1
|
Saadh MJ, Rashed AB, Jamal A, Castillo-Acobo RY, Kamal MA, Cotrina-Aliaga JC, Gonzáles JLA, Alothaim AS, Alhoqail WA, Ahmad F, Lakshmaiya N, Amin AH, Younus DG, Rojas GGR, Bahrami A, Akhavan-Sigari R. miR-199a-3p suppresses neuroinflammation by directly targeting MyD88 in a mouse model of bone cancer pain. Life Sci 2023; 333:122139. [PMID: 37783266 DOI: 10.1016/j.lfs.2023.122139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
AIMS Pain is a profoundly debilitating symptom in cancer patients, leading to disability, immobility, and a marked decline in their quality of life. This study aimed to investigate the potential roles of miR-199a-3p in a murine model of bone cancer pain induced by tumor cell implantation in the medullary cavity of the femur. MATERIALS AND METHODS We assessed pain-related behaviors, including the paw withdrawal mechanical threshold (PWMT) and the number of spontaneous flinches (NSF). To investigate miRNA expression and its targets in astrocytes, we employed a combination of RNA-seq analysis, qRT-PCR, Western blotting, EdU, TUNEL, ChIP, ELISA, and luciferase reporter assays in mice (C3H/HeJ) with bone cancer pain and control groups. KEY FINDINGS On days 10, 14, 21, and 28 post-surgery, we observed significant differences in PWTL, PWMT, and NSF when compared to the sham group (P < 0.001). qRT-PCR assays and miRNA sequencing results confirmed reduced miR-199a-3p expression in astrocytes of mice with bone cancer pain. Gain- and loss-of-function experiments demonstrated that miR-199a-3p suppressed astrocyte activation and the expression of inflammatory cytokines. In vitro investigations revealed that miR-199a-3p mimics reduced the levels of inflammatory factors in astrocytes and MyD88/NF-κB proteins. Furthermore, treatment with a miR-199a-3p agonist resulted in reduced expression of MyD88, TAK1, p-p65, and inflammatory mediators, along with decreased astrocyte activation in the spinal cord. SIGNIFICANCE Collectively, these findings demonstrate that upregulation of miR-199a-3p may offer a therapeutic avenue for mitigating bone cancer pain in mice by suppressing neuroinflammation and inhibiting the MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Amera Bekhatroh Rashed
- Nursing Department, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Azfar Jamal
- Health and Basic Science Research Centre, Majmaah University, Majmaah 11952, Saudi Arabia; Department of Biology, College of Science, Al-Zulfi-, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia
| | | | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | | | - José Luis Arias Gonzáles
- Department of Social Sciences, Faculty of Social Studies, University of British Columbia, BC, Canada
| | - Abdulaziz S Alothaim
- Department of Biology, College of Science, Al-Zulfi-, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia
| | - Wardah A Alhoqail
- Department of Biology, College of Education, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Fuzail Ahmad
- College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | | | | | - Abolfazl Bahrami
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Germany.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland
| |
Collapse
|
2
|
Wen W, Zha S, Cheng H, Qi J, Chen Q, Gu Y. As3MT is related to relative RNAs and base modifications of p53 in workers exposed to arsenic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62094-62103. [PMID: 36940027 DOI: 10.1007/s11356-023-26457-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/10/2023] [Indexed: 05/10/2023]
Abstract
As3MT is the key enzyme involved in the methylation metabolism of arsenic. It is associated with DNA methylation closely also. This study is to explore the relationships between As3MT and epigenetic changes, and how p53 and relative ncRNAs and mRNAs play roles in the process. In this study, workers from four arsenic plants and individuals who resided in villages far away from the four plants were recruited. Arsenic compounds, relative indices, 28 relative RNAs, and base modifications of exons 5-8 of p53 were detected separately. Several methods were used to analyze the associations between them. Results shown that As3MT RNA was closely associated with all selected lncRNAs, miRNAs, and mRNAs related to miRNA production and maturation, tumorigenesis, and base modifications of p53. There probably exists causal relationship. Base modifications of exons 7 and 8 of p53 had significant synergistic effects on the expression of As3MT RNA and a series of genetic indices. But miR-190, miR-548, and base modifications of exon 5 of p53 had substantial inhibitory effects. Arsenic compounds and relative indices of metabolic transformation may have limited roles. The main novel finding in the present study is that As3MT play special and significant roles in the genotoxicity and carcinogenesis which could be coordinated operation with p53, and influenced by epigenetic factors largely, such as lncRNAs and miRNAs. P53 and relative ncRNAs and mRNAs may regulate the process by interacting with As3MT. The changes may initiate by arsenic, but probability through indirect relationship.
Collapse
Affiliation(s)
- Weihua Wen
- Yunnan Center for Disease Control and Prevention, No.158, Dongsi Street, Kunming, 650022, Yunnan, China.
| | - Shun Zha
- Yunnan Center for Disease Control and Prevention, No.158, Dongsi Street, Kunming, 650022, Yunnan, China
| | - Huirong Cheng
- Yunnan Center for Disease Control and Prevention, No.158, Dongsi Street, Kunming, 650022, Yunnan, China
| | - Jun Qi
- Yunnan Center for Disease Control and Prevention, No.158, Dongsi Street, Kunming, 650022, Yunnan, China
| | - Qian Chen
- Public Health College, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yun Gu
- Public Health College, Kunming Medical University, Kunming, 650500, Yunnan, China
| |
Collapse
|
3
|
Yu Y, Li X, Han S, Zhang J, Wang J, Chai J. miR-181c, a potential mediator for acute kidney injury in a burn rat model with following sepsis. Eur J Trauma Emerg Surg 2023; 49:1035-1045. [PMID: 36227355 DOI: 10.1007/s00068-022-02124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/27/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND The miRNA profile is changed after burn or sepsis and is involved in regulating inflammatory reactions. However, the function and molecular mechanism of miRNAs in regulating burn sepsis-induced acute kidney injury (AKI) are still unclear. METHODS In this study, animal and cell sepsis models were established after burned rats were injected with lipopolysaccharide (LPS) or NRK-52E cells treated with LPS, respectively. Cytokine expression, inflammatory cell infiltration, serum creatinine (Scr) and kidney injury molecule-1 (KIM-1) levels were analysed after the indicated treatments. RESULTS Burn sepsis increased the expression of inflammatory factors (TNF-α and IL-1β) and chemokines (MIP-1α, MIP-2 and MCP-1). Moreover, burn sepsis promoted macrophage and neutrophil infiltration into the kidney and upregulated the levels of Scr and KIM-1 in the kidney and urine. Ectopic expression of miR-181c significantly reduced LPS-induced TLR4 protein expression, suppressed KIM-1 mRNA levels and subsequently inhibited the activation of inflammatory genes (TNF-α and IL-1β) and chemokine genes (MIP-1α, MIP-2 and MCP-1). CONCLUSIONS Our results demonstrated that miR-181c could suppress TLR4 expression, reduce inflammatory factor and chemokine secretion, mitigate inflammatory cell infiltration into the kidney and downregulate KIM-1 expression, which might ultimately attenuate burn sepsis-induced AKI.
Collapse
Affiliation(s)
- Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Xiao Li
- The Fourth Medical Center of PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Shaofang Han
- The Fourth Medical Center of PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Jiake Chai
- The Fourth Medical Center of PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
4
|
Zhu J, Huang S, Li Y, Xu J, Chen R, Guo M, Qian X, Li T, Tian Z, Jin H, Huang C. NF-κB1 p50 stabilizes HIF-1α protein through suppression of ATG7-dependent autophagy. Cell Death Dis 2022; 13:1076. [PMID: 36575197 PMCID: PMC9794792 DOI: 10.1038/s41419-022-05521-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
The function and underlying mechanisms of p50 in the regulation of protein expression is much less studied because of its lacking of transactivation domain. In this study, we discovered a novel function of p50 in its stabilization of hypoxia-inducible factor 1α (HIF-1α) protein under the condition of cells exposed to arsenic exposure. In p50-deficient (p50-/-) cells, the HIF-1α protein expression was impaired upon arsenic exposure, and such defect could be rescued by reconstitutional expression of p50. Mechanistic study revealed that the inhibition of autophagy-related gene 7 (ATG7)-dependent autophagy was in charge of p50-mediated HIF-1α protein stabilization following arsenic exposure. Moreover, p50 deletion promoted nucleolin (NCL) protein translation to enhance ATG7 mRNA transcription via directly binding transcription factor Sp1 mRNA and increase its stability. We further discovered that p50-mediated miR-494 upregulation gave rise to the inhibition of p50-mediated NCL translation by interacting with its 3'-UTR. These novel findings provide a great insight into the understanding of biomedical significance of p50 protein in arsenite-associated disease development and therapy.
Collapse
Affiliation(s)
- Junlan Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
- Precision Medicine Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, 315800, Ningbo, Zhejiang, China
| | - Shirui Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Yang Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Jiheng Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Ruifan Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Mengxin Guo
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Xiaohui Qian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Tengda Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Zhongxian Tian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Honglei Jin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China.
| |
Collapse
|
5
|
Zhang Y, Han D, Yu X, Shao X, Zong C, Zhang M, Wang J, Liang J, Ge P. MiRNA-190a-5p promotes primordial follicle hyperactivation by targeting PHLPP1 in premature ovarian failure. Front Genet 2022; 13:1034832. [PMID: 36406123 PMCID: PMC9669437 DOI: 10.3389/fgene.2022.1034832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/21/2022] [Indexed: 12/11/2023] Open
Abstract
We previously screened 6 differentially expressed miRNAs in ovarian tissues of 4-vinylcyclohexene diepoxide (VCD)-treated premature ovarian failure (POF) model in SD rats, including miRNA-190a-5p, miRNA-98-5p, miRNA-29a-3p, miRNA-144-5p, miRNA-27b-3p, miRNA-151-5p. In this study, to investigate the mechanisms causing the onset of POF, we first identified miRNAs with earlier differential expression at consecutive time points in the VCD-treated rat POF model and explored the mechanisms by which the target miRNAs promote POF. The SD rats were injected with VCD for 15 days to induce POF. Additionally, we collected rat blood and ovaries at the same time every day for 15 consecutive days, and luteinizing hormone (LH), follicle-stimulating hormone (FSH), Anti-Mullerian hormone (AMH), and estradiol (E2) serum levels were detected by ELISA. Six miRNAs expression were measured in rat ovaries by qRT-PCR. Dual-luciferase reporter gene assays were employed to predict and verify the target gene (PHLPP1) of target miRNAs (miRNA-190a-5p). Western blot was examined to detect the expression levels of PHLPP1, AKT, p-AKT, FOXO3a, p-FOXO3a, and LHR proteins on the target gene PHLPP1 and its participation in the primordial follicular hyperactivation-related pathways (AKT-FOXO3a and AKT-LH/LHR). During the VCD modeling POF rat ovaries, miRNA-190a-5p was the first to show significant differential expression, i.e., 6th of VCD treating, and PHLPP1 was verified to be a direct downstream target of it. Starting from the 6th of VCD treatment, the more significant the up-regulation trend of miRNA-190a-5p expression, the more obvious the down-regulation trend of PHLPP1 and LHR mRNA and protein expression, accompanied by the more severe phosphorylation of AKT and FOXO3a proteins, thus continuously over-activating the rat primordial follicle to promote the development of POF. In conclusion, miRNA-190a-5p may become a potential biomarker for early screening of POF, and it can continuously activate primordial follicles in rats by targeting the expression of PHLPP1 and key proteins in the AKT-FOXO3a and AKT-LH/LHR pathways.
Collapse
Affiliation(s)
- Yuchi Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Dongwei Han
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyan Yu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyu Shao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Chuju Zong
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
- Heilongjiang Institute for Drug Control, Harbin, China
| | - Manyu Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Junzhi Wang
- Department of Dermatology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jingwen Liang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Pengling Ge
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Xie Q, Hua X, Huang C, Liao X, Tian Z, Xu J, Zhao Y, Jiang G, Huang H, Huang C. SOX2 Promotes Invasion in Human Bladder Cancers through MMP2 Upregulation and FOXO1 Downregulation. Int J Mol Sci 2022; 23:ijms232012532. [PMID: 36293387 PMCID: PMC9604292 DOI: 10.3390/ijms232012532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
SOX2, a member of the SRY-related HMG-box (SOX) family, is abnormally expressed in many tumors and associated with cancer stem cell-like properties. Previous reports have shown that SOX2 is a biomarker for cancer stem cells in human bladder cancer (BC), and our most recent study has indicated that the inhibition of SOX2 by anticancer compound ChlA-F attenuates human BC cell invasion. We now investigated the mechanisms through which SOX2 promotes the invasive ability of BC cells. Our studies revealed that SOX2 promoted SKP2 transcription and increased SKP2-accelerated Sp1 protein degradation. As Sp1 is a transcriptionally regulated gene, HUR transcription was thereby attenuated, and, in the absence of HUR, FOXO1 mRNA was degraded fast, which promoted BC cell invasion. In addition, SOX2 promoted BC invasion through the upregulation of nucleolin transcription, which resulted in increased MMP2 mRNA stability and expression. Collectively, our findings show that SOX2 promotes BC invasion through both SKP2-Sp1-HUR-FOXO1 and nucleolin-MMP2 dual axes.
Collapse
Affiliation(s)
- Qipeng Xie
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
- Department of Clinical Laboratory, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaohui Hua
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Chao Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (C.H.); (C.H.); Tel.: +86-135-2288-7554 (Chuanshu Huang)
| | - Xin Liao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhongxian Tian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiheng Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Yunping Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Guosong Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haishan Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
- Correspondence: (C.H.); (C.H.); Tel.: +86-135-2288-7554 (Chuanshu Huang)
| |
Collapse
|
7
|
Balamurugan K, Chandra K, Sai Latha S, Swathi M, Joshi MB, Misra P, Parsa KVL. PHLPPs: Emerging players in metabolic disorders. Drug Discov Today 2022; 27:103317. [PMID: 35835313 DOI: 10.1016/j.drudis.2022.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022]
Abstract
That reversible protein phosphorylation by kinases and phosphatases occurs in metabolic disorders is well known. Various studies have revealed that a multi-faceted and tightly regulated phosphatase, pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP)-1/2 displays robust effects in cardioprotection, ischaemia/reperfusion (I/R), and vascular remodelling. PHLPP1 promotes foamy macrophage development through ChREBP/AMPK-dependent pathways. Adipocyte-specific loss of PHLPP2 reduces adiposity, improves glucose tolerance,and attenuates fatty liver via the PHLPP2-HSL-PPARα axis. Discoveries of PHLPP1-mediated insulin resistance and pancreatic β cell death via the PHLPP1/2-Mst1-mTORC1 triangular loop have shed light on its significance in diabetology. PHLPP1 downregulation attenuates diabetic cardiomyopathy (DCM) by restoring PI3K-Akt-mTOR signalling. In this review, we summarise the functional role of, and cellular signalling mediated by, PHLPPs in metabolic tissues and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Keerthana Balamurugan
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, Telangana, India; Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Kanika Chandra
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, Telangana, India; Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - S Sai Latha
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, Telangana, India
| | - M Swathi
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, Telangana, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Parimal Misra
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, Telangana, India
| | - Kishore V L Parsa
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, Telangana, India.
| |
Collapse
|
8
|
BCAS3 accelerates glioblastoma tumorigenesis by restraining the P53/GADD45α signaling pathway. Exp Cell Res 2022; 417:113231. [PMID: 35659972 DOI: 10.1016/j.yexcr.2022.113231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 11/20/2022]
Abstract
As in many other cancers, highly malignant proliferation and disordered cell division play irreplaceable roles in the exceedingly easy recurrence and complex progression of glioblastoma multiforme (GBM); however, mechanistic studies of the numerous regulators involved in this process are still insufficiently thorough. The role of BCAS3 has been studied in other cancers, but its role in GBM is unclear. Here, our goal was to investigate the expression pattern of BCAS3 in GBM and its potential mechanism of action. Using TCGA database and human GBM samples, we found that BCAS3 expression was up-regulated in GBM, and its high expression predicted poor prognosis. To further investigate the relationship between BCAS3 and GBM characteristics, we up-regulated and down-regulated BCAS3 expression in GBM to detect its effect on cell proliferation and cell cycle. At the same time, we established U87 cells stably overexpressing BCAS3 and generated an intracranial xenograft model to investigate the Potential role of BCAS3 in vivo. Finally, based on in vitro cell experiments and in vivo GBM xenograft models, we observed that BCAS3 significantly regulates GBM cell proliferation and cell cycle and that this regulation is associated with p53/GADD45α Signaling pathway. Taken together, our findings suggest that BCAS3 is inextricably linked to the progression of GBM and that targeting BCAS3 may have therapeutic effects in GBM patients.
Collapse
|
9
|
Huang S, Hua X, Kuang M, Zhu J, Mu H, Tian Z, Zheng X, Xie Q. miR-190 promotes malignant transformation and progression of human urothelial cells through CDKN1B/p27 inhibition. Cancer Cell Int 2021; 21:241. [PMID: 33926470 PMCID: PMC8082649 DOI: 10.1186/s12935-021-01937-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background Although miR-190 has been reported to be related to human diseases, especially in the development and progression of cancer, its expression in human bladder cancer (BC) and potential contribution to BC remain unexplored. Methods RT-qPCR was used to verify the expression level of miR-190 and CDKN1B. Flow cytometry (FCM) assays were performed to detect cell cycle. Soft agar assay was used to measure anchorage-independent growth ability. Methylation-Specific PCR, Dual-luciferase reporter assay and Western blotting were used to elucidate the potential mechanisms involved. Results Our studies revealed that downregulation of the p27 (encoded by CDKN1B gene) protein is an important event related to miR-190, promoting the malignant transformation of bladder epithelial cells. miR-190 binds directly to CDKN1B 3’-UTR and destabilizes CDKN1B mRNA. Moreover, miR-190 downregulates TET1 by binding to the TET1 CDS region, which mediates hypermethylation of the CDKN1B promoter, thereby resulting in the downregulation of CDKN1B mRNA. These two aspects led to miR-190 inhibition of p27 protein expression in human BC cells. A more in-depth mechanistic study showed that c-Jun promotes the transcription of Talin2, the host gene of miR-190, thus upregulating the expression of miR-190 in human BC cells. Conclusions In this study, we found that miR-190 plays an important role in the development of BC. Taken together, these findings indicate that miR-190 may promote the malignant transformation of human urothelial cells by downregulating CDKN1B, which strengthens our understanding of miR-190 in regulating BC cell transformation.
Collapse
Affiliation(s)
- Shirui Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Mengjiao Kuang
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Junlan Zhu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Haiqi Mu
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zhongxian Tian
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaoqun Zheng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qipeng Xie
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
10
|
Jin H, Ma J, Xu J, Li H, Chang Y, Zang N, Tian Z, Wang X, Zhao N, Liu L, Chen C, Xie Q, Lu Y, Fang Z, Huang X, Huang C, Huang H. Oncogenic role of MIR516A in human bladder cancer was mediated by its attenuating PHLPP2 expression and BECN1-dependent autophagy. Autophagy 2021; 17:840-854. [PMID: 32116109 PMCID: PMC8078721 DOI: 10.1080/15548627.2020.1733262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
Although MIR516A has been reported to be downregulated and act as a tumor suppressor in multiple cancers, its expression and potential contribution to human bladder cancer (BC) remain unexplored. Unexpectedly, we showed here that MIR516A was markedly upregulated in human BC tissues and cell lines, while inhibition of MIR516A expression attenuated BC cell monolayer growth in vitro and xenograft tumor growth in vivo, accompanied with increased expression of PHLPP2. Further studies showed that MIR516A was able to directly bind to the 3'-untranslated region of PHLPP2 mRNA, which was essential for its attenuating PHLPP2 expression. The knockdown of PHLPP2 expression in MIR516A-inhibited cells could reverse BC cell growth, suggesting that PHLPP2 is a MIR516A downstream mediator responsible for MIR516A oncogenic effect. PHLPP2 was able to mediate BECN1/Beclin1 stabilization indirectly, therefore promoting BECN1-dependent macroautophagy/autophagy, and inhibiting BC tumor cell growth. In addition, our results indicated that the increased autophagy by attenuating MIR516A resulted in a dramatic inhibition of xenograft tumor formation in vivo. Collectively, our results reveal that MIR516A has a novel oncogenic function in BC growth by directing binding to PHLPP2 3'-UTR and inhibiting PHLPP2 expression, in turn at least partly promoting CUL4A-mediated BECN1 protein degradation, thereby attenuating autophagy and promoting BC growth, which is a distinct function of MIR516A identified in other cancers.Abbreviation: ATG3: autophagy related 3; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG12: autophagy related 12; BAF: bafilomycin A1; BC: bladder cancer; CHX: cycloheximide; Co-IP: co-immunoprecipitation; CUL3: cullin 3; CUL4A: cullin 4A; CUL4B: cullin 4B; IF: immunofluorescence: IHC-p: immunohistochemistry-paraffin; MIR516A: microRNA 516a (microRNA 516a1 and microRNA 516a2); MS: mass spectrometry; PHLPP2: PH domain and leucine rich repeat protein phosphatase.
Collapse
Affiliation(s)
- Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiugao Ma
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Clinical Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, China
| | - Jiheng Xu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongyan Li
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuanyuan Chang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nan Zang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongxian Tian
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nannan Zhao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Liu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Caiyi Chen
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongyong Lu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhouxi Fang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chuanshu Huang
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
11
|
Liang X, Wu Z, Shen S, Niu Y, Guo Y, Liang J, Guo W. LINC01980 facilitates esophageal squamous cell carcinoma progression via regulation of miR-190a-5p/MYO5A pathway. Arch Biochem Biophys 2020; 686:108371. [PMID: 32325088 DOI: 10.1016/j.abb.2020.108371] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022]
Abstract
Understanding the role of Long non-coding RNAs (lncRNAs) in tumorigenesis in diverse human malignancies would helpful for targeted therapies, containing esophageal squamous cell carcinoma (ESCC). However, the specific role and molecular mechanisms of LINC01980 in ESCC remain unclarified. In this study, we investigated the expression level, function role, and molecular mechanisms of LINC01980 in esophageal cancer cells and ESCC tissues. The high expression of LINC01980 was detected in ESCC tissues and cells, and predicted poor prognosis. LINC01980 promoted the cell proliferation, migration, invasion ability and epithelial-mesenchymal transition (EMT) progress in ESCC cells. In addition, a negative correlation between LINC01980 and miR-190a-5p or miR-190a-5p and MYO5A was observed in ESCC. We found that miR-190a-5p could directly bind with the mRNA of LINC01980 and MYO5A, and it was detected low expression in ESCC. We further demonstrated that the downregulation of MYO5A caused by overexpressing miR-190a-5p was released via upregulation of LINC01980. Functionally, LINC01980 acted as a competitively endogenous RNA (ceRNA) to impact the expression of MYO5A by sponging miR-190a-5p in ESCC. Therefore, these findings suggest that LINC01980 may act as an oncogenic lncRNA in ESCC and LINC01980/miR-190a-5p/MYO5A pathway contributes to the development of ESCC.
Collapse
Affiliation(s)
- Xiaoliang Liang
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zheng Wu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Supeng Shen
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yunfeng Niu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanli Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jia Liang
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
12
|
Huang J, Cai C, Zheng T, Wu X, Wang D, Zhang K, Xu B, Yan R, Gong H, Zhang J, Shi Y, Xu Z, Zhang X, Zhang X, Shang T, Zhou J, Guo X, Zeng C, Lai EY, Xiao C, Chen J, Wan S, Liu WH, Ke Y, Cheng H. Endothelial Scaffolding Protein ENH (Enigma Homolog Protein) Promotes PHLPP2 (Pleckstrin Homology Domain and Leucine-Rich Repeat Protein Phosphatase 2)-Mediated Dephosphorylation of AKT1 and eNOS (Endothelial NO Synthase) Promoting Vascular Remodeling. Arterioscler Thromb Vasc Biol 2020; 40:1705-1721. [PMID: 32268790 DOI: 10.1161/atvbaha.120.314172] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE A decrease in nitric oxide, leading to vascular smooth muscle cell proliferation, is a common pathological feature of vascular proliferative diseases. Nitric oxide synthesis by eNOS (endothelial nitric oxide synthase) is precisely regulated by protein kinases including AKT1. ENH (enigma homolog protein) is a scaffolding protein for multiple protein kinases, but whether it regulates eNOS activation and vascular remodeling remains unknown. Approach and Results: ENH was upregulated in injured mouse arteries and human atherosclerotic plaques and was associated with coronary artery disease. Neointima formation in carotid arteries, induced by ligation or wire injury, was greatly decreased in endothelium-specific ENH-knockout mice. Vascular ligation reduced AKT and eNOS phosphorylation and nitric oxide production in the endothelium of control but not ENH-knockout mice. ENH was found to interact with AKT1 and its phosphatase PHLPP2 (pleckstrin homology domain and leucine-rich repeat protein phosphatase 2). AKT and eNOS activation were prolonged in VEGF (vascular endothelial growth factor)-induced ENH- or PHLPP2-deficient endothelial cells. Inhibitors of either AKT or eNOS effectively restored ligation-induced neointima formation in ENH-knockout mice. Moreover, endothelium-specific PHLPP2-knockout mice displayed reduced ligation-induced neointima formation. Finally, PHLPP2 was increased in the endothelia of human atherosclerotic plaques and blood cells from patients with coronary artery disease. CONCLUSIONS ENH forms a complex with AKT1 and its phosphatase PHLPP2 to negatively regulate AKT1 activation in the artery endothelium. AKT1 deactivation, a decrease in nitric oxide generation, and subsequent neointima formation induced by vascular injury are mediated by ENH and PHLPP2. ENH and PHLPP2 are thus new proatherosclerotic factors that could be therapeutically targeted.
Collapse
Affiliation(s)
- Jiaqi Huang
- From the Department of Pathology and Pathophysiology and Department of Cardiology, Sir Run Run Shaw Hospital (J.H., K.Z., H.C.), Zhejiang University School of Medicine, Hangzhou, China
| | - Changhong Cai
- Department of Cardiology, Lishui Hospital, Zhejiang University School of Medicine, China. (C.C., C.Z.)
| | - Tianyu Zheng
- Department of Pathology and Pathophysiology (T.Z., X. Wu, R.Y., Y.S., Z.X., X.Z., Y.K.), Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyan Wu
- Department of Pathology and Pathophysiology (T.Z., X. Wu, R.Y., Y.S., Z.X., X.Z., Y.K.), Zhejiang University School of Medicine, Hangzhou, China
| | - Dongfei Wang
- Department of Cardiovascular Science, The First Affiliated Hospital of Zhejiang University (D.W., X.G.), Zhejiang University School of Medicine, Hangzhou, China
| | - Kaijie Zhang
- From the Department of Pathology and Pathophysiology and Department of Cardiology, Sir Run Run Shaw Hospital (J.H., K.Z., H.C.), Zhejiang University School of Medicine, Hangzhou, China
| | - Bocheng Xu
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China (B.X.)
| | - Ruochen Yan
- Department of Pathology and Pathophysiology (T.Z., X. Wu, R.Y., Y.S., Z.X., X.Z., Y.K.), Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Gong
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou University, China (H.G.)
| | - Jie Zhang
- Department of Urology, Sir Run Run Shaw Hospital (J. Zhang), Zhejiang University School of Medicine, Hangzhou, China
| | - Yueli Shi
- Department of Pathology and Pathophysiology (T.Z., X. Wu, R.Y., Y.S., Z.X., X.Z., Y.K.), Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyong Xu
- Department of Pathology and Pathophysiology (T.Z., X. Wu, R.Y., Y.S., Z.X., X.Z., Y.K.), Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology (T.Z., X. Wu, R.Y., Y.S., Z.X., X.Z., Y.K.), Zhejiang University School of Medicine, Hangzhou, China
| | - Xuemin Zhang
- Department of Vascular Surgery, Peking University People's Hospital, Peking University Health Science Center, Peking University, Beijing, China (X. Zhang)
| | - Tao Shang
- Department of Vascular Surgery, The First Affiliated Hospital (T.S.)
| | - Jianhong Zhou
- Department of Gynecology, School of Medicine, Zhejiang University, Hangzhou, China (J. Zhou)
| | - Xiaogang Guo
- Department of Cardiovascular Science, The First Affiliated Hospital of Zhejiang University (D.W., X.G.), Zhejiang University School of Medicine, Hangzhou, China
| | - Chunlai Zeng
- Department of Cardiology, Lishui Hospital, Zhejiang University School of Medicine, China. (C.C., C.Z.)
| | - En Yin Lai
- Department of Physiology, School of Basic Medical Sciences (E.Y.L.), Zhejiang University School of Medicine, Hangzhou, China
| | - Changchun Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, China (C.X., W.-H.L.).,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA (C.X.)
| | - Ju Chen
- Department of Medicine and Cardiology, University of California San Diego, La Jolla (J.C.)
| | - Shu Wan
- Brain Center of Zhejiang Hospital, Hangzhou, China (S.W.)
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, China (C.X., W.-H.L.)
| | - Yuehai Ke
- Department of Pathology and Pathophysiology (T.Z., X. Wu, R.Y., Y.S., Z.X., X.Z., Y.K.), Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqiang Cheng
- From the Department of Pathology and Pathophysiology and Department of Cardiology, Sir Run Run Shaw Hospital (J.H., K.Z., H.C.), Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (H.C.)
| |
Collapse
|
13
|
Liu F, Shi J, Zhang Y, Lian A, Han X, Zuo K, Liu M, Zheng T, Zou F, Liu X, Jin M, Mu Y, Li G, Su G, Liu J. NANOG Attenuates Hair Follicle-Derived Mesenchymal Stem Cell Senescence by Upregulating PBX1 and Activating AKT Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4286213. [PMID: 31885790 PMCID: PMC6914946 DOI: 10.1155/2019/4286213] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/24/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023]
Abstract
Stem cells derived from elderly donors or harvested by repeated subculture exhibit a marked decrease in proliferative capacity and multipotency, which not only compromises their therapeutic potential but also raises safety concerns for regenerative medicine. NANOG-a well-known core transcription factor-plays an important role in maintaining the self-renewal and pluripotency of stem cells. Unfortunately, the mechanism that NANOG delays mesenchymal stem cell (MSC) senescence is not well-known until now. In our study, we showed that both ectopic NANOG expression and PBX1 overexpression (i) significantly upregulated phosphorylated AKT (p-AKT) and PARP1; (ii) promoted cell proliferation, cell cycle progression, and osteogenesis; (iii) reduced the number of senescence-associated-β-galactosidase- (SA-β-gal-) positive cells; and (iv) downregulated the expression of p16, p53, and p21. Western blotting and dual-luciferase activity assays showed that ectopic NANOG expression significantly upregulated PBX1 expression and increased PBX1 promoter activity. In contrast, PBX1 knockdown by RNA interference in hair follicle- (HF-) derived MSCs that were ectopically expressing NANOG resulted in the significant downregulation of p-AKT and the upregulation of p16 and p21. Moreover, blocking AKT with the PI3K/AKT inhibitor LY294002 or knocking down AKT via RNA interference significantly decreased PBX1 expression, while increasing p16 and p21 expression and the number of SA-β-gal-positive cells. In conclusion, our findings show that NANOG delays HF-MSC senescence by upregulating PBX1 and activating AKT signaling and that a feedback loop likely exists between PBX1 and AKT signaling.
Collapse
Affiliation(s)
- Feilin Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Jiahong Shi
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
- Department of Ultrasound, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yingyao Zhang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Aobo Lian
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Xing Han
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Kuiyang Zuo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Mingsheng Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Tong Zheng
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Fei Zou
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Xiaomei Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Minghua Jin
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Guanfang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
14
|
Yu Y, Yang L, Han S, Wu Y, Liu L, Chang Y, Wang X, Chai J. MIR-190B Alleviates Cell Autophagy and Burn-Induced Skeletal Muscle Wasting via Modulating PHLPP1/Akt/FoxO3A Signaling Pathway. Shock 2019; 52:513-521. [PMID: 30407372 DOI: 10.1097/shk.0000000000001284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Cell autophagy is an important material recycling process and is involved in regulating many vital activities under both physiological and pathological conditions. However, the mechanism of autophagy regulating burn-induced skeletal muscle wasting still needs to be elucidated. METHODS The rat burn model with 30% total body surface area and L6 cell line were used in this study. An immunofluorescence assay was used to detect autophagic levels. MicroRNA array and real-time PCR were employed to measure miR-190b levels, and its influence on PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1) protein translation was estimated using luciferase reporter assay. The expression levels of autophagy-related proteins were analyzed by Western blot. Skeletal muscle wasting was evaluated by the ratio of tibias anterior muscle weight to body weight. RESULTS Our study demonstrates that burn injury promotes expression of the autophagy-related proteins light chain 3 (LC3) and Beclin-1, suppresses expression of Akt and Forkhead box O (FoxO) 3a protein phosphorylation, and increases PHLPP1 protein level which is required for Akt dephosphorylation. miR-190b, the regulator of PHLPP1 protein translation, also significantly decreases after burn injury. Ectopic expression of miR-190b in L6 myoblast cell downregulates PHLPP1 protein expression, elevates Akt and FoxO3a phosphorylation, and subsequently reduces cell autophagy. Finally, suppressing autophagy with 3-methyladenine represses the protein expression of LC3 and Beclin-1 and mitigates burn-induced skeletal muscle wasting. CONCLUSION Burn injury induced skeletal muscle cell autophagy and subsequently resulted in skeletal muscle wasting via regulating miR-190b/PHLPP1/Akt/FoxO3a signaling pathway.
Collapse
Affiliation(s)
- Yonghui Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
- Burn Institute, the First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Longlong Yang
- Burn Institute, the First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Shaofang Han
- Burn Institute, the First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Yushou Wu
- Burn Institute, the First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Lingying Liu
- Burn Institute, the First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Yang Chang
- Burn Institute, the First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Xiaoteng Wang
- Burn Institute, the First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Jiake Chai
- Burn Institute, the First Affiliated Hospital of PLA General Hospital, Beijing, China
| |
Collapse
|
15
|
Abstract
miRNAs, a major class of small noncoding RNAs approximately 18-25 nucleotides in length, function by repressing the expression of target genes through binding to complementary sequences in the 3'-UTRs of target genes. Emerging evidence has highlighted their important roles in numerous diseases, including human cancers. Recently, miR-190 has been shown to be dysregulated in various types of human cancers that participates in cancer-related biological processes, including proliferation, apoptosis, metastasis, drug resistance, by regulating associated target genes, and to predict cancer diagnosis and prognosis. In this review, we summarized the roles of miR-190-5p in human diseases, especially in human cancers. Then we classified its target genes in tumorigenesis and progression, which might provide evidence for cancer diagnosis and prognosis, promising tools for cancer treatment, or leads for further investigation.
Collapse
Affiliation(s)
- Yue Yu
- 1The First Department of Breast Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Hexi District, Tianjin, 300060 China.,2Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060 China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060 China.,4Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060 China
| | - Xu-Chen Cao
- 1The First Department of Breast Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Hexi District, Tianjin, 300060 China.,2Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060 China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060 China.,4Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060 China
| |
Collapse
|
16
|
Xu J, Hua X, Jin H, Zhu J, Li Y, Li J, Huang C. NFκB2 p52 stabilizes rhogdiβ mRNA by inhibiting AUF1 protein degradation via a miR-145/Sp1/USP8-dependent axis. Mol Carcinog 2019; 58:777-793. [PMID: 30604907 DOI: 10.1002/mc.22970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 12/29/2022]
Abstract
Although overexpression of the non-canonical NFκB subunit p52 has been observed in several tumors, the function and mechanism of p52 in bladder cancer (BC) are less well understood. Here, we aimed at understanding the role and mechanism underlying p52 regulation of BC invasion. Human p52 was stably knockdown with shRNA targeting p52 in two bladder cancer cell lines (T24 and UMUC3). Two constitutively expressing constructs, p52 and p100, were stably transfected in to T24 or UMUC3, respectively. The stable transfectants were used to determine function and mechanisms responsible for p52 regulation of BC invasion. We demonstrate that p52 mediates human BC invasion. Knockdown of p52 impaired bladder cancer invasion by reduction of rhogdiβ mRNA stability and expression. Positively regulation of rhogdiβ mRNA stability was mediated by p52 promoting AUF1 protein degradation, consequently resulting in reduction of AUF1 binding to rhogdiβ mRNA. Further studies indicated that AUF1 protein degradation was mediated by upregulating USP8 transcription, which was modulated by its negative regulatory transcription factor Sp1. Moreover, we found that p52 upregulated miR-145, which directly bound to the 3'-UTR of sp1 mRNA, leading to downregulation of Sp1 protein translation. Our results reveal a comprehensive pathway that p52 acts as a positive regulator of BC invasion by initiating a novel miR-145/Sp1/USP8/AUF1/RhoGDIβ axis. These findings provide insight into the understanding of p52 in the pathology of human BC invasion and progression, which may be useful information in the development of preventive and therapeutic approaches for using p52 as a potential target.
Collapse
Affiliation(s)
- Jiawei Xu
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohui Hua
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| | - Junlan Zhu
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| | - Yang Li
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| | - Chuangshu Huang
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| |
Collapse
|
17
|
Voce DJ, Bernal GM, Wu L, Crawley CD, Zhang W, Mansour NM, Cahill KE, Szymura SJ, Uppal A, Raleigh DR, Spretz R, Nunez L, Larsen G, Khodarev NN, Weichselbaum RR, Yamini B. Temozolomide Treatment Induces lncRNA MALAT1 in an NF-κB and p53 Codependent Manner in Glioblastoma. Cancer Res 2019; 79:2536-2548. [PMID: 30940658 DOI: 10.1158/0008-5472.can-18-2170] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/17/2019] [Accepted: 03/28/2019] [Indexed: 01/03/2023]
Abstract
Alkylating chemotherapy is a central component of the management of glioblastoma (GBM). Among the factors that regulate the response to alkylation damage, NF-κB acts to both promote and block cytotoxicity. In this study, we used genome-wide expression analysis in U87 GBM to identify NF-κB-dependent factors altered in response to temozolomide and found the long noncoding RNA (lncRNA) MALAT1 as one of the most significantly upregulated. In addition, we demonstrated that MALAT1 expression was coregulated by p50 (p105) and p53 via novel κB- and p53-binding sites in the proximal MALAT1 coding region. Temozolomide treatment inhibited p50 recruitment to its cognate element as a function of Ser329 phosphorylation while concomitantly increasing p53 recruitment. Moreover, luciferase reporter studies demonstrated that both κB and p53 cis-elements were required for efficient transactivation in response to temozolomide. Depletion of MALAT1 sensitized patient-derived GBM cells to temozolomide cytotoxicity, and in vivo delivery of nanoparticle-encapsulated anti-MALAT1 siRNA increased the efficacy of temozolomide in mice bearing intracranial GBM xenografts. Despite these observations, in situ hybridization of GBM specimens and analysis of publicly available datasets revealed that MALAT1 expression within GBM tissue was not prognostic of overall survival. Together, these findings support MALAT1 as a target for chemosensitization of GBM and identify p50 and p52 as primary regulators of this ncRNA. SIGNIFICANCE: These findings identify NF-κB and p53 as regulators of the lncRNA MALAT1 and suggest MALAT1 as a potential target for the chemosensitization of GBM.
Collapse
Affiliation(s)
- David J Voce
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Giovanna M Bernal
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Longtao Wu
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Clayton D Crawley
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Wei Zhang
- Department of Preventative Medicine, Northwestern University, Chicago, Illinois
| | - Nassir M Mansour
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Kirk E Cahill
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Szymon J Szymura
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - Abhineet Uppal
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | - David R Raleigh
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois
| | | | - Luis Nunez
- LNK Chemsolutions LLC, Lincoln, Nebraska
| | | | - Nikolai N Khodarev
- Department of Radiation and Cellular Oncology, and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Bakhtiar Yamini
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
18
|
Peng M, Wang J, Tian Z, Zhang D, Jin H, Liu C, Xu J, Li J, Hua X, Xu J, Huang C, Huang C. Autophagy-mediated Mir6981 degradation exhibits CDKN1B promotion of PHLPP1 protein translation. Autophagy 2019; 15:1523-1538. [PMID: 30821592 DOI: 10.1080/15548627.2019.1586254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PHLPP1 (PH domain and leucine rich repeat protein phosphatase 1) is a newly identified family of Ser/Thr phosphatases that catalyzes the dephosphorylation of a conserved regulatory motif of the AGC kinases resulting in a tumor suppressive function, while CDKN1B/p27 also acts as a tumor suppressor by regulating cell cycle, senescence, apoptosis, and cell motility. Our most recent studies reveal that CDKN1B is required for PHLPP1 abundance, which contributes to the inhibition of carcinogenic arsenite-induced cell malignant transformation through inhibition of RPS6-mediated Hif1a translation. However, nothing is known about the mechanisms underlying the crosstalk between these 2 key tumor suppressors in intact cells. Here, for the first time to the best of our knowledge, we show that CDKN1B is able to promote PHLPP1 protein translation by attenuating the abundance of Mir6981, which binds directly to the 5'untranslated region (UTR) of Phlpp1 mRNA. Further studies indicate that the attenuation of Mir6981 expression is due to macroautophagy/autophagy-mediated degradation of Mir6981 in an SQSTM1/p62-dependent fashion. Moreover, we have determined that Sqstm1 is upregulated by CDKN1B at the level of transcription via enhancing SP1 protein stability in an HSP90-depdendent manner. Collectively, our studies prove that: 1) SQSTM1 is a CDKN1B downstream effector responsible for CDKN1B-mediated autophagy; 2) by promoting the autophagy-mediated degradation of Mir6981, CDKN1B exerts a positive regulatory effect on PHLPP1 translation; 3) Mir6981 suppresses PHLPP1 translation by binding directly to its mRNA 5'-UTR, rather than classical binding to the 3'-UTR. These findings provide significant insight into understanding the crosstalk between CDKN1B and PHLPP1. Abbreviations: ATG: autophagy related; ACTB: actin beta; BAF: bafilomycin; BECN1: beclin 1; Cdkn1b/p27: cyclin-dependent kinase inhibitor 1B; CHX: cycloheximide; DMEM: dulbecco's modified eagle medium; FBS: fetal bovine serum; GAPDH: glyceraldehyde -3-phosphate dehydrogenase; Hif1a: hypoxia inducible factor 1, alpha subunit; Hsp90: heat shock protein 90; JUN: Jun proto-oncogene, AP1 transcription factor subunit; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MG132: proteasome inhibitor; Mtor: mechanistic target of rapamycin kinase; Phlpp1: PH domain and leucine rich repeat protein phosphatase 1; Phlpp2: PH domain and leucine rich repeat protein phosphatase 2; Pp2c: protein phosphatase 2 C; RPS6: ribosomal protein S6; Sp1: trans-acting transcription factor 1; Sqstm1/p62: sequestosome 1; TUBA: alpha tubulin; 3'-UTR; 3'-untranslated region; 5'-UTR: 5'-untranslated region.
Collapse
Affiliation(s)
- Minggang Peng
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Jingjing Wang
- b School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Zhongxian Tian
- b School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Dongyun Zhang
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Honglei Jin
- b School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Claire Liu
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Jiawei Xu
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Jingxia Li
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Xiaohui Hua
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Jiheng Xu
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Chao Huang
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Chuanshu Huang
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| |
Collapse
|
19
|
Wilk G, Braun R. regQTLs: Single nucleotide polymorphisms that modulate microRNA regulation of gene expression in tumors. PLoS Genet 2018; 14:e1007837. [PMID: 30557297 PMCID: PMC6343932 DOI: 10.1371/journal.pgen.1007837] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/23/2019] [Accepted: 11/17/2018] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with trait diversity and disease susceptibility, yet their functional properties often remain unclear. It has been hypothesized that SNPs in microRNA binding sites may disrupt gene regulation by microRNAs (miRNAs), short non-coding RNAs that bind to mRNA and downregulate the target gene. While several studies have predicted the location of SNPs in miRNA binding sites, to date there has been no comprehensive analysis of their impact on miRNA regulation. Here we investigate the functional properties of genetic variants and their effects on miRNA regulation of gene expression in cancer. Our analysis is motivated by the hypothesis that distinct alleles may cause differential binding (from miRNAs to mRNAs or from transcription factors to DNA) and change the expression of genes. We previously identified pathways—systems of genes conferring specific cell functions—that are dysregulated by miRNAs in cancer, by comparing miRNA–pathway associations between healthy and tumor tissue. We draw on these results as a starting point to assess whether SNPs on dysregulated pathways are responsible for miRNA dysregulation of individual genes in tumors. Using an integrative regression analysis that incorporates miRNA expression, mRNA expression, and SNP genotype data, we identify functional SNPs that we term “regulatory QTLs (regQTLs)”: loci whose alleles impact the regulation of genes by miRNAs. We apply the method to breast, liver, lung, and prostate cancer data from The Cancer Genome Atlas, and provide a tool to explore the findings. Genomics studies have identified single nucleotide polymorphisms (SNPs) associated with trait diversity and disease susceptibility, yet the mechanism of action of many genetic variants remains unclear. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that base-pair coding mRNAs to regulate gene transcription. We hypothesize that SNP variants may affect the ability of miRNAs to bind their target genes, thus influencing gene regulation. To identify these “regulatory QTLs” (regQTLs), we integrate miRNA expression, mRNA expression, and SNP data to identify miRNAs that are associated with pathway dysregulation in tumors, and assess whether SNPs on these pathways are responsible for disrupted miRNA-gene regulation. This data-driven approach enables the discovery of SNPs whose alleles impact gene regulation by miRNAs, with functional consequences for tumor biology. We detail the method, apply it to data from The Cancer Genome Atlas, and provide a tool to explore the findings.
Collapse
Affiliation(s)
- Gary Wilk
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
- Biostatistics Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Rosemary Braun
- Biostatistics Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
20
|
Liu X, Yao B, Wu Z. miRNA-199a-5p suppresses proliferation and invasion by directly targeting NF-κB1 in human ovarian cancer cells. Oncol Lett 2018; 16:4543-4550. [PMID: 30214589 DOI: 10.3892/ol.2018.9170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/28/2018] [Indexed: 12/12/2022] Open
Abstract
The aberrant expression of microRNA (miRNA)-199a-5p has been frequently reported in a number of cancer types, but to the best of our knowledge, this has not been reported in ovarian cancer (OC). The role and the molecular mechanism of miR-199a-5p in OC have not been reported. Therefore, the present study investigated the effects of miR-199a-5p overexpression on the proliferation and invasion of OC cells. The level of miR-199a-5p in OC cell lines was determined by reverse transcription-quantitative polymerase chain reaction. The miR-199a-5p mimic was transiently transfected into OC cells using Lipofectamine™ 2000 reagent. Subsequently, the BrdU-ELISA results indicated that the exogenous expression of miR-199a-5p inhibited cell proliferation. In addition, miR-199a-5p overexpression was able to inhibit the invasion of HO-8910 and ES-2 cells. RT-qPCR was performed to determine the expression of matrix metalloproteinase (MMP)-2 and -9 in OC cells. NF-κB1 expression was reduced by upregulation of miR-199a-5p. Bioinformatics analysis predicted that NF-κB1 was a potential target of miR-199a-5p. Luciferase reporter assay further confirmed that miR-199a-5p was able to directly target the 3'UTR of NF-κB1. In conclusion, miRNA-199a-5p may suppress the proliferation and invasion of human ovarian cancer cells by directly targeting NF-κB1.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Department of Internal Medicine-Oncology, Xinchang People's Hospital of Zhejiang, Shaoxing, Zhejiang 312500, P.R. China
| | - Baofeng Yao
- Department of Intensive Care Unit, Putuo Hospital of Zhejiang, Zhoushan, Zhejiang 316100, P.R. China
| | - Zhiming Wu
- Department of General Surgery, Shaoxing Hospital of China Medical University, Shaoxing, Zhejiang 312030, P.R. China
| |
Collapse
|
21
|
Tang B, Ma J, Ha X, Zhang Y, Xing Y. Tumor necrosis factor-alpha upregulated PHLPP1 through activating nuclear factor-kappa B during myocardial ischemia/reperfusion. Life Sci 2018; 207:355-363. [PMID: 29940243 DOI: 10.1016/j.lfs.2018.06.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022]
Abstract
AIMS The pleckstrin homology domain leucine-rich repeat protein phosphatase 1 (PHLPP1) specifically regulates phospho-Ser473 of protein kinase B (PKB, Akt) opposing cell survival during myocardial ischemia/reperfusion (I/R). Previous studies demonstrated PHLPP1 expression level was controlled by several mechanisms. However, the regulation mechanism of cardiac PHLPP1 expression following myocardial I/R remains unknown. MAIN METHODS The current study utilized the mouse model of myocardial I/R injury in vivo and the neonatal rat ventricular myocytes (NRVMs) of hypoxia/reoxygenation (H/R) injury in vitro. Expression of PHLPP1, nuclear factor-kappa B (NF-κB) and pNF-κB were determined by western blot. The expression of PHLPP1 and translocation of NF-κB was assessed by immunofluorescence. Chromatin immunoprecipitation (ChIP) assay was used to detect the binding of NF-κB to the promoter region of phlpp1 gene. KEY FINDINGS Myocardial I/R had no effect on cardiac PHLPP1 expression following I/R (30 min/2 h) but decreased after 4 h reperfusion. In vitro, H/R (4 h/1 h) and tumor necrosis factor-alpha (TNF-α)-stimulation resulted in upregulation of PHLPP1 in NRVMs, which was blocked with etanercept. Yet, H2O2-induced oxidative stress had no obvious effect on PHLPP1 expression of NRVMs at early stage but N-acetylcysteine (NAC) pretreatment increased PHLPP1 levels after 4 h H2O2 stimulation. TNF-α and H/R led to both expression and transcriptional activity of NF-κB, accompany with higher expression of PHLPP1. Pyrrolidine dithiocarbamate (PDTC), a NF-κB inhibitor, prevented the response not only in TNF-α-treated cardiomyocytes but also in H/R-treated group. SIGNIFICANCE These results implicated that TNF-α involved in cardiac PHLPP1 upregulation during reoxygenation, which was mediated by NF-κB transcriptional activity.
Collapse
Affiliation(s)
- Bin Tang
- Department of International Medical, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jing Ma
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoqin Ha
- Department of Clinical Laboratory Medicine, Lanzhou General Hospital of Lanzhou Military Region, People's Liberation Army, Key Laboratory of Stem Cell and Gene Drug in Gansu Province, Lanzhou 730000, China
| | - Yuanqiang Zhang
- Department of Histology and Embryology, Fourth Military Medical University, Xi'an 710032, China.
| | - Yuan Xing
- Department of Clinical Laboratory Medicine, Lanzhou General Hospital of Lanzhou Military Region, People's Liberation Army, Key Laboratory of Stem Cell and Gene Drug in Gansu Province, Lanzhou 730000, China.
| |
Collapse
|
22
|
Siburian MD, Suriapranata IM, Wanandi SI. Pre-S2 Start Codon Mutation of Hepatitis B Virus Subgenotype B3 Effects on NF-κB Expression and Activation in Huh7 Cell Lines. Viral Immunol 2018; 31:362-370. [PMID: 29652648 DOI: 10.1089/vim.2017.0158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A cross-sectional study on hepatitis B patients in Indonesia showed association of pre-S2 start codon mutation (M120 V) with cirrhosis and hepatocellular carcinoma (HCC), which was dissimilar from studies from other populations where pre-S2 deletion mutation was more prevalent. Different mutation patterns were attributed to different hepatitis B virus (HBV) subgenotypes in each population study. HBV surface proteins are reported to induce the activation of NF-κB, a transcriptional factor known to play an important role in the development of liver disease. This study aimed to see the effects of HBs variants in HBV subgenotype B3 on the expression and activation of NF-κB as one of the mechanisms in inducing advanced liver disease. HBV subgenotypes B3, each carrying wild-type (wt) HBs, M120 V, and pre-S2 deletion mutation were isolated from three HCC patients. HBs genes were amplified and cloned into pcDNA3.1 and were transfected using Lipofectamine into a Huh7 cell line. NF-κB activation was measured through IκB-α expression, which is regulated by NF-κB. RNA expressions for HBs, IκB-α, and NF-κB subunit (p50) were evaluated using real-time PCR. M120 V mutant had a significantly higher mRNA level compared with wt and pre-S2 deletion mutant; however, there were no significant differences in HBs protein expressions. The transcription level of p50 was higher in M120 V mutation compared with HBs wild-type and pre-S2 deletion mutant. NF-κB activation was higher in HBs wild-type compared with the two mutant variants. Pre-S2 mutations had no effect on the increment of NF-κB activation. However, M120 V mutation may utilize a different pathway in liver disease progression that involves high expression of NF-κB subunit, p50.
Collapse
Affiliation(s)
- Marlinang Diarta Siburian
- 1 Mochtar Riady Institute for Nanotechnology , Banten, Indonesia
- 2 Graduate School of Biomedical Science, Faculty of Medicine, University of Indonesia , Jakarta, Indonesia
| | | | - Septelia Inawati Wanandi
- 2 Graduate School of Biomedical Science, Faculty of Medicine, University of Indonesia , Jakarta, Indonesia
| |
Collapse
|
23
|
Jin H, Sun W, Zhang Y, Yan H, Liufu H, Wang S, Chen C, Gu J, Hua X, Zhou L, Jiang G, Rao D, Xie Q, Huang H, Huang C. MicroRNA-411 Downregulation Enhances Tumor Growth by Upregulating MLLT11 Expression in Human Bladder Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:312-322. [PMID: 29858066 PMCID: PMC5889700 DOI: 10.1016/j.omtn.2018.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 12/25/2022]
Abstract
Although several previous studies have reported the implication of various microRNAs (miRNAs) in regulation of human bladder cancer (BC) development, alterations and function of many miRNAs in bladder cancer growth are not explored yet at present. Here, we screened 1,900 known miRNAs and first discovered that miR-411 was one of the major miRNAs, which was down-regulated in n-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced BCs. This miR-411 down-regulation was also observed in human BC tissues and cell lines. The results from evaluating the relationship between miR-411 and patient survival in BC using the TCGA (The Cancer Genome Atlas) database indicated that miR-411 was positively correlated with DFS (disease-free survival). Our studies also showed that miR-411 inhibited tumor growth of human BC cells in a xenograft animal model. Mechanistic studies revealed that overexpression of miR-411 repressed the expression of ALL1-fused gene from the chromosome 1q (AF1q) (MLLT11) by binding to the 3′ untranslated region (UTR) of mllt11 mRNA and in turn induced p21 expression and caused cell cycle arrest at the G2/M phase, further inhibiting BC tumor growth. Collectively, our results improve our understanding of the role of miR-411 in BC tumor growth and suggest miR-411 and MLLT11 as potential new targets for the treatment of BC patients.
Collapse
Affiliation(s)
- Honglei Jin
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenrui Sun
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuanmei Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huiying Yan
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huating Liufu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Shuai Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Caiyi Chen
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiayan Gu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaohui Hua
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Lingli Zhou
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guosong Jiang
- Department of Urology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Dapang Rao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qipeng Xie
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Haishan Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuanshu Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| |
Collapse
|
24
|
Inhibition of PHLPP2/cyclin D1 protein translation contributes to the tumor suppressive effect of NFκB2 (p100). Oncotarget 2018; 7:34112-30. [PMID: 27095572 PMCID: PMC5085141 DOI: 10.18632/oncotarget.8746] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/31/2016] [Indexed: 12/24/2022] Open
Abstract
Although the precursor protein of NFκB2 (p100) is thought to act as a tumor suppressor in mammalian cells, the molecular mechanism of its anti-tumor activity is far from clear. Here, we are, for the first time, to report that p100 protein expression was dramatically decreased in bladder cancers of N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-treated mice and human patients. Knockdown of p100 in cultured human bladder cancer cells promoted anchorage-independent growth accompanied with elevating abundance of cell-cycle-related proteins and accelerated cell-cycle progression. Above effects could be completely reversed by ectopically expression of p100, but not p52. Mechanistically, p100 inhibited Cyclin D1 protein translation by activating the transcription of LARP7 and its hosted miR-302d, which could directly bind to 3'-UTR of cyclin d1 mRNA and inhibited its protein translation. Furthermore, p100 suppressed the expression of PHLPP2 (PH domain and leucine-rich repeat protein phosphatases 2), thus promoting CREB phosphorylation at Ser133 and subsequently leading to miR-302d transcription. Taken together, our studies not only for the first time establish p100 as a key tumor suppressor of bladder cancer growth, but also identify a novel molecular cascade of PHLPP2/CREB/miR-302d that mediates the tumor suppressive function of p100.
Collapse
|
25
|
Mirra P, Nigro C, Prevenzano I, Leone A, Raciti GA, Formisano P, Beguinot F, Miele C. The Destiny of Glucose from a MicroRNA Perspective. Front Endocrinol (Lausanne) 2018; 9:46. [PMID: 29535681 PMCID: PMC5834423 DOI: 10.3389/fendo.2018.00046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glucose serves as a primary, and for some tissues the unique, fuel source in order to generate and maintain the biological functions. Hyperglycemia is a hallmark of type 2 diabetes and is the direct consequence of perturbations in the glucose homeostasis. Insulin resistance, referred to as a reduced response of target tissues to the hormone, contributes to the development of hyperglycemia. The molecular mechanisms responsible for the altered glucose homeostasis are numerous and not completely understood. MicroRNAs (miRNAs) are now recognized as regulators of the lipid and glucose metabolism and are involved in the onset of metabolic diseases. Indeed, these small non-coding RNA molecules operate in the RNA silencing and posttranscriptional regulation of gene expression and may modulate the levels of kinases and enzymes in the glucose metabolism. Therefore, a better characterization of the function of miRNAs and a deeper understanding of their role in disease may represent a fundamental step toward innovative treatments addressing the causes, not only the symptoms, of hyperglycemia, using approaches aimed at restoring either miRNAs or their specific targets. In this review, we outline the current understanding regarding the impact of miRNAs in the glucose metabolism and highlight the need for further research focused on altered key kinases and enzymes in metabolic diseases.
Collapse
Affiliation(s)
- Paola Mirra
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Cecilia Nigro
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Immacolata Prevenzano
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessia Leone
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Gregory Alexander Raciti
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Pietro Formisano
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Francesco Beguinot
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Claudia Miele
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- *Correspondence: Claudia Miele,
| |
Collapse
|
26
|
Huang H, Jin H, Zhao H, Wang J, Li X, Yan H, Wang S, Guo X, Xue L, Li J, Peng M, Wang A, Zhu J, Wu XR, Chen C, Huang C. RhoGDIβ promotes Sp1/MMP-2 expression and bladder cancer invasion through perturbing miR-200c-targeted JNK2 protein translation. Mol Oncol 2017; 11:1579-1594. [PMID: 28846829 PMCID: PMC5663999 DOI: 10.1002/1878-0261.12132] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 12/17/2022] Open
Abstract
Our most recent studies demonstrate that RhoGDIβ is able to promote human bladder cancer (BC) invasion and metastasis in an X‐link inhibitor of apoptosis protein‐dependent fashion accompanied by increased levels of matrix metalloproteinase (MMP)‐2 protein expression. We also found that RhoGDIβ and MMP‐2 protein expressions are consistently upregulated in both invasive BC tissues and cell lines. In the present study, we show that knockdown of RhoGDIβ inhibited MMP‐2 protein expression accompanied by a reduction of invasion in human BC cells, whereas ectopic expression of RhoGDIβ upregulated MMP‐2 protein expression and promoted invasion as well. The mechanistic studies indicated that MMP‐2 was upregulated by RhoGDIβ at the transcriptional level by increased specific binding of the transcription factor Sp1 to the mmp‐2 promoter region. Further investigation revealed that RhoGDIβ overexpression led to downregulation of miR‐200c, whereas miR‐200c was able directly to target 3′‐UTR of jnk2mRNA and attenuated JNK2 protein translation, which resulted in attenuation of Sp1mRNA and protein expression in turn, inhibiting Sp1‐dependent mmp‐2 transcription. Collectively, our studies demonstrate that RhoGDIβ overexpression inhibits miR‐200c abundance, which consequently results in increases of JNK2 protein translation, Sp1 expression, mmp‐2 transcription, and BC invasion. These findings, together with our previous results showing X‐link inhibitor of apoptosis protein mediating mRNA stabilization of both RhoGDIβ and mmp‐2, reveal the nature of the MMP‐2 regulatory network, which leads to MMP‐2 overexpression and BC invasion.
Collapse
Affiliation(s)
- Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, China
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, China.,Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Huirong Zhao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, China
| | - Jingjing Wang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, China
| | - Xin Li
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, China
| | - Huiying Yan
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, China
| | - Shuai Wang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, China
| | - Xirui Guo
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Lei Xue
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Minggang Peng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Annette Wang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Junlan Zhu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Xue-Ru Wu
- Departments of Urology, New York University School of Medicine, NY, USA
| | - Changyan Chen
- The Center of Drug Discovery, Northeastern University, Boston, MA, USA
| | - Chuanshu Huang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, China.,Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA.,Departments of Urology, New York University School of Medicine, NY, USA
| |
Collapse
|
27
|
Jin H, Xie Q, Guo X, Xu J, Wang A, Li J, Zhu J, Wu XR, Huang H, Huang C. p63α protein up-regulates heat shock protein 70 expression via E2F1 transcription factor 1, promoting Wasf3/Wave3/MMP9 signaling and bladder cancer invasion. J Biol Chem 2017; 292:15952-15963. [PMID: 28794159 DOI: 10.1074/jbc.m117.792010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/08/2017] [Indexed: 01/15/2023] Open
Abstract
Bladder cancer (BC) is the sixth most common cancer in the United States and is the number one cause of death among patients with urinary system malignancies. This makes the identification of invasive regulator(s)/effector(s) as the potential therapeutic targets for managing BC a high priority. p63 is a member of the p53 family of tumor suppressor genes/proteins, plays a role in the differentiation of epithelial tissues, and is believed to function as a tumor suppressor. However, it remains unclear whether and how p63 functions in BC cell invasion after tumorigenesis. Here, we show that p63α protein levels were much higher in mouse high-invasive BC tissues than in normal tissues. Our results also revealed that p63α is crucial for heat shock protein 70 (Hsp70) expression and subsequently increases the ability of BC invasion. Mechanistic experiments demonstrated that p63α can transcriptionally up-regulate Hsp70 expression, thereby promoting BC cell invasion via the Hsp70/Wasf3/Wave3/MMP-9 axis. We further show that E2F transcription factor 1 (E2F1) mediates p63α overexpression-induced Hsp70 transcription. We also found that p63α overexpression activates E2F1 transcription, which appears to be stimulated by p63α together with E2F1. Collectively, our results demonstrate that p63α is a positive regulator of BC cell invasion after tumorigenesis, providing significant insights into the biological function of p63α in BC and supporting the notion that p63α might be a potential target for invasive BC therapy.
Collapse
Affiliation(s)
- Honglei Jin
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987.,Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China, and
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China, and
| | - Xirui Guo
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Jiheng Xu
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Annette Wang
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Jingxia Li
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Junlan Zhu
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University School of Medicine, New York, New York 10016 and the Veterans Affairs New York Harbor Healthcare System in Manhattan, New York, New York 10010
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China, and
| | - Chuanshu Huang
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987,
| |
Collapse
|
28
|
Zhou C, Huang C, Wang J, Huang H, Li J, Xie Q, Liu Y, Zhu J, Li Y, Zhang D, Zhu Q, Huang C. LncRNA MEG3 downregulation mediated by DNMT3b contributes to nickel malignant transformation of human bronchial epithelial cells via modulating PHLPP1 transcription and HIF-1α translation. Oncogene 2017; 36:3878-3889. [PMID: 28263966 PMCID: PMC5525547 DOI: 10.1038/onc.2017.14] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/11/2016] [Accepted: 12/27/2016] [Indexed: 02/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as key factors in various fundamental cellular biological processes, and many of them are likely to have functional roles in tumorigenesis. Maternally expressed gene 3 (MEG3) is an imprinted gene located at 14q32 that encodes a lncRNA, and the decreased MEG3 expression has been reported in multiple cancer tissues. However, nothing is known about the alteration and role of MEG3 in environmental carcinogen-induced lung tumorigenesis. Our present study, for the first time to the best of our knowledge, discovered that environmental carcinogen nickel exposure led to MEG3 downregulation, consequently initiating c-Jun-mediated PHLPP1 transcriptional inhibition and hypoxia-inducible factor-1α (HIF-1α) protein translation upregulation, in turn resulting in malignant transformation of human bronchial epithelial cells. Mechanistically, MEG3 downregulation was attributed to nickel-induced promoter hypermethylation via elevating DNMT3b expression, whereas PHLPP1 transcriptional inhibition was due to the decreasing interaction of MEG3 with its inhibitory transcription factor c-Jun. Moreover, HIF-1α protein translation was upregulated via activating the Akt/p70S6K/S6 axis resultant from PHLPP1 inhibition in nickel responses. Collectively, we uncover that nickel exposure results in DNMT3b induction and MEG3 promoter hypermethylation and expression inhibition, further reduces its binding to c-Jun and in turn increasing c-Jun inhibition of PHLPP1 transcription, leading to the Akt/p70S6K/S6 axis activation, and HIF-1α protein translation, as well as malignant transformation of human bronchial epithelial cells. Our studies provide a significant insight into understanding the alteration and role of MEG3 in nickel-induced lung tumorigenesis.
Collapse
MESH Headings
- Adenocarcinoma/enzymology
- Adenocarcinoma/pathology
- Adenocarcinoma of Lung
- Bronchi/pathology
- Carcinogens/toxicity
- Carcinoma, Squamous Cell/enzymology
- Carcinoma, Squamous Cell/pathology
- Cell Line
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/metabolism
- DNA (Cytosine-5-)-Methyltransferases/physiology
- Down-Regulation
- Epithelial Cells/enzymology
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lung Neoplasms/enzymology
- Lung Neoplasms/pathology
- Nickel/toxicity
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phosphoprotein Phosphatases/genetics
- Phosphoprotein Phosphatases/metabolism
- Promoter Regions, Genetic
- Protein Biosynthesis
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Transcription, Genetic
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Chengfan Zhou
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Chao Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Jingjing Wang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yu Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Junlan Zhu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Yang Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Qixing Zhu
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chuanshu Huang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| |
Collapse
|
29
|
Cai Q, Tu M, Xu-Monette ZY, Sun R, Manyam GC, Xu X, Tzankov A, Hsi ED, Møller MB, Medeiros LJ, Ok CY, Young KH. NF-κB p50 activation associated with immune dysregulation confers poorer survival for diffuse large B-cell lymphoma patients with wild-type p53. Mod Pathol 2017; 30:854-876. [PMID: 28281555 DOI: 10.1038/modpathol.2017.5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 12/12/2022]
Abstract
Dysregulated NF-κB signaling is critical for lymphomagenesis, however, the expression and clinical relevance of NF-κB subunit p50 in diffuse large B-cell lymphoma have not been evaluated. In this study, we analyzed the prognostic significance and gene expression signatures of p50 nuclear expression as a surrogate for p50 activation in 465 patients with de novo diffuse large B-cell lymphoma. We found that p50+ nuclear expression, observed in 34.6% of diffuse large B-cell lymphoma, predominantly composed of activated B-cell-like subtype, was an independent adverse prognostic factor in patients with activated B-cell-like diffuse large B-cell lymphoma. It was also an adverse prognostic factor in patients with wild-type TP53 independent of the activated B-cell-like and germinal center B-cell-like subtypes, even though p50 activation correlated with significantly lower levels of Myc, PI3K, phospho-AKT, and CXCR4 expression and less frequent BCL2 translocations. In contrast, in germinal center B-cell-like diffuse large B-cell lymphoma patients with TP53 mutations, p50+ nuclear expression correlated with significantly better clinical outcomes, and decreased p53, Bcl-2, and Myc expression. Gene expression profiling revealed multiple signaling pathways potentially upstream the p50 activation through either canonical or noncanonical NF-κB pathways, and suggested that immune suppression, including that by the immune checkpoint TIM-3 and that through leukocyte immunoglobulin-like receptors, but not antiapoptosis and proliferation, may underlie the observed poorer survival rates associated with p50+ nuclear expression in diffuse large B-cell lymphoma. In conclusion, these data show that p50 is important as a unique mechanism of R-CHOP-resistance in activated B-cell-like diffuse large B-cell lymphoma and in patients without TP53 mutations. The results also provide insights into the regulation and function of p50 in diffuse large B-cell lymphoma and its cross talk with the p53 pathway with important therapeutic implications.
Collapse
MESH Headings
- Antibodies, Monoclonal, Murine-Derived/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Cell Nucleus/chemistry
- Cyclophosphamide/therapeutic use
- Doxorubicin/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Lymphoma, Large B-Cell, Diffuse/chemistry
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Male
- Middle Aged
- Multivariate Analysis
- Mutation
- NF-kappa B p50 Subunit/analysis
- NF-kappa B p50 Subunit/genetics
- Prednisone/therapeutic use
- Rituximab
- Time Factors
- Transcriptome
- Treatment Outcome
- Tumor Suppressor Protein p53/genetics
- Vincristine/therapeutic use
Collapse
Affiliation(s)
- Qingqing Cai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meifeng Tu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital &Institute, Beijing, China
| | - Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruifang Sun
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaolu Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | | | - Eric D Hsi
- Department of Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Michael B Møller
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chi Young Ok
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas School of Medicine, Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
30
|
Wang Y, Xu J, Gao G, Li J, Huang H, Jin H, Zhu J, Che X, Huang C. Tumor-suppressor NFκB2 p100 interacts with ERK2 and stabilizes PTEN mRNA via inhibition of miR-494. Oncogene 2016; 35:4080-90. [PMID: 26686085 PMCID: PMC4916044 DOI: 10.1038/onc.2015.470] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 10/19/2015] [Accepted: 11/14/2015] [Indexed: 12/19/2022]
Abstract
Emerging evidence from The Cancer Genome Atlas has revealed that nuclear factor κB2 (nfκb2) gene encoding p100 is genetically deleted or mutated in human cancers, implicating NFκB2 as a potential tumor suppressor. However, the molecular mechanism underlying the antitumorigenic action of p100 remains poorly understood. Here we report that p100 inhibits cancer cell anchorage-independent growth, a hallmark of cellular malignancy, by stabilizing the tumor-suppressor phosphatase and tensin homolog (PTEN) mRNA via a mechanism that is independent of p100's inhibitory role in NFκB activation. We further demonstrate that the regulatory effect of p100 on PTEN expression is mediated by its downregulation of miR-494 as a result of the inactivation of extracellular signal-regulated kinase 2 (ERK2), in turn leading to inhibition of c-Jun/activator protein-1-dependent transcriptional activity. Furthermore, we identify that p100 specifically interacts with non-phosphorylated ERK2 and prevents ERK2 phosphorylation and nuclear translocation. Moreover, the death domain at C-terminal of p100 is identified as being crucial and sufficient for its interaction with ERK2. Taken together, our findings provide novel mechanistic insights into the understanding of the tumor-suppressive role for NFκB2 p100.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chuanshu Huang
- Corresponding author: Dr. Chuanshu Huang, Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, Tel: 845-731-3519, Fax: 845-351-2320,
| |
Collapse
|
31
|
miR-190 Enhances HIF-Dependent Responses to Hypoxia in Drosophila by Inhibiting the Prolyl-4-hydroxylase Fatiga. PLoS Genet 2016; 12:e1006073. [PMID: 27223464 PMCID: PMC4880290 DOI: 10.1371/journal.pgen.1006073] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/30/2016] [Indexed: 02/07/2023] Open
Abstract
Cellular and systemic responses to low oxygen levels are principally mediated by Hypoxia Inducible Factors (HIFs), a family of evolutionary conserved heterodimeric transcription factors, whose alpha- and beta-subunits belong to the bHLH-PAS family. In normoxia, HIFα is hydroxylated by specific prolyl-4-hydroxylases, targeting it for proteasomal degradation, while in hypoxia the activity of these hydroxylases decreases due to low oxygen availability, leading to HIFα accumulation and expression of HIF target genes. To identify microRNAs required for maximal HIF activity, we conducted an overexpression screen in Drosophila melanogaster, evaluating the induction of a HIF transcriptional reporter. miR-190 overexpression enhanced HIF-dependent biological responses, including terminal sprouting of the tracheal system, while in miR-190 loss of function embryos the hypoxic response was impaired. In hypoxic conditions, miR-190 expression was upregulated and required for induction of HIF target genes by directly inhibiting the HIF prolyl-4-hydroxylase Fatiga. Thus, miR-190 is a novel regulator of the hypoxia response that represses the oxygen sensor Fatiga, leading to HIFα stabilization and enhancement of hypoxic responses.
Collapse
|
32
|
Xie Q, Guo X, Gu J, Zhang L, Jin H, Huang H, Li J, Huang C. p85α promotes nucleolin transcription and subsequently enhances EGFR mRNA stability and EGF-induced malignant cellular transformation. Oncotarget 2016; 7:16636-49. [PMID: 26918608 PMCID: PMC4941340 DOI: 10.18632/oncotarget.7674] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/16/2016] [Indexed: 11/25/2022] Open
Abstract
p85α is a regulatory subunit of phosphatidylinositol 3-kinase (PI3K) that is a key lipid enzyme for generating phosphatidylinositol 3, 4, 5-trisphosphate, and subsequently activates signaling that ultimately regulates cell cycle progression, cell growth, cytoskeletal changes, and cell migration. In addition to form a complex with the p110 catalytic subunit, p85α also exists as a monomeric form due to that there is a greater abundance of p85α than p110 in many cell types. Our previous studies have demonstrated that monomeric p85α exerts a pro-apoptotic role in UV response through induction of TNF-α gene expression in PI3K-independent manner. In current studies, we identified a novel biological function of p85α as a positive regulator of epidermal growth factor receptor (EGFR) expression and cell malignant transformation via nucleolin-dependent mechanism. Our results showed that p85α was crucial for EGFR and nucleolin expression and subsequently resulted in an increase of malignant cellular transformation by using both specific knockdown and deletion of p85α in its normal expressed cells. Mechanistic studies revealed that p85α upregulated EGFR protein expression mainly through stabilizing its mRNA, whereas nucleolin (NCL) was able to bind to egfr mRNA and increase its mRNA stability. Consistently, overexpression of NCL in p85α-/- cells restored EGFR mRNA stabilization, protein expression and cell malignant transformation. Moreover, we discovered that p85α upregulated NCL gene transcription via enhancing C-Jun activation. Collectively, our studies demonstrate a novel function of p85α as a positive regulator of EGFR mRNA stability and cell malignant transformation, providing a significant insight into the understanding of biomedical nature of p85α protein in mammalian cells and further supporting that p85α might be a potential target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xirui Guo
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiayan Gu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Liping Zhang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Chuanshu Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| |
Collapse
|
33
|
Hribal ML, Mancuso E, Spiga R, Mannino GC, Fiorentino TV, Andreozzi F, Sesti G. PHLPP phosphatases as a therapeutic target in insulin resistance-related diseases. Expert Opin Ther Targets 2016; 20:663-75. [PMID: 26652182 DOI: 10.1517/14728222.2016.1130822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Pleckstrin homology domain leucine-rich repeat protein phosphatases (PHLPPs), originally identified as Akt kinase hydrophobic motif specific phosphatases, have subsequently been shown to regulate several molecules recurring within the insulin signaling pathway. This observation suggests that PHLPP phosphatases may have a clinically relevant role in the pathogenesis of insulin resistance-related diseases and may thus represent suitable targets for the treatment of these conditions. AREAS COVERED The literature pertaining to PHLPPs substrates is reviewed herein, along with information on the molecular players involved in regulating the activity and expression of PHLPP phosphatases. In the present review, knowledge of genetic variants in the genes that encode for PHLPP isozymes and the surrounding regulatory regions is also summarized. In addition, data from the studies addressing the role of PHLPPs in insulin resistance-related disorders and from those investigating the possibility to manipulate these phosphatases for therapeutic purposes are presented. EXPERT OPINION A number of issues should be resolved before PHLPPs are pursued as therapeutic targets including: the mechanisms regulating the specificity of PHLPP isozymes; the possibility of differentially regulating PHLPP family members and the possible impact of PHLPPs modulation on the risk of cancer.
Collapse
Affiliation(s)
- Marta Letizia Hribal
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Elettra Mancuso
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Rosangela Spiga
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Gaia Chiara Mannino
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Teresa Vanessa Fiorentino
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Francesco Andreozzi
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Giorgio Sesti
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| |
Collapse
|
34
|
Zuo Z, Che X, Wang Y, Li B, Li J, Dai W, Lin CP, Huang C. High mobility group Box-1 inhibits cancer cell motility and metastasis by suppressing activation of transcription factor CREB and nWASP expression. Oncotarget 2015; 5:7458-70. [PMID: 25277185 PMCID: PMC4202136 DOI: 10.18632/oncotarget.2150] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The ability to metastasize is a hallmark of malignant tumors, and metastasis is the principal cause of death of cancer patients. The High Mobility Group Box-1 (HMGB1) is a multifunction protein that serves as both a chromatin protein and an extracellular signaling molecule. Our current study demonstrated a novel mechanism of HMGB1 in the regulation of cancer cell actin polymerization, cell skeleton formation, cancer cell motility and metastasis. We found that knockdown of HMGB1 in human lung cancer A549 cells significantly increased cell β-actin polymerization, cell skeleton formation, cancer cell migration and invasion in vitro, as well as metastasis in vivo. And this increase could be inhibited by treatment of HMGB1 knockdown cells with recombinant human HMGB1. Further studies discovered that HMGB1 suppressed phosphorylation, nuclear translocation, and activation of CREB, by inhibiting nuclear translocation of PKA catalytic subunit. This reduces nWASP mRNA transcription and expression, further impairing cancer cell motility. Our findings on the novel mechanism underlying the HMGB1 anti-metastatic effect on cancer provides significant insight into the understanding of the nature of HMGB1 in cancer invasion and metastasis, further serving as key information for utilization of HMGB1 and its regulated downstream components as new targets for cancer therapy.
Collapse
Affiliation(s)
- Zhenghong Zuo
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY. State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.+ Contributed equally to this work
| | - Xun Che
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY. Contributed equally to this work
| | - Yulei Wang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY
| | - Bowen Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY
| | - Wei Dai
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY
| | - Charles P Lin
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, USA
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY
| |
Collapse
|
35
|
Huang H, Pan X, Jin H, Li Y, Zhang L, Yang C, Liu P, Liu Y, Chen L, Li J, Zhu J, Zeng X, Fu K, Chen G, Gao J, Huang C. PHLPP2 Downregulation Contributes to Lung Carcinogenesis Following B[a]P/B[a]PDE Exposure. Clin Cancer Res 2015; 21:3783-93. [PMID: 25977341 DOI: 10.1158/1078-0432.ccr-14-2829] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 05/03/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE The carcinogenic capacity of B[a]P/B[a]PDE is supported by epidemiologic studies. However, the molecular mechanisms responsible for B[a]P/B[a]PDE-caused lung cancer have not been well investigated. We evaluated here the role of novel target PHLPP2 in lung inflammation and carcinogenesis upon B[a]P/B[a]PDE exposure. EXPERIMENTAL DESIGN We used the Western blotting, RT-PCR, [(35)S]methionine pulse and immunohistochemistry staining to determine PHLPP2 downregulation following B[a]P/B[a]PDE exposure. Both B[a]PDE-induced Beas-2B cell transformation model and B[a]P-caused mouse lung cancer model were used to elucidate the mechanisms leading to PHLPP2 downregulation and lung carcinogenesis. The important findings were also extended to in vivo human studies. RESULTS We found that B[a]P/B[a]PDE exposure downregulated PHLPP2 expression in human lung epithelial cells in vitro and in mouse lung tissues in vivo. The ectopic expression of PHLPP2 dramatically inhibited cell transformation upon B[a]PDE exposure. Mechanistic studies showed that miR-205 induction was crucial for inhibition of PHLPP2 protein translation by targeting PHLPP2-3'-UTR. Interestingly, PHLPP2 expression was inversely associated with tumor necrosis factor alpha (TNFα) expression, with low PHLPP2 and high TNFα expression in lung cancer tissues compared with the paired adjacent normal lung tissues. Additional studies revealed that PHLPP2 exhibited its antitumorigenic effect of B[a]P/B[a]PDE through the repression of inflammatory TNFα transcription. CONCLUSIONS Our studies not only first time identify PHLPP2 downregulation by lung carcinogen B[a]P/B[a]PDE, but also elucidate a novel molecular mechanisms underlying lung inflammation and carcinogenesis upon B[a]P/B[a]PDE exposure.
Collapse
Affiliation(s)
- Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China. Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Xiaofu Pan
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China. Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Yang Li
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lin Zhang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Caili Yang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pei Liu
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ya Liu
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lili Chen
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Junlan Zhu
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China. Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Xingruo Zeng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Kai Fu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska. Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Guorong Chen
- Department of Pathology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Chuanshu Huang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China. Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York.
| |
Collapse
|
36
|
Huang H, Ma L, Li J, Yu Y, Zhang D, Wei J, Jin H, Xu D, Gao J, Huang C. NF-κB1 inhibits c-Myc protein degradation through suppression of FBW7 expression. Oncotarget 2015; 5:493-505. [PMID: 24457827 PMCID: PMC3964224 DOI: 10.18632/oncotarget.1643] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
NF-κB is a well-known transcription factor in regulation of multiple gene transcription and biological processes, and most of them are relied on its transcriptional activity of the p65/RelA subunit, while biological function of another ubiquitously expressed subunit NF-κB1 (p50) remains largely unknown due to lack transcriptional activation domain. Here we discovered a novel biological function of p50 as a regulator of oncogenic c-Myc protein degradation upon arsenite treatment in a NF-κB transcriptional-independent mechanism. Our results found that p50 was crucial for c-Myc protein induction following arsenite treatment by using specific knockdown and deletion of p50 in its normal expressed cells as well as reconstituting expression of p50 in its deficient cells. Subsequently we showed that p50 upregulated c-Myc protein expression mainly through inhibiting its degradation. We also identified that p50 exhibited this novel property by suppression of FBW7 expression. FBW7 was profoundly upregulated in p50-defecient cells in comparison to that in p50 intact cells, whereas knockdown of FBW7 in p50-/- cells restored arsenite-induced c-Myc protein accumulation, assuring that FBW7 up-regulation was responsible for defect of c-Myc protein expression in p50-/- cells. In addition, we discovered that p50 suppressed fbw7 gene transcription via inhibiting transcription factor E2F1 transactivation. Collectively, our studies demonstrated a novel function of p50 as a regulator of c-Myc protein degradation, contributing to our notion that p50-regulated protein expression through multiple levels at protein translation and degradation, further providing a significant insight into the understanding of biomedical significance of p50 protein.
Collapse
Affiliation(s)
- Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang J, Gao G, Chen L, Li J, Deng X, Zhao QS, Huang C. Hydrogen peroxide/ATR-Chk2 activation mediates p53 protein stabilization and anti-cancer activity of cheliensisin A in human cancer cells. Oncotarget 2015; 5:841-52. [PMID: 24553354 PMCID: PMC3996661 DOI: 10.18632/oncotarget.1780] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cheliensisine A (Chel A) as a novel styryl-lactone isolated from Goniothalamus cheliensis Hu has been indicated to be a chemotherapeutic agent in Leukemia HL-60 cells. However, its potential for cancer treatment and the underlying mechanisms are not deeply investigated to the best of our knowledge. Current studies showed that Chel A could trigger p53-mediated apoptosis, accompanied with dramatically inhibition of anchorage-independent growth of human colon cancer HCT116 cells. Further studies found that Chel A treatment resulted in p53 protein stabilization and accumulation via the induction of its phosphorylation at Ser20 and Ser15. Moreover, Chel A-induced p53 protein accumulation and activation required ATR/Chk2 axis, which is distinct from the mechanism that we have most recently identified the Chk1/p53-dependent apoptotic response by Chel A in normal mouse epidermal Cl41 cells. In addition, our results demonstrated that hydrogen peroxide generation induced by Chel A acted as a precursor for all these signaling events and downstream biological effects. Taken together, we have identified the Chel A as a new therapeutic agent, which highlights its potential for cancer therapeutic effect.
Collapse
Affiliation(s)
- Jingjie Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
The N-terminal region of p27 inhibits HIF-1α protein translation in ribosomal protein S6-dependent manner by regulating PHLPP-Ras-ERK-p90RSK axis. Cell Death Dis 2014; 5:e1535. [PMID: 25412313 PMCID: PMC4260754 DOI: 10.1038/cddis.2014.496] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/15/2022]
Abstract
P27 was identified as a tumor suppressor nearly two decades, being implicated in cell-cycle control, differentiation, senescence, apoptosis and motility. Our present study, for the first time to the best of our knowledge, revealed a potential role of p27 in inhibiting S6-mediated hypoxia-inducible factor-1α (HIF-1α) protein translation, which contributed to the protection from environmental carcinogen (sodium arsenite)-induced cell transformation. Our findings showed that depletion of p27 expression by knockout and knockdown approaches efficiently enhanced S6 phosphorylation in arsenite response via overactivating Ras/Raf/MEK/ERK pathway, which consequently resulted in the stimulation of p90RSK (90 kDa ribosomal S6 kinase), a direct kinase for S6 phosphorylation. Although PI3K/AKT pathway was also involved in S6 activation, blocking AKT and p70S6K activation did not attenuate arsenite-induced S6 activation in p27−/− cells, suggesting p27 specifically targeted Ras/ERK pathway rather than PI3K/AKT pathway for inhibition of S6 activation in response to arsenite exposure. Further functional studies found that p27 had a negative role in cell transformation induced by chronic low-dose arsentie exposure. Mechanistic investigations showed that HIF-1α translation was upregulated in p27-deficient cells in an S6 phosphorylation-dependent manner and functioned as a driving force in arsenite-induced cell transformation. Knockdown of HIF-1α efficiently reversed arsenite-induced cell transformation in p27-depleted cells. Taken together, our findings provided strong evidence showing that by targeting Ras/ERK pathway, p27 provided a negative control over HIF-1α protein synthesis in an S6-dependent manner, and abrogated arsenite-induced cell transformation via downregulation of HIF-1α translation.
Collapse
|
39
|
Zhu J, Zhang J, Huang H, Li J, Yu Y, Jin H, Li Y, Deng X, Gao J, Zhao Q, Huang C. Crucial role of c-Jun phosphorylation at Ser63/73 mediated by PHLPP protein degradation in the cheliensisin a inhibition of cell transformation. Cancer Prev Res (Phila) 2014; 7:1270-81. [PMID: 25281487 DOI: 10.1158/1940-6207.capr-14-0233] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cheliensisin A (Chel A), as a novel styryl-lactone isolated from Goniothalamus cheliensis Hu, has been demonstrated to have an inhibition of EGF-induced Cl41 cell transformation via stabilizing p53 protein in a Chk1-dependent manner, suggesting its chemopreventive activity in our previous studies. However, its underlying molecular mechanisms have not been fully characterized yet. In the current study, we found that Chel A treatment could increase c-Jun protein phosphorylation and activation, whereas the inhibition of c-Jun phosphorylation, by ectopic expression of a dominant-negative mutant of c-Jun, TAM67, reversed the Chel A inhibition of EGF-induced cell transformation and impaired Chel A induction of p53 protein and apoptosis. Moreover, our results indicated that Chel A treatment led to a PHLPP downregulation by promoting PHLPP protein degradation. We also found that PHLPP could interact with and bind to c-Jun protein, whereas ectopic PHLPP expression blocked c-Jun activation, p53 protein and apoptotic induction by Chel A, and further reversed the Chel A inhibition of EGF-induced cell transformation. With the findings, we have demonstrated that Chel A treatment promotes a PHLPP protein degradation, which can bind to c-Jun and mediates c-Jun phosphorylation, and further leading to p53 protein induction, apoptotic responses, subsequently resulting in cell transformation inhibition and chemopreventive activity of Chel A.
Collapse
Affiliation(s)
- Junlan Zhu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York. Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjie Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Haishan Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York. Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Yonghui Yu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York. Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York. Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Qinshi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York.
| |
Collapse
|
40
|
Fox DK, Ebert SM, Bongers KS, Dyle MC, Bullard SA, Dierdorff JM, Kunkel SD, Adams CM. p53 and ATF4 mediate distinct and additive pathways to skeletal muscle atrophy during limb immobilization. Am J Physiol Endocrinol Metab 2014; 307:E245-61. [PMID: 24895282 PMCID: PMC4121573 DOI: 10.1152/ajpendo.00010.2014] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Immobilization causes skeletal muscle atrophy via complex signaling pathways that are not well understood. To better understand these pathways, we investigated the roles of p53 and ATF4, two transcription factors that mediate adaptations to a variety of cellular stresses. Using mouse models, we demonstrate that 3 days of muscle immobilization induces muscle atrophy and increases expression of p53 and ATF4. Furthermore, muscle fibers lacking p53 or ATF4 are partially resistant to immobilization-induced muscle atrophy, and forced expression of p53 or ATF4 induces muscle fiber atrophy in the absence of immobilization. Importantly, however, p53 and ATF4 do not require each other to promote atrophy, and coexpression of p53 and ATF4 induces more atrophy than either transcription factor alone. Moreover, muscle fibers lacking both p53 and ATF4 are more resistant to immobilization-induced atrophy than fibers lacking only p53 or ATF4. Interestingly, the independent and additive nature of the p53 and ATF4 pathways allows for combinatorial control of at least one downstream effector, p21. Using genome-wide mRNA expression arrays, we identified p21 mRNA as a skeletal muscle transcript that is highly induced in immobilized muscle via the combined actions of p53 and ATF4. Additionally, in mouse muscle, p21 induces atrophy in a manner that does not require immobilization, p53 or ATF4, and p21 is required for atrophy induced by immobilization, p53, and ATF4. Collectively, these results identify p53 and ATF4 as essential and complementary mediators of immobilization-induced muscle atrophy and discover p21 as a critical downstream effector of the p53 and ATF4 pathways.
Collapse
Affiliation(s)
- Daniel K Fox
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Scott M Ebert
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Kale S Bongers
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Michael C Dyle
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Steven A Bullard
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and Iowa City Veterans Affairs Medical Center, Iowa City, Iowa
| | - Jason M Dierdorff
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Steven D Kunkel
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Christopher M Adams
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and Iowa City Veterans Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|
41
|
Du K, Yu Y, Zhang D, Luo W, Huang H, Chen J, Gao J, Huang C. NFκB1 (p50) suppresses SOD2 expression by inhibiting FoxO3a transactivation in a miR190/PHLPP1/Akt-dependent axis. Mol Biol Cell 2013; 24:3577-83. [PMID: 24068327 PMCID: PMC3826995 DOI: 10.1091/mbc.e13-06-0343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study reports a novel function of p50 in its regulation of SOD2 transcription via an NFκB-independent pathway. p50-regulated FoxO3a phosphorylation and transactivation contributes to SOD2 transcription, and p50–down-regulated PHLPP1 translation via miR190 is responsible for activation of Akt and FoxO3a. The biological functions of nuclear factor κB1 (NFκB1; p50) have not been studied as often as those of other members of the NFκB family due to its lack of a transcriptional domain. Our recent studies showed that p50 functions as an apoptotic mediator via its inhibition of GADD45α protein degradation and increase in p53 protein translation. Here we report a novel function of p50 in its regulation of superoxide dismutase 2 (SOD2) transcription via an NFκB-independent pathway. We find that deletion of p50 in mouse embryonic fibroblasts (MEFs; p50−/−) up-regulates SOD2 expression at both protein and mRNA levels. SOD2 promoter–driven luciferase is also up-regulated in p50−/− cells compared with wild-type (WT) MEF (p50+/+) cells, suggesting p50 regulation of SOD2 at the transcriptional level. Our results also show that p50 deficiency specifically results in down-regulation of phosphorylation and increased transactivation of FoxO3a compared with WT cells. Further studies indicate that p50–down-regulated FoxO3a phosphorylation is mediated by activated Akt via up-regulation of microRNA 190 (miR190), in turn inhibiting PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1) translation. Together our studies identify a novel p50 function in the regulation of SOD2 transcription by modulating the miR190/PHLPP1/Akt-FoxO3a pathway, which provides significant insight into the physiological function of p50.
Collapse
Affiliation(s)
- Kejun Du
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987 Department of Occupational and Environmental Health, School of Public Health, Fourth Military Medical University, Shanxi 710032, China Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yu Y, Huang H, Li J, Zhang J, Gao J, Lu B, Huang C. GADD45β mediates p53 protein degradation via Src/PP2A/MDM2 pathway upon arsenite treatment. Cell Death Dis 2013; 4:e637. [PMID: 23681232 PMCID: PMC3674369 DOI: 10.1038/cddis.2013.162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Growth arrest and DNA-damage-inducible, beta (GADD45β) has been reported to inhibit apoptosis via attenuating c-Jun N-terminal kinase (JNK) activation. We demonstrated here that GADD45β mediated its anti-apoptotic effect via promoting p53 protein degradation following arsenite treatment. We found that p53 protein expression was upregulated in GADD45β−/− cells upon arsenite exposure as compared with those in GADD45β+/+ cells. Further studies showed that GADD45β attenuated p53 protein expression through Src/protein phosphatase 2A/murine double minute 2-dependent p53 protein-degradation pathway. Moreover, we identified that GADD45β-mediated p53 protein degradation was crucial for its anti-apoptotic effect due to arsenite exposure, whereas increased JNK activation was not involved in the increased cell apoptotic response in GADD45β−/− cells under same experimental conditions. Collectively, our results demonstrate a novel molecular mechanism responsible for GADD45β protection of arsenite-exposed cells from cell death, which provides insight into our understanding of GADD45β function and a unique compound arsenite as both a cancer therapeutic reagent and an environmental carcinogen. Those novel findings may also enable us to design more effective strategies for utilization of arsenite for the treatment of cancers.
Collapse
Affiliation(s)
- Y Yu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Tokumoto M, Lee JY, Fujiwara Y, Uchiyama M, Satoh M. Inorganic arsenic induces apoptosis through downregulation of Ube2d genes and p53 accumulation in rat proximal tubular cells. J Toxicol Sci 2013; 38:815-20. [DOI: 10.2131/jts.38.815] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Maki Tokumoto
- Laboratory of Chemical Toxicology and Environmental Health, Showa Pharmaceutical University
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
- Elements Chemistry Laboratory, RIKEN
| | - Jin-Yong Lee
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| | - Yasuyuki Fujiwara
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| | - Masanobu Uchiyama
- Elements Chemistry Laboratory, RIKEN
- Advanced Elements Chemistry Laboratory, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Masahiko Satoh
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| |
Collapse
|