1
|
Wang H. LINC00092 Enhances LPP Expression to Repress Thyroid Cancer Development via Sponging miR-542-3p. Horm Metab Res 2024; 56:150-158. [PMID: 37935247 DOI: 10.1055/a-2180-6624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
LINC00092 is poorly expressed in Thyroid cancer (TC), while its role in TC tumorigenesis is still elusive. This study aimed to reveal the role and regulatory mechanism of LINC00092 in TC.RNA immunoprecipitation and dual luciferase reporter assays were employed to ascertain the relationships among lipoma preferred partner (LPP), miR-542-3p, and LINC00092. qRT-PCR analysis was performed to detect their expression levels in TC. LPP protein productions were evaluated via western blotting. CCK-8, transwell, and colony formation assays were done to estimate TC cells' biological functions. A murine xenograft model was built to observe tumor formation in vivo.LINC00092 overexpression decreased the expression levels of miR-542-3p, and LPP was targeted by miR-542-3p. In TC cells and tissues, the elevation of miR-542-3p, and low amounts of LINC00092 and LPP can be observed. Both LINC00092 and SPAG6 were considered as the antineoplastic factors in TC since their overexpression dramatically repressed TC cells' invasive and proliferative potentials, while miR-542-3p exerted the opposite functions in TC. The ectopic expression of LINC00092 also suppressed tumor growth in vivo. In addition, it revealed that miR-542-3p upregulation reversed LINC00092 overexpression-mediated effects on TC cells. At the same time, the enhanced influences of TC cells caused by miR-542-3p upregulation could be attenuated by the enforced LPP.This study innovatively reveals that LINC00092 acts as an antineoplastic lncRNA to restrain the development of TC via regulating miR-542-3p/LPP. The findings of this study may provide a prospective drug target on LINC00092/miR-542-3p/LPP axis for the treatment of TC.
Collapse
Affiliation(s)
- Huan Wang
- General Practice Section, Wuhan University of Science and Technology Hospital, Wuhan, China
| |
Collapse
|
2
|
Festari MF, Jara E, Costa M, Iriarte A, Freire T. Truncated O-glycosylation in metastatic triple-negative breast cancer reveals a gene expression signature associated with extracellular matrix and proteolysis. Sci Rep 2024; 14:1809. [PMID: 38245559 PMCID: PMC10799929 DOI: 10.1038/s41598-024-52204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024] Open
Abstract
Breast cancer (BC) is the leading cause of death by cancer in women worldwide. Triple-negative (TN) BC constitutes aggressive and highly metastatic tumors associated with shorter overall survival of patients compared to other BC subtypes. The Tn antigen, a glycoconjugated structure resulting from an incomplete O-glycosylation process, is highly expressed in different adenocarcinomas, including BC. It also favors cancer growth, immunoregulation, and metastasis in TNBC. This work describes the differentially expressed genes (DEGs) associated with BC aggressiveness and metastasis in an incomplete O-glycosylated TNBC cell model. We studied the transcriptome of a TNBC model constituted by the metastatic murine 4T1 cell line that overexpresses the Tn antigen due to a mutation in one of the steps of the O-glycosylation pathway. We analyzed and compared the results with the parental wild-type cell line and with a Tn-negative cell clone that was poorly metastatic and less aggressive than the 4T1 parental cell line. To gain insight into the generated expression data, we performed a gene set analysis. Biological processes associated with cancer development and metastasis, immune evasion, and leukocyte recruitment were highly enriched among functional terms of DEGs. Furthermore, different highly O-glycosylated protein-coding genes, such as mmp9, ecm1 and ankyrin-2, were upregulated in 4T1/Tn+ tumor cells. The altered biological processes and DEGs that promote tumor growth, invasion and immunomodulation might explain the aggressive properties of 4T1/Tn+ tumor cells. These results support the hypothesis that incomplete O-glycosylation that leads to the expression of the Tn antigen, which might regulate activity or interaction of different molecules, promotes cancer development and immunoregulation.
Collapse
Affiliation(s)
- María Florencia Festari
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, 11800, Montevideo, Uruguay
| | - Eugenio Jara
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Monique Costa
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, 11800, Montevideo, Uruguay
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Dr. Alfredo Navarro 3051, 11600, Montevideo, Uruguay.
| | - Teresa Freire
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, 11800, Montevideo, Uruguay.
| |
Collapse
|
3
|
Janev A, Ramuta TŽ, Jerman UD, Obradović H, Kamenšek U, Čemažar M, Kreft ME. Human amniotic membrane inhibits migration and invasion of muscle-invasive bladder cancer urothelial cells by downregulating the FAK/PI3K/Akt/mTOR signalling pathway. Sci Rep 2023; 13:19227. [PMID: 37932474 PMCID: PMC10628262 DOI: 10.1038/s41598-023-46091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
Bladder cancer is the 10th most commonly diagnosed cancer with the highest lifetime treatment costs. The human amniotic membrane (hAM) is the innermost foetal membrane that possesses a wide range of biological properties, including anti-inflammatory, antimicrobial and anticancer properties. Despite the growing number of studies, the mechanisms associated with the anticancer effects of human amniotic membrane (hAM) are poorly understood. Here, we reported that hAM preparations (homogenate and extract) inhibited the expression of the epithelial-mesenchymal transition markers N-cadherin and MMP-2 in bladder cancer urothelial cells in a dose-dependent manner, while increasing the secretion of TIMP-2. Moreover, hAM homogenate exerted its antimigratory effect by downregulating the expression of FAK and proteins involved in actin cytoskeleton reorganisation, such as cortactin and small RhoGTPases. In muscle-invasive cancer urothelial cells, hAM homogenate downregulated the PI3K/Akt/mTOR signalling pathway, the key cascade involved in promoting bladder cancer. By using normal, non-invasive papilloma and muscle-invasive cancer urothelial models, new perspectives on the anticancer effects of hAM have emerged. The results identify new sites for therapeutic intervention and are prompt encouragement for ongoing anticancer drug development studies.
Collapse
Affiliation(s)
- Aleksandar Janev
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Dragin Jerman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Hristina Obradović
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Kamenšek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Maja Čemažar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Schuster SL, Arora S, Wladyka CL, Itagi P, Corey L, Young D, Stackhouse BL, Kollath L, Wu QV, Corey E, True LD, Ha G, Paddison PJ, Hsieh AC. Multi-level functional genomics reveals molecular and cellular oncogenicity of patient-based 3' untranslated region mutations. Cell Rep 2023; 42:112840. [PMID: 37516102 PMCID: PMC10540565 DOI: 10.1016/j.celrep.2023.112840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/05/2023] [Accepted: 07/05/2023] [Indexed: 07/31/2023] Open
Abstract
3' untranslated region (3' UTR) somatic mutations represent a largely unexplored avenue of alternative oncogenic gene dysregulation. To determine the significance of 3' UTR mutations in disease, we identify 3' UTR somatic variants across 185 advanced prostate tumors, discovering 14,497 single-nucleotide mutations enriched in oncogenic pathways and 3' UTR regulatory elements. By developing two complementary massively parallel reporter assays, we measure how thousands of patient-based mutations affect mRNA translation and stability and identify hundreds of functional variants that allow us to define determinants of mutation significance. We demonstrate the clinical relevance of these mutations, observing that CRISPR-Cas9 endogenous editing of distinct variants increases cellular stress resistance and that patients harboring oncogenic 3' UTR mutations have a particularly poor prognosis. This work represents an expansive view of the extent to which disease-relevant 3' UTR mutations affect mRNA stability, translation, and cancer progression, uncovering principles of regulatory functionality and potential therapeutic targets in previously unexplored regulatory regions.
Collapse
Affiliation(s)
- Samantha L Schuster
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Cynthia L Wladyka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Pushpa Itagi
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lukas Corey
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Dave Young
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Lori Kollath
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Qian V Wu
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Lawrence D True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Gavin Ha
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Patrick J Paddison
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Andrew C Hsieh
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
5
|
Xiao K, Peng S, Lu J, Zhou T, Hong X, Chen S, Liu G, Li H, Huang J, Chen X, Lin T. UBE2S interacting with TRIM21 mediates the K11-linked ubiquitination of LPP to promote the lymphatic metastasis of bladder cancer. Cell Death Dis 2023; 14:408. [PMID: 37422473 PMCID: PMC10329682 DOI: 10.1038/s41419-023-05938-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
Lymphatic metastasis is the most common pattern of bladder cancer (BCa) metastasis and has an extremely poor prognosis. Emerging evidence shows that ubiquitination plays crucial roles in various processes of tumors, including tumorigenesis and progression. However, the molecular mechanisms underlying the roles of ubiquitination in the lymphatic metastasis of BCa are largely unknown. In the present study, through bioinformatics analysis and validation in tissue samples, we found that the ubiquitin-conjugating E2 enzyme UBE2S was positively correlated with the lymphatic metastasis status, high tumor stage, histological grade, and poor prognosis of BCa patients. Functional assays showed that UBE2S promoted BCa cell migration and invasion in vitro, as well as lymphatic metastasis in vivo. Mechanistically, UBE2S interacted with tripartite motif containing 21 (TRIM21) and jointly induced the ubiquitination of lipoma preferred partner (LPP) via K11-linked polyubiquitination but not K48- or K63-linked polyubiquitination. Moreover, LPP silencing rescued the anti-metastatic phenotypes and inhibited the epithelial-mesenchymal transition of BCa cells after UBE2S knockdown. Finally, targeting UBE2S with cephalomannine distinctly inhibited the progression of BCa in cell lines and human BCa-derived organoids in vitro, as well as in a lymphatic metastasis model in vivo, without significant toxicity. In conclusion, our study reveals that UBE2S, by interacting with TRIM21, degrades LPP through K11-linked ubiquitination to promote the lymphatic metastasis of BCa, suggesting that UBE2S represents a potent and promising therapeutic target for metastatic BCa.
Collapse
Affiliation(s)
- Kanghua Xiao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China
| | - Junlin Lu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China
| | - Ting Zhou
- Biobank of Sun Yat-sen University Cancer Center, Guangzhou, 510120, Guangdong, PR China
| | - Xuwei Hong
- Department of Urology, Shantou Central Hospital, Shantou, 515031, PR China
| | - Siting Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China
| | - Guangyao Liu
- School of Medicine, South China University of Technology, Guangzhou, 510120, Guangdong, PR China
| | - Hong Li
- BioMed Laboratory, Guangzhou Jingke Biotech Group, Guangzhou, 510120, Guangdong, PR China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510120, Guangdong, PR China.
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510120, Guangdong, PR China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510120, Guangdong, PR China.
| |
Collapse
|
6
|
Bartell E, Lin K, Tsuo K, Gan W, Vedantam S, Cole JB, Baronas JM, Yengo L, Marouli E, Amariuta T, Chen Z, Li L, Renthal NE, Jacobsen CM, Salem RM, Walters RG, Hirschhorn JN. Genetics of skeletal proportions in two different populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541772. [PMID: 37292977 PMCID: PMC10245876 DOI: 10.1101/2023.05.22.541772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human height can be divided into sitting height and leg length, reflecting growth of different parts of the skeleton whose relative proportions are captured by the ratio of sitting to total height (as sitting height ratio, SHR). Height is a highly heritable trait, and its genetic basis has been well-studied. However, the genetic determinants of skeletal proportion are much less well-characterized. Expanding substantially on past work, we performed a genome-wide association study (GWAS) of SHR in ∼450,000 individuals with European ancestry and ∼100,000 individuals with East Asian ancestry from the UK and China Kadoorie Biobanks. We identified 565 loci independently associated with SHR, including all genomic regions implicated in prior GWAS in these ancestries. While SHR loci largely overlap height-associated loci (P < 0.001), the fine-mapped SHR signals were often distinct from height. We additionally used fine-mapped signals to identify 36 credible sets with heterogeneous effects across ancestries. Lastly, we used SHR, sitting height, and leg length to identify genetic variation acting on specific body regions rather than on overall human height.
Collapse
|
7
|
Wei Y, Han S, Wen J, Liao J, Liang J, Yu J, Chen X, Xiang S, Huang Z, Zhang B. E26 transformation-specific transcription variant 5 in development and cancer: modification, regulation and function. J Biomed Sci 2023; 30:17. [PMID: 36872348 PMCID: PMC9987099 DOI: 10.1186/s12929-023-00909-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
E26 transformation-specific (ETS) transcription variant 5 (ETV5), also known as ETS-related molecule (ERM), exerts versatile functions in normal physiological processes, including branching morphogenesis, neural system development, fertility, embryonic development, immune regulation, and cell metabolism. In addition, ETV5 is repeatedly found to be overexpressed in multiple malignant tumors, where it is involved in cancer progression as an oncogenic transcription factor. Its roles in cancer metastasis, proliferation, oxidative stress response and drug resistance indicate that it is a potential prognostic biomarker, as well as a therapeutic target for cancer treatment. Post-translational modifications, gene fusion events, sophisticated cellular signaling crosstalk and non-coding RNAs contribute to the dysregulation and abnormal activities of ETV5. However, few studies to date systematically summarized the role and molecular mechanisms of ETV5 in benign diseases and in oncogenic progression. In this review, we specify the molecular structure and post-translational modifications of ETV5. In addition, its critical roles in benign and malignant diseases are summarized to draw a panorama for specialists and clinicians. The updated molecular mechanisms of ETV5 in cancer biology and tumor progression are delineated. Finally, we prospect the further direction of ETV5 research in oncology and its potential translational applications in the clinic.
Collapse
Affiliation(s)
- Yi Wei
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenqi Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyuan Wen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
8
|
Li Y, He X, Lu X, Gong Z, Li Q, Zhang L, Yang R, Wu C, Huang J, Ding J, He Y, Liu W, Chen C, Cao B, Zhou D, Shi Y, Chen J, Wang C, Zhang S, Zhang J, Ye J, You H. METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions. Nat Commun 2022; 13:6350. [PMID: 36289222 PMCID: PMC9605963 DOI: 10.1038/s41467-022-34209-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
The methyltransferase like 3 (METTL3) has been generally recognized as a nuclear protein bearing oncogenic properties. We find predominantly cytoplasmic METTL3 expression inversely correlates with node metastasis in human cancers. It remains unclear if nuclear METTL3 is functionally distinct from cytosolic METTL3 in driving tumorigenesis and, if any, how tumor cells sense oncogenic insults to coordinate METTL3 functions within these intracellular compartments. Here, we report an acetylation-dependent regulation of METTL3 localization that impacts on metastatic dissemination. We identify an IL-6-dependent positive feedback axis to facilitate nuclear METTL3 functions, eliciting breast cancer metastasis. IL-6, whose mRNA transcript is subjected to METTL3-mediated m6A modification, promotes METTL3 deacetylation and nuclear translocation, thereby inducing global m6A abundance. This deacetylation-mediated nuclear shift of METTL3 can be counterbalanced by SIRT1 inhibition, a process that is further enforced by aspirin treatment, leading to ablated lung metastasis via impaired m6A methylation. Intriguingly, acetylation-mimetic METTL3 mutant reconstitution results in enhanced translation and compromised metastatic potential. Our study identifies an acetylation-dependent regulatory mechanism determining the subcellular localization of METTL3, which may provide mechanistic clues for developing therapeutic strategies to combat breast cancer metastasis.
Collapse
Affiliation(s)
- Yuanpei Li
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Xiaoniu He
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Xiao Lu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Zhicheng Gong
- grid.459328.10000 0004 1758 9149Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 214062 Wuxi, China
| | - Qing Li
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Lei Zhang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Ronghui Yang
- grid.24696.3f0000 0004 0369 153XDepartment of Biochemistry and Molecular Biology, Capital Medical University, 100069 Beijing, China
| | - Chengyi Wu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Jialiang Huang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Jiancheng Ding
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102 Xiamen, China
| | - Yaohui He
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102 Xiamen, China
| | - Wen Liu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102 Xiamen, China
| | - Ceshi Chen
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223 Kunming, China
| | - Bin Cao
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, 361102 Xiamen, China
| | - Dawang Zhou
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Yufeng Shi
- grid.24516.340000000123704535Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, 200092 Shanghai, China
| | - Juxiang Chen
- grid.73113.370000 0004 0369 1660Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, 200433 Shanghai, China
| | - Chuangui Wang
- grid.412509.b0000 0004 1808 3414The Biomedical Translational Research Institute, School of Life Sciences, Shandong University of Technology, 255049 Zibo, China
| | - Shengping Zhang
- grid.16821.3c0000 0004 0368 8293Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620 Shanghai, China
| | - Jian Zhang
- grid.233520.50000 0004 1761 4404The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi’an, China
| | - Jing Ye
- grid.233520.50000 0004 1761 4404Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, 710032 Xi’an, China
| | - Han You
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| |
Collapse
|
9
|
Jin Y, Yang S, Gao X, Chen D, Luo T, Su S, Shi Y, Yang G, Dong L, Liang J. DEAD-Box Helicase 27 Triggers Epithelial to Mesenchymal Transition by Regulating Alternative Splicing of Lipoma-Preferred Partner in Gastric Cancer Metastasis. Front Genet 2022; 13:836199. [PMID: 35601484 PMCID: PMC9114675 DOI: 10.3389/fgene.2022.836199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
DEAD-box helicase 27 (DDX27) was previously identified as an important mediator during carcinogenesis, while its role in gastric cancer (GC) is not yet fully elucidated. Here, we aimed to investigate the mechanism and clinical significance of DDX27 in GC. Public datasets were analyzed to determine DDX27 expression profiling. The qRT-PCR, Western blot, and immunohistochemistry analyses were employed to investigate the DDX27 expression in GC cell lines and clinical samples. The role of DDX27 in GC metastasis was explored in vitro and in vivo. Mass spectrometry, RNA-seq, and alternative splicing analysis were conducted to demonstrate the DDX27-mediated molecular mechanisms in GC. We discovered that DDX27 was highly expressed in GCs, and a high level of DDX27 indicated poor prognosis. An increased DDX27 expression could promote GC metastasis, while DDX27 knockdown impaired GC aggressiveness. Mechanically, the LLP expression was significantly altered after DDX27 downregulation, and further results indicated that LPP may be regulated by DDX27 via alternative splicing. In summary, our study indicated that DDX27 contributed to GC malignant progression via a prometastatic DDX27/LPP/EMT regulatory axis.
Collapse
Affiliation(s)
- Yirong Jin
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Suzhen Yang
- Department of Digestive Disease and Gastrointestinal Motility Research Room, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoliang Gao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Di Chen
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Tingting Luo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an, China
| | - Song Su
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Yanting Shi
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Gang Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Lei Dong
- Department of Digestive Disease and Gastrointestinal Motility Research Room, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Lei Dong, ; Jie Liang,
| | - Jie Liang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
- *Correspondence: Lei Dong, ; Jie Liang,
| |
Collapse
|
10
|
Yang Y, Wang D, Tao K, Wang G. Circular RNA circLRCH3 Inhibits Proliferation, Migration, and Invasion of Colorectal Cancer Cells Through miRNA-223/LPP Axis. Onco Targets Ther 2022; 15:541-554. [PMID: 35611368 PMCID: PMC9124491 DOI: 10.2147/ott.s366605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/08/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Colorectal cancer (CRC) is one of the most common carcinomas worldwide with a high mortality rate. Numerous studies suggest that circular RNA (circRNA) plays a crucial role in the progression of various carcinomas, including CRC. The present work focused on exploring the role and underlying molecular mechanism of action of the circRNA circLRCH3 in CRC. Methods Real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was conducted to detect expression levels of circLRCH3, miR-233, and lipoma preferred partner (LPP). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to measure the proliferation of CRC cells and the transwell assay was used to evaluate cell migration and invasion capacity. A flow cytometry assay was used to analyze the effect of circLRCH3 on the distribution of the cell cycle and apoptosis of CRC cells. The expression of LPP was analyzed using Western blotting or an RT-qPCR assay. The relationship between miR-223 and circLRCH3, and that between miR-223 and LPP, was predicted and examined using bioinformatics analysis and luciferase reporter gene experiments. A xenograft tumor formation assay was also performed. Results We found that the expression level of circLRCH3 was downregulated in CRC cells and negatively correlated with miR-223. The overexpression of circLRCH3 or silencing of miR-223 inhibited the growth, invasion, and migration of CRC cells, but promoted their apoptosis. In contrast, overexpression of miR-223 and depletion of LPP severally abrogated the tumor suppressive roles of circLRCH3 and miR-223 knockdown in CRC cells in vitro. The xenograft experiments in nude mice also proved the antitumor effect of circLRCH3. Conclusion These results suggested that the circLRCH3/miR-223/LPP axis likely plays a critical role in CRC.
Collapse
Affiliation(s)
- Yiming Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, People’s Republic of China
| | - Di Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, People’s Republic of China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, People’s Republic of China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, People’s Republic of China
- Correspondence: Guobin Wang, Email
| |
Collapse
|
11
|
Kuriyama S, Tanaka G, Takagane K, Itoh G, Tanaka M. Pigment Epithelium Derived Factor Is Involved in the Late Phase of Osteosarcoma Metastasis by Increasing Extravasation and Cell-Cell Adhesion. Front Oncol 2022; 12:818182. [PMID: 35174090 PMCID: PMC8842676 DOI: 10.3389/fonc.2022.818182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Organ tropism of metastatic cells is not well understood. To determine the key factors involved in the selection of a specific organ upon metastasis, we established metastatic cell lines and analyzed their homing to specific tissues. Toward this, 143B osteosarcoma cells were injected intracardially until the kidney-metastasizing sub-cell line Bkid was established, which significantly differed from the parental 143B cells. The candidate genes responsible for kidney metastasis were validated, and SerpinF1/Pigment epithelium derived factor (PEDF) was identified as the primary target. Bkid cells with PEDF knockdown injected intracardially did not metastasize to the kidneys. In contrast, PEDF overexpressing 143B cells injected into femur metastasized to the lungs and kidneys. PEDF triggered mesenchymal-to-epithelial transition (MET) in vitro as well as in vivo. Based on these results, we hypothesized that the MET might be a potential barrier to extravasation. PEDF overexpression in various osteosarcoma cell lines increased their extravasation to the kidneys and lungs. Moreover, when cultured close to the renal endothelial cell line TKD2, Bkid cells disturbed the TKD2 layer and hindered wound healing via the PEDF-laminin receptor (lamR) axis. Furthermore, novel interactions were observed among PEDF, lamR, lysyl oxidase-like 1 (Loxl1), and SNAI3 (Snail-like transcription factor) during endothelial-to-mesenchymal transition (EndoMT). Collectively, our results show that PEDF induces cancer cell extravasation by increasing the permeability of kidney and lung vasculature acting via lamR and its downstream genes. We also speculate that PEDF promotes extravasation via inhibiting EndoMT, and this warrants investigation in future studies.
Collapse
Affiliation(s)
- Sei Kuriyama
- Department of Molecular Medicine and Biochemistry, Graduate School and Faculty of Medicine, Akita University, Akita City, Japan
| | - Gentaro Tanaka
- Department of Molecular Medicine and Biochemistry, Graduate School and Faculty of Medicine, Akita University, Akita City, Japan.,Department of Lifescience, Faculty and Graduate School of Engineering and Resource Science, Akita University, Akita City, Japan
| | - Kurara Takagane
- Department of Molecular Medicine and Biochemistry, Graduate School and Faculty of Medicine, Akita University, Akita City, Japan
| | - Go Itoh
- Department of Molecular Medicine and Biochemistry, Graduate School and Faculty of Medicine, Akita University, Akita City, Japan
| | - Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Graduate School and Faculty of Medicine, Akita University, Akita City, Japan
| |
Collapse
|
12
|
Pietrzak J, Szmajda-Krygier D, Wosiak A, Świechowski R, Michalska K, Mirowski M, Żebrowska-Nawrocka M, Łochowski M, Balcerczak E. Changes in the expression of membrane type-matrix metalloproteinases genes (MMP14, MMP15, MMP16, MMP24) during treatment and their potential impact on the survival of patients with non-small cell lung cancer (NSCLC). Pharmacotherapy 2022; 146:112559. [PMID: 35062057 DOI: 10.1016/j.biopha.2021.112559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 01/04/2023]
Abstract
The analysis concerned the comparison of the expression of membrane type matrix metalloproteinases genes in the blood and tissue of NSCLC patients during the course of the disease and comparison to the control group. Blood and neoplastic tissue taken from 45 patients diagnosed with non-small cell lung cancer was a research material. The expression level of MMP14, MMP15, MMP16 and MMP24 was evaluated by qPCR and the results were compared with controls. The expression of MMP14 and MMP24 before tumor removal surgery and 100 days after was lower than in the control group. Interestingly, one year after surgery the levels of expression of these genes were identical to those in the control group. This suggests that the expression of metalloproteinase genes changes in the course of cancer and that effective treatment results in the normalization of gene expression. Lower expression of MMP15 in the blood of patients with more advanced cancer disease was observed, confirming the suppressive nature of changes in the blood. It has also been demonstrated that higher expression of MMP14 and MMP15 in the tissue is associated with more advanced stage of disease development or more invasive nature of the lesion. There is a noticeable increase of expression level in the environment surrounding the tumor, while a lower can be observed in the blood. This may indicate that changes in the expression of metalloproteinases in cancer are much more complex than merely the tumor tissue, which may also account for the inadequacies of metalloproteinase inhibitors.
Collapse
Affiliation(s)
- Jacek Pietrzak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Laboratory of Molecular Diagnostics and Pharmacogenomics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.
| | - Dagmara Szmajda-Krygier
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Laboratory of Molecular Diagnostics and Pharmacogenomics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Agnieszka Wosiak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Laboratory of Molecular Diagnostics and Pharmacogenomics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Rafał Świechowski
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Laboratory of Molecular Diagnostics and Pharmacogenomics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Katarzyna Michalska
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Laboratory of Molecular Diagnostics and Pharmacogenomics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Marek Mirowski
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Laboratory of Molecular Diagnostics and Pharmacogenomics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Marta Żebrowska-Nawrocka
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Laboratory of Molecular Diagnostics and Pharmacogenomics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Mariusz Łochowski
- Department of Thoracic Surgery, Memorial Copernicus Hospital, Medical University of Lodz, Lodz, Poland
| | - Ewa Balcerczak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Laboratory of Molecular Diagnostics and Pharmacogenomics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
13
|
Sporkova A, Ghosh S, Al-Hasani J, Hecker M. Lin11-Isl1-Mec3 Domain Proteins as Mechanotransducers in Endothelial and Vascular Smooth Muscle Cells. Front Physiol 2021; 12:769321. [PMID: 34867475 PMCID: PMC8640458 DOI: 10.3389/fphys.2021.769321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Arterial hypertension is the leading risk factor for cardiovascular morbidity and mortality worldwide. However, little is known about the cellular mechanisms underlying it. In small arteries and arterioles, a chronic increase in blood pressure raises wall tension and hence stretches, namely, the medial vascular smooth muscle cells (VSMC) but also endothelial cell (EC) to cell contacts. Initially compensated by an increase in vascular tone, the continuous biomechanical strain causes a prominent change in gene expression in both cell types, frequently driving an arterial inward remodeling process that ultimately results in a reduction in lumen diameter, stiffening of the vessel wall, and fixation of blood pressure, namely, diastolic blood pressure, at the elevated level. Sensing and propagation of this supraphysiological stretch into the nucleus of VSMC and EC therefore seems to be a crucial step in the initiation and advancement of hypertension-induced arterial remodeling. Focal adhesions (FA) represent an important interface between the extracellular matrix and Lin11-Isl1-Mec3 (LIM) domain-containing proteins, which can translocate from the FA into the nucleus where they affect gene expression. The varying biomechanical cues to which vascular cells are exposed can thus be rapidly and specifically propagated to the nucleus. Zyxin was the first protein described with such mechanotransducing properties. It comprises 3 C-terminal LIM domains, a leucine-rich nuclear export signal, and N-terminal features that support its association with the actin cytoskeleton. In the cytoplasm, zyxin promotes actin assembly and organization as well as cell motility. In EC, zyxin acts as a transcription factor, whereas in VSMC, it has a less direct effect on mechanosensitive gene expression. In terms of homology and structural features, lipoma preferred partner is the nearest relative of zyxin among the LIM domain proteins. It is almost exclusively expressed by smooth muscle cells in the adult, resides like zyxin at FA but seems to affect mechanosensitive gene expression indirectly, possibly via altering cortical actin dynamics. Here, we highlight what is currently known about the role of these LIM domain proteins in mechanosensing and transduction in vascular cells.
Collapse
Affiliation(s)
- Alexandra Sporkova
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Subhajit Ghosh
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Jaafar Al-Hasani
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site, Heidelberg/Mannheim, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site, Heidelberg/Mannheim, Germany
| |
Collapse
|
14
|
Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins. Int J Mol Sci 2021; 22:ijms22052647. [PMID: 33808029 PMCID: PMC7961639 DOI: 10.3390/ijms22052647] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
Members of the human Zyxin family are LIM domain-containing proteins that perform critical cellular functions and are indispensable for cellular integrity. Despite their importance, not much is known about their structure, functions, interactions and dynamics. To provide insights into these, we used a set of in-silico tools and databases and analyzed their amino acid sequence, phylogeny, post-translational modifications, structure-dynamics, molecular interactions, and functions. Our analysis revealed that zyxin members are ohnologs. Presence of a conserved nuclear export signal composed of LxxLxL/LxxxLxL consensus sequence, as well as a possible nuclear localization signal, suggesting that Zyxin family members may have nuclear and cytoplasmic roles. The molecular modeling and structural analysis indicated that Zyxin family LIM domains share similarities with transcriptional regulators and have positively charged electrostatic patches, which may indicate that they have previously unanticipated nucleic acid binding properties. Intrinsic dynamics analysis of Lim domains suggest that only Lim1 has similar internal dynamics properties, unlike Lim2/3. Furthermore, we analyzed protein expression and mutational frequency in various malignancies, as well as mapped protein-protein interaction networks they are involved in. Overall, our comprehensive bioinformatic analysis suggests that these proteins may play important roles in mediating protein-protein and protein-nucleic acid interactions.
Collapse
|
15
|
Yang H, Kuo YH, Smith ZI, Spangler J. Targeting cancer metastasis with antibody therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1698. [PMID: 33463090 DOI: 10.1002/wnan.1698] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
Cancer metastasis, the spread of disease from a primary to a distal site through the circulatory or lymphatic systems, accounts for over 90% of all cancer related deaths. Despite significant progress in the field of cancer therapy in recent years, mortality rates remain dramatically higher for patients with metastatic disease versus those with local or regional disease. Although there is clearly an urgent need to develop drugs that inhibit cancer spread, the overwhelming majority of anticancer therapies that have been developed to date are designed to inhibit tumor growth but fail to address the key stages of the metastatic process: invasion, intravasation, circulation, extravasation, and colonization. There is growing interest in engineering targeted therapeutics, such as antibody drugs, that inhibit various steps in the metastatic cascade. We present an overview of antibody therapeutic approaches, both in the pipeline and in the clinic, that disrupt the essential mechanisms that underlie cancer metastasis. These therapies include classes of antibodies that indirectly target metastasis, including anti-integrin, anticadherin, and immune checkpoint blocking antibodies, as well as monoclonal and bispecific antibodies that are specifically designed to interrupt disease dissemination. Although few antimetastatic antibodies have achieved clinical success to date, there are many promising candidates in various stages of development, and novel targets and approaches are constantly emerging. Collectively, these efforts will enrich our understanding of the molecular drivers of metastasis, and the new strategies that arise promise to have a profound impact on the future of cancer therapeutic development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yun-Huai Kuo
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zion I Smith
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jamie Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Liu Y, Wang Y, Qi R, Mao X, Jin F. Expression of lipoma preferred partner in mammary and extramammary Paget disease. Medicine (Baltimore) 2020; 99:e23443. [PMID: 33371071 PMCID: PMC7748372 DOI: 10.1097/md.0000000000023443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/23/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGOUND This study aims to identify the expression of lipoma preferred partner (LPP) in Paget disease (PD) and to further understand the pathogenesis of PD. METHODS Tissue microarray was used to evaluate the expression of LPP by immunohistochemistry in 40 PD patients. The results of LPP expression were combined with clinical and histopathological characteristics. Patient files were analyzed retrospectively. RESULTS Twenty-one cases were mammary Paget disease (MPD) and 19 extramammary Paget disease (EMPD) involving the vulva, scrotum, and penis. LPP was expressed in PD and this expression was significantly greater in MPD versus EMPD (P = .031). The expression of LPP in MPD was significantly related with age (P = .009) and expression of Ki-67 (P = .011). No statistically significant differences were observed in LPP expression as related to sex, body location, and time of PD diagnosis. CONCLUSIONS While LPP is expressed in both MPD and EMPD, the intensity of this expression is greater in MPD. LPP expression is positively correlated with Ki-67 and is more prevalent in middle-aged versus senior MPD patients. Further research is needed to determine its potential role in tumorigenesis and distribution.
Collapse
Affiliation(s)
- Ye Liu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University
| | - Yangbin Wang
- Department of Dermatology, The First Hospital of China Medical University, Heping District, Shenyang, Liaoning Province, P.R. China
| | - Ruiqun Qi
- Department of Dermatology, The First Hospital of China Medical University, Heping District, Shenyang, Liaoning Province, P.R. China
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University
| |
Collapse
|
17
|
Mondal C, Di Martino JS, Bravo-Cordero JJ. Actin dynamics during tumor cell dissemination. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 360:65-98. [PMID: 33962751 PMCID: PMC8246644 DOI: 10.1016/bs.ircmb.2020.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The actin cytoskeleton is a dynamic network that regulates cellular behavior from development to disease. By rearranging the actin cytoskeleton, cells are capable of migrating and invading during developmental processes; however, many of these cellular properties are hijacked by cancer cells to escape primary tumors and disseminate to distant organs in the body. In this review article, we highlight recent work describing how cancer cells regulate the actin cytoskeleton to achieve efficient invasion and metastatic colonization. We also review new imaging technologies that are capable of revealing the complex architecture and regulation of the actin cytoskeleton during motility and invasion of tumor cells.
Collapse
Affiliation(s)
- Chandrani Mondal
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Julie S Di Martino
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
18
|
Dias Amoedo N, Dard L, Sarlak S, Mahfouf W, Blanchard W, Rousseau B, Izotte J, Claverol S, Lacombe D, Rezvani HR, Pierri CL, Rossignol R. Targeting Human Lung Adenocarcinoma with a Suppressor of Mitochondrial Superoxide Production. Antioxid Redox Signal 2020; 33:883-902. [PMID: 32475148 DOI: 10.1089/ars.2019.7892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: REDOX signaling from reactive oxygen species (ROS) generated by the mitochondria (mitochondrial reactive oxygen species [mtROS]) has been implicated in cancer growth and survival. Here, we investigated the effect of 5-(4-methoxyphenyl)-3H-1,2-dithiole-3-thione (AOL), a recently characterized member of the new class of mtROS suppressors (S1QELs), on human lung adenocarcinoma proteome reprogramming, bioenergetics, and growth. Results: AOL reduced steady-state cellular ROS levels in human lung cancer cells without altering the catalytic activity of complex I. AOL treatment induced dose-dependent inhibition of lung cancer cell proliferation and triggered a reduction in tumor growth in vivo. Molecular investigations demonstrated that AOL reprogrammed the proteome of human lung cancer cells. In particular, AOL suppressed the determinants of the Warburg effect and increased the expression of the complex I subunit NDUFV1 which was also identified as AOL binding site using molecular modeling computer simulations. Comparison of the molecular changes induced by AOL and MitoTEMPO, an mtROS scavenger that is not an S1QEL, identified a core component of 217 proteins commonly altered by the two treatments, as well as drug-specific targets. Innovation: This study provides proof-of-concept data on the anticancer effect of AOL on mouse orthotopic human lung tumors. A unique dataset on proteomic reprogramming by AOL and MitoTEMPO is also provided. Lastly, our study revealed the repression of NDUFV1 by S1QEL AOL. Conclusion: Our findings demonstrate the preclinical anticancer properties of S1QEL AOL and delineate its mode of action on REDOX and cancer signaling.
Collapse
Affiliation(s)
- Nivea Dias Amoedo
- CELLOMET, Functional Genomics Center (CGFB), Bordeaux, France.,Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Laetitia Dard
- CELLOMET, Functional Genomics Center (CGFB), Bordeaux, France.,Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Saharnaz Sarlak
- Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Walid Mahfouf
- Bordeaux University, Bordeaux, France.,Inserm, BMGIC, UMR 1035, University of Bordeaux, Bordeaux, France
| | - Wendy Blanchard
- CELLOMET, Functional Genomics Center (CGFB), Bordeaux, France.,Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Benoît Rousseau
- Bordeaux University, Bordeaux, France.,Transgenic Animal Core Facility, University of Bordeaux, Bordeaux, France
| | - Julien Izotte
- Bordeaux University, Bordeaux, France.,Transgenic Animal Core Facility, University of Bordeaux, Bordeaux, France
| | - Stéphane Claverol
- Bordeaux University, Bordeaux, France.,Proteomics Core Facility, Functional Genomics Center (CGFB), Bordeaux, France
| | - Didier Lacombe
- Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France.,CHU Bordeaux, Haut-Lévèque Hospital, Thoracic Surgery, Bordeaux, France
| | - Hamid Reza Rezvani
- Bordeaux University, Bordeaux, France.,Inserm, BMGIC, UMR 1035, University of Bordeaux, Bordeaux, France
| | - Ciro Leonardo Pierri
- Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | - Rodrigue Rossignol
- CELLOMET, Functional Genomics Center (CGFB), Bordeaux, France.,Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France
| |
Collapse
|
19
|
Rochow H, Jung M, Weickmann S, Ralla B, Stephan C, Elezkurtaj S, Kilic E, Zhao Z, Jung K, Fendler A, Franz A. Circular RNAs and Their Linear Transcripts as Diagnostic and Prognostic Tissue Biomarkers in Prostate Cancer after Prostatectomy in Combination with Clinicopathological Factors. Int J Mol Sci 2020; 21:ijms21217812. [PMID: 33105568 PMCID: PMC7672590 DOI: 10.3390/ijms21217812] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
As new biomarkers, circular RNAs (circRNAs) have been largely unexplored in prostate cancer (PCa). Using an integrative approach, we aimed to evaluate the potential of circRNAs and their linear transcripts (linRNAs) to act as (i) diagnostic biomarkers for differentiation between normal and tumor tissue and (ii) prognostic biomarkers for the prediction of biochemical recurrence (BCR) after radical prostatectomy. In a first step, eight circRNAs (circATXN10, circCRIM1, circCSNK1G3, circGUCY1A2, circLPP, circNEAT1, circRHOBTB3, and circSTIL) were identified as differentially expressed via a genome-wide circRNA-based microarray analysis of six PCa samples. Additional bioinformatics and literature data were applied for this selection process. In total, 115 malignant PCa and 79 adjacent normal tissue samples were examined using robust RT-qPCR assays specifically established for the circRNAs and their linear counterparts. Their diagnostic and prognostic potential was evaluated using receiver operating characteristic curves, Cox regressions, decision curve analyses, and C-statistic calculations of prognostic indices. The combination of circATXN10 and linSTIL showed a high discriminative ability between malignant and adjacent normal tissue PCa. The combination of linGUCY1A2, linNEAT1, and linSTIL proved to be the best predictive RNA-signature for BCR. The combination of this RNA signature with five established reference models based on only clinicopathological factors resulted in an improved predictive accuracy for BCR in these models. This is an encouraging study for PCa to evaluate circRNAs and their linRNAs in an integrative approach, and the results showed their clinical potential in combination with standard clinicopathological variables.
Collapse
Affiliation(s)
- Hannah Rochow
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
- Berlin Institute for Urologic Research, 10115 Berlin, Germany
| | - Monika Jung
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
| | - Sabine Weickmann
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
| | - Bernhard Ralla
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
| | - Carsten Stephan
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
- Berlin Institute for Urologic Research, 10115 Berlin, Germany
| | - Sefer Elezkurtaj
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (S.E.); (E.K.)
| | - Ergin Kilic
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (S.E.); (E.K.)
- Institute of Pathology, Hospital Leverkusen, 51375 Leverkusen, Germany
| | - Zhongwei Zhao
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
- Department of Urology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Klaus Jung
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
- Berlin Institute for Urologic Research, 10115 Berlin, Germany
- Correspondence: ; Tel.: +49-450-515041
| | - Annika Fendler
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
- Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Cancer Research Program, 13125 Berlin, Germany
- Cancer Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Antonia Franz
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
| |
Collapse
|
20
|
Zhang H, Jin Z, Cheng L, Zhang B. Integrative Analysis of Methylation and Gene Expression in Lung Adenocarcinoma and Squamous Cell Lung Carcinoma. Front Bioeng Biotechnol 2020; 8:3. [PMID: 32117905 PMCID: PMC7019569 DOI: 10.3389/fbioe.2020.00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is a highly prevalent type of cancer with a poor 5-year survival rate of about 4-17%. Eighty percent lung cancer belongs to non-small-cell lung cancer (NSCLC). For a long time, the treatment of NSCLC has been mostly guided by tumor stage, and there has been no significant difference between the therapy strategy of lung adenocarcinoma (LUAD) and squamous cell lung carcinoma (SCLC), the two major subtypes of NSCLC. In recent years, important molecular differences between LUAD and SCLC are increasingly identified, indicating that targeted therapy will be more and more histologically specific in the future. To investigate the LUAD and SCLC difference on multi-omics scale, we analyzed the methylation and gene expression data together. With the Boruta method to remove irrelevant features and the MCFS (Monte Carlo Feature Selection) method to identify the significantly important features, we identified 113 key methylation features and 23 key gene expression features. HNF1B and TP63 were found to be dysfunctional on both methylation and gene expression levels. The experimentally determined interaction network suggested that TP63 may play an important role in connecting methylation genes and expression genes. Many of the discovered signature genes have been supported by literature. Our results may provide directions of precision diagnosis and therapy of LUAD and SCLC.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhou Jin
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Department of Respiration, Hospital of Traditional Chinese Medicine of Zhenhai, Ningbo, China
| | - Ling Cheng
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Bin Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
De Bastiani MA, Klamt F. Integrated transcriptomics reveals master regulators of lung adenocarcinoma and novel repositioning of drug candidates. Cancer Med 2019; 8:6717-6729. [PMID: 31503425 PMCID: PMC6825976 DOI: 10.1002/cam4.2493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/18/2019] [Accepted: 07/31/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma is the major cause of cancer-related deaths in the world. Given this, the importance of research on its pathophysiology and therapy remains a key health issue. To assist in this endeavor, recent oncology studies are adopting Systems Biology approaches and bioinformatics to analyze and understand omics data, bringing new insights about this disease and its treatment. METHODS We used reverse engineering of transcriptomic data to reconstruct nontumorous lung reference networks, focusing on transcription factors (TFs) and their inferred target genes, referred as regulatory units or regulons. Afterwards, we used 13 case-control studies to identify TFs acting as master regulators of the disease and their regulatory units. Furthermore, the inferred activation patterns of regulons were used to evaluate patient survival and search drug candidates for repositioning. RESULTS The regulatory units under the influence of ATOH8, DACH1, EPAS1, ETV5, FOXA2, FOXM1, HOXA4, SMAD6, and UHRF1 transcription factors were consistently associated with the pathological phenotype, suggesting that they may be master regulators of lung adenocarcinoma. We also observed that the inferred activity of FOXA2, FOXM1, and UHRF1 was significantly associated with risk of death in patients. Finally, we obtained deptropine, promazine, valproic acid, azacyclonol, methotrexate, and ChemBridge ID compound 5109870 as potential candidates to revert the molecular profile leading to decreased survival. CONCLUSION Using an integrated transcriptomics approach, we identified master regulator candidates involved with the development and prognostic of lung adenocarcinoma, as well as potential drugs for repurposing.
Collapse
Affiliation(s)
- Marco Antônio De Bastiani
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,National Institute of Science and Technology for Translational Medicine (INCT-TM), Porto Alegre, RS, Brazil
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,National Institute of Science and Technology for Translational Medicine (INCT-TM), Porto Alegre, RS, Brazil
| |
Collapse
|
22
|
LPP and RYR2 Gene Polymorphisms Correlate with the Risk and the Prognosis of Astrocytoma. J Mol Neurosci 2019; 69:628-635. [DOI: 10.1007/s12031-019-01391-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
|
23
|
Feng Y, Ma C, Zhang Y, Yang X, Zhang D, Xie M, Li W, Wei J. 3'UTR SNPs in the LPP gene associated with Immunoglobulin A nephropathy risk in the Chinese Han population. Int Immunopharmacol 2019; 74:105668. [PMID: 31295688 DOI: 10.1016/j.intimp.2019.05.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 01/31/2023]
Abstract
The purpose of this study was to investigate the relationship between Lipoma preferred partner (LPP) gene polymorphisms and the risk of Immunoglobulin A nephropathy (IgAN) in the Chinese Han population. In this case-control study, we genotyped three single nucleotide polymorphisms (SNPs) of the LPP gene in 357 IgAN cases and 384 controls, using Agena Bioscience MassARRAY technology and assessed their association with IgAN using the χ2 test and genetic model analysis. The odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess risk and were adjusted for age and gender by logistic regression. In the allele model, there were significant associations between LPP rs1064607 (OR = 1.24; 95% CI = 1.01-1.53; p = 0.041), rs3796283 (OR = 1.32; 95% CI = 1.08-1.63; p = 0.008), and rs2378456 (OR = 1.29; 95% CI = 1.05-1.59; p = 0.016), as well as an increased risk of IgAN. In the dominant model, the "G/C-C/C" genotypes of rs1064607 (p = 0.023), the "G/A-G/G" genotypes of rs3796283 (p = 0.0013) and the "G/C-C/C" genotypes of rs2378456 (p = 0.00052) were risk factors for IgAN. The results of the stratified analysis showed that rs3796283 and rs2378456 were connected with susceptibility to IgAN in different subgroups. Our data may provide new evidence to research the etiology of IgAN.
Collapse
Affiliation(s)
- Yuan Feng
- Department of Immunology, Affiliated Children's hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shanxi 710068, China
| | - Chunyang Ma
- Department of Neurosurgery, First affiliated hospital of Hainan medical college, Haikou, Hainan 570311, China.
| | - Ying Zhang
- Department of Nephrology, Hainan General Hospital, Hainan, Haikou, Hainan 570311, China
| | - Xiaohong Yang
- Department of Nephrology, Hainan General Hospital, Hainan, Haikou, Hainan 570311, China
| | - Daofa Zhang
- Department of Nephrology, Hainan General Hospital, Hainan, Haikou, Hainan 570311, China
| | - Maowei Xie
- Department of Nephrology, Hainan General Hospital, Hainan, Haikou, Hainan 570311, China
| | - Wenning Li
- Department of Nephrology, Hainan General Hospital, Hainan, Haikou, Hainan 570311, China
| | - Jiali Wei
- Department of Nephrology, Hainan General Hospital, Hainan, Haikou, Hainan 570311, China.
| |
Collapse
|
24
|
Yan S, Sun R, Wu S, Jin T, Zhang S, Niu F, Li J, Chen M. Single nucleotide polymorphism in the 3' untranslated region of LPP is a risk factor for lung cancer: a case-control study. BMC Cancer 2019; 19:35. [PMID: 30621612 PMCID: PMC6325744 DOI: 10.1186/s12885-018-5241-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/21/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) in 3'-untranslated region (UTR) of genes related with cell-matrix adhesions and migration might affect miRNA binding and potentially affect the risk of cancer. The present study aimed to screen SNPs in 3' UTR of cancer-related genes and investigate their contribution to the susceptibility of lung cancer. METHODS Seven SNPs were selected and genotyped in a case-control study (322 lung cancer patients and 384 controls) among Chinese Han population. Odds ratio (OR) and 95% confidence intervals (CIs) were calculated by logistic regression adjusted for age and gender in multiple genetic models. RESULTS In stratified analyses by gender, three (rs1064607, rs3796283 and rs2378456) of LPP gene were associated with a significantly increased susceptibility for lung cancer among male population. Besides, LPP rs2378456 weakened lung cancer risk in female. LPP rs1064607 polymorphism was significantly correlated with increased risk of lung adenocarcinoma. Furthermore, AA genotype of TNS3 rs9876 polymorphism was associated with lymphatic metastasis. CONCLUSION Our results provides evidence for the impact of LPP polymorphisms on the susceptibility to lung cancer in Chinese population.
Collapse
Affiliation(s)
- Shouchun Yan
- Department of Respiratory Medicine, The First Affiliated Hospital of School of Medicine of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Department of Emergency Medicine, Xi'an No.1 hospital, Xi'an, 710002, Shaanxi, China
| | - Rong Sun
- Department of Emergency Medicine, Xi'an GaoXin Hospital, Xi'an, 710075, Shaanxi, China
| | - Shan Wu
- Department of Respiratory Medicine, Xi'an No.1 hospital (Gaoling District), Xi'an, 710299, Shaanxi, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Shanshan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Fanglin Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Jingjie Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Mingwei Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of School of Medicine of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
25
|
Chen YJ, Chang WA, Wu LY, Huang CF, Chen CH, Kuo PL. Identification of Novel Genes in Osteoarthritic Fibroblast-Like Synoviocytes Using Next-Generation Sequencing and Bioinformatics Approaches. Int J Med Sci 2019; 16:1057-1071. [PMID: 31523167 PMCID: PMC6743272 DOI: 10.7150/ijms.35611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/05/2019] [Indexed: 01/15/2023] Open
Abstract
Synovitis in osteoarthritis (OA) the consequence of low grade inflammatory process caused by cartilage breakdown products that stimulated the production of pro-inflammatory mediators by fibroblast-like synoviocytes (FLS). FLS participate in joint homeostasis and low grade inflammation in the joint microenvironment triggers FLS transformation. In the current study, we aimed to identify differentially expressed genes and potential miRNA regulations in human OA FLS through deep sequencing and bioinformatics approaches. The 245 differentially expressed genes in OA FLS were identified, and pathway analysis using various bioinformatics databases indicated their enrichment in functions related to altered extracellular matrix organization, cell adhesion and cellular movement. Moreover, among the 14 dysregulated genes with potential miRNA regulations identified, src kinase associated phosphoprotein 2 (SKAP2), adaptor related protein complex 1 sigma 2 subunit (AP1S2), PHD finger protein 21A (PHF21A), lipoma preferred partner (LPP), and transcription factor AP-2 alpha (TFAP2A) showed similar expression patterns in OA FLS and OA synovial tissue datasets in Gene Expression Omnibus database. Ingenuity Pathway Analysis identified the dysregulated LPP participated in cell migration and cell spreading of OA FLS, which was potentially regulated by miR-141-3p. The current findings suggested new perspectives into understanding the novel molecular signatures of FLS involved in the pathogenesis of OA, which may be potential therapeutic targets.
Collapse
Affiliation(s)
- Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ling-Yu Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ching-Fen Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chia-Hsin Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.,Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Center for Cancer Research, Kaohsiung Medical University
| |
Collapse
|
26
|
Poirion O, Zhu X, Ching T, Garmire LX. Using single nucleotide variations in single-cell RNA-seq to identify subpopulations and genotype-phenotype linkage. Nat Commun 2018; 9:4892. [PMID: 30459309 PMCID: PMC6244222 DOI: 10.1038/s41467-018-07170-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 10/10/2018] [Indexed: 12/25/2022] Open
Abstract
Despite its popularity, characterization of subpopulations with transcript abundance is subject to a significant amount of noise. We propose to use effective and expressed nucleotide variations (eeSNVs) from scRNA-seq as alternative features for tumor subpopulation identification. We develop a linear modeling framework, SSrGE, to link eeSNVs associated with gene expression. In all the datasets tested, eeSNVs achieve better accuracies than gene expression for identifying subpopulations. Previously validated cancer-relevant genes are also highly ranked, confirming the significance of the method. Moreover, SSrGE is capable of analyzing coupled DNA-seq and RNA-seq data from the same single cells, demonstrating its value in integrating multi-omics single cell techniques. In summary, SNV features from scRNA-seq data have merits for both subpopulation identification and linkage of genotype-phenotype relationship.
Collapse
Affiliation(s)
- Olivier Poirion
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Xun Zhu
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
- Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Travers Ching
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
- Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Lana X Garmire
- Department of Computational Medicine and Bioinformatics, Building 520, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
27
|
Mrozik KM, Blaschuk OW, Cheong CM, Zannettino ACW, Vandyke K. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer 2018; 18:939. [PMID: 30285678 PMCID: PMC6167798 DOI: 10.1186/s12885-018-4845-0] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
In many types of solid tumours, the aberrant expression of the cell adhesion molecule N-cadherin is a hallmark of epithelial-to-mesenchymal transition, resulting in the acquisition of an aggressive tumour phenotype. This transition endows tumour cells with the capacity to escape from the confines of the primary tumour and metastasise to secondary sites. In this review, we will discuss how N-cadherin actively promotes the metastatic behaviour of tumour cells, including its involvement in critical signalling pathways which mediate these events. In addition, we will explore the emerging role of N-cadherin in haematological malignancies, including bone marrow homing and microenvironmental protection to anti-cancer agents. Finally, we will discuss the evidence that N-cadherin may be a viable therapeutic target to inhibit cancer metastasis and increase tumour cell sensitivity to existing anti-cancer therapies.
Collapse
Affiliation(s)
- Krzysztof Marek Mrozik
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | | | - Chee Man Cheong
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew Christopher William Zannettino
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.,Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia. .,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
28
|
Wu Y, Ali MRK, Dong B, Han T, Chen K, Chen J, Tang Y, Fang N, Wang F, El-Sayed MA. Gold Nanorod Photothermal Therapy Alters Cell Junctions and Actin Network in Inhibiting Cancer Cell Collective Migration. ACS NANO 2018; 12:9279-9290. [PMID: 30118603 PMCID: PMC6156989 DOI: 10.1021/acsnano.8b04128] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Most cancer-related deaths come from metastasis. It was recently discovered that nanoparticles could inhibit cancer cell migration. Whereas most researchers focus on single-cell migration, the effect of nanoparticle treatment on collective cell migration has not been explored. Collective migration occurs commonly in many types of cancer metastasis, where a group of cancer cells move together, which requires the contractility of the cytoskeleton filaments and the connection of neighboring cells by the cell junction proteins. Here, we demonstrate that gold nanorods (AuNRs) and the introduction of near-infrared light could inhibit the cancer cell collective migration by altering the actin filaments and cell junctions with significantly triggered phosphorylation changes of essential proteins, using mass spectrometry-based phosphoproteomics. Further observation using super-resolution stochastic optical reconstruction microscopy (STORM) showed the actin cytoskeleton filament bundles were disturbed, which is difficult to differentiate under a normal fluorescence microscope. The decreased expression level of N-cadherin junctions and morphological changes of tight junction protein zonula occludens 2 were also observed. All of these results indicate possible functions of the AuNR treatments in regulating and remodeling the actin filaments and cell junction proteins, which contribute to decreasing cancer cell collective migration.
Collapse
Affiliation(s)
- Yue Wu
- Laser Dynamics Lab, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Moustafa R. K. Ali
- Laser Dynamics Lab, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Bin Dong
- Department of Chemistry, Georgia State University, P.O. Box 3965, Atlanta, Georgia 30302
| | - Tiegang Han
- Laser Dynamics Lab, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Kuangcai Chen
- Department of Chemistry, Georgia State University, P.O. Box 3965, Atlanta, Georgia 30302
| | - Jin Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, Liaoning, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Tang
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Ning Fang
- Department of Chemistry, Georgia State University, P.O. Box 3965, Atlanta, Georgia 30302
- Corresponding Author: Ning Fang, , Fangjun Wang, , Mostafa A. El-Sayed,
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, Liaoning, P. R. China
- Corresponding Author: Ning Fang, , Fangjun Wang, , Mostafa A. El-Sayed,
| | - Mostafa A. El-Sayed
- Laser Dynamics Lab, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
- Corresponding Author: Ning Fang, , Fangjun Wang, , Mostafa A. El-Sayed,
| |
Collapse
|
29
|
Kuriyama S, Tsuji T, Sakuma T, Yamamoto T, Tanaka M. PLEKHN1 promotes apoptosis by enhancing Bax-Bak hetro-oligomerization through interaction with Bid in human colon cancer. Cell Death Discov 2018. [PMID: 29531808 PMCID: PMC5841295 DOI: 10.1038/s41420-017-0006-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The anti-apoptotic nature of cancer cells often impedes the effects of anti-cancer therapeutic agents. Multiple death signals influence mitochondria during apoptosis, and though many studies have attempted to elucidate these complicated pathways, Bax oligomerization, an important step in the process, remains controversial. Here we demonstrate that pleckstrin-homology N1 (PLEKHN1), also known as cardiolipin phosphatidic acid binding protein, plays pro-apoptotic roles during reactive oxygen species (ROS)-induced apoptosis. Human PLEKHN1 was expressed in several cancer cell lines of differing origin. Its expression was regulated by hypoxia, and it existed in the mitochondrial fraction. Genome editing of hPLEKHN1 in human colon cancer HT-29 cells revealed enhanced survival of knockout cells compared with that of parental cells in vitro and in vivo. Thapsigargin or hydrogen peroxide treatment activated multiple death signals including JNK, Bcl-2 family members, and caspases. PLEKHN1 was bound to Bid, a pro-apoptotic protein, and not to Bax, and PLEKHN1 could remove Bid from transient Bid-Bax complexes. Fluorescent time-lapse imaging revealed that PLEKHN1 aggregated with Bid during thapsigargin- or hydrogen peroxide-induced apoptosis prior to Bax aggregation. Inhibition of PLEKHN1 led to attenuation of Bax-Bak hetero-oligomerization and Bid translocation. The immunohistochemistry of cancer patient specimens showed that PLEKHN1 expression was absent from cancer region at the transition area of normal/cancer tissues. Collectively, the silencing of PLEKHN1 may be the key that cancer cells acquire the drug resistance.
Collapse
Affiliation(s)
- Sei Kuriyama
- 1Department of Molecular Medicine and Biochemistry, Faculty and Graduate School of Medicine, Akita University, Akita, Japan
| | - Tadahiro Tsuji
- 2Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School and Faculty of Medicine, Akita University, Akita, Japan
| | - Tetsushi Sakuma
- 3Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan
| | - Takashi Yamamoto
- 3Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan
| | - Masamistu Tanaka
- 1Department of Molecular Medicine and Biochemistry, Faculty and Graduate School of Medicine, Akita University, Akita, Japan
| |
Collapse
|
30
|
Ngan E, Kiepas A, Brown CM, Siegel PM. Emerging roles for LPP in metastatic cancer progression. J Cell Commun Signal 2017; 12:143-156. [PMID: 29027626 DOI: 10.1007/s12079-017-0415-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/03/2017] [Indexed: 01/21/2023] Open
Abstract
LIM domain containing proteins are important regulators of diverse cellular processes, and play pivotal roles in regulating the actin cytoskeleton. Lipoma Preferred Partner (LPP) is a member of the zyxin family of LIM proteins that has long been characterized as a promoter of mesenchymal/fibroblast cell migration. More recently, LPP has emerged as a critical inducer of tumor cell migration, invasion and metastasis. LPP is thought to contribute to these malignant phenotypes by virtue of its ability to shuttle into the nucleus, localize to adhesions and, most recently, to promote invadopodia formation. In this review, we will examine the mechanisms through which LPP regulates the functions of adhesions and invadopodia, and discuss potential roles of LPP in mediating cellular responses to mechanical cues within these mechanosensory structures.
Collapse
Affiliation(s)
- Elaine Ngan
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 508, Montréal, Québec, H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Alex Kiepas
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Claire M Brown
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 508, Montréal, Québec, H3A 1A3, Canada. .,Department of Medicine, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
31
|
Melzer C, von der Ohe J, Hass R. Breast Carcinoma: From Initial Tumor Cell Detachment to Settlement at Secondary Sites. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8534371. [PMID: 28785589 PMCID: PMC5529633 DOI: 10.1155/2017/8534371] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/11/2017] [Accepted: 06/08/2017] [Indexed: 02/08/2023]
Abstract
Metastasis represents a multistep cascade of cancer cell alterations accompanied by structural and functional changes within the tumor microenvironment which may involve the induction of a retrodifferentiation program. Major steps in metastatic developments include (A) cell detachment from the primary tumor site involving epithelial-mesenchymal transition (EMT), (B) migration and invasion into surrounding tissue, (C) transendothelial intravasation into the vasculature of blood and/or lymphatic vessels as circulating tumor cells (CTCs), (D) dissemination to distant organs, and (E) extravasation of CTCs to secondary sites as disseminated tumor cells (DTCs). This article highlights some aspects of the metastatic cascade with a focus on breast cancer cells. Metastatic steps critically depend on the capability of cancer cells to adapt to distant tissues and the corresponding new microenvironment. As a consequence, increasing plasticity and developmental changes paralleled by acquisition of new cancer cell functionalities challenge a successful therapeutic approach.
Collapse
Affiliation(s)
- Catharina Melzer
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
32
|
Mège RM, Ishiyama N. Integration of Cadherin Adhesion and Cytoskeleton at Adherens Junctions. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028738. [PMID: 28096263 DOI: 10.1101/cshperspect.a028738] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cadherin-catenin adhesion complex is the key component of the intercellular adherens junction (AJ) that contributes both to tissue stability and dynamic cell movements in epithelial and nonepithelial tissues. The cadherin adhesion complex bridges neighboring cells and the actin-myosin cytoskeleton, and thereby contributes to mechanical coupling between cells which drives many morphogenetic events and tissue repair. Mechanotransduction at cadherin adhesions enables cells to sense, signal, and respond to physical changes in their environment. Central to this process is the dynamic link of the complex to actin filaments (F-actin), themselves structurally dynamic and subject to tension generated by myosin II motors. We discuss in this review recent breakthroughs in understanding molecular and cellular aspects of the organization of the core cadherin-catenin complex in adherens junctions, its association to F-actin, its mechanosensitive regulation, and dynamics.
Collapse
Affiliation(s)
- René Marc Mège
- Institut Jacques Monod (IJM), CNRS UMR 7592 and Université Paris Diderot, Paris, France
| | - Noboru Ishiyama
- Princess Margaret Cancer Centre, University Health Network, TMDT 4-902, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Yadav L, Tamene F, Göös H, van Drogen A, Katainen R, Aebersold R, Gstaiger M, Varjosalo M. Systematic Analysis of Human Protein Phosphatase Interactions and Dynamics. Cell Syst 2017; 4:430-444.e5. [PMID: 28330616 DOI: 10.1016/j.cels.2017.02.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/10/2017] [Accepted: 02/15/2017] [Indexed: 10/19/2022]
Abstract
Coordinated activities of protein kinases and phosphatases ensure phosphorylation homeostasis, which, when perturbed, can instigate diseases, including cancer. Yet, in contrast to kinases, much less is known about protein phosphatase functions and their interactions and complexes. Here, we used quantitative affinity proteomics to assay protein-protein interactions for 54 phosphatases distributed across the three major protein phosphatase families, with additional analysis of their 12 co-factors. We identified 838 high-confidence interactions, of which 631, to our knowledge, have not been reported before. We show that inhibiting the activity of phosphatases PP1 and PP2A by okadaic acid disrupts their specific interactions, supporting the potential of therapeutics that target these proteins. Additional analyses revealed candidate physical and functional interaction links to phosphatase-based regulation of several signaling pathways and to human cancer. Our study provides an initial glimpse of the protein interaction landscape of phosphatases and their functions in cellular regulation.
Collapse
Affiliation(s)
- Leena Yadav
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Fitsum Tamene
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Helka Göös
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Audrey van Drogen
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Riku Katainen
- Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki 00014, Finland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Matthias Gstaiger
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|
34
|
Wu JS, Sheng SR, Liang XH, Tang YL. The role of tumor microenvironment in collective tumor cell invasion. Future Oncol 2017; 13:991-1002. [PMID: 28075171 DOI: 10.2217/fon-2016-0501] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
For many cancer types, cancer cells invade into surrounding tissues by collective movement of cell groups that remain connected via cell-cell junctions. This migration is completely distinguished from single-cell migration, in which cancer cells disrupt the tight intercellular junctions and gain a mesenchymal phenotype. Recently, emerging evidence has revealed that collective cell invasion depends on not only cell-intrinsic mechanisms but also on extracellular mechanisms by bidirectional interplay between the tumor cell and the tumor environment. Herein, in this review we discuss the role and underline mechanisms of tumor microenvironment in collective tumor cell invasion, particularly focusing on extracellular matrix remodeling and cross-talk between tumor and stromal cells.
Collapse
Affiliation(s)
- Jia-Shun Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China.,Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China
| | - Su-Rui Sheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China.,Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China.,Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China.,Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China
| |
Collapse
|
35
|
Sharma P, Bhunia S, Poojary SS, Tekcham DS, Barbhuiya MA, Gupta S, Shrivastav BR, Tiwari PK. Global methylation profiling to identify epigenetic signature of gallbladder cancer and gallstone disease. Tumour Biol 2016; 37:14687-14699. [DOI: 10.1007/s13277-016-5355-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/07/2016] [Indexed: 12/21/2022] Open
|
36
|
Liu Y, Xu Y, Guo S, Chen H. T cell factor-4 functions as a co-activator to promote NF-κB-dependent MMP-15 expression in lung carcinoma cells. Sci Rep 2016; 6:24025. [PMID: 27046058 PMCID: PMC4820775 DOI: 10.1038/srep24025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/18/2016] [Indexed: 02/06/2023] Open
Abstract
Both TCF-4 and MMP-15 are closely linked to the development of lung cancer, while the regulatory role of TCF-4 in MMP-15 expression is still obscure. Here we found that expression of TCF-4 and MMP-15 was increased in lung cancer cells or tissues versus the normal ones. With gain-or loss-of -function studies, we demonstrated that TCF-4 positively regulated MMP-15 expression in mRNA and protein levels. With reporter gene assay, we found that TCF-4 regulated MMP-15 expression via a potential NF-κB binding element locating at -2833/-2824 in the mouse MMP-15 promoter. With ChIP and immunoblotting assays, we identified that TCF-4 functioned as a co-activator to potentiate the binding between p65 and MMP-15 promoter. Functionally, TCF-4 silence attenuated the migration activity of LLC cells, while additional overexpression of MMP-15 rescued this effect in cell scratch test and transwell migration assay. In xenograft model, TCF-4 silence-improved tumor lesions in lungs and survival time of LLC-tumor bearing mice were abolished by MMP-15 overexpression. In conclusion, we are the first to identify TCF-4 as a co-activator of NF-κB p65 to promote MMP-15 transcription and potentiate the migration activity of the lung cancer cells. Our findings shed light on the therapeutic strategies of this malignancy.
Collapse
Affiliation(s)
- Yuliang Liu
- Department of Respiratory Medicine, First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Yu Xu
- Department of Respiratory Medicine, Xinqiao Hospital, Third Military Medical University, 400037, Chongqing, China
| | - Shuliang Guo
- Department of Respiratory Medicine, First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Hong Chen
- Department of Respiratory Medicine, First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| |
Collapse
|
37
|
Mo D, Gu B, Gong X, Wu L, Wang H, Jiang Y, Zhang B, Zhang M, Zhang Y, Xu J, Pan S. miR-1290 is a potential prognostic biomarker in non-small cell lung cancer. J Thorac Dis 2015; 7:1570-9. [PMID: 26543604 DOI: 10.3978/j.issn.2072-1439.2015.09.38] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND miR-1290 is a newly discovered microRNA (miRNA), and its role in non-small cell lung cancer (NSCLC) remains unknown. This study aimed to evaluate the expression levels of miR-1290 in NSCLC tissues and serum, and explore its associations with clinicopathological characteristics and prognosis of NSCLC patients. METHODS A total of 33 pairs of tissues and 73 serum samples were obtained from NSCLC patients and expression levels of miR-1290 were detected by specific TaqMan qRT-PCR. The relationship between miR-1290 expression levels in NSCLC tissues and serum and clinicopathological characteristics was estimated respectively. The correlation between serum miR-1290 expression levels and overall survival of NSCLC patients was performed by Kaplan-Meier analysis and Cox proportional hazards model. RESULTS We determined that miR-1290 expression levels were increased significantly in NSCLC tissues compared with non-tumor adjacent normal tissues, and higher miR-1290 expression levels were positively correlated with high tumor stage (P=0.004) and positive lymph node metastasis (P=0.013). Compared with benign lung disease and healthy controls, serum levels of NSCLC patients exhibited higher expression of miR-1290. Furthermore, the up-regulation of serum miR-1290 more frequently occurred in NSCLC patients with high TNM stage, positive lymph node metastasis (P=0.022 and P=0.024, respectively). Kaplan-Meier analysis demonstrated that high serum miR-1290 expression levels predicted poor survival (P=0.022). Cox proportional hazards risk analysis indicated that miR-1290 was an independent prognostic factor for NSCLC. CONCLUSIONS Our study suggests that miR-1290 is overexpressed in NSCLC, and serum miR-1290 may be used as a potential prognostic biomarker for NSCLC.
Collapse
Affiliation(s)
- Dongping Mo
- 1 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Bing Gu
- 1 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Xue Gong
- 1 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Lei Wu
- 1 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Hong Wang
- 1 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Ye Jiang
- 1 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Bingfeng Zhang
- 1 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Meijuan Zhang
- 1 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Yan Zhang
- 1 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Jian Xu
- 1 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Shiyang Pan
- 1 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| |
Collapse
|