1
|
Takai Y, Naito S, Ito H, Horie S, Ushijima M, Narisawa T, Yagi M, Ichiyanagi O, Tsuchiya N. Ankrd1 Promotes Lamellipodia Formation and Cell Motility via Interaction with Talin-1 in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2025; 26:4232. [PMID: 40362467 PMCID: PMC12072362 DOI: 10.3390/ijms26094232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/19/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Ankyrin repeat domain 1 (Ankrd1), a transcriptional target of Yes-associated protein (YAP), is linked to cardiomyopathy. However, its role in cancer, particularly in clear cell renal cell carcinoma (ccRCC), remains vague. In this study, we examined the expression, regulation, and function of Ankrd1 in ccRCC. High Ankrd1 expression was related to poor prognosis in patients with ccRCC in The Cancer Genome Atlas cohort. Ankrd1 expression was regulated by YAP in all ccRCC cell lines examined and also by ERK5 in a subset of ccRCC cell lines. Moreover, silencing of Ankrd1 in ccRCC cell lines resulted in decreased cell motility, whereas its overexpression increased the cell motility. Ankrd1 colocalized with F-actin in lamellipodia upon phorbol ester stimulation. Ankrd1 silencing resulted in alterations in the shape of RCC cells and caused a decrease in lamellipodia formation. Ankrd1 also colocalized with talin-1 in lamellipodia. Ankrd1 depletion repressed talin-1-mediated activation of the integrin pathway. Immunohistochemical examination of surgical specimens revealed high expression of Ankrd1 in metastatic RCC tissues compared with that in primary RCC tissues from the same patients. Collectively, these findings suggest that Ankrd1 plays a critical role in the motility of ccRCC cells through lamellipodia formation.
Collapse
Affiliation(s)
- Yuki Takai
- Department of Urology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (S.N.); (H.I.); (S.H.); (M.U.); (T.N.); (M.Y.); (O.I.); (N.T.)
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Wu W, Si Y, Yang J, Wen L, Li J. Ankyrin repeat domain 1 is dysregulated in keloids and suppresses keloid fibroblast growth, migration, and extracellular matrix deposition. Cytojournal 2025; 22:17. [PMID: 40134570 PMCID: PMC11932964 DOI: 10.25259/cytojournal_111_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 12/09/2024] [Indexed: 03/27/2025] Open
Abstract
Objective The etiology and specific pathological mechanisms of keloids remain elusive. Array expression profiling has revealed dysregulation of the transcription cofactor ankyrin repeat domain 1 (ANKRD1) in keloid fibroblasts. The present study focused on examining the expression pattern of ANKRD1 in keloids and assessing its function in human keloid fibroblasts (HKFs). Material and Methods Differential mRNA expression profiles in keloid fibroblasts were investigated by analyzing data from gene expression omnibus (GEO) datasets. Immunohistochemistry assays were performed to verify the expression patterns of ANKRD1 and claudin 11 (CLDN11) in keloid tissue samples. Functional studies were conducted by transfecting HKFs with either a small interfering RNA (siRNA) targeting ANKRD1 (siANKRD1) or ANKRD1-overexpressing plasmids. The functional impact of ANKRD1 was assessed using cell proliferation, flow cytometry, and Transwell migration assays. mRNA expression was evaluated using reverse transcription polymerase chain reaction, and protein expression was determined using Western blotting. Results Analysis of the GEO series (GSE) GSE44270 revealed eight differentially expressed mRNAs, with ANKRD1 and CLDN11 being the top two downregulated mRNAs. ANKRD1 expression was observed to be lower in keloid tissues than in normal skin tissues, whereas CLDN11 expression showed no significant difference between the two groups. ANKRD1 overexpression suppressed HKF proliferation, migration, and the expression levels of collagen I, fibronectin, matrix metallopeptidase 9, whereas the opposite effects were observed on ANKRD1 knockdown. ANKRD1 did not affect apoptotic cell levels. Conclusion ANKRD1 is downregulated in keloids and inhibits the growth, migration, and extracellular matrix deposition of keloid fibroblasts. Thus, ANKRD1 may function as a suppressor in keloid formation.
Collapse
Affiliation(s)
- Weiqi Wu
- Department of Dermatology, The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuan Si
- Department of Dermatology, Guangzhou First People’s Hospital, Guangzhou, China
| | - Juan Yang
- Department of Dermatology, The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liuyan Wen
- Department of Dermatology, The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingrong Li
- Department of Dermatology, Guangzhou First People’s Hospital, Guangzhou, China
| |
Collapse
|
3
|
Liu H, Liu J, Guan X, Zhao Z, Cheng P, Chen H, Jiang Z, Wang X. Titin gene mutations enhance radiotherapy efficacy via modulation of tumour immune microenvironment in rectum adenocarcinoma. Clin Transl Med 2025; 15:e70123. [PMID: 39748197 PMCID: PMC11695211 DOI: 10.1002/ctm2.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/11/2024] [Accepted: 11/24/2024] [Indexed: 01/04/2025] Open
Abstract
OBJECTIVE This study investigates the impact of Titin (TTN) gene mutations on radiotherapy sensitivity in rectum adenocarcinoma (READ) by examining changes in the tumour immune microenvironment. METHODS Data on gene expression and mutations in READ were obtained from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. Bioinformatics analysis explored the correlation between TTN mutations and immune cell infiltration. In vitro, lentiviral vectors were used to assess TTN mutations' effects on ANKRD1 expression in two READ cell lines. ANKRD1 was overexpressed, and clonogenic assays evaluated radiotherapy sensitivity. Flow cytometry, immunofluorescence, and comet assays examined mutations' impact on cell cycle, apoptosis, and DNA damage response (DDR). An in vivo mouse model and formalin-fixed paraffin-embedded samples from locally advanced rectal cancer (LARC) patients before and after radiotherapy were analyzed, followed by prognostic evaluation. RESULTS Bioinformatics revealed that TTN mutations increase radiation sensitivity in LARC by slowing cell proliferation, promoting apoptosis, and reducing DDR. TTN mutations also inhibit ANKRD1 expression via JUN disruption and enhance CD4/CD8 T-cell infiltration, improving anti-tumour immunity and outcomes. Observations from the clinical study showed a substantial decline in ANKRD1 expression levels alongside a notable surge in the counts of CD4+ and CD8+ T cells after undergoing radiotherapy. Patients with TTN mutations, low ANKRD1 expression, and high densities of CD4+ and CD8+ T cells had longer 3-year disease-free survival in READ. CONCLUSION Our findings reveal that TTN mutations can serve as biomarkers for enhanced radiotherapy sensitivity in READ. By altering the tumour's immune microenvironment, these mutations may provide a novel target for personalized radiotherapy strategies, potentially improving therapeutic outcomes in patients with READ. HIGHLIGHTS The association between TTN mutations and tumour mutation burden, as well as immune cell infiltration in READ, is examined. TTN mutations enhance the radiation sensitivity of READ cells and weaken DNA damage repair in response to radiation. TTN mutations increase the radiation sensitivity of READ cells by inhibiting ANKRD1. The infiltration of CD8+ and CD4+ T cells induced by TTN mutations is essential for anti-tumour immunity. TTN mutations serve as a biomarker for the pathological response to preoperative radiotherapy in READ.
Collapse
Affiliation(s)
- Hengchang Liu
- Department of Colorectal SurgeryNational Cancer Center/National Clinical Research Center of Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jialiang Liu
- Department of Colorectal SurgeryNational Cancer Center/National Clinical Research Center of Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xu Guan
- Department of Colorectal SurgeryNational Cancer Center/National Clinical Research Center of Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhixun Zhao
- Department of Colorectal SurgeryNational Cancer Center/National Clinical Research Center of Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pu Cheng
- Department of Colorectal SurgeryNational Cancer Center/National Clinical Research Center of Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Haipeng Chen
- Department of Colorectal SurgeryNational Cancer Center/National Clinical Research Center of Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zheng Jiang
- Department of Colorectal SurgeryNational Cancer Center/National Clinical Research Center of Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xishan Wang
- Department of Colorectal SurgeryNational Cancer Center/National Clinical Research Center of Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
4
|
Xu X, Wang X, Li Y, Chen R, Wen H, Wang Y, Ma G. Research progress of ankyrin repeat domain 1 protein: an updated review. Cell Mol Biol Lett 2024; 29:131. [PMID: 39420247 PMCID: PMC11488291 DOI: 10.1186/s11658-024-00647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Ankyrin repeat domain 1 (Ankrd1) is an acute response protein that belongs to the muscle ankyrin repeat protein (MARP) family. Accumulating evidence has revealed that Ankrd1 plays a crucial role in a wide range of biological processes and diseases. This review consolidates current knowledge on Ankrd1's functions in myocardium and skeletal muscle development, neurogenesis, cancer, bone formation, angiogenesis, wound healing, fibrosis, apoptosis, inflammation, and infection. The comprehensive profile of Ankrd1 in cardiovascular diseases, myopathy, and its potential as a candidate prognostic and diagnostic biomarker are also discussed. In the future, more studies of Ankrd1 are warranted to clarify its role in diseases and assess its potential as a therapeutic target.
Collapse
Affiliation(s)
- Xusan Xu
- Maternal and Child Research Institute, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Xiaoxia Wang
- Department of Neurology, Longjiang Hospital, Foshan, 528300, China
| | - Yu Li
- Department of Pediatrics, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Riling Chen
- Department of Pediatrics, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Houlang Wen
- Medical Genetics Laboratory, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China.
| | - Yajun Wang
- Respiratory Research Institute, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China.
| | - Guoda Ma
- Maternal and Child Research Institute, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China.
| |
Collapse
|
5
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
6
|
Diskul-Na-Ayudthaya P, Bae SJ, Bae YU, Van NT, Kim W, Ryu S. ANKRD1 Promotes Breast Cancer Metastasis by Activating NF- κB-MAGE-A6 Pathway. Cancers (Basel) 2024; 16:3306. [PMID: 39409926 PMCID: PMC11476229 DOI: 10.3390/cancers16193306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Early detection and surgical excision of tumors have helped improve the survival rate of patients with breast cancer. However, patients with metastatic cancer typically have a poor prognosis. In this study, we propose that ANKRD1 promotes metastasis of breast cancer. ANKRD1 was found to be highly expressed in the MDA-MB-231 and MDA-LM-2 highly metastatic breast cancer cell lines compared to the non-metastatic breast cancer cell lines (MCF-7, ZR-75-30, T47D) and normal breast cancer cells (MCF-10A). Furthermore, high-grade tumors showed increased levels of ANKRD1 compared to low-grade tumors. Both in vitro and in vivo functional studies demonstrated the essential role of ANKRD1 in cancer cell migration and invasion. The previous studies have suggested a significant role of NF-κB and MAGE-A6 in breast cancer metastasis, but the upstream regulators of this axis are not well characterized. Our study suggests that ANKRD1 promotes metastasis of breast cancer by activating NF-κB as well as MAGE-A6 signaling. Our findings show that ANKRD1 is a potential therapeutic target and a diagnostic marker for breast cancer metastasis.
Collapse
Affiliation(s)
- Penchatr Diskul-Na-Ayudthaya
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Seon Joo Bae
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
| | - Yun-Ui Bae
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Konkuk University, Seoul 05030, Republic of Korea;
| | - Ngu Trinh Van
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
| | - Wootae Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
| | - Seongho Ryu
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
- Department of Pathology, College of Medicine, Soonchunhyang University, Asan-si 311151, Republic of Korea
| |
Collapse
|
7
|
Adams KM, Wendt JR, Wood J, Olson S, Moreno R, Jin Z, Gopalan S, Lang JD. Cell-intrinsic platinum response and associated genetic and gene expression signatures in ovarian cancer cell lines and isogenic models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605381. [PMID: 39131380 PMCID: PMC11312449 DOI: 10.1101/2024.07.26.605381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Ovarian cancers are still largely treated with platinum-based chemotherapy as the standard of care, yet few biomarkers of clinical response have had an impact on clinical decision making as of yet. Two particular challenges faced in mechanistically deciphering platinum responsiveness in ovarian cancer have been the suitability of cell line models for ovarian cancer subtypes and the availability of information on comparatively how sensitive ovarian cancer cell lines are to platinum. We performed one of the most comprehensive profiles to date on 36 ovarian cancer cell lines across over seven subtypes and integrated drug response and multiomic data to improve on our understanding of the best cell line models for platinum responsiveness in ovarian cancer. RNA-seq analysis of the 36 cell lines in a single batch experiment largely conforms with the currently accepted subtyping of ovarian cancers, further supporting other studies that have reclassified cell lines and demonstrate that commonly used cell lines are poor models of high-grade serous ovarian carcinoma. We performed drug dose response assays in the 32 of these cell lines for cisplatin and carboplatin, providing a quantitative database of IC50s for these drugs. Our results demonstrate that cell lines largely fall either well above or below the equivalent dose of the clinical maximally achievable dose (Cmax) of each compound, allowing designation of cell lines as sensitive or resistant. We performed differential expression analysis for high-grade serous ovarian carcinoma cell lines to identify gene expression correlating with platinum-response. Further, we generated two platinum-resistant derivatives each for OVCAR3 and OVCAR4, as well as leveraged clinically-resistant PEO1/PEO4/PEO6 and PEA1/PEA2 isogenic models to perform differential expression analysis for seven total isogenic pairs of platinum resistant cell lines. While gene expression changes overall were heterogeneous and vast, common themes were innate immunity/STAT activation, epithelial to mesenchymal transition and stemness, and platinum influx/efflux regulators. In addition to gene expression analyses, we performed copy number signature analysis and orthogonal measures of homologous recombination deficiency (HRD) scar scores and copy number burden, which is the first report to our knowledge applying field-standard copy number signatures to ovarian cancer cell lines. We also examined markers and functional readouts of stemness that revealed that cell lines are poor models for examination of stemness contributions to platinum resistance, likely pointing to the fact that this is a transient state. Overall this study serves as a resource to determine the best cell lines to utilize for ovarian cancer research on certain subtypes and platinum response studies, as well as sparks new hypotheses for future study in ovarian cancer.
Collapse
Affiliation(s)
- Kristin M. Adams
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jae-Rim Wendt
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Josie Wood
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sydney Olson
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Moreno
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Computer Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongmou Jin
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Srihari Gopalan
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessica D. Lang
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
Durkal Y, İnci K, Tokgun O, Yilmaz U, Yılmaz BC. Integrative analysis of ex vivo studies and microarray reveals the novel inhibitor effects of trehalose on the pathogenesis of pterygium. Chem Biol Drug Des 2024; 104:e14571. [PMID: 39013779 DOI: 10.1111/cbdd.14571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024]
Abstract
Pterygium is a frequent eye surface condition that is characterized by a high rate of proliferation, fibrovascular development, cellular migration, corneal infiltration, and angiogenesis. We investigated that ex vivo primary pterygium and conjunctival cell cultures were generated to analyze the effect of trehalose on cellular proliferation. After trehalose treatment, we performed microarray analysis to evaluate changes in the mRNA profile. We analyzed gene ontology (GO) and KEGG pathways to identify hub genes that changed expression levels after treatment and were associated with pterygium development. We selected three genes to verify their expression levels using qRT-PCR. The study also evaluated the impact of trehalose treatment on cell migration through a wound-healing assay. Our results suggested that pterygium cell proliferation was inhibited in a dose-dependent manner by trehalose. 2354 DEG were identified in pterygium and conjunctiva cells treated with trehalose compared to untreated groups. Functional enrichment analysis showed that differentially expressed mRNAs are involved in proliferation, vasculature development, and cell migration. We identified ten hub genes including upregulated (RANBP3L, SLC5A3, RERG, ANKRD1, DHCR7, RAB27B, GPRC5B, MSMO1, ASPN, DRAM1) and downregulated (TNC, PTGS2, GREM2, NPTX1, NR4A1, HMOX1, CXCL12, IL6, MYH2, TXNIP). Microarray analysis and functional investigations suggest that trehalose affects the pathogenesis of pterygium by modifying the expression of genes involved in crucial pathways related to cell function.
Collapse
Affiliation(s)
- Yasin Durkal
- Department of Ophthalmology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Kubilay İnci
- Department of Cancer Molecular Biology, Institution of Health Sciences, Pamukkale University, Denizli, Turkey
| | - Onur Tokgun
- Department of Medical Genetics, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Ugur Yilmaz
- Department of Ophthalmology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Banu Candan Yılmaz
- Department of Cancer Molecular Biology, Institution of Health Sciences, Pamukkale University, Denizli, Turkey
| |
Collapse
|
9
|
Zhou W, Huang Y, Liu J, Liu Y, Liu Y, Yu C. Identification of ANKRD13D as a potential target in renal cell carcinomas. Int J Biol Markers 2024; 39:149-157. [PMID: 38449090 DOI: 10.1177/03936155241236498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
BACKGROUND The correlation of the expression of ankyrin repeat domain (ANKRD) family members with renal cell carcinoma prognosis was investigated. METHODS The GEPIA2, GEO2R, UALCAN, GDC, OncoLnc, TIMER, PanglaoDB, CancerSEA, and Tabula Muris databases were used. Twelve ANKRD family members were identified as having overexpressed renal cell carcinoma samples. The ANKRD13D was identified as a renal cell carcinoma-specific target by cross-referencing the multiple survival databases. To clarify the role of ANKRD13D, the expression of NAKRD13D was analyzed at the single-cell level. RESULTS ANKRD13D was mainly expressed in immune cells and positively correlated with Treg cell infiltration. The expression of ANKRD13D was also positively correlated with PDCD1, CTLA4, LAG3, TNFSF14, and ISG20. The overexpression of ANKRD13D in Treg was confirmed using reverse transcription-quantitative polymerase chain reaction. The structure of ANKRD13D was predicted using AlphaFold. CONCLUSION In conclusion, we identified ANKRD13D as a key immune regulator, and targeting ANKRD13D with immune checkpoints blockade may be a promoting strategy for renal cell carcinoma immunotherapy.
Collapse
Affiliation(s)
- Wenqian Zhou
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yonghe Huang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Jing Liu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiguo Liu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuqing Liu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Shin CH, Rossi M, Anerillas C, Martindale JL, Yang X, Ji E, Pal A, Munk R, Yang JH, Tsitsipatis D, Mazan-Mamczarz K, Abdelmohsen K, Gorospe M. Increased ANKRD1 Levels in Early Senescence Mediated by RBMS1-Elicited ANKRD1 mRNA Stabilization. Mol Cell Biol 2024; 44:194-208. [PMID: 38769646 PMCID: PMC11123458 DOI: 10.1080/10985549.2024.2350540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
Cellular senescence is a dynamic biological process triggered by sublethal cell damage and driven by specific changes in gene expression programs. We recently identified ANKRD1 (ankyrin repeat domain 1) as a protein strongly elevated after triggering senescence in fibroblasts. Here, we set out to investigate the mechanisms driving the elevated production of ANKRD1 in the early stages of senescence. Our results indicated that the rise in ANKRD1 levels after triggering senescence using etoposide (Eto) was the result of moderate increases in transcription and translation, and robust mRNA stabilization. Antisense oligomer (ASO) pulldown followed by mass spectrometry revealed a specific interaction of the RNA-binding protein RBMS1 with ANKRD1 mRNA that was confirmed by ribonucleoprotein immunoprecipitation analysis. RBMS1 abundance decreased in the nucleus and increased in the cytoplasm during Eto-induced senescence; in agreement with the hypothesis that RBMS1 may participate in post-transcriptional stabilization of ANKRD1 mRNA, silencing RBMS1 reduced, while overexpressing RBMS1 enhanced ANKRD1 mRNA half-life after Eto treatment. A segment proximal to the ANKRD1 coding region was identified as binding RBMS1 and conferring RBMS1-dependent increased expression of a heterologous reporter. We propose that RBMS1 increases expression of ANKRD1 during the early stages of senescence by stabilizing ANKRD1 mRNA.
Collapse
Affiliation(s)
- Chang Hoon Shin
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Eunbyul Ji
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Apala Pal
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Rivas-Santiago C, Gallegos-Bañuelos M, Trejo-Ramos I, Solís-Torres N, Quintana-Belmares R, Macías-Segura N, Gutiérrez-Bañuelos H, Troncoso-Vazquez L, Rivas-Santiago B, Gonzalez-Curiel I. Adverse Health Effects of the Long-Term Simultaneous Exposure to Arsenic and Particulate Matter in a Murine Model. J Toxicol 2024; 2024:5391316. [PMID: 38757141 PMCID: PMC11098611 DOI: 10.1155/2024/5391316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/20/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024] Open
Abstract
PM2.5 and arsenic are two of the most hazardous substances for humans that coexist worldwide. Independently, they might cause multiple organ damage. However, the combined effect of PM2.5 and arsenic has not been studied. Here, we used an animal model of simultaneous exposure to arsenic and PM2.5. Adult Wistar rats were exposed to PM2.5, As, or PM2.5 + As and their corresponding control groups. After 7, 14, and 28 days of exposure, the animals were euthanized and serum, lungs, kidneys, and hearts were collected. Analysis performed showed high levels of lung inflammation in all experimental groups, with an additive effect in the coexposed group. Besides, we observed cartilaginous metaplasia in the hearts of all exposed animals. The levels of creatine kinase, CK-MB, and lactate dehydrogenase increased in experimental groups. Tissue alterations might be related to oxidative stress through increased GPx and NADPH oxidase activity. The findings of this study suggest that exposure to arsenic, PM2.5, or coexposure induces high levels of oxidative stress, which might be associated with lung inflammation and heart damage. These findings highlight the importance of reducing exposure to these pollutants to protect human health.
Collapse
Affiliation(s)
- Cesar Rivas-Santiago
- CONAHCYT-Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98085, Mexico
| | - Maria Gallegos-Bañuelos
- Sciences and Chemical Technology, Chemistry Sciences School, Autonomous University of Zacatecas, Zacatecas 98085, Mexico
| | - Irving Trejo-Ramos
- Sciences and Chemical Technology, Chemistry Sciences School, Autonomous University of Zacatecas, Zacatecas 98085, Mexico
| | - Nancy Solís-Torres
- Pharmacobiology, Chemistry Sciences School, Autonomous University of San Luis Potosi, San Luis Potosi 78210, Mexico
| | | | - Noé Macías-Segura
- Service and Department of Immunology, Faculty of Medicine and University Hospital, Autonomous University of Nuevo León, Nuevo León, 66450, Mexico
| | - Héctor Gutiérrez-Bañuelos
- Veterinary Medicine and Zootechnics School, Autonomous University of Zacatecas, Zacatecas 98085, Mexico
| | | | - Bruno Rivas-Santiago
- Biomedical Research Unit-Zacatecas-IMSS, Mexican Social Security Institute, Zacatecas 98085, Mexico
| | - Irma Gonzalez-Curiel
- Sciences and Chemical Technology, Chemistry Sciences School, Autonomous University of Zacatecas, Zacatecas 98085, Mexico
| |
Collapse
|
12
|
Milosevic E, Novkovic M, Cenni V, Bavelloni A, Kojic S, Jasnic J. Molecular characterization of ANKRD1 in rhabdomyosarcoma cell lines: expression, localization, and proteasomal degradation. Histochem Cell Biol 2024; 161:435-444. [PMID: 38396247 DOI: 10.1007/s00418-024-02272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy in children and adolescents. Respecting the age of the patients and the tumor aggressiveness, investigation of the molecular mechanisms of RMS tumorigenesis is directed toward the identification of novel therapeutic targets. To contribute to a better understanding of the molecular pathology of RMS, we investigated ankyrin repeat domain 1 (ANKRD1), designated as a potential marker for differential diagnostics. In this study, we used three RMS cell lines (SJRH30, RD, and HS-729) to assess its expression profile, intracellular localization, and turnover. They express wild-type ANKRD1, as judged by the sequencing of the open reading frame. Each cell line expressed a different amount of ANKRD1 protein, although the transcript level was similar. According to western blot analysis, ANKRD1 protein was expressed at detectable levels in the SJRH30 and RD cells (SJRH30 > RD), but not in the HS-729, even after immunoprecipitation. Immunocytochemistry revealed nuclear and cytoplasmic localization of ANKRD1 in all examined cell lines. Moreover, the punctate pattern of ANKRD1 staining in the nuclei of RD and HS-729 cells overlapped with coilin, indicating its association with Cajal bodies. We have shown that RMS cells are not able to overexpress ANKRD1 protein, which can be attributed to its proteasomal degradation. The unsuccessful attempt to overexpress ANKRD1 in RMS cells indicates the possibility that its overexpression may have detrimental effects for RMS cells and opens a window for further research into its role in RMS pathogenesis and for potential therapeutic targeting.
Collapse
Affiliation(s)
- Emilija Milosevic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia
| | - Mirjana Novkovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia
| | - Vittoria Cenni
- CNR Institute of Molecular Genetics "Luigi-Luca Cavalli-Sforza" Unit of Bologna, Via di Barbiano 1/10, 40136, Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS, Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Snezana Kojic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia.
| | - Jovana Jasnic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia.
| |
Collapse
|
13
|
Xu X, Zhong D, Wang X, Luo F, Zheng X, Feng T, Chen R, Cheng Y, Wang Y, Ma G. Pan-cancer integrated analysis of ANKRD1 expression, prognostic value, and potential implications in cancer. Sci Rep 2024; 14:5268. [PMID: 38438492 PMCID: PMC10912109 DOI: 10.1038/s41598-024-56105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
There is substantial evidence demonstrating the crucial role of inflammation in oncogenesis. ANKRD1 has been identified as an anti-inflammatory factor and is related to tumor drug resistance. However, there have been no studies investigating the prognostic value and molecular function of ANKRD1 in pan-cancer. In this study, we utilized the TCGA, GTEx, GSCALite, ENCORI, CTRP, DAVID, AmiGO 2, and KEGG databases as well as R language, to explore and visualize the role of ANKRD1 in tumors. We employed the ROC curve to explore its diagnostic significance, while the Kaplan-Meier survival curve and Cox regression analysis were used to investigate its prognostic value. Additionally, we performed Pearson correlation analysis to evaluate the association between ANKRD1 expression and DNA methylation, immune cell infiltration, immune checkpoints, TMB, MSI, MMR, and GSVA. Our findings indicate that ANKRD1 expression is dysregulated in pan-cancer. The ROC curve revealed that ANKRD1 expression is highly sensitive and specific in diagnosing CHOL, LUAD, LUSC, PAAD, SKCM, and UCS (AUC > 85.0%, P < 0.001). Higher ANKRD1 expression was related to higher overall survival (OS) in LGG, but with lower OS in COAD and STAD (P < 0.001). Moreover, Cox regression and nomogram analyzes suggested that ANKRD1 is an independent factor for COAD, GBM, HNSC, and LUSC. Dysregulation of ANKRD1 expression in pan-cancer involves DNA methylation and microRNA regulation. Using the CTRP database, we discovered that ANKRD1 may influence the half-maximal inhibitory concentration (IC50) of several anti-tumor drugs. ANKRD1 expression showed significant correlations with immune cell infiltration (including cancer-associated fibroblast and M2 macrophages), immune checkpoints, TMB, MSI, and MMR. Furthermore, ANKRD1 is involved in various inflammatory and immune pathways in COAD, GBM, and LUSC, as well as cardiac functions in HNSC. In vitro experiments demonstrated that ANKRD1 promotes migration, and invasion activity, while inhibiting apoptosis in colorectal cancer cell lines (Caco2, SW480). In summary, ANKRD1 represents a potential prognostic biomarker and therapeutic target in human cancers, particularly in COAD.
Collapse
Affiliation(s)
- Xusan Xu
- Institute of Maternal and Child Research, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Dan Zhong
- Institute of Maternal and Child Research, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Xiaoxia Wang
- Department of Neurology, Longjiang Hospital, Foshan, 528300, China
| | - Fei Luo
- Institute of Maternal and Child Research, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Xiaomei Zheng
- Institute of Maternal and Child Research, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
- Department of Pediatrics, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Taoshan Feng
- Institute of Maternal and Child Research, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Riling Chen
- Department of Pediatrics, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Yisen Cheng
- Institute of Maternal and Child Research, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Yajun Wang
- Institute of Children's Respiratory Diseases, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China.
| | - Guoda Ma
- Institute of Maternal and Child Research, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China.
| |
Collapse
|
14
|
Chen K, Hong C, Kong W, Li G, Liu Z, Zhu K, Lu C, Si P, Gao P, Ning G, Zhang R. ACADL-YAP axis activity in non-small cell lung cancer carcinogenicity. Cancer Cell Int 2024; 24:86. [PMID: 38402174 PMCID: PMC10894480 DOI: 10.1186/s12935-024-03276-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND The role of Acyl-CoA dehydrogenase long chain (ACADL) in different tumor types had different inhibiting or promoting effect. However, its role in non-small cell lung cancer (NSCLC) carcinogenicity is not clear. METHOD In this study, we utilized The Cancer Genome Atlas (TCGA) database to analyze ACADL expression in NSCLC and its correlation with overall survival. Furthermore, we investigated the function of ACADL on cellular proliferation, invasion, colony, apoptosis, cell cycle in vitro with NSCLC cells. Mechanistically, we evaluated the regulatory effect of ACADL expression on its downstream factor yes-associated protein (YAP) by assessing YAP phosphorylation levels and its cellular localization. Finally, we verified the tumorigenic effect of ACADL on NSCLC cells through xenograft experiments in vivo. RESULTS Compared to adjacent non-cancerous samples, ACADL significantly down-regulated in NSCLC. Overexpression of ACADL, effectively reduced the proliferative, colony, and invasive capabilities of NSCLC cells, while promoting apoptosis and inducing cell cycle arrest. Moreover, ACADL overexpression significantly enhanced YAP phosphorylation and hindered its nuclear translocation. However, the inhibitory effect of the overexpression of ACADL in NSCLC cells mentioned above can be partially counteracted by YAP activator XMU-MP-1 application both in vitro and in vivo. CONCLUSION The findings suggest that ACADL overexpression could suppress NSCLC development by modulating YAP phosphorylation and limiting its nuclear shift. This role of ACADL-YAP axis provided novel insights into NSCLC carcinogenicity and potential therapeutic strategies.
Collapse
Affiliation(s)
- Kegong Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230001, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, 230001, China
| | - Chunqiao Hong
- Department of Critical Care Medicine, Xiamen Chang Gung Hospital Hua Qiao University, Xiamen, 361013, China
| | - Weibo Kong
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230001, China
- Departments of Thoracic Surgery, Anhui Provincial Chest Hospital, Hefei, 230001, China
| | - Guanghua Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Zhuang Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230001, China
| | - Kechao Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230001, China
| | - Chen Lu
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230001, China
| | - Panpan Si
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230001, China
| | - Pan Gao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230001, China
| | - Guangyao Ning
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230001, China.
| | - Renquan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230001, China.
| |
Collapse
|
15
|
Reddy CS, Natarajan P, Nimmakayala P, Hankins GR, Reddy UK. From Fruit Waste to Medical Insight: The Comprehensive Role of Watermelon Rind Extract on Renal Adenocarcinoma Cellular and Transcriptomic Dynamics. Int J Mol Sci 2023; 24:15615. [PMID: 37958599 PMCID: PMC10647773 DOI: 10.3390/ijms242115615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Cancer researchers are fascinated by the chemistry of diverse natural products that show exciting potential as anticancer agents. In this study, we aimed to investigate the anticancer properties of watermelon rind extract (WRE) by examining its effects on cell proliferation, apoptosis, senescence, and global gene expression in human renal cell adenocarcinoma cells (HRAC-769-P) in vitro. Our metabolome data analysis of WRE exhibited untargeted phyto-constituents and targeted citrulline (22.29 µg/mg). HRAC-769-P cells were cultured in RPMI-1640 media and treated with 22.4, 44.8, 67.2, 88.6, 112, 134.4, and 156.8 mg·mL-1 for 24, 48, and 72 h. At 24 h after treatment, (88.6 mg·mL-1 of WRE) cell proliferation significantly reduced, more than 34% compared with the control. Cell viability decreased 48 and 72 h after treatment to 45% and 37%, respectively. We also examined poly caspase, SA-beta-galactosidase (SA-beta-gal), and wound healing activities using WRE. All treatments induced an early poly caspase response and a significant reduction in cell migration. Further, we analyzed the transcript profile of the cells grown at 44.8 mg·mL-1 of WRE after 6 h using RNA sequencing (RNAseq) analysis. We identified 186 differentially expressed genes (DEGs), including 149 upregulated genes and 37 downregulated genes, in cells treated with WRE compared with the control. The differentially expressed genes were associated with NF-Kappa B signaling and TNF pathways. Crucial apoptosis-related genes such as BMF, NPTX1, NFKBIA, NFKBIE, and NFKBID might induce intrinsic and extrinsic apoptosis. Another possible mechanism is a high quantity of citrulline may lead to induction of apoptosis by the production of increased nitric oxide. Hence, our study suggests the potential anticancer properties of WRE and provides insights into its effects on cellular processes and gene expression in HRAC-769-P cells.
Collapse
Affiliation(s)
| | | | | | - Gerald R. Hankins
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (C.S.R.); (P.N.); (P.N.)
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (C.S.R.); (P.N.); (P.N.)
| |
Collapse
|
16
|
Cheng Q, Liu K, Xiao J, Shen K, Wang Y, Zhou X, Wang J, Xu Z, Yang L. SEC23A confers ER stress resistance in gastric cancer by forming the ER stress-SEC23A-autophagy negative feedback loop. J Exp Clin Cancer Res 2023; 42:232. [PMID: 37670384 PMCID: PMC10478313 DOI: 10.1186/s13046-023-02807-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Sec23 homolog A (SEC23A), a core component of coat protein complex II (COPII), has been reported to be involved in several cancers. However, the role of SEC23A in gastric cancer remains unclear. METHODS The expression of SEC23A in gastric cancer was analyzed by using qRT-PCR, western blotting and IHC staining. The role of SEC23A in ER stress resistance was explored by functional experiments in vitro and vivo. The occupation of STAT3 on the SEC23A promoter region was verified by luciferase reporter plasmids and CHIP assay. The interaction between SEC23A and ANXA2 was identified by Co-IP and mass spectrometry analysis. RESULTS We demonstrated that SEC23A was upregulated in gastric cancer and predicted poor prognosis in patients with gastric cancer. Mechanistically, SEC23A was transcriptional upregulated by ER stress-induced pY705-STAT3. Highly expressed SEC23A promoted autophagy by regulating the cellular localization of ANXA2. The SEC23A-ANXA2-autophay axis, in turn, protected gastric cancer cells from ER stress-induced apoptosis. Furthermore, we identified SEC23A attenuated 5-FU therapeutic effectiveness in gastric cancer cells through autophagy-mediated ER stress relief. CONCLUSION We reveal an ER stress-SEC23A-autophagy negative feedback loop that enhances the ability of gastric cancer cells to resist the adverse survival environments. These results identify SEC23A as a promising molecular target for potential therapeutic intervention and prognostic prediction in patients with gastric cancer.
Collapse
Affiliation(s)
- Quan Cheng
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Kanghui Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Jian Xiao
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Kuan Shen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Yuanhang Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Xinyi Zhou
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Jiawei Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Li Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
- Department of General Surgery, Liyang People's Hospital, Liyang Branch Hospital of Jiangsu Province Hospital, Liyang, Jiangsu Province, China.
| |
Collapse
|
17
|
Kulus J, Kranc W, Kulus M, Bukowska D, Piotrowska-Kempisty H, Mozdziak P, Kempisty B, Antosik P. New Gene Markers of Exosomal Regulation Are Involved in Porcine Granulosa Cell Adhesion, Migration, and Proliferation. Int J Mol Sci 2023; 24:11873. [PMID: 37511632 PMCID: PMC10380331 DOI: 10.3390/ijms241411873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Exosomal regulation is intimately involved in key cellular processes, such as migration, proliferation, and adhesion. By participating in the regulation of basic mechanisms, extracellular vesicles are important in intercellular signaling and the functioning of the mammalian reproductive system. The complexity of intercellular interactions in the ovarian follicle is also based on multilevel intercellular signaling, including the mechanisms involving cadherins, integrins, and the extracellular matrix. The processes in the ovary leading to the formation of a fertilization-ready oocyte are extremely complex at the molecular level and depend on the oocyte's ongoing relationship with granulosa cells. An analysis of gene expression from material obtained from a primary in vitro culture of porcine granulosa cells was employed using microarray technology. Genes with the highest expression (LIPG, HSD3B1, CLIP4, LOX, ANKRD1, FMOD, SHAS2, TAGLN, ITGA8, MXRA5, and NEXN) and the lowest expression levels (DAPL1, HSD17B1, SNX31, FST, NEBL, CXCL10, RGS2, MAL2, IHH, and TRIB2) were selected for further analysis. The gene expression results obtained from the microarrays were validated using quantitative RT-qPCR. Exosomes may play important roles regarding intercellular signaling between granulosa cells. Therefore, exosomes may have significant applications in regenerative medicine, targeted therapy, and assisted reproduction technologies.
Collapse
Affiliation(s)
- Jakub Kulus
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Physiology Graduate Faculty, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiology Graduate Faculty, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
18
|
Zhang Y, Wang Y, Zhao G, Orsulic S, Matei D. Metabolic dependencies and targets in ovarian cancer. Pharmacol Ther 2023; 245:108413. [PMID: 37059310 DOI: 10.1016/j.pharmthera.2023.108413] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Reprogramming of cellular metabolism is a hallmark of cancer. Cancer cells undergo metabolic adaptations to maintain tumorigenicity and survive under the attack of immune cells and chemotherapy in the tumor microenvironment. Metabolic alterations in ovarian cancer in part overlap with findings from other solid tumors and in part reflect unique traits. Altered metabolic pathways not only facilitate ovarian cancer cells' survival and proliferation but also endow them to metastasize, acquire resistance to chemotherapy, maintain cancer stem cell phenotype and escape the effects of anti-tumor immune defense. In this review, we comprehensively review the metabolic signatures of ovarian cancer and their impact on cancer initiation, progression, and resistance to treatment. We highlight novel therapeutic strategies targeting metabolic pathways under development.
Collapse
Affiliation(s)
- Yaqi Zhang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Driskill Graduate Training Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yinu Wang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Guangyuan Zhao
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Driskill Graduate Training Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
19
|
Zhao J, Wu Y, Zhou K, Huang M, Sun Y, Kang J, Su Q, Zhao Y, Liu Q, Li C. Ferroptosis in calcium oxalate kidney stone formation and the possible regulatory mechanism of ANKRD1. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119452. [PMID: 36907445 DOI: 10.1016/j.bbamcr.2023.119452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/09/2023] [Accepted: 03/03/2023] [Indexed: 03/13/2023]
Abstract
The objective of this study was to explore the role of ferroptosis in the formation of calcium oxalate (CaOx) kidney stones and the regulatory mechanism of the ankyrin repeat domain 1 (ANKRD1) gene. The study found that the Nrf2/HO-1 and p53/SLC7A11 signaling pathways were activated in the kidney stone model group, and the expression of the ferroptosis marker proteins SLC7A11 and GPX4 was significantly reduced, while the expression of ACSL4 was significantly increased. The expression of the iron transport-related proteins CP and TF increased significantly, and Fe2+ accumulated in the cell. The expression of HMGB1 increased significantly. In addition, the level of intracellular oxidative stress was increased. The gene with the most significant difference caused by CaOx crystals in HK-2 cells was ANKRD1. Silencing or overexpression of ANKRD1 by lentiviral infection technology regulated the expression of the p53/SLC7A11 signaling pathway, which regulated the ferroptosis induced by CaOx crystals. In conclusion, CaOx crystals can mediate ferroptosis through the Nrf2/HO-1 and p53/SLC7A11 pathways, thereby weakening the resistance of HK-2 cells to oxidative stress and other unfavorable factors, enhancing cell damage, and increasing crystal adhesion and CaOx crystal deposition in the kidney. ANKRD1 participates in the formation and development of CaOx kidney stones by activating ferroptosis mediated by the p53/SLC7A11 pathway.
Collapse
Affiliation(s)
- Jiawen Zhao
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yongxian Wu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Kai Zhou
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Moran Huang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yan Sun
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Juening Kang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qisheng Su
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yutong Zhao
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Quan Liu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Department of Urology, Liuzhou Traditional Chinese Medical Hospital, The Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou, Guangxi, China.
| | - Chengyang Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
20
|
Yu QY, Han Y, Lu JH, Sun YJ, Liao XH. NRP1 regulates autophagy and proliferation of gastric cancer through Wnt/β-catenin signaling pathway. Aging (Albany NY) 2023; 15:8613-8629. [PMID: 37702613 PMCID: PMC10522364 DOI: 10.18632/aging.204560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/20/2023] [Indexed: 09/14/2023]
Abstract
Gastric cancer possesses high lethality rate, and its complex molecular mechanisms of pathogenesis lead to irrational treatment outcomes. Autophagy plays a dual role in cancer by both promoting and suppressing the cancer. However, the role of autophagy in gastric cancer is still vague. Therefore, in this study, we first obtained autophagy-related genes from the Human Autophagy Database, and then applied consensus clustering analysis to analyse the molecular subtypes of gastric cancer samples in the TCGA database. The genes obtained after subtyping were then applied to construct risk prognostic model. Following this, PCA and tSNE assessed risk scores with good discriminatory ability for gastric cancer samples. The results of Cox regression analysis and time-dependent ROC curve analysis indicated that the model had good risk prediction ability. Finally, NRP1 was selected as the final study subject in the context of expression pairwise analysis, Kaplan-Meier curves and external validation of the GEO dataset. In vitro experiments showed that NRP1 has the ability to regulate the proliferation and autophagy of gastric cancer cells by affecting the Wnt/β-catenin signalling pathway. Similarly, in vivo experiments have shown that NRP1 can affect tumour growth in vivo. We therefore propose that NRP1 can be used as both a prognostic factor and a therapeutic target through the regulation of autophagy in gastric cancer.
Collapse
Affiliation(s)
- Qi-Ying Yu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| | - Yue Han
- Jinan People’s Hospital Affiliated to Shandong First Medical University, Shandong, Jinan City People’s Hospital, Jinan 271199, Shandong, P.R. China
| | - Jia-Hui Lu
- Beidahuang Group General Hospital, Heilongjiang Province Second Cancer Hospital, Harbin 150000, Heilongjiang, P.R. China
| | - Yan-Jie Sun
- Jinan People’s Hospital Affiliated to Shandong First Medical University, Shandong, Jinan City People’s Hospital, Jinan 271199, Shandong, P.R. China
| | - Xing-Hua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| |
Collapse
|
21
|
A novel defined risk signature of endoplasmic reticulum stress-related genes for predicting the prognosis and immune infiltration status of ovarian cancer. J Zhejiang Univ Sci B 2023; 24:64-77. [PMID: 36632751 PMCID: PMC9837372 DOI: 10.1631/jzus.b2200272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Endoplasmic reticulum (ER) stress, as an emerging hallmark feature of cancer, has a considerable impact on cell proliferation, metastasis, invasion, and chemotherapy resistance. Ovarian cancer (OvCa) is one of the leading causes of cancer-related mortality across the world due to the late stage of disease at diagnosis. Studies have explored the influence of ER stress on OvCa in recent years, while the predictive role of ER stress-related genes in OvCa prognosis remains unexplored. Here, we enrolled 552 cases of ER stress-related genes involved in OvCa from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts for the screening of prognosis-related genes. The least absolute shrinkage and selection operator (LASSO) regression was applied to establish an ER stress-related risk signature based on the TCGA cohort. A seven-gene signature revealed a favorable predictive efficacy for the TCGA, International Cancer Genome Consortium (ICGC), and another GEO cohort (P<0.001, P<0.001, and P=0.04, respectively). Moreover, functional annotation indicated that this signature was enriched in cellular response and senescence, cytokines interaction, as well as multiple immune-associated terms. The immune infiltration profiles further delineated an immunologic unresponsive status in the high-risk group. In conclusion, ER stress-related genes are vital factors predicting the prognosis of OvCa, and possess great application potential in the clinic.
Collapse
|
22
|
Pinkney HR, Black MA, Diermeier SD. Single-Cell RNA-Seq Reveals Heterogeneous lncRNA Expression in Xenografted Triple-Negative Breast Cancer Cells. BIOLOGY 2021; 10:987. [PMID: 34681087 PMCID: PMC8533545 DOI: 10.3390/biology10100987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/03/2022]
Abstract
Breast cancer is the most commonly diagnosed cancer in the world, with triple-negative breast cancer (TNBC) making up 12% of these diagnoses. TNBC tumours are highly heterogeneous in both inter-tumour and intra-tumour gene expression profiles, where they form subclonal populations of varying levels of aggressiveness. These aspects make it difficult to study and treat TNBC, requiring further research into tumour heterogeneity as well as potential therapeutic targets and biomarkers. Recently, it was discovered that the majority of the transcribed genome comprises non-coding RNAs, in particular long non-coding RNAs (lncRNAs). LncRNAs are transcripts of >200 nucleotides in length that do not encode a protein. They have been characterised as regulatory molecules and their expression can be associated with a malignant phenotype. We set out to explore TNBC tumour heterogeneity in vivo at a single cell level to investigate whether lncRNA expression varies across different cells within the tumour, even if cells are coming from the same cell line, and whether lncRNA expression is sufficient to define cellular subpopulations. We applied single-cell expression profiling due to its ability to capture expression signals of lncRNAs expressed in small subpopulations of cells. Overall, we observed most lncRNAs to be expressed at low, but detectable levels in TNBC xenografts, with a median of 25 lncRNAs detected per cell. LncRNA expression alone was insufficient to define a subpopulation of cells, and lncRNAs showed highly heterogeneous expression patterns, including ubiquitous expression, subpopulation-specific expression, and a hybrid pattern of lncRNAs expressed in several, but not all subpopulations. These findings reinforce that transcriptionally defined tumour cell subpopulations can be identified in cell-line derived xenografts, and uses single-cell RNA-seq (scRNA-seq) to detect and characterise lncRNA expression across these subpopulations in xenografted tumours. Future studies will aim to investigate the spatial distribution of lncRNAs within xenografts and patient tissues, and study the potential of subclone-specific lncRNAs as new therapeutic targets and/or biomarkers.
Collapse
Affiliation(s)
- Holly R. Pinkney
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand; (H.R.P.); (M.A.B.)
| | - Michael A. Black
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand; (H.R.P.); (M.A.B.)
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand; (H.R.P.); (M.A.B.)
- Amaroq Therapeutics Ltd., Dunedin 9016, New Zealand
| |
Collapse
|
23
|
Ha JH, Jayaraman M, Yan M, Dhanasekaran P, Isidoro C, Song YS, Dhanasekaran DN. Identification of GNA12-driven gene signatures and key signaling networks in ovarian cancer. Oncol Lett 2021; 22:719. [PMID: 34429759 PMCID: PMC8371953 DOI: 10.3892/ol.2021.12980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
With the focus on defining the oncogenic network stimulated by lysophosphatidic acid (LPA) in ovarian cancer, the present study sought to interrogate the oncotranscriptome regulated by the LPA-mediated signaling pathway. LPA, LPA-receptor (LPAR) and LPAR-activated G protein 12 α-subunit, encoded by G protein subunit α 12 (GNA12), all serve an important role in ovarian cancer progression. While the general signaling mechanism regulated by LPA/LPAR/GNA12 has previously been characterized, the global transcriptomic network regulated by GNA12 in ovarian cancer pathophysiology remains largely unknown. To define the LPA/LPAR/GNA12-orchestrated oncogenic networks in ovarian cancer, transcriptomic and bioinformatical analyses were conducted using SKOV3 cells, in which the expression of GNA12 was silenced. Array analysis was performed in Agilent SurePrint G3 Human Comparative Genomic Hybridization 8×60 microarray platform. The array results were validated using Kuramochi cells. Gene and functional enrichment analyses were performed using Database for Annotation, Visualization and Integrated Discovery, Search Tool for Retrieval of Interacting Genes and Cytoscape algorithms. The results indicated a paradigm in which GNA12 drove ovarian cancer progression by upregulating a pro-tumorigenic network with AKT1, VEGFA, TGFB1, BCL2L1, STAT3, insulin-like growth factor 1 and growth hormone releasing hormone as critical hub and/or bottleneck nodes. Moreover, GNA12 downregulated a growth-suppressive network involving proteasome 20S subunit (PSM) β6, PSM α6, PSM ATPase 5, ubiquitin conjugating enzyme E2 E1, PSM non-ATPase 10, NDUFA4 mitochondrial complex-associated, NADH:ubiquinone oxidoreductase subunit B8 and anaphase promoting complex subunit 1 as hub or bottleneck nodes. In addition to providing novel insights into the LPA/LPAR/GNA12-regulated oncogenic networks in ovarian cancer, the present study identified several potential nodes in this network that could be assessed for targeted therapy.
Collapse
Affiliation(s)
- Ji-Hee Ha
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Muralidharan Jayaraman
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Mingda Yan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Padmaja Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, University of Eastern Piedmont, I-17-28100 Novara, Italy
| | - Yong-Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul 151-921, Republic of Korea
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| |
Collapse
|
24
|
Cao S, Tang J, Huang Y, Li G, Li Z, Cai W, Yuan Y, Liu J, Huang X, Zhang H. The Road of Solid Tumor Survival: From Drug-Induced Endoplasmic Reticulum Stress to Drug Resistance. Front Mol Biosci 2021; 8:620514. [PMID: 33928116 PMCID: PMC8076597 DOI: 10.3389/fmolb.2021.620514] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Endoplasmic reticulum stress (ERS), which refers to a series of adaptive responses to the disruption of endoplasmic reticulum (ER) homeostasis, occurs when cells are treated by drugs or undergo microenvironmental changes that cause the accumulation of unfolded/misfolded proteins. ERS is one of the key responses during the drug treatment of solid tumors. Drugs induce ERS by reactive oxygen species (ROS) accumulation and Ca2+ overload. The unfolded protein response (UPR) is one of ERS. Studies have indicated that the mechanism of ERS-mediated drug resistance is primarily associated with UPR, which has three main sensors (PERK, IRE1α, and ATF6). ERS-mediated drug resistance in solid tumor cells is both intrinsic and extrinsic. Intrinsic ERS in the solid tumor cells, the signal pathway of UPR-mediated drug resistance, includes apoptosis inhibition signal pathway, protective autophagy signal pathway, ABC transporter signal pathway, Wnt/β-Catenin signal pathway, and noncoding RNA. Among them, apoptosis inhibition is one of the major causes of drug resistance. Drugs activate ERS and its downstream antiapoptotic proteins, which leads to drug resistance. Protective autophagy promotes the survival of solid tumor cells by devouring the damaged organelles and other materials and providing new energy for the cells. ERS induces protective autophagy by promoting the expression of autophagy-related genes, such as Beclin-1 and ATG5–ATG12. ABC transporters pump drugs out of the cell, which reduces the drug-induced apoptosis effect and leads to drug resistance. In addition, the Wnt/β-catenin signal pathway is also involved in the drug resistance of solid tumor cells. Furthermore, noncoding RNA regulates the ERS-mediated survival and death of solid tumor cells. Extrinsic ERS in the solid tumor cells, such as ERS in immune cells of the tumor microenvironment (TME), also plays a crucial role in drug resistance by triggering immunosuppression. In immune system cells, ERS in dendritic cells (DCs) and myeloid-derived suppressor cells (MDSCs) influences the antitumor function of normal T cells, which results in immunosuppression. Meanwhile, ERS in T cells can also cause impaired functioning and apoptosis, leading to immunosuppression. In this review, we highlight the core molecular mechanism of drug-induced ERS involved in drug resistance, thereby providing a new strategy for solid tumor treatment.
Collapse
Affiliation(s)
- Shulong Cao
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Jingyi Tang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Yichun Huang
- Clinical Medical College, Hubei University of Science and Technology, Xianning, China
| | - Gaofeng Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Zhuoya Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Wenqi Cai
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Yuning Yuan
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Junlong Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xuqun Huang
- Edong Healthcare Group, Department of Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Haiyuan Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| |
Collapse
|
25
|
Ectopic Expression of Ankrd2 Affects Proliferation, Motility and Clonogenic Potential of Human Osteosarcoma Cells. Cancers (Basel) 2021; 13:cancers13020174. [PMID: 33419058 PMCID: PMC7825408 DOI: 10.3390/cancers13020174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Ankrd2 is a protein known for being mainly expressed in muscle fibers, where it participates in the mechanical stress response. Since both myocytes and osteoblasts are mesenchymal-derived cells, we were interested in examining the role of Ankrd2 in the progression of osteosarcoma which features a mechano-stress component. Although having been identified in many tumor-derived cell lines and -tissues, no study has yet described nor hypothesized any involvement for this protein in osteosarcoma tumorigenesis. In this paper, we report that Ankrd2 is expressed in cell lines obtained from human osteosarcoma and demonstrate a contribution by this protein in the pathogenesis of this insidious disease. Ankrd2 involvement in osteosarcoma development was evaluated in clones of Saos2, U2OS, HOS and MG63 cells stably expressing Ankrd2, through the investigation of hallmark processes of cancer cells. Interestingly, we found that exogenous expression of Ankrd2 influenced cellular growth, migration and clonogenicity in a cell line-dependent manner, whereas it was able to improve the formation of 3D spheroids in three out of four cellular models and enhanced matrix metalloproteinase (MMP) activity in all tested cell lines. Conversely, downregulation of Ankrd2 expression remarkably reduced proliferation and clonogenic potential of parental cells. As a whole, our data present Ankrd2 as a novel player in osteosarcoma development, opening up new therapeutic perspectives.
Collapse
|
26
|
RSK2 protects human breast cancer cells under endoplasmic reticulum stress through activating AMPKα2-mediated autophagy. Oncogene 2020; 39:6704-6718. [PMID: 32958832 DOI: 10.1038/s41388-020-01447-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 01/07/2023]
Abstract
Autophagy can protect stressed cancer cell by degradation of damaged proteins and organelles. However, the regulatory mechanisms behind this cellular process remain incompletely understood. Here, we demonstrate that RSK2 (p90 ribosomal S6 kinase 2) plays a critical role in ER stress-induced autophagy in breast cancer cells. We demonstrated that the promotive effect of RSK2 on autophagy resulted from directly binding of AMPKα2 in nucleus and phosphorylating it at Thr172 residue. IRE1α, an ER membrane-associated protein mediating unfolded protein response (UPR), is required for transducing the signal for activation of ERK1/2-RSK2 under ER stress. Suppression of autophagy by knockdown of RSK2 enhanced the sensitivity of breast cancer cells to ER stress both in vitro and in vivo. Furthermore, we demonstrated that inhibition of RSK2-mediated autophagy rendered breast cancer cells more sensitive to paclitaxel, a chemotherapeutic agent that induces ER stress-mediated cell death. This study identifies RSK2 as a novel controller of autophagy in tumor cells and suggests that targeting RSK2 can be exploited as an approach to reinforce the efficacy of ER stress-inducing agents against cancer.
Collapse
|
27
|
Maltseva D, Raygorodskaya M, Knyazev E, Zgoda V, Tikhonova O, Zaidi S, Nikulin S, Baranova A, Turchinovich A, Rodin S, Tonevitsky A. Knockdown of the α5 laminin chain affects differentiation of colorectal cancer cells and their sensitivity to chemotherapy. Biochimie 2020; 174:107-116. [PMID: 32334043 DOI: 10.1016/j.biochi.2020.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
The interaction of tumor cells with the extracellular matrix (ECM) may affect the rate of cancer progression and metastasis. One of the major components of ECM are laminins, the heterotrimeric glycoproteins consisting of α-, β-, and γ-chains (αβγ). Laminins interact with their cell surface receptors and, thus, regulate multiple cellular processes. In this work, we demonstrate that shRNA-mediated knockdown of the α5 laminin chain results in Wnt- and mTORC1-dependent partial dedifferentiation of colorectal cancer cells. Furthermore, we showed that this dedifferentiation involved activation of ER-stress signaling, pathway promoting the sensitivity of cells to 5-fluorouracil.
Collapse
Affiliation(s)
- Diana Maltseva
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Myasnitskaya str. 13/4, 117997, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997, Moscow, Russia; Scientific Research Center Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia.
| | - Maria Raygorodskaya
- Scientific Research Center Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia
| | - Evgeny Knyazev
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Myasnitskaya str. 13/4, 117997, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997, Moscow, Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya str. 10, 119121, Moscow, Russia
| | - Olga Tikhonova
- Institute of Biomedical Chemistry, Pogodinskaya str. 10, 119121, Moscow, Russia
| | - Shan Zaidi
- School of Systems Biology, George Mason University, Fairfax, VA, 22030, USA
| | - Sergey Nikulin
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Myasnitskaya str. 13/4, 117997, Moscow, Russia; Moscow Institute of Physics and Technology, Institutskiy per. 9, 141700, Dolgoprudny, Russia
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, VA, 22030, USA; Moscow Institute of Physics and Technology, Institutskiy per. 9, 141700, Dolgoprudny, Russia; Research Center of Medical Genetics, Moskvorechye str. 1, 115522, Moscow, Russia
| | | | - Sergey Rodin
- Department of Surgical Sciences, Ångström Laboratory, Uppsala University, 752 37, Uppsala, Sweden
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Myasnitskaya str. 13/4, 117997, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997, Moscow, Russia; Scientific Research Center Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia.
| |
Collapse
|
28
|
Zhu Q, Wang J, Zhang Q, Wang F, Fang L, Song B, Xie C, Liu J. Methylation‑driven genes PMPCAP1, SOWAHC and ZNF454 as potential prognostic biomarkers in lung squamous cell carcinoma. Mol Med Rep 2020; 21:1285-1295. [PMID: 32016477 PMCID: PMC7002985 DOI: 10.3892/mmr.2020.10933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
Of the different types of lung cancer, lung squamous cell cancer (LUSC) has the second highest rates of morbidity and mortality, which have been increasing in recent years. Epigenetic abnormalities may serve as potential biomarkers and diagnostic and/or therapeutic targets, which may help to monitor and improve the prognosis of patients with cancer. In the present study, data were obtained from The Cancer Genome Atlas database and survival and joint survival analyses were conducted using the R MethylMix package. Peptidase, mitochondrial processing a subunit pseudogene 1 (PMPCAP1), sosondowah ankyrin repeat domain family member C (SOWAHC) and zinc finger protein (ZNF) 454 were identified as independent prognosis‑related hub methylation‑driven genes (MDGs). Of these three genes, PMPCAP1 and SOWAHC, characterized by hypomethylation and high expression levels, were associated with poor prognosis in patients with LUSC, whilst ZNF454 was associated with an improved prognosis. In addition, pathway enrichment analysis suggested that PMPCAP1, SOWAHC and ZNF454 were primarily involved in gene expression or transcription pathways. Furthermore, 5, 1 and 10 key methylation sites of PMPCAP1, SOWAHC and ZNF454, respectively, were confirmed to be significantly relevant to gene expression, establishing a basis for further investigation into the mechanisms and more precise targets of these 3 genes. In conclusion, the MDGs PMPCAP1, SOWAHC and ZNF454 may be potential prognostic biomarkers of LUSC for guiding diagnosis and therapy options, as well as providing a theoretical basis for further investigation.
Collapse
Affiliation(s)
- Qingqing Zhu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250022, P.R. China
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Jia Wang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
- Department of Oncology, Zibo Maternal and Child Health Hospital, Zibo, Shandong 255000, P.R. China
| | - Qiujing Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250022, P.R. China
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Fuxia Wang
- Department of Oncology, Yun Cheng Country People's Hospital, Heze, Shandong 274700, P.R. China
| | - Lihua Fang
- Department of Oncology, Chang Qing District People's Hospital, Jinan, Shandong 250300, P.R. China
| | - Bao Song
- Basic Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Chao Xie
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Jie Liu
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
29
|
Ruszkowska M, Sadowska A, Nynca A, Orlowska K, Swigonska S, Molcan T, Paukszto L, Jastrzebski JP, Ciereszko RE. The effects of 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) on the transcriptome of aryl hydrocarbon receptor (AhR) knock-down porcine granulosa cells. PeerJ 2020; 8:e8371. [PMID: 32002328 PMCID: PMC6982409 DOI: 10.7717/peerj.8371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
Background 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a toxic man-made chemical, adversely affecting reproductive processes. The well-characterized canonical mechanism of TCDD action involves the activation of aryl hydrocarbon receptor (AhR) pathway, but AhR-independent mechanisms were also suggested. By applying RNA interference technology and Next Generation Sequencing (NGS) we aimed to identify genes involved in the mechanism of TCDD action in AhR knock-down porcine granulosa cells. Methods Porcine granulosa cells were transfected with small interfering RNAs targeting mRNA of AhR. After transfection, medium was exchanged and the AhR knock-down cells were treated with TCDD (100 nM) for 3, 12 or 24 h, total cellular RNA was isolated and designated for NGS. Following sequencing, differentially expressed genes (DEGs) were identified. To analyze functions and establish possible interactions of DEGs, the Gene Ontology (GO) database and the Search Tool for the Retrieval of Interacting Genes (STRING) database were used, respectively. Results The AhR gene expression level and protein abundance were significantly decreased after AhR-targeted siRNAs transfection of the cells. In TCDD-treated AhR knock-down cells we identified 360 differentially expressed genes (DEGs; P-adjusted < 0.05 and log2 fold change [log2FC] ≥ 1.0). The functional enrichment analysis of DEGs revealed that TCDD influenced the expression of genes involved, among other, in the metabolism of vitamin A, follicular development and oocyte maturation, proliferation and differentiation as well as inflammation, stress response, apoptosis and oncogenesis. The three-time point study demonstrated that TCDD-induced changes in the transcriptome of AhR knock-down porcine granulosa cells were especially pronounced during the early stages of the treatment (3 h). Conclusions TCDD affected the transcriptome of AhR knock-down porcine granulosa cells. The molecules involved in the AhR-independent action of TCDD were indicated in the study. The obtained data contribute to better understanding of molecular processes induced by xenobiotics in the ovary.
Collapse
Affiliation(s)
- Monika Ruszkowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Agnieszka Sadowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anna Nynca
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karina Orlowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Sylwia Swigonska
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tomasz Molcan
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jan P Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Renata E Ciereszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.,Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
30
|
Paul A, Sil J. Identification of Differentially Expressed Genes to Establish New Biomarker for Cancer Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1970-1985. [PMID: 29994718 DOI: 10.1109/tcbb.2018.2837095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The goal of the human genome project is to integrate genetic information into different clinical therapies. To achieve this goal, different computational algorithms are devised for identifying the biomarker genes, cause of complex diseases. However, most of the methods developed so far using DNA microarray data lack in interpreting biological findings and are less accurate in disease prediction. In the paper, we propose two parameters risk_factor and confusion_factor to identify the biologically significant genes for cancer development. First, we evaluate risk_factor of each gene and the genes with nonzero risk_factor result misclassification of data, therefore removed. Next, we calculate confusion_factor of the remaining genes which determines confusion of a gene in prediction due to closeness of the samples in the cancer and normal classes. We apply nondominated sorting genetic algorithm (NSGA-II) to select the maximally uncorrelated differentially expressed genes in the cancer class with minimum confusion_factor. The proposed Gene Selection Explore (GSE) algorithm is compared to well established feature selection algorithms using 10 microarray data with respect to sensitivity, specificity, and accuracy. The identified genes appear in KEGG pathway and have several biological importance.
Collapse
|
31
|
RREB1-induced upregulation of the lncRNA AGAP2-AS1 regulates the proliferation and migration of pancreatic cancer partly through suppressing ANKRD1 and ANGPTL4. Cell Death Dis 2019; 10:207. [PMID: 30814490 PMCID: PMC6393474 DOI: 10.1038/s41419-019-1384-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/02/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been reported to be involved in a variety of human diseases, including cancers. However, their mechanisms have not yet been fully elucidated. We investigated lncRNA changes that may be associated with pancreatic cancer (PC) by analyzing published microarray data, and identified AGAP2-AS1 as a relatively overexpressed lncRNA in PC tissues. qRT-PCR assays were performed to examine expression levels of AGAP2-AS1. MTT assays, colony formation assays, and EdU assays were used to determine the proliferative capacity of cells. Flow cytometry and TUNEL assays were used to study the regulation of AGAP2-AS1 in the cell cycle and apoptosis. Transwell experiments were used to study changes in cell invasion and metastasis, and a nude mouse model was established to assess the effects of AGAP2-AS1 on tumorigenesis in vivo. RNA sequencing was performed to probe AGAP2-AS1-related pathways. Subcellular fractionation and FISH assays were used to determine the distribution of AGAP2-AS1 in PC cells, and RIP and ChIP were used to determine the molecular mechanism of AGAP2-AS1-mediated regulation of potential target genes. Increased expression of AGAP2-AS1 was associated with tumor size and pathological stage progression in patients with PC. RREB1 was found to activate transcription of AGAP2-AS1 in PC cells. AGAP2-AS1 affected proliferation, apoptosis, cycle arrest, invasion, and metastasis of PC cells in vitro, and AGAP2-AS1 regulated PC proliferation in vivo. Furthermore, AGAP2-AS1 epigenetically inhibited the expression of ANKRD1 and ANGPTL4 by recruiting zeste homolog 2 (EZH2), thereby promoting PC proliferation and metastasis. In summary, our data show that RREB1-induced upregulation of AGAP2-AS1 regulates cell proliferation and migration in PC partly through suppressing ANKRD1 and ANGPTL4 by recruiting EZH2. AGAP2-AS1 represents a potential target for the diagnosis and treatment of PC in the future.
Collapse
|
32
|
Takahashi A, Seike M, Chiba M, Takahashi S, Nakamichi S, Matsumoto M, Takeuchi S, Minegishi Y, Noro R, Kunugi S, Kubota K, Gemma A. Ankyrin Repeat Domain 1 Overexpression is Associated with Common Resistance to Afatinib and Osimertinib in EGFR-mutant Lung Cancer. Sci Rep 2018; 8:14896. [PMID: 30291293 PMCID: PMC6173712 DOI: 10.1038/s41598-018-33190-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022] Open
Abstract
Overcoming acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is critical in combating EGFR-mutant non-small cell lung cancer (NSCLC). We tried to construct a novel therapeutic strategy to conquer the resistance to second-and third-generation EGFR-TKIs in EGFR-positive NSCLC patients. We established afatinib- and osimertinib-resistant lung adenocarcinoma cell lines. Exome sequencing, cDNA array and miRNA microarray were performed using the established cell lines to discover novel therapeutic targets associated with the resistance to second-and third-generation EGFR-TKIs. We found that ANKRD1 which is associated with the epithelial-mesenchymal transition (EMT) phenomenon and anti-apoptosis, was overexpressed in the second-and third-generation EGFR-TKIs-resistant cells at the mRNA and protein expression levels. When ANKRD1 was silenced in the EGFR-TKIs-resistant cell lines, afatinib and osimertinib could induce apoptosis of the cell lines. Imatinib could inhibit ANKRD1 expression, resulting in restoration of the sensitivity to afatinib and osimertinib of EGFR-TKI-resistant cells. In EGFR-mutant NSCLC patients, ANKRD1 was overexpressed in the tumor after the failure of EGFR-TKI therapy, especially after long-duration EGFR-TKI treatments. ANKRD1 overexpression which was associated with EMT features and anti-apoptosis, was commonly involved in resistance to second-and third-generation EGFR-TKIs. ANKRD1 inhibition could be a promising therapeutic strategy in EGFR-mutant NSCLC patients.
Collapse
Affiliation(s)
- Akiko Takahashi
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Masahiro Seike
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan.
| | - Mika Chiba
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Takahashi
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Shinji Nakamichi
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Masaru Matsumoto
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Susumu Takeuchi
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Yuji Minegishi
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Rintaro Noro
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Shinobu Kunugi
- Division of Pathology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Kaoru Kubota
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Akihiko Gemma
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
33
|
Baek E, Lee JS, Lee GM. Untangling the mechanism of 3‐methyladenine in enhancing the specific productivity: Transcriptome analysis of recombinant Chinese hamster ovary cells treated with 3‐methyladenine. Biotechnol Bioeng 2018; 115:2243-2254. [DOI: 10.1002/bit.26777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/05/2018] [Accepted: 06/21/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Eric Baek
- Department of Biological SciencesKAISTDaejeon Republic of Korea
| | - Jae Seong Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkKgs. Lyngby Denmark
- Department of Molecular Science and TechnologyAjou UniversitySuwon Republic of Korea
| | - Gyun Min Lee
- Department of Biological SciencesKAISTDaejeon Republic of Korea
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkKgs. Lyngby Denmark
| |
Collapse
|
34
|
Bin L, Li X, Richers B, Streib JE, Hu JW, Taylor P, Leung DYM. Ankyrin repeat domain 1 regulates innate immune responses against herpes simplex virus 1: A potential role in eczema herpeticum. J Allergy Clin Immunol 2018; 141:2085-2093.e1. [PMID: 29371118 DOI: 10.1016/j.jaci.2018.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/16/2017] [Accepted: 01/08/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common inflammatory skin disease. A subset of patients with AD are susceptible to disseminated herpes simplex virus (HSV) infection, a complication termed eczema herpeticum (ADEH+). The immune mechanisms causing ADEH+ remain elusive. Using RNA sequencing, we recently found that ankyrin repeat domain 1 (ANKRD1) was significantly induced in human PBMCs upon HSV-1 stimulation, and its induction in patients with ADEH+ was significantly reduced compared with that seen in AD patients without a history of eczema herpeticum (ADEH-). OBJECTIVE We sought to validate ANKRD1 gene expression in nonatopic (NA) subjects, patients with ADEH-, and patients with ADEH+ and to delineate the biological function of ANKRD1 and the signaling pathway or pathways involved. METHODS Purification of human PBMCs, monocytes, B cells, dendritic cells, T cells, and natural killer cells; RNA extraction and quantitative RT-PCR; small interfering RNA technique; co-immunoprecipitation; and Western blot assays were used. RESULTS ANKRD1 expression was significantly reduced in PBMCs from patients with ADEH+ after HSV-1 stimulation compared with PBMCs from patients with ADEH-. We found that the induction of ANKRD1 by HSV-1 and multiple pattern recognition receptor agonists are mediated by inflammatory cytokines. Silencing ANKRD1 gene expression in antigen-presenting cells led to increased viral load and reduced IFNB1 and IL29 production. Using co-immunoprecipitation methods, we demonstrated that ANKRD1 formed protein complexes with interferon regulatory factor (IRF) 3 and IRF7, which are important transcription factors regulating signaling transduction of pattern recognition receptors. Overexpression of ANKRD1 enhanced the IRF3-mediated signaling pathways. CONCLUSION ANKRD1 is involved in IRF3-mediated antiviral innate immune signaling pathways. Its reduced expression in patients with ADEH+ might contribute to the pathogenesis of ADEH+.
Collapse
Affiliation(s)
- Lianghua Bin
- Department of Pediatrics, National Jewish Health, Denver, Colo; First Affiliated Hospital, Biomedical Translational Research Institute, the International Immunology Center and the Key Laboratory of Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, China
| | - Xiaozhao Li
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | | | - Joanne E Streib
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | | | - Patricia Taylor
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, Colo; University of Colorado School of Medicine, Aurora, Colo.
| |
Collapse
|
35
|
Qin Y, Sekine I, Fan M, Takiguchi Y, Tada Y, Shingyoji M, Hanazono M, Yamaguchi N, Tagawa M. Augmented expression of cardiac ankyrin repeat protein is induced by pemetrexed and a possible marker for the pemetrexed resistance in mesothelioma cells. Cancer Cell Int 2017; 17:120. [PMID: 29238267 PMCID: PMC5725641 DOI: 10.1186/s12935-017-0493-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 12/04/2017] [Indexed: 12/29/2022] Open
Abstract
Background Pemetrexed (PEM) is an anti-cancer agent targeting DNA and RNA synthesis, and clinically in use for mesothelioma and non-small cell lung carcinoma. A mechanism of resistance to PEM is associated with elevated activities of several enzymes involved in nucleic acid metabolism. Methods We established two kinds of PEM-resistant mesothelioma cells which did not show any increase of the relevant enzyme activities. We screened genes enhanced in the PEM-resistant cells with a microarray analysis and confirmed the expression levels with Western blot analysis. A possible involvement of the candidates in the PEM-resistance was examined with a WST assay after knocking down the expression with si-RNA. We also analyzed a mechanism of the up-regulated expression with agents influencing AMP-activated protein kinase (AMPK) and p53. Results We found that expression of cardiac ankyrin repeat protein (CARP) was elevated in the PEM-resistant cells with a microarray and Western blot analysis. Down-regulation of CARP expression with si-RNA did not however influence the PEM resistance. Parent and PEM-resistant cells treated with PEM increased expression of CARP, AMPK, p53 and histone H2AX. The CARP up-regulation was however irrelevant to the p53 genotypes and not induced by an AMPK activator. Augmented p53 levels with nutlin-3a, an inhibitor for p53 degradation, and DNA damages were not always associated with the enhanced CARP expression. Conclusions These data collectively suggest that up-regulated CARP expression is a potential marker for development of PEM-resistance in mesothelioma and that the PEM-mediated enhanced expression is not directly linked with immediate cellular responses to PEM. Electronic supplementary material The online version of this article (10.1186/s12935-017-0493-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yiyang Qin
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717 Japan.,Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Mengmeng Fan
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuichi Takiguchi
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Michiko Hanazono
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717 Japan.,Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717 Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
36
|
Takaguri A, Kubo T, Mori M, Satoh K. The protective role of YAP1 on ER stress-induced cell death in vascular smooth muscle cells. Eur J Pharmacol 2017; 815:470-477. [PMID: 28951205 DOI: 10.1016/j.ejphar.2017.09.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 10/18/2022]
Abstract
Apoptosis of vascular smooth muscle cells (VSMCs) has been implicated in the progression of atherosclerosis, especially in vascular remodelling and plaque rupture. Although it is known that Yes-associated protein 1 (YAP1) is a critical molecule that regulates cell proliferation, differentiation and apoptosis, the role of YAP1 in VSMCs apoptosis remains unknown. In this study, we investigated whether YAP1 modulates VSMC apoptosis induced by endoplasmic reticulum (ER) stress. In cultured VSMC, tunicamycin caused cell death accompanied by an increase in caspase-3 processing and C/EBP homologous protein (CHOP) expression. YAP1 protein expression was downregulated by tunicamycin and the phosphorylation of YAP1 at the Ser127 site was significantly increased by tunicamycin. Tunicamycin further decreased cell viability followed by an increase in caspase-3 processing in the absence of YAP1 when compared with treatment only with tunicamycin or siYAP1. On the other hand, overexpression of a constitutively active YAP1 (YAP1-5SA), which lacks five serine phosphorylation sites, significantly prevented the caspase-3 processing and restored the decrease in cell viability induced by tunicamycin. Overexpression of YAP1-5SA significantly inhibited tunicamycin-induced caspase-8 processing without affecting phosphorylation of p-38 and Akt. Furthermore, the overexpression of YAP1-5SA significantly restored the decrease in ANKRD1 expression induced by tunicamycin. The inhibition of tunicamycin-induced caspase-3 cleavage by YAP1-5SA was markedly attenuated in ANKRD1-knockdown cells. These results demonstrate that ER stress can alter intracellular YAP1 protein expression in VSMCs and that YAP1 is protective against VSMC apoptosis induced by ER stress through inhibiting caspase8/3 activation mediated in part by upregulation of ANKRD1.
Collapse
Affiliation(s)
- Akira Takaguri
- Department of Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine-ku, Sapporo 006-8590, Japan
| | - Takashi Kubo
- Department of Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine-ku, Sapporo 006-8590, Japan
| | - Masaya Mori
- Department of Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine-ku, Sapporo 006-8590, Japan
| | - Kumi Satoh
- Department of Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine-ku, Sapporo 006-8590, Japan.
| |
Collapse
|
37
|
Wang FR, Wei YC, Han ZJ, He WT, Guan XY, Chen H, Li YM. Aberrant DNA-PKcs and ERGIC1 expression may be involved in initiation of gastric cancer. World J Gastroenterol 2017; 23:6119-6127. [PMID: 28970727 PMCID: PMC5597503 DOI: 10.3748/wjg.v23.i33.6119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/14/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the molecular mechanisms of gastric carcinogenesis.
METHODS We used label-free quantification technology integrated with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to identify differentially expressed proteins in 160 specimens of normal gastric mucosa, gastric mucosa with mild dysplasia, moderate dysplasia, severe dysplasia, and early mucosal gastric cancer (GC) collected at the Second Hospital of Lanzhou University from 2010 to 2015. Immunohistochemistry was used to verify the differentially expressed proteins detected by LC-MS/MS.
RESULTS With a threshold of a 1.2-fold change and a P-value < 0.05 between mild dysplasia, moderate dysplasia, severe dysplasia or early mucosal GC and matched normal gastric mucosa tissues, proteomic analysis identified 365 significantly differentially expressed proteins. ERGIC1 expression decreased, while DNA-PKcs expression increased gradually along with different stages of GC initiation based on the tendency of fold change. The expression patterns of ERGIC1 and DNA-PKcs revealed by immunohistochemistry were consistent with the LC-MS/MS results.
CONCLUSION The results suggest that aberrant ERGIC1 and DNA-PKcs expression may be involved in GC initiation.
Collapse
Affiliation(s)
- Fu-Rong Wang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of Pathology, Second Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Yu-Cai Wei
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Zhi-Jian Han
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Wen-Ting He
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Xiao-Ying Guan
- Department of Pathology, Second Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Hao Chen
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Yu-Min Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
38
|
Zhang N, Xie XJ, Wang JA. Multifunctional protein: cardiac ankyrin repeat protein. J Zhejiang Univ Sci B 2017; 17:333-41. [PMID: 27143260 DOI: 10.1631/jzus.b1500247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardiac ankyrin repeat protein (CARP) not only serves as an important component of muscle sarcomere in the cytoplasm, but also acts as a transcription co-factor in the nucleus. Previous studies have demonstrated that CARP is up-regulated in some cardiovascular disorders and muscle diseases; however, its role in these diseases remains controversial now. In this review, we will discuss the continued progress in the research related to CARP, including its discovery, structure, and the role it plays in cardiac development and heart diseases.
Collapse
Affiliation(s)
- Na Zhang
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiao-Jie Xie
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jian-An Wang
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
39
|
Zhang N, Ye F, Zhu W, Hu D, Xiao C, Nan J, Su S, Wang Y, Liu M, Gao K, Hu X, Chen J, Yu H, Xie X, Wang J. Cardiac ankyrin repeat protein attenuates cardiomyocyte apoptosis by upregulation of Bcl-2 expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:3040-3049. [PMID: 27713078 DOI: 10.1016/j.bbamcr.2016.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/11/2022]
Abstract
Cardiac ankyrin repeat protein (CARP) is a nuclear transcriptional co-factor that has additional functions in the myoplasm as a component of the muscle sarcomere. Previous studies have demonstrated increased expression of CARP in cardiovascular diseases, however, its role in cardiomyocyte apoptosis is unclear and controversial. In the present study, we investigated possible roles of CARP in hypoxia/reoxygenation (H/R) -induced cardiomyocyte apoptosis and the underlying mechanisms. Neonatal mouse ventricular cardiomyocytes were isolated and infected with adenovirus encoding Flag-tagged CARP (Ad-CARP) and lentivirus encoding CARP targeted shRNA (sh-CARP), respectively. Cardiomyocyte apoptosis induced by exposure to H/R conditions was evaluated by TUNEL staining and western blot analysis of cleaved caspase-3. The results showed that H/R-induced apoptosis was significantly decreased in Ad-CARP cardiomyocytes and increased in sh-CARP cardiomyocytes, suggesting a protective anti-apoptosis role for CARP. Interestingly, over-expressed CARP was mainly distributed in the nucleus, consistent with its role in regulating transcriptional activity. qPCR analysis showed that Bcl-2 transcripts were significantly increased in Ad-CARP cardiomyocytes. ChIP and co-IP assays confirmed the binding of CARP to the Bcl-2 promoter through interaction with transcription factor GATA4. Collectively, our results suggest that CARP can protect against H/R induced cardiomyocyte apoptosis, possibly through increasing anti-apoptosis Bcl-2 gene expression.
Collapse
Affiliation(s)
- Na Zhang
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Feiming Ye
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Wei Zhu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Dexing Hu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Changchen Xiao
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Jinliang Nan
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Sheng'an Su
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Yingchao Wang
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Mingfei Liu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Kanglu Gao
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Xinyang Hu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Jinghai Chen
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Hong Yu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Xiaojie Xie
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China.
| | - Jian'an Wang
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China.
| |
Collapse
|
40
|
Lin ZY, Kuo CH, Wu DC, Chuang WL. Anticancer effects of clinically acceptable colchicine concentrations on human gastric cancer cell lines. Kaohsiung J Med Sci 2016; 32:68-73. [PMID: 26944324 DOI: 10.1016/j.kjms.2015.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/28/2015] [Accepted: 12/21/2015] [Indexed: 02/08/2023] Open
Abstract
Colchicine is a very cheap microtubule destabilizer. Because microtubules are an ideal target for anticancer drugs, the purpose of this study was to investigate whether clinically acceptable colchicine concentrations have anticancer effects on gastric cancer cells, and its possible anticancer mechanisms. Two human gastric cancer cell lines (i.e., AGS and NCI-N87) were investigated by proliferative assay, microarray, quantitative reverse transcriptase-polymerase chain reaction, and a nude mice study using clinically acceptable colchicine concentrations (2 ng/mL and 6 ng/mL for in vitro tests and 0.07 mg colchicine/kg/d for in vivo tests). Our results showed that colchicine had the same inhibitory effects on the proliferation of both cell lines. The antiproliferative effects of colchicine on both cell lines were achieved only at the concentration of 6 ng/mL (p < 0.0001). In both cell lines, 18 genes were consistently upregulated and 10 genes were consistently downregulated by 6 ng/mL colchicine, compared with 2 ng/mL colchicine. Among these genes, only the upregulated DUSP1 gene may contribute to the antiproliferative effects of colchicine on gastric cancer cells. The nude mice (BALB/c-nu) experiment showed that colchicine-treated mice after 14 days of treatment had lower increased tumor volume ratios (p = 0.0199) and tumor growth rates (p = 0.024) than the control mice. In conclusion, colchicine has potential for the palliative treatment of gastric cancer. However, the anticancer effects are achieved only at high clinically acceptable colchicine concentrations. Monitoring the colchicine plasma concentration is mandatory if this drug is applied for the palliative treatment of gastric cancer.
Collapse
Affiliation(s)
- Zu-Yau Lin
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chao-Hung Kuo
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Deng-Chyang Wu
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
41
|
Liu X, Li H, Rajurkar M, Li Q, Cotton JL, Ou J, Zhu LJ, Goel HL, Mercurio AM, Park JS, Davis RJ, Mao J. Tead and AP1 Coordinate Transcription and Motility. Cell Rep 2016; 14:1169-1180. [PMID: 26832411 DOI: 10.1016/j.celrep.2015.12.104] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 11/11/2015] [Accepted: 12/23/2015] [Indexed: 11/25/2022] Open
Abstract
The Tead family transcription factors are the major intracellular mediators of the Hippo-Yap pathway. Despite the importance of Hippo signaling in tumorigenesis, Tead-dependent downstream oncogenic programs and target genes in cancer cells remain poorly understood. Here, we characterize Tead4-mediated transcriptional networks in a diverse range of cancer cells, including neuroblastoma, colorectal, lung, and endometrial carcinomas. By intersecting genome-wide chromatin occupancy analyses of Tead4, JunD, and Fra1/2, we find that Tead4 cooperates with AP1 transcription factors to coordinate target gene transcription. We find that Tead-AP1 interaction is JNK independent but engages the SRC1-3 co-activators to promote downstream transcription. Furthermore, we show that Tead-AP1 cooperation regulates the activity of the Dock-Rac/CDC42 module and drives the expression of a unique core set of target genes, thereby directing cell migration and invasion. Together, our data unveil a critical regulatory mechanism underlying Tead- and AP1-controlled transcriptional and functional outputs in cancer cells.
Collapse
Affiliation(s)
- Xiangfan Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Huapeng Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mihir Rajurkar
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qi Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jennifer L Cotton
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lihua J Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hira L Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Joo-Seop Park
- Divisions of Pediatric Urology and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
42
|
Transformer2 proteins protect breast cancer cells from accumulating replication stress by ensuring productive splicing of checkpoint kinase 1. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1540-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Zhai B, Hu F, Yan H, Zhao D, Jin X, Fang T, Pan S, Sun X, Xu L. Bufalin Reverses Resistance to Sorafenib by Inhibiting Akt Activation in Hepatocellular Carcinoma: The Role of Endoplasmic Reticulum Stress. PLoS One 2015; 10:e0138485. [PMID: 26381511 PMCID: PMC4575108 DOI: 10.1371/journal.pone.0138485] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/31/2015] [Indexed: 12/17/2022] Open
Abstract
Sorafenib is the standard first-line therapeutic treatment for patients with advanced hepatocellular carcinoma (HCC), but its use is hampered by the development of drug resistance. The activation of Akt by sorafenib is thought to be responsible for this resistance. Bufalin is the major active ingredient of the traditional Chinese medicine Chan su, which inhibits Akt activation; therefore, Chan su is currently used in the clinic to treat cancer. The present study aimed to investigate the ability of bufalin to reverse both inherent and acquired resistance to sorafenib. Bufalin synergized with sorafenib to inhibit tumor cell proliferation and induce apoptosis. This effect was at least partially due to the ability of bufalin to inhibit Akt activation by sorafenib. Moreover, the ability of bufalin to inactivate Akt depended on endoplasmic reticulum (ER) stress mediated by inositol-requiring enzyme 1 (IRE1). Silencing IRE1 with siRNA blocked the bufalin-induced Akt inactivation, but silencing eukaryotic initiation factor 2 (eIF2) or C/EBP-homologous protein (CHOP) did not have the same effect. Additionally, silencing Akt did not influence IRE1, CHOP or phosphorylated eIF2α expression. Two sorafenib-resistant HCC cell lines, which were established from human HCC HepG2 and Huh7 cells, were refractory to sorafenib-induced growth inhibition but were sensitive to bufalin. Thus, Bufalin reversed acquired resistance to sorafenib by downregulating phosphorylated Akt in an ER-stress-dependent manner via the IRE1 pathway. These findings warrant further studies to examine the utility of bufalin alone or in combination with sorafenib as a first- or second-line treatment after sorafenib failure for advanced HCC.
Collapse
Affiliation(s)
- Bo Zhai
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fengli Hu
- Department of Gastroenterology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haijiang Yan
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dali Zhao
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin Jin
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Taishi Fang
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shangha Pan
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xueying Sun
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lishan Xu
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
44
|
Gatti L, Cassinelli G, Zaffaroni N, Lanzi C, Perego P. New mechanisms for old drugs: Insights into DNA-unrelated effects of platinum compounds and drug resistance determinants. Drug Resist Updat 2015; 20:1-11. [PMID: 26003720 DOI: 10.1016/j.drup.2015.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 01/11/2023]
Abstract
Platinum drugs have been widely used for the treatment of several solid tumors. Although DNA has been recognized as the primary cellular target for these agents, there are unresolved issues concerning their effects and the molecular mechanisms underlying the antitumor efficacy. These cytotoxic agents interact with sub-cellular compartments other than the nucleus. Here, we review how such emerging phenomena contribute to the pharmacologic activity as well as to drug resistance phenotypes. DNA-unrelated effects of platinum drugs involve alterations at the plasma membrane and in endo-lysosomal compartments. A direct interaction with the mitochondria also appears to be implicated in drug-induced cell death. Moreover, the pioneering work of a few groups has shown that platinum drugs can act on the tumor microenvironment as well, and potentiate antitumor activity of the immune system. These poorly understood aspects of platinum drug activity sites may be harnessed to enhance their antitumor efficacy. A complete understanding of DNA-unrelated effects of platinum compounds might reveal new aspects of drug resistance allowing the implementation of the antitumor therapeutic efficacy of platinum compound-based regimens and minimization of their toxic side effects.
Collapse
Affiliation(s)
- Laura Gatti
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42/via Venezian 1, 20133 Milan, Italy
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42/via Venezian 1, 20133 Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42/via Venezian 1, 20133 Milan, Italy
| | - Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42/via Venezian 1, 20133 Milan, Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42/via Venezian 1, 20133 Milan, Italy.
| |
Collapse
|
45
|
JIANG XIA, KANDA TATSUO, NAKAMOTO SHINGO, HAGA YUKI, SASAKI REINA, NAKAMURA MASATO, WU SHUANG, MIKATA RINTARO, YOKOSUKA OSAMU. Knockdown of glucose-regulated protein 78 enhances poly(ADP-ribose) polymerase cleavage in human pancreatic cancer cells exposed to endoplasmic reticulum stress. Oncol Rep 2014; 32:2343-2348. [PMID: 25333575 PMCID: PMC4240477 DOI: 10.3892/or.2014.3533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/25/2014] [Indexed: 12/17/2022] Open
Abstract
The present study examined the expression of glucose‑regulated protein 78 (GRP78/Bip) in human pancreatic cancer cell lines and the effect of knockdown of GRP78 on the cleavage of poly(ADP-ribose) polymerase (PARP). Human pancreatic cancer cell lines (KP-2, MIAPaCa-2, Panc-1 and SUIT-2), constitutively expressed GRP78. We also demonstrated that ER stress induced by thapsigargin upregulated protein levels of GRP78. In the presence of thapsigargin, knockdown of GRP78 enhanced the PARP cleavage in the human pancreatic cancer cells. These results provide evidence that GRP78 is a potential therapeutic target for 'difficult-to-treat' pancreatic cancer, in which ER stress signaling in part falls into disorder.
Collapse
Affiliation(s)
- XIA JIANG
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chuo-ku, Chiba 260-8677, Japan
| | - TATSUO KANDA
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chuo-ku, Chiba 260-8677, Japan
| | - SHINGO NAKAMOTO
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chuo-ku, Chiba 260-8677, Japan
- Department of Molecular Virology, Chiba University, Graduate School of Medicine, Chuo-ku, Chiba 260-8677, Japan
| | - YUKI HAGA
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chuo-ku, Chiba 260-8677, Japan
| | - REINA SASAKI
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chuo-ku, Chiba 260-8677, Japan
| | - MASATO NAKAMURA
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chuo-ku, Chiba 260-8677, Japan
| | - SHUANG WU
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chuo-ku, Chiba 260-8677, Japan
| | - RINTARO MIKATA
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chuo-ku, Chiba 260-8677, Japan
| | - OSAMU YOKOSUKA
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chuo-ku, Chiba 260-8677, Japan
| |
Collapse
|