, including the Wnt/β-catenin pathway, of which caudal-related homeobox 1 (CDX1) may be a downstream target gene. The purpose of this study was to investigate the relationship between CKIP-1 and CDX1 in intestinal-type GC. METHODS Sixty-seven gastroscopy biopsy specimens and surgically resected gastric specimens were divided into four groups: gastric mucosa group, intestinal metaplasia (IM) group, dysplasia group, and intestinal-type GC group. The expression levels of CKIP-1 and CDX1 were detected in these groups and GC cell lines, and the correlations between these expression levels were analyzed. SGC7901 and BGC823 cells were divided into CKIP-1 shRNA groups and CKIP-1 over-expression groups, and CDX1 expression was detected. β-Catenin expression was detected in intestinal-type GC tissue samples and CKIP-1 shRNA and CKIP-1 over-expression SGC7901 cells, and its correlation with CKIP-1 expression in intestinal-type GC tissue was analyzed. The Wnt/β-catenin pathway inhibitor DKK-1 and activator LiCl were incubated with SGC7901 cells, BGC823 cells, and CKIP-1 shRNA and CKIP-1 over-expression SGC7901 and BGC823 cells, following which CDX1 and Ki-67 expression were detected. RESULTS The expression levels of CKIP-1 and CDX1 were lower in patients with intestinal-type GC than in patients with IM and dysplasia (both P < 0.05). CKIP-1 and CDX1 expression levels were positively correlated in IM, dysplasia, and intestinal-type GC tissue and cell lines (r = 0.771, P < 0.01; r = 0.597, P < 0.01; r = 0.654, P < 0.01; r = 0.811, P < 0.01, respectively). CDX1 expression was decreased in the CKIP-1 shRNA groups and increased in the CKIP-1 over-expression groups of SGC7901 and BGC823 cells compared to that in the corresponding control groups (both P < 0.05). CKIP-1 expression was negatively correlated with β-catenin expression in intestinal-type GC patients (r = -0.458, P < 0.01). Compared to the control group, β-catenin expression was increased in the CKIP-1 shRNA SGC7901 cell group and decreased in the CKIP-1 over-expression SGC7901 cell group (P < 0.05). CDX1 expression was increased in SGC7901 and BGC823 cells treated with DKK-1, DKK-1 increased CDX1 expression and decreased Ki-67 expression in the CKIP-1 shRNA group; the opposite result was observed in SGC7901 and BGC823 cells treated with LiCl, and LiCl decreased CDX1 expression and increased Ki-67 expression in the CKIP-1 over-expression group (both P < 0.05). CONCLUSIONS Through the Wnt/β-catenin signaling pathway, CKIP-1 may positively regulate CDX1 in intestinal-type GC.
Collapse
|
11
|
Deng Y, Wan H, Tian J, Cheng X, Rao M, Li J, Zhang H, Zhang M, Cai Y, Lu Z, Li Y, Niu S, Shen N, Chang J, Fang Z, Zhong R. CpG-methylation-based risk score predicts progression in colorectal cancer. Epigenomics 2020; 12:605-615. [DOI: 10.2217/epi-2019-0300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To identify patients with colorectal cancer (CRC) who are at a truly higher risk of progression, which is key for individualized approaches to precision therapy. Materials & methods: We developed a predictor associated with progression-free interval (PFI) using The Cancer Genome Atlas CRC methylation data. Results: The risk score was associated with PFI in the whole cohort (p < 0.001). A nomogram consisting of the risk score and other significant clinical features was generated to predict the 3- and 5-year PFI in the whole set (area under the curve: 0.79 and 0.71, respectively). Conclusion: The risk score based on 23 DNA-methylation sites may serve as the basis for improved prediction of progression in patients with CRC in future clinical practice.
Collapse
Affiliation(s)
- Yao Deng
- Department of Epidemiology & Biostatistics & Ministry of Education Key Lab of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, PR China
| | - Hao Wan
- Department of Epidemiology & Biostatistics & Ministry of Education Key Lab of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, PR China
| | - Jianbo Tian
- Department of Epidemiology & Biostatistics & Ministry of Education Key Lab of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, PR China
| | - Xiang Cheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, PR China
| | - Meilin Rao
- Department of Epidemiology & Biostatistics & Ministry of Education Key Lab of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, PR China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, PR China
| | - Hongli Zhang
- Department of Epidemiology & Biostatistics & Ministry of Education Key Lab of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, PR China
| | - Ming Zhang
- Department of Epidemiology & Biostatistics & Ministry of Education Key Lab of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, PR China
| | - Yimin Cai
- Department of Epidemiology & Biostatistics & Ministry of Education Key Lab of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, PR China
| | - Zequn Lu
- Department of Epidemiology & Biostatistics & Ministry of Education Key Lab of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, PR China
| | - Yue Li
- Department of Epidemiology & Biostatistics & Ministry of Education Key Lab of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, PR China
| | - Siyuan Niu
- Department of Epidemiology & Biostatistics & Ministry of Education Key Lab of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, PR China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, PR China
| | - Jiang Chang
- Department of Epidemiology & Biostatistics & Ministry of Education Key Lab of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, PR China
| | - Zemin Fang
- Division of Cardiothoracic & Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, PR China
| | - Rong Zhong
- Department of Epidemiology & Biostatistics & Ministry of Education Key Lab of Environment & Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, PR China
| |
Collapse
|
12
|
Fu L, Cui CP, Zhang X, Zhang L. The functions and regulation of Smurfs in cancers. Semin Cancer Biol 2019; 67:102-116. [PMID: 31899247 DOI: 10.1016/j.semcancer.2019.12.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/10/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023]
Abstract
Smad ubiquitination regulatory factor 1 (Smurf1) and Smurf2 are HECT-type E3 ubiquitin ligases, and both Smurfs were initially identified to regulate Smad protein stability in the TGF-β/BMP signaling pathway. In recent years, Smurfs have exhibited E3 ligase-dependent and -independent activities in various kinds of cells. Smurfs act as either potent tumor promoters or tumor suppressors in different tumors by regulating biological processes, including metastasis, apoptosis, cell cycle, senescence and genomic stability. The regulation of Smurfs activity and expression has therefore emerged as a hot spot in tumor biology research. Further, the Smurf1- or Smurf2-deficient mice provide more in vivo clues for the functional study of Smurfs in tumorigenesis and development. In this review, we summarize these milestone findings and, in turn, reveal new avenues for the prevention and treatment of cancer by regulating Smurfs.
Collapse
Affiliation(s)
- Lin Fu
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Xueli Zhang
- Department of General Surgery, Shanghai Fengxian Central Hospital Graduate Training Base, Fengxian Hospital, Southern Medical University, Shanghai, China.
| | - Lingqiang Zhang
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; Peixian People's Hospital, Jiangsu Province 221600, China.
| |
Collapse
|
13
|
Zhang L, Yu J, Ye M, Zhao H. Upregulation of CKIP- 1 inhibits high-glucose induced inflammation and oxidative stress in HRECs and attenuates diabetic retinopathy by modulating Nrf2/ ARE signaling pathway: an in vitro study. Cell Biosci 2019; 9:67. [PMID: 31462987 PMCID: PMC6708125 DOI: 10.1186/s13578-019-0331-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the underlying mechanisms of diabetic retinopathy (DR) development. METHODS Real-Time qPCR was used to detect Casein kinase 2 interacting protein-1 (CKIP-1) and Nuclear factor E2-related factor 2 (Nrf2) mRNA levels. Western Blot was employed to detect protein levels. Malondialdehyde (MDA) assay kit, superoxide dismutase (SOD) kit and glutathione peroxidase (GSH-Px) kit were used to evaluate oxidative stress in high-glucose treated human retinal endothelial cells (HRECs). Calcein-AM/propidium iodide (PI) double stain kit was employed to detect cell apoptosis. Enzyme-linked ImmunoSorbent Assay (ELISA) was used to detect inflammation associated cytokines secretion. Co-immunoprecipitation (CO-IP) was performed to investigate the interactions between CKIP-1 and Nrf2. Luciferase reporter gene system was used to detect the transcriptional activity of Nrf2. RESULTS CKIP-1 was significantly downregulated in either DR tissues or high-glucose treated HRECs comparing to the Control groups. Besides, high-glucose (25 mM) inhibited HRECs viability and induced oxidative stress, inflammation associated cytokines (TNF-α, IL-6 and IL-1β) secretion and cell apoptosis, which were all reversed by synergistically overexpressing CKIP-1 and aggravated by knocking down CKIP-1. Of note, we found that overexpressed CKIP-1 activated Nrf2/ARE signaling pathway and increased its downstream targets including HO-1, NQO-1, γGCS and SOD in high-glucose treated HRECs. Further results also showed that CKIP-1 regulated cell viability, oxidative stress, inflammation and apoptosis in high-glucose treated HRECs by activating Nrf2/ARE signaling pathway. CONCLUSION We concluded that overexpressed CKIP-1 alleviated DR progression by activating Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Ophthalmology, Zhejiang Provincial People’s Hospital, No.158, Shangtang Road, Xiacheng District, Hangzhou, 310014 Zhejiang China
- Department of Ophthalmology, People’s Hospital of Hangzhou Medical College, No.128, ShangTang Road, XiaCheng District, Hangzhou, 310014 Zhejiang China
| | - Jie Yu
- Department of Ophthalmology, Zhejiang Provincial People’s Hospital, No.158, Shangtang Road, Xiacheng District, Hangzhou, 310014 Zhejiang China
- Department of Ophthalmology, People’s Hospital of Hangzhou Medical College, No.128, ShangTang Road, XiaCheng District, Hangzhou, 310014 Zhejiang China
| | - Mingxia Ye
- Department of Ophthalmology, Zhejiang Provincial People’s Hospital, No.158, Shangtang Road, Xiacheng District, Hangzhou, 310014 Zhejiang China
- Department of Ophthalmology, People’s Hospital of Hangzhou Medical College, No.128, ShangTang Road, XiaCheng District, Hangzhou, 310014 Zhejiang China
| | - Hailan Zhao
- Department of Ophthalmology, Zhejiang Provincial People’s Hospital, No.158, Shangtang Road, Xiacheng District, Hangzhou, 310014 Zhejiang China
- Department of Ophthalmology, People’s Hospital of Hangzhou Medical College, No.128, ShangTang Road, XiaCheng District, Hangzhou, 310014 Zhejiang China
| |
Collapse
|
14
|
Overexpression of CKIP-1 alleviates hypoxia-induced cardiomyocyte injury by up-regulating Nrf2 antioxidant signaling via Keap1 inhibition. Biochimie 2019; 163:163-170. [DOI: 10.1016/j.biochi.2019.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/10/2019] [Indexed: 01/22/2023]
|
15
|
Physiological functions of CKIP-1: From molecular mechanisms to therapy implications. Ageing Res Rev 2019; 53:100908. [PMID: 31082489 DOI: 10.1016/j.arr.2019.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
The casein kinase 2 interacting protein-1 (CKIP-1, also known as PLEKHO1) is initially identified as a specific CK2α subunit-interacting protein. Subsequently, various proteins, including CPα, PAK1, Arp2/3, HDAC1, c-Jun, ATM, Smurf1, Rpt6, Akt, IFP35, TRAF6, REGγ and CARMA1, were reported to interact with CKIP-1. Owing to the great diversity of interacted proteins, CKIP-1 exhibits multiple biologic functions in cell morphology, cell differentiation and cell apoptosis. Besides, these functions are subcellular localization, cell type, and regulatory signaling dependent. CKIP-1 is involved in biological processes consisting of bone formation, tumorigenesis and immune regulation. Importantly, deregulation of CKIP-1 results in osteoporosis, tumor, and atherosclerosis. In this review, we introduce the molecular functions, biological processes and promising of therapeutic strategies. Through summarizing the intrinsic mechanisms, we expect to open new therapeutic avenues for CKIP-1.
Collapse
|
16
|
Casein Kinase 2 Interacting Protein-1 Suppresses Glioma Cell Proliferation via Regulating the AKT/GSK3 β/ β-Catenin Pathway. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5653212. [PMID: 31355268 PMCID: PMC6634126 DOI: 10.1155/2019/5653212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/10/2019] [Accepted: 05/12/2019] [Indexed: 01/08/2023]
Abstract
Objective Casein kinase 2 interacting protein-1 (CKIP-1) has exhibited multiple functions in regulating cell proliferation, apoptosis, differentiation, and cytoskeleton. CKIP-1 also plays an important role as a critical regulator in tumorigenesis. The aim of this study is to further examine the function of CKIP-1 in glioma cells. Methods The expression level of CKIP-1 protein was determined in gliomas tissues and cell lines by immunohistochemistry stain and western blotting while the association of CKIP-1 expression with prognosis was analyzed by Kaplan-Meier method and compared by log-rank test. CKIP-1 was overexpressed or silenced in gliomas cell lines. CCK-8, colony formation assay, and BrdU incorporation assay were used to determine cell proliferation and DNA synthesis. Cell cycle and apoptosis rate were determined with fluorescence-activated cell sorting (FACS) method. Then, expression of key members in AKT/GSK3β/β-catenin pathway was detected by western blot analysis. Results In the present study, we reported new evidence that CKIP-1 was reversely associated with the proliferation of glioma cells and survival in glioma patients. Additionally, the overexpressed CKIP-1 significantly inhibited glioma cell proliferation. Further experiments revealed that CKIP-1 functioned through its antiproliferative and proapoptotic activity in glioma cells. Importantly, mechanistic investigations suggested that CKIP-1 sharply suppressed the activity of AKT by inhibiting the phosphorylation, markedly downregulated the phosphorylated GSK3β at Ser9, and promoted β-catenin degradation. Conclusions Overall, our results provided new insights into the clinical significance and molecular mechanism of CKIP-1 in glioma, which indicated CKIP1 might function as a therapeutic target for clinical treatment of glioma.
Collapse
|
17
|
Yu Z, Li Q, Zhang G, Lv C, Dong Q, Fu C, Kong C, Zeng Y. PLEKHO1 knockdown inhibits RCC cell viability in vitro and in vivo, potentially by the Hippo and MAPK/JNK pathways. Int J Oncol 2019; 55:81-92. [PMID: 31180521 PMCID: PMC6561616 DOI: 10.3892/ijo.2019.4819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 05/17/2019] [Indexed: 02/07/2023] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer. By analysing The Cancer Genome Atlas (TCGA) database, 16 genes were identified to be consistently highly expressed in RCC tissues compared with the matched para‑tumour tissues. Using a high‑throughput cell viability screening method, it was found that downregulation of only two genes significantly inhibited the viability of 786‑O cells. Among the two genes, pleckstrin homology domain containing O1 (PLEKHO1) has never been studied in RCC, to the best of our knowledge, and its expression level was shown to be associated with the prognosis of patients with RCC in TCGA dataset. The upregulation of PLEKHO1 in RCC was first confirmed in 30 paired tumour and para‑tumour tissues. Then, the effect of PLEKHO1 on cell proliferation and apoptosis was assessed in vitro. Additionally, xenograft tumour models were established to investigate the function of PLEKHO1 in vivo. The results showed that PLEKHO1 knockdown significantly inhibited cell viability and facilitated apoptosis in vitro and impaired tumour formation in vivo. Thus, PLEKHO1 is likely to be associated with the viability of RCC cells in vitro and in vivo. Further gene expression microarray and co‑expression analyses showed that PLEKHO1 may be involved in the serine/threonine‑protein kinase hippo and JNK signalling pathways. Together, the results of the present study suggest that PLEKHO1 may contribute to the development of RCC, and therefore, further study is needed to explore its potential as a therapeutic target.
Collapse
Affiliation(s)
- Zi Yu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001
| | - Qiang Li
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Gejun Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001
| | - Chengcheng Lv
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042
| | - Qingzhuo Dong
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001
| | - Cheng Fu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001
| | - Yu Zeng
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042
| |
Collapse
|
18
|
Xiang Y, Fan X, Zhao M, Guo Q, Guo S. CKIP-1 alleviates oxygen-glucose deprivation/reoxygenation-induced apoptosis and oxidative stress in cultured hippocampal neurons by downregulating Keap1 and activating Nrf2/ARE signaling. Eur J Pharmacol 2019; 848:140-149. [DOI: 10.1016/j.ejphar.2019.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
|
19
|
Farooqi AA, de la Roche M, Djamgoz MBA, Siddik ZH. Overview of the oncogenic signaling pathways in colorectal cancer: Mechanistic insights. Semin Cancer Biol 2019; 58:65-79. [PMID: 30633978 DOI: 10.1016/j.semcancer.2019.01.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/29/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is a multifaceted disease which is therapeutically challenging. Based on insights gleaned from almost a quarter century of research, it is obvious that deregulation of spatio-temporally controlled signaling pathways play instrumental role in development and progression of colorectal cancer. High-throughput technologies have helped to develop a sharper and broader understanding of the wide ranging signal transduction cascades which also contribute to development of drug resistance, loss of apoptosis and, ultimately, of metastasis. In this review, we have set the spotlight on role of JAK/STAT, TGF/SMAD, Notch, WNT/β-Catenin, SHH/GLI and p53 pathways in the development and progression of colorectal cancer. We have also highlighted recent reports on TRAIL-mediated pathways and molecularly distinct voltage-gated sodium channels in colorectal cancer.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| | - Marc de la Roche
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom.
| | - Mustafa B A Djamgoz
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London, SW7 2AZ, United Kingdom; Cyprus International University, Biotechnology Research Centre, Haspolat, Mersin 10, North Cyprus, Turkey.
| | - Zahid H Siddik
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
20
|
Zhang G, Yu Z, Fu S, Lv C, Dong Q, Fu C, Kong C, Zeng Y. ERCC6L that is up-regulated in high grade of renal cell carcinoma enhances cell viability in vitro and promotes tumor growth in vivo potentially through modulating MAPK signalling pathway. Cancer Gene Ther 2018; 26:323-333. [PMID: 30459398 DOI: 10.1038/s41417-018-0064-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/22/2018] [Accepted: 10/26/2018] [Indexed: 12/28/2022]
Abstract
Renal cell carcinoma (RCC), which is one of the most diagnosed urological malignancies worldwide, is usually associated with abnormality in both genetic and cellular processes. In the present study, through analyzing The Cancer Genome Atlas (TCGA) dataset, we screened out ERCC6L as a candidate gene that is potentially related to the development of RCC based on its increased expression in ccRCC tissues compared with normal kidney tissues as well as its possible relevance to cancer prognosis. Evidence indicates that ERCC6L is an indispensable component of mammalian cell mitosis, while it fails to disclose the role of ERCC6L in tumorigenesis. By using RT-PCR, it was confirmed that the mRNA expression of ERCC6L was upregulated in RCC tissues as compared to normal controls in 28 pared samples. In addition, the immunohistochemistry study in a tissue microarray (TMA) containing 150 ccRCC samples showed that the staining score of ERCC6L was positively correlated with the Fuhrman grade of cancers. Next, when the expression of ERCC6L was lowered by specific shRNA, the cell viability was significantly inhibited in 786-O and Caki-1 cells, while the apoptosis was induced accordingly. At the same time, RCC cells those were transfected with shRNA targeting to ERCC6L grew significantly slower than parental cells in immunodeficient mice. These results consistently suggest that ERCC6L may play a role in regulating the cell viability of RCC both in vitro and in vivo. Further, gene expression microarray analysis followed by the validating western blot after knocking down ERCC6L expression in 786-O cells highlighted the involvement of MAPK signaling pathway in regulation of ERCC6L on cellular process of RCC. In conclusion, the present study suggests a likely promoting role of ERCC6L on the development of RCC. Thus, further study to explore the potential utility of ERCC6L as a novel therapeutic target of RCC is clearly needed.
Collapse
Affiliation(s)
- Gejun Zhang
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, China.,Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zi Yu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, China.,Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Shui Fu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, China
| | - Chengcheng Lv
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, China
| | - Qingzhuo Dong
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, China
| | - Cheng Fu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yu Zeng
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, China.
| |
Collapse
|
21
|
Li MP, Zhang YJ, Hu XL, Zhou JP, Yang YL, Peng LM, Qi H, Yang TL, Chen XP. Association of CKIP-1 P21A polymorphism with risk of chronic heart failure in a Chinese population. Oncotarget 2018; 8:36545-36552. [PMID: 28402261 PMCID: PMC5482675 DOI: 10.18632/oncotarget.16614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/28/2017] [Indexed: 01/20/2023] Open
Abstract
Pathological cardiac hypertrophy is an independent risk factor for chronic heart failure. Casein kinase-2 interacting protein-1 (CKIP-1) can inhibit pathological cardiac hypertrophy. Therefore, we investigated whether CKIP-1 nonsynonymous polymorphism rs2306235 (Pro21Ala) contributes to risk and prognosis of chronic heart failure in a Chinese population.A total of 923 adult patients with chronic heart failure and 1020 age- and gender-matched healthy controls were recruited. CKIP-1 rs2306235 polymorphism was genotyped using PCR-restriction fragment length polymorphism. Additional follow-up data for 140 chronic heart failure patients was evaluated. The rs2306235 G allele was associated with an increased risk of chronic heart failure (OR = 1.38, 95% CI = 1.09-1.75, p = 0.007), especially in patients with hypertension (OR = 1.45, 95% CI = 1.09-1.75, p = 0.006) and coronary heart disease (OR = 1.41, 95% CI = 1.09-1.83, p = 0.010) after adjustment for multiple cardiovascular risk factors. However, rs2306235 polymorphism was not associated with cardiovascular mortality in chronic heart failure (p = 0.875). CKIP-1 rs2306235 polymorphism may be a risk factor for chronic heart failure in a Chinese Han population.
Collapse
Affiliation(s)
- Mu-Peng Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, Hunan, P. R. China
| | - Yan-Jiao Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, Hunan, P. R. China
| | - Xiao-Lei Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, Hunan, P. R. China
| | - Ji-Peng Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, Hunan, P. R. China
| | - Yong-Long Yang
- Haikou People's Hospital and Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou 570311, Hainan, P. R. China
| | - Li-Ming Peng
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Hong Qi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Tian-Lun Yang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, Hunan, P. R. China
| |
Collapse
|
22
|
Gong W, Chen Z, Zou Y, Zhang L, Huang J, Liu P, Huang H. CKIP-1 affects the polyubiquitination of Nrf2 and Keap1 via mediating Smurf1 to resist HG-induced renal fibrosis in GMCs and diabetic mice kidneys. Free Radic Biol Med 2018; 115:338-350. [PMID: 29248720 DOI: 10.1016/j.freeradbiomed.2017.12.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/27/2022]
Abstract
Our previous study indicated that Casein kinase 2 interacting protein-1 (CKIP-1) could promote the activation of the nuclear factor E2-related factor 2 (Nrf2)/ antioxidant response element (ARE) pathway, playing a significant role in inhibiting the fibrosis of diabetic nephropathy (DN). However, the underlying mechanism is still unknown. Here, we investigated whether CKIP-1 affects the polyubiquitination of Nrf2 and its cytosolic inhibitor kelch like ECH-associated protein 1 (Keap1) via mediating Smad ubiquitylation regulatory factor-1 (Smurf1) to promote the activation of the Nrf2/ARE signaling and resist high glucose (HG)-induced renal fibrosis in glomerular mesangial cells (GMCs) and diabetic mice kidneys. Results showed that the expression of Smurf1 increased in HG-induced GMCs, with a paramount upregulation at 1h. Overexpression of wild-type Smurf1 plasmid further promoted the HG-induced the over-production of fibronectin (FN) and intercellular adhesionmolecule-1 (ICAM-1), and depletion of Smurf1 dramatically reduced the expression of FN and ICAM-1. Overexpression of CKIP-1 decreased the K48-linked polyubiquitination and increased the K63-linked polyubiquitination of Nrf2 as well as enhanced the K48-linked polyubiquitination and reduced K63-linked polyubiquitination of Keap1, promoting the activation of the Nrf2/ARE pathway. Overexpression of Smurf1 increased the K48-linked polyubiquitination and decreased the K63-linked polyubiquitination of Nrf2, and down-regulated the K48-linked polyubiquitination and up-regulated the K63-linked polyubiquitination of Keap1, inhibiting the activation of the Nrf2/ARE pathway. CKIP-1 promoted the degradation of Smurf1 by increasing the ubiquitination of Smurf1. Treatment of CKIP-1 adenovirus infection reduced the Smurf1 levels, promoted the activation of the Nrf2/ARE pathway as well as suppressed the production of reactive oxygen species (ROS), and then improved the failure of renal function of diabetic mice. Experiments above suggested that CKIP-1 affects the polyubiquitination of Nrf2 and Keap1 and promotes the Nrf2-ARE pathway through down-regulating Smurf1 to resist HG-induced up-regulation of FN and ICAM-1 in GMCs and diabetic mice kidneys.
Collapse
Affiliation(s)
- Wenyan Gong
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiquan Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yezi Zou
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Junying Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiqing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
23
|
Xu Y, Chen J, Gao C, Zhu D, Xu X, Wu C, Jiang J. MicroRNA-497 inhibits tumor growth through targeting insulin receptor substrate 1 in colorectal cancer. Oncol Lett 2017; 14:6379-6386. [PMID: 29163678 PMCID: PMC5688791 DOI: 10.3892/ol.2017.7033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 02/27/2017] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) have been demonstrated to serve an important role in diverse biological processes and cancer progression. Downregulation of microRNA-497 (miR-497) has been observed in human colorectal cancer (CRC) tissues, but the function of miR-497 in CRC has not been well investigated. In the present study, it was demonstrated that expression of miR-497 was significantly downregulated in human CRC tissues compared to adjacent normal tissues. Enforced expression of miR-497 inhibited proliferation, migration and invasion abilities of CRC cell lines SW1116 and SW480. Furthermore, overexpression of miR-497 inhibited phosphoinositide 3-kinase/AKT and mitogen-activated protein kinase/extracellular signal-regulated kinase signaling by targeting insulin receptor substrate 1 (IRS1). In human clinical specimens, IRS1 was inversely correlated with miR-497 in CRC tissues. Collectively, the results of the present study demonstrate that miR-497 is a tumor suppressor miRNA and indicate its potential application for the treatment of human CRC in the future.
Collapse
Affiliation(s)
- Yanjie Xu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China.,Cancer Immunotherapy Engineering Research Center of Jiangsu, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Jianping Chen
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Cao Gao
- Department of Anesthesiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Danxia Zhu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China.,Cancer Immunotherapy Engineering Research Center of Jiangsu, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Xiaoli Xu
- Cancer Immunotherapy Engineering Research Center of Jiangsu, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China.,Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Changping Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China.,Cancer Immunotherapy Engineering Research Center of Jiangsu, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Jingting Jiang
- Cancer Immunotherapy Engineering Research Center of Jiangsu, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China.,Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
24
|
Tao Y, Sun C, Zhang T, Song Y. SMURF1 promotes the proliferation, migration and invasion of gastric cancer cells. Oncol Rep 2017; 38:1806-1814. [PMID: 28731194 DOI: 10.3892/or.2017.5825] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/06/2017] [Indexed: 11/06/2022] Open
Abstract
Smad ubiquitin regulatory factor 1 (SMURF1), a well-known E3 ubiquitin ligase, targets substrate proteins for ubiquitination and proteasomal degradation. Accumulating studies have shown that SMURF1 acts as an oncogenic factor in human malignancies. However, the clinical significance of SMURF1 and its role in gastric cancer (GC) remain unclear. The expression of SMURF1 was detected in 68 cases of GC and corresponding tumor-adjacent specimens. Our results revealed that SMURF1 was prominently overexpressed in GC specimens compared to corresponding tumor-adjacent tissues. Furthermore, increased levels of SMURF1 mRNA were also observed in GC cell lines. Clinicopathological detection ascertained that SMURF1-positive expression was associated with large tumor size, more lymph nodes and distant metastasis as well as advanced tumor-node-metastasis (TNM) stage of GC. Notably, GC patients with SMURF1 positive‑expressing tumors exhibited a significant decreased survival. Further experiments illustrated that SMURF1 knockdown significantly inhibited proliferation, migration and invasion of MGC-803 cells, while SMURF1 overexpression prominently promoted these behaviors in SGC-7901 cells. In vivo studies revealed that SMURF1 knockdown markedly inhibited tumor growth and liver metastasis of GC. Mechanically, SMURF1 inversely regulated the expression of DOC-2/DAB2 interactive protein (DAB2IP) in GC tissues and cells. Furthermore, DAB2IP restoration revealed similar effects to SMURF1 knockdown on MGC-803 cells with decreased proliferation, migration and invasion. In addition, the PI3K/Akt pathway and its downstream targets including c-Myc and ZEB1 were potentially involved in the oncogenic role of the SMURF1/DABIP axis. Collectively, the present study revealed the first evidence that SMURF1 can be potentially used as a clinical biomarker and target for novel treatment of human GC.
Collapse
Affiliation(s)
- Youmao Tao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Caixia Sun
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Tao Zhang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yan Song
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
25
|
Gong W, Li J, Chen Z, Huang J, Chen Q, Cai W, Liu P, Huang H. Polydatin promotes Nrf2-ARE anti-oxidative pathway through activating CKIP-1 to resist HG-induced up-regulation of FN and ICAM-1 in GMCs and diabetic mice kidneys. Free Radic Biol Med 2017; 106:393-405. [PMID: 28286065 DOI: 10.1016/j.freeradbiomed.2017.03.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 12/11/2022]
Abstract
Our previous study indicated that Casein kinase 2 interacting protein-1 (CKIP-1) could promote the activation of the nuclear factor E2-related factor 2 (Nrf2)/ antioxidant response element (ARE) pathway, playing a significant role in inhibiting the fibrosis of diabetic nephropathy (DN). Polydatin (PD) has been shown to possess strong resistance effects on renal fibrosis which is closely related to activating the Nrf2/ARE pathway, too. Whereas, whether PD could resist DN through regulating CKIP-1 and consequently promoting the activation of Nrf2-ARE pathway needs further investigation. Here, we found that PD significantly reversed the down-regulation of CKIP-1 and attenuated fibronectin (FN) and intercellular cell adhesion molecule-1 (ICAM-1) in glomerular mesangial cells (GMCs) exposed to high glucose (HG). Moreover, PD could decrease Keap1 expression and promote the nuclear content, ARE-binding ability, and transcriptional activity of Nrf2. The activation of Nrf2-ARE pathway by PD eventually led to the quenching of hydrogen peroxide (H2O2) and superoxide overproduction boosted by HG. Depletion of CKIP-1 blocked the Nrf2-ARE pathway activation and reversed FN and ICAM-1 down-regulation induced by PD in GMCs challenged with HG. PD increased CKIP-1 and Nrf2 levels in the kidney tissues as well as improved the anti-oxidative effect and renal dysfunction of diabetic mice, which eventually reversed the up-regulation of FN and ICAM-1. Experiments above suggested that PD could increase the CKIP-1-Nrf2-ARE pathway activation to prevent the OSS-induced insult in GMCs and diabetic mice which effectively postpone the diabetic renal fibrosis and the up-regulation of CKIP-1 is probably a novel mechanism in this process.
Collapse
Affiliation(s)
- Wenyan Gong
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jie Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiquan Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Junying Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiuhong Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Weibin Cai
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiqing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
26
|
Wei X, Wang X, Zhan J, Chen Y, Fang W, Zhang L, Zhang H. Smurf1 inhibits integrin activation by controlling Kindlin-2 ubiquitination and degradation. J Cell Biol 2017; 216:1455-1471. [PMID: 28408404 PMCID: PMC5412569 DOI: 10.1083/jcb.201609073] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/11/2017] [Accepted: 03/02/2017] [Indexed: 01/01/2023] Open
Abstract
Integrin-mediated cellular functions require integrin activation by the proteins Kindlin-2 and Talin. Wei et al. show that the E3 ligase Smurf1 permits precise modulation of integrin-mediated adhesion by interacting with and promoting Kindlin-2 ubiquitination and degradation. Integrin activation is an indispensable step for various integrin-mediated biological functions. Kindlin-2 is known to coactivate integrins with Talin; however, molecules that restrict integrin activation are elusive. Here, we demonstrate that the E3 ubiquitin ligase Smurf1 controls the amount of Kindlin-2 protein in cells and hinders integrin activation. Smurf1 interacts with and promotes Kindlin-2 ubiquitination and degradation. Smurf1 selectively mediates degradation of Kindlin-2 but not Talin, leading to inhibition of αIIbβ3 integrin activation in Chinese hamster ovary cells and β1 integrin activation in fibroblasts. Enhanced activation of β1 integrin was found in Smurf1-knockout mouse embryonic fibroblasts, which correlates with an increase in Kindlin-2 protein levels. Similarly, a reciprocal relationship between Smurf1 and Kindlin-2 protein levels is found in tissues from colon cancer patients, suggesting that Smurf1 mediates Kindlin-2 degradation in vivo. Collectively, we demonstrate that Smurf1 acts as a brake for integrin activation by controlling Kindlin-2 protein levels, a new mechanism that permits precise modulation of integrin-mediated cellular functions.
Collapse
Affiliation(s)
- Xiaofan Wei
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Xiang Wang
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Jun Zhan
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Yuhan Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Weigang Fang
- Department of Pathology, Peking University Health Science Center, Beijing 100191, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hongquan Zhang
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
27
|
Ke M, Mo L, Li W, Zhang X, Li F, Yu H. Ubiquitin ligase SMURF1 functions as a prognostic marker and promotes growth and metastasis of clear cell renal cell carcinoma. FEBS Open Bio 2017; 7:577-586. [PMID: 28396841 PMCID: PMC5377408 DOI: 10.1002/2211-5463.12204] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/15/2017] [Accepted: 01/27/2017] [Indexed: 01/01/2023] Open
Abstract
Smad ubiquitin regulatory factor 1 (SMURF1), a recently identified E3 ubiquitin ligase, targets substrate proteins for ubiquitination and proteasomal degradation. Previous studies have reported that SMURF1 also functions as an oncogene in human cancers. However, the clinical value of SMURF1 and its role in clear cell renal cell carcinoma (ccRCC) are unknown. SMURF1 expression was analyzed in 100 cases of ccRCC and matched tumor‐adjacent specimens. SMURF1 was prominently overexpressed in ccRCC specimens compared with tumor‐adjacent specimens. Increased levels of SMURF1 were also observed in ccRCC cell lines. Clinicopathological detection verified that SMURF1 expression was associated with advanced tumor node metastasis stage, large tumor size and vascular invasion of ccRCC patients. Moreover, Kaplan–Meier analysis found that SMURF1 elevation led to adverse overall survival and disease‐free survival. Multivariate Cox regression analysis revealed that SMURF1 expression was an independent marker for prognosis prediction. Further experiments illustrated that SMURF1 knockdown significantly inhibited growth and metastasis of 769P cells, while SMURF1 overexpression promoted proliferation, migration and invasion in OSRC‐2 cells. Mechanistically, SMURF1 inversely regulated the expression of DAB2 interacting protein, which negatively mediated the activation of both the ERK/RSK1 and PI3K/AKT/mTOR pathways in ccRCC cells. Taken together, these results suggest that SMURF1 might be a promising biomarker and target for novel treatment of human ccRCC.
Collapse
Affiliation(s)
- Mang Ke
- Department of Urology Taizhou Hospital of Zhejiang Province Wenzhou Medical University Linhai Zhejiang Province China
| | - Licai Mo
- Department of Urology Taizhou Hospital of Zhejiang Province Wenzhou Medical University Linhai Zhejiang Province China
| | - Weilin Li
- Department of Urology Taizhou Hospital of Zhejiang Province Wenzhou Medical University Linhai Zhejiang Province China
| | - Xianjun Zhang
- Department of Urology Taizhou Hospital of Zhejiang Province Wenzhou Medical University Linhai Zhejiang Province China
| | - Feiping Li
- Department of Urology Taizhou Hospital of Zhejiang Province Wenzhou Medical University Linhai Zhejiang Province China
| | - Hongyuan Yu
- Department of Urology Taizhou Hospital of Zhejiang Province Wenzhou Medical University Linhai Zhejiang Province China
| |
Collapse
|
28
|
Zhu X, Ouyang Y, Zhong F, Wang Q, Ding L, Zhang P, Chen L, Liu H, He S. Silencing of CKIP-1 promotes tumor proliferation and cell adhesion-mediated drug resistance via regulating AKT activity in non-Hodgkins lymphoma. Oncol Rep 2016; 37:622-630. [DOI: 10.3892/or.2016.5233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/27/2016] [Indexed: 11/06/2022] Open
|
29
|
Zhang X, Wang Q, Wan Z, Li J, Liu L, Zhang X. CKIP-1 knockout offsets osteoporosis induced by simulated microgravity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:140-148. [PMID: 27666961 DOI: 10.1016/j.pbiomolbio.2016.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/03/2016] [Accepted: 09/21/2016] [Indexed: 01/16/2023]
Abstract
Casein kinase 2-interacting protein 1 (CKIP-1) is a negative regulator for bone formation. CKIP-1 knockout (KO) mice are very important for research on countermeasures to bone loss induced by space microgravity. Under simulated microgravity, the bone metabolism of CKIP-1 KO mice was different than that of wild-type (WT) mice. Many experiments all showed that the KO mice had significantly enhanced ossification in the tail suspension conditions, and the differences were closely related to the time the mice were exposed to the microgravity environment. Our results reveal the effect of CKIP-1 on the regulation of bone metabolism and osteogenesis in vivo and the ability of this gene to offset osteoporosis, and they suggest an approach to the treatment of osteoporosis induced by microgravity in space.
Collapse
Affiliation(s)
- Xinchang Zhang
- Department of Clinical Medicine, Logistical College of People's Armed Police Forces, Tianjin, China; Institute of Medical Equipment, Academy of Military Medical Science, Tianjin, China
| | - Qiangsong Wang
- Institute of Medical Equipment, Academy of Military Medical Science, Tianjin, China
| | - Zongming Wan
- Department of Clinical Medicine, Logistical College of People's Armed Police Forces, Tianjin, China
| | - Jianyu Li
- Department of Clinical Medicine, Logistical College of People's Armed Police Forces, Tianjin, China
| | - Lu Liu
- Department of Clinical Medicine, Logistical College of People's Armed Police Forces, Tianjin, China
| | - Xizheng Zhang
- Institute of Medical Equipment, Academy of Military Medical Science, Tianjin, China.
| |
Collapse
|
30
|
Gong W, Chen C, Xiong F, Yang Z, Wang Y, Huang J, Liu P, Huang H. CKIP-1 ameliorates high glucose-induced expression of fibronectin and intercellular cell adhesion molecule-1 by activating the Nrf2/ARE pathway in glomerular mesangial cells. Biochem Pharmacol 2016; 116:140-152. [PMID: 27481061 DOI: 10.1016/j.bcp.2016.07.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/28/2016] [Indexed: 12/31/2022]
Abstract
Glucose and lipid metabolism disorders as well as oxidative stress (OSS) play important roles in diabetic nephropathy (DN). Glucose and lipid metabolic dysfunctions are the basic pathological changes of chronic microvascular complications of diabetes mellitus, such as DN. OSS can lead to the accumulation of extracellular matrix and inflammatory factors which will accelerate the progress of DN. Casein kinase 2 interacting protein-1 (CKIP-1) mediates adipogenesis, cell proliferation and inflammation under many circumstances. However, whether CKIP-1 is involved in the development of DN remains unknown. Here, we show that CKIP-1 is a novel regulator of resisting the development of DN and the underlying molecular mechanism is related to activating the nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) antioxidative stress pathway. The following findings were obtained: (1) The treatment of glomerular mesangial cells (GMCs) with high glucose (HG) decreased CKIP-1 levels in a time-dependent manner; (2) CKIP-1 overexpression dramatically reduced fibronectin (FN) and intercellular adhesionmolecule-1 (ICAM-1) expression. Depletion of CKIP-1 further induced the production of FN and ICAM-1; (3) CKIP-1 promoted the nuclear accumulation, DNA binding, and transcriptional activity of Nrf2. Moreover, CKIP-1 upregulated the expression of Nrf2 downstream genes, heme oxygenase (HO-1) and superoxide dismutase 1 (SOD1); and ultimately decreased the levels of reactive oxygen species (ROS). The molecular mechanisms clarify that the advantageous effect of CKIP-1 on DN are well connected with the activation of the Nrf2/ARE antioxidative stress pathway.
Collapse
Affiliation(s)
- Wenyan Gong
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Circle at University Town, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangzhou 510006, China; Guangdong Provincial Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou 510006, China
| | - Cheng Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Circle at University Town, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangzhou 510006, China; Guangdong Provincial Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou 510006, China
| | - Fengxiao Xiong
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Circle at University Town, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangzhou 510006, China; Guangdong Provincial Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou 510006, China
| | - Zhiying Yang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Circle at University Town, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangzhou 510006, China; Guangdong Provincial Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou 510006, China
| | - Yu Wang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Circle at University Town, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangzhou 510006, China; Guangdong Provincial Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou 510006, China
| | - Junying Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Circle at University Town, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangzhou 510006, China; Guangdong Provincial Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou 510006, China
| | - Peiqing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Circle at University Town, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangzhou 510006, China; Guangdong Provincial Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou 510006, China
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Circle at University Town, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangzhou 510006, China; Guangdong Provincial Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou 510006, China.
| |
Collapse
|
31
|
The pseudogene derived long noncoding RNA DUXAP8 promotes gastric cancer cell proliferation and migration via epigenetically silencing PLEKHO1 expression. Oncotarget 2016; 8:52211-52224. [PMID: 28881724 PMCID: PMC5581023 DOI: 10.18632/oncotarget.11075] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer death due to its poor prognosis and limited treatment options. Evidence indicates that pseudogene-derived long noncoding RNAs (lncRNAs) may be important players in human cancer progression, including GC. In this paper, we report that a newly discovered pseudogene-derived lncRNA named DUXAP8, a 2107-bp RNA, was remarkably upregulated in GC. Additionally, a higher level of DUXAP8 expression in GC was significantly associated with greater tumor size, advanced clinical stage, and lymphatic metastasis. Patients with a higher level of DUXAP8 expression had a relatively poor prognosis. Further experiments revealed that knockdown of DUXAP8 significantly inhibited cell proliferation and migration, as documented in the SGC7901 and BGC823 cell lines. Furthermore, RNA immunoprecipitation and chromatin immunoprecipitation assays demonstrated that DUXAP8 could epigenetically suppress the expression of PLEKHO1 by binding to EZH2 and SUZ12 (two key components of PRC2), thus promoting GC development. Taken together, our findings suggest that the pseudogene-derived lncRNA DUXAP8 promotes the progression of GC and is a potential therapeutic target for GC intervention.
Collapse
|
32
|
Nakamura M, Sugimoto H, Ogata T, Hiraoka K, Yoda H, Sang M, Sang M, Zhu Y, Yu M, Shimozato O, Ozaki T. Improvement of gemcitabine sensitivity of p53-mutated pancreatic cancer MiaPaCa-2 cells by RUNX2 depletion-mediated augmentation of TAp73-dependent cell death. Oncogenesis 2016; 5:e233. [PMID: 27294865 PMCID: PMC4945741 DOI: 10.1038/oncsis.2016.40] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/21/2016] [Accepted: 05/03/2016] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer exhibits the worst prognostic outcome among human cancers. Recently, we have described that depletion of RUNX2 enhances gemcitabine (GEM) sensitivity of p53-deficient pancreatic cancer AsPC-1 cells through the activation of TAp63-mediated cell death pathway. These findings raised a question whether RUNX2 silencing could also improve GEM efficacy on pancreatic cancer cells bearing p53 mutation. In the present study, we have extended our study to p53-mutated pancreatic cancer MiaPaCa-2 cells. Based on our current results, MiaPaCa-2 cells were much more resistant to GEM as compared with p53-proficient pancreatic cancer SW1990 cells, and there existed a clear inverse relationship between the expression levels of TAp73 and RUNX2 in response to GEM. Forced expression of TAp73α in MiaPaCa-2 cells significantly promoted cell cycle arrest and/or cell death, indicating that a large amount of TAp73 might induce cell death even in the presence of mutant p53. Consistent with this notion, overexpression of TAp73α stimulated luciferase activity driven by p53/TAp73-target gene promoters in MiaPaCa-2 cells. Similar to AsPC-1 cells, small interfering RNA-mediated knockdown of RUNX2 remarkably enhanced GEM sensitivity of MiPaCa-2 cells. Under our experimental conditions, TAp73 further accumulated in RUNX2-depleted MiaPaCa-2 cells exposed to GEM relative to GEM-treated non-silencing control cells. As expected, silencing of p73 reduced GEM sensitivity of MiPaCa-2 cells. Moreover, GEM-mediated Tyr phosphorylation level of TAp73 was much more elevated in RUNX2-depleted MiaPaCa-2 cells. Collectively, our present findings strongly suggest that knockdown of RUNX2 contributes to a prominent enhancement of GEM sensitivity of p53-mutated pancreatic cancer cells through the activation of TAp73-mediated cell death pathway, and also provides a promising strategy for the treatment of patients with pancreatic cancer bearing p53 mutation.
Collapse
Affiliation(s)
- M Nakamura
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - H Sugimoto
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - T Ogata
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - K Hiraoka
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - H Yoda
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - M Sang
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of Regenerative Medicine, Graduate School of Medicine, University of Toyama, Toyama, Japan
| | - M Sang
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan.,Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei province, P.R. China
| | - Y Zhu
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning Sheng province, P.R. China
| | - M Yu
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of Laboratory Animal of China Medical University, Shenyang, Liaoning Sheng province, P.R. China
| | - O Shimozato
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - T Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| |
Collapse
|
33
|
Wang M, Guo L, Wu Q, Zeng T, Lin Q, Qiao Y, Wang Q, Liu M, Zhang X, Ren L, Zhang S, Pei Y, Yin Z, Ding F, Wang HR. ATR/Chk1/Smurf1 pathway determines cell fate after DNA damage by controlling RhoB abundance. Nat Commun 2014; 5:4901. [PMID: 25249323 DOI: 10.1038/ncomms5901] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 08/02/2014] [Indexed: 11/09/2022] Open
Abstract
ATM- and RAD3-related (ATR)/Chk1 and ataxia-telangiectasia mutated (ATM)/Chk2 signalling pathways play critical roles in the DNA damage response. Here we report that the E3 ubiquitin ligase Smurf1 determines cell apoptosis rates downstream of DNA damage-induced ATR/Chk1 signalling by promoting degradation of RhoB, a small GTPase recognized as tumour suppressor by promoting death of transformed cells. We show that Smurf1 targets RhoB for degradation to control its abundance in the basal state. DNA damage caused by ultraviolet light or the alkylating agent methyl methanesulphonate strongly activates Chk1, leading to phosphorylation of Smurf1 that enhances its self-degradation, hence resulting in a RhoB accumulation to promote apoptosis. Suppressing RhoB levels by overexpressing Smurf1 or blocking Chk1-dependent Smurf1 self-degradation significantly inhibits apoptosis. Hence, our study unravels a novel ATR/Chk1/Smurf1/RhoB pathway that determines cell fate after DNA damage, and raises the possibility that aberrant upregulation of Smurf1 promotes tumorigenesis by excessively targeting RhoB for degradation.
Collapse
Affiliation(s)
- Meilin Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lei Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qingang Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Taoling Zeng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qi Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yikai Qiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qun Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Mingdong Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xin Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lan Ren
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Sheng Zhang
- Department of Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361005, China
| | - Yihua Pei
- Central Laboratory, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhenyu Yin
- Department of Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361005, China
| | - Feng Ding
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Hong-Rui Wang
- 1] State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China [2] Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| |
Collapse
|
34
|
Edwards M, Zwolak A, Schafer DA, Sept D, Dominguez R, Cooper JA. Capping protein regulators fine-tune actin assembly dynamics. Nat Rev Mol Cell Biol 2014; 15:677-89. [PMID: 25207437 DOI: 10.1038/nrm3869] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Capping protein (CP) binds the fast growing barbed end of the actin filament and regulates actin assembly by blocking the addition and loss of actin subunits. Recent studies provide new insights into how CP and barbed-end capping are regulated. Filament elongation factors, such as formins and ENA/VASP (enabled/vasodilator-stimulated phosphoprotein), indirectly regulate CP by competing with CP for binding to the barbed end, whereas other molecules, including V-1 and phospholipids, directly bind to CP and sterically block its interaction with the filament. In addition, a diverse and unrelated group of proteins interact with CP through a conserved 'capping protein interaction' (CPI) motif. These proteins, including CARMIL (capping protein, ARP2/3 and myosin I linker), CD2AP (CD2-associated protein) and the WASH (WASP and SCAR homologue) complex subunit FAM21, recruit CP to specific subcellular locations and modulate its actin-capping activity via allosteric effects.
Collapse
Affiliation(s)
- Marc Edwards
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110, USA
| | - Adam Zwolak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dorothy A Schafer
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - David Sept
- Department of Biomedical Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John A Cooper
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110, USA
| |
Collapse
|