1
|
Jin C, Zhang F, Luo H, Li B, Jiang X, Pirozzi CJ, Liang C, Zhang M. The CCL5/CCR5/SHP2 axis sustains Stat1 phosphorylation and activates NF-κB signaling promoting M1 macrophage polarization and exacerbating chronic prostatic inflammation. Cell Commun Signal 2024; 22:584. [PMID: 39633456 PMCID: PMC11619290 DOI: 10.1186/s12964-024-01943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Chronic prostatitis (CP) is a condition markered by persistent prostate inflammation, yet the specific cytokines driving its progression remain largely undefined. This study aims to identify key cytokines involved in CP and investigate their role in driving inflammatory responses through mechanistic and therapeutic exploration. METHODS A 48-cytokine panel test was conducted to compare the plasma cytokine profiles between participants with CP-like symptoms (CP-LS) and healthy controls. Experimental autoimmune prostatitis (EAP) models were used for functional validation, with further mechanistic studies performed through in vivo and in vitro assays. Pharmacological inhibition was applied using maraviroc, and pathway inhibitors to assess therapeutic potential. RESULTS Our analysis identified CCL5 as one of the most prominently elevated cytokines in CP-LS patients. Further validation in the EAP model mice confirmed elevated CCL5 levels, highlighting its role in driving prostatic inflammation. Mechanistic studies revealed that CCL5 interacts with the CCR5 receptor, promoting M1 macrophage polarization and activating key inflammatory signaling pathways, including Stat1 and NF-κB, as indicated by increased phosphorylation of Stat1 and p65. In vitro, CCL5 combined with LPS stimulation amplified these effects, further promoting M1 polarization. CCL5 also sustained Stat1 activation by inhibiting its dephosphorylation through reduced interaction with SHP2, leading to prolonged inflammatory signaling. Single-cell transcriptomics confirmed high CCR5 expression in macrophages, correlating with inflammatory pathways. Pharmacological inhibition of CCR5, or its downstream signaling, significantly reduced macrophage-driven inflammation both in vivo and in vitro. CONCLUSION These findings establish the CCL5/CCR5 axis as a critical driver of persistant prostatic inflammation and present it as a potential therapeutic target for CP.
Collapse
Affiliation(s)
- Chen Jin
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Fei Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
| | - Hailang Luo
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
| | - Boyang Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
| | - Xue Jiang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | | | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China.
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China.
| |
Collapse
|
2
|
Hu L, Liu M, Tang B, Li X, Xu H, Wang H, Wang D, Liu S, Xu C. PARD6A promotes lung adenocarcinoma cell proliferation and invasion through Serpina3. Cancer Gene Ther 2024; 31:1696-1707. [PMID: 39300216 DOI: 10.1038/s41417-024-00829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
Par6α encoded by PARD6A is a member of the PAR6 family and is reported to promote cancer initiation and progression. PARD6A is frequently upregulated in different types of cancers, but its regulatory role in lung cancer progression is yet to be established. In this study, we analyzed the PARD6A expression in biopsies from lung adenocarcinoma (LUAD) patients, and the survival probability using LUAD tissue microarray (TMA) and online datasets from TCGA and GEO. We conducted in vitro and in vivo assays to assess the role of PARD6A in regulating lung cancer progression, including proliferation, wound healing, transwell, RNA-seq, and subcutaneous tumor mice models. Our findings revealed that PARD6A is highly expressed in cancer tissues from LUAD patients and is associated with poor prognosis in LUAD patients. In vitro assays showed that PARD6A promoted cell proliferation, migration, and invasion. The transcriptome sequencing identified Serpina3 as one of the key downstream molecules of PARD6A. Ectopic expression of Serpina3 rescued impaired proliferation, migration, and invasion in PARD6A-knocking down H1299 cells, whereas silencing Serpina3 impeded enhanced proliferation, migration, and invasion in PARD6A-overexpressing H1975 cells. Our findings suggest that PARD6A promotes lung cancer progression by inducing Serpina3, which may be a promising therapeutic target.
Collapse
Affiliation(s)
- Lanlin Hu
- Yu-Yue Pathology Scientific Research Center, Chongqing, 400039, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Mingxin Liu
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610042, China
| | - Bo Tang
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xurui Li
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Huasheng Xu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China
| | - Huani Wang
- Yu-Yue Pathology Scientific Research Center, Chongqing, 400039, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Dandan Wang
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China.
| | - Chuan Xu
- Yu-Yue Pathology Scientific Research Center, Chongqing, 400039, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
3
|
Scheiter A, Lu LC, Gao LH, Feng GS. Complex Roles of PTPN11/SHP2 in Carcinogenesis and Prospect of Targeting SHP2 in Cancer Therapy. ANNUAL REVIEW OF CANCER BIOLOGY 2024; 8:15-33. [PMID: 39959686 PMCID: PMC11824402 DOI: 10.1146/annurev-cancerbio-062722-013740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The non-receptor tyrosine phosphatase SHP2 has been at the center of cell signaling research for three decades. SHP2 is required to fully activate the RTK-RAS-ERK cascade, although the underlying mechanisms are not completely understood. PTPN11, coding for SHP2, is the first identified proto-oncogene that encodes a tyrosine phosphatase, with dominantly activating mutations detected in leukemias and solid tumors. However, SHP2 has been shown to have pro- and anti-oncogenic effects, and the most recent data reveal opposite activities of SHP2 in tumor cells and microenvironment cells. Allosteric SHP2 inhibitors show promising anti-tumor effects and overcome resistance to inhibitors of RAS-ERK signaling in animal models. Many clinical trials with orally bioactive SHP2 inhibitors, alone or combined with other regimens, are ongoing for a variety of cancers worldwide, with therapeutic outcomes yet unknown. This review discusses the multi-faceted SHP2 functions in oncogenesis, preclinical studies and clinical trials with SHP2 inhibitors in oncological treatment.
Collapse
Affiliation(s)
- Alexander Scheiter
- Department of Pathology, and Moores Cancer Center, School of Medicine, University of California San Diego, La Jolla, California 92093
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Li-Chun Lu
- Department of Pathology, and Moores Cancer Center, School of Medicine, University of California San Diego, La Jolla, California 92093
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (ROC)
| | - Lilian H. Gao
- Department of Pathology, and Moores Cancer Center, School of Medicine, University of California San Diego, La Jolla, California 92093
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, California 92093
| | - Gen-Sheng Feng
- Department of Pathology, and Moores Cancer Center, School of Medicine, University of California San Diego, La Jolla, California 92093
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, California 92093
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
4
|
Chen X, Keller SJ, Hafner P, Alrawashdeh AY, Avery TY, Norona J, Zhou J, Ruess DA. Tyrosine phosphatase PTPN11/SHP2 in solid tumors - bull's eye for targeted therapy? Front Immunol 2024; 15:1340726. [PMID: 38504984 PMCID: PMC10948527 DOI: 10.3389/fimmu.2024.1340726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Encoded by PTPN11, the Src-homology 2 domain-containing phosphatase 2 (SHP2) integrates signals from various membrane-bound receptors such as receptor tyrosine kinases (RTKs), cytokine and integrin receptors and thereby promotes cell survival and proliferation. Activating mutations in the PTPN11 gene may trigger signaling pathways leading to the development of hematological malignancies, but are rarely found in solid tumors. Yet, aberrant SHP2 expression or activation has implications in the development, progression and metastasis of many solid tumor entities. SHP2 is involved in multiple signaling cascades, including the RAS-RAF-MEK-ERK-, PI3K-AKT-, JAK-STAT- and PD-L1/PD-1- pathways. Although not mutated, activation or functional requirement of SHP2 appears to play a relevant and context-dependent dichotomous role. This mostly tumor-promoting and infrequently tumor-suppressive role exists in many cancers such as gastrointestinal tumors, pancreatic, liver and lung cancer, gynecological entities, head and neck cancers, prostate cancer, glioblastoma and melanoma. Recent studies have identified SHP2 as a potential biomarker for the prognosis of some solid tumors. Based on promising preclinical work and the advent of orally available allosteric SHP2-inhibitors early clinical trials are currently investigating SHP2-directed approaches in various solid tumors, either as a single agent or in combination regimes. We here provide a brief overview of the molecular functions of SHP2 and collate current knowledge with regard to the significance of SHP2 expression and function in different solid tumor entities, including cells in their microenvironment, immune escape and therapy resistance. In the context of the present landscape of clinical trials with allosteric SHP2-inhibitors we discuss the multitude of opportunities but also limitations of a strategy targeting this non-receptor protein tyrosine phosphatase for treatment of solid tumors.
Collapse
Affiliation(s)
- Xun Chen
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Steffen Johannes Keller
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Philipp Hafner
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Asma Y. Alrawashdeh
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Thomas Yul Avery
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Johana Norona
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Dietrich Alexander Ruess
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
Wu J, Tan HY, Chan YT, Lu Y, Feng Z, Yuan H, Zhang C, Feng Y, Wang N. PARD3 drives tumorigenesis through activating Sonic Hedgehog signalling in tumour-initiating cells in liver cancer. J Exp Clin Cancer Res 2024; 43:42. [PMID: 38317186 PMCID: PMC10845773 DOI: 10.1186/s13046-024-02967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/26/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Par-3 Family Cell Polarity Regulator (PARD3) is a cellular protein essential for asymmetric cell division and polarized growth. This study aimed to study the role of PARD3 in hepatic tumorigenesis. METHODS The essential role of PARD3 in mediating hepatic tumorigenesis was assessed in diet-induced spontaneous liver tumour and syngeneic tumour models. The mechanism of PARD3 was delineated by bulk and single-cell RNA sequencing. The clinical significance of PARD3 was identified by tissue array analysis. RESULTS PARD3 was overexpressed in tumour tissues and PARD3 overexpression was positively correlated with high tumour stage as well as the poor prognosis in patients. In models of spontaneous liver cancer induced by choline-deficient, amino acid-defined (CDAA) and methionine-choline-deficient (MCD) diets, upregulation of PARD3 was induced specifically at the tumorigenesis stage rather than other early stages of liver disease progression. Site-directed knockout of PARD3 using an adeno-associated virus 8 (AAV8)-delivered CRISPR/Cas9 single-guide RNA (sgRNA) plasmid blocked hepatic tumorigenesis, while PARD3 overexpression accelerated liver tumour progression. In particular, single-cell sequencing analysis suggested that PARD3 was enriched in primitive tumour cells and its overexpression enhanced tumour-initiating cell (TICs). Overexpression of PARD3 maintained the self-renewal ability of the CD133+ TIC population within hepatocellular carcinoma (HCC) cells and promoted the in vitro and in vivo tumorigenicity of CD133+ TICs. Transcriptome analysis revealed that Sonic Hedgehog (SHH) signalling was activated in PARD3-overexpressing CD133+ TICs. Mechanistically, PARD3 interacted with aPKC to further activate SHH signalling and downstream stemness-related genes. Suppression of SHH signalling and aPKC expression attenuated the in vitro and in vivo tumorigenicity of PARD3-overexpressing CD133+ TICs. Tissue array analysis revealed that PARD3 expression was positively associated with the phosphorylation of aPKC, SOX2 and Gli1 and that the combination of these markers could be used to stratify HCC patients into two clusters with different clinicopathological characteristics and overall survival prognoses. The natural compound berberine was selected as a potent suppressor of PARD3 expression and could be used as a preventive agent for liver cancer that completely blocks diet-induced hepatic tumorigenesis in a PARD3-dependent manner. CONCLUSION This study revealed PARD3 as a potential preventive target of liver tumorigenesis via TIC regulation.
Collapse
Affiliation(s)
- Junyu Wu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hor-Yue Tan
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Chinese Medicine Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yau-Tuen Chan
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuanjun Lu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zixin Feng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hongchao Yuan
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Cheng Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yibin Feng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ning Wang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
6
|
Welsh CL, Allen S, Madan LK. Setting sail: Maneuvering SHP2 activity and its effects in cancer. Adv Cancer Res 2023; 160:17-60. [PMID: 37704288 PMCID: PMC10500121 DOI: 10.1016/bs.acr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Since the discovery of tyrosine phosphorylation being a critical modulator of cancer signaling, proteins regulating phosphotyrosine levels in cells have fast become targets of therapeutic intervention. The nonreceptor protein tyrosine phosphatase (PTP) coded by the PTPN11 gene "SHP2" integrates phosphotyrosine signaling from growth factor receptors into the RAS/RAF/ERK pathway and is centrally positioned in processes regulating cell development and oncogenic transformation. Dysregulation of SHP2 expression or activity is linked to tumorigenesis and developmental defects. Even as a compelling anti-cancer target, SHP2 was considered "undruggable" for a long time owing to its conserved catalytic PTP domain that evaded drug development. Recently, SHP2 has risen from the "undruggable curse" with the discovery of small molecules that manipulate its intrinsic allostery for effective inhibition. SHP2's unique domain arrangement and conformation(s) allow for a truly novel paradigm of inhibitor development relying on skillful targeting of noncatalytic sites on proteins. In this review we summarize the biological functions, signaling properties, structural attributes, allostery and inhibitors of SHP2.
Collapse
Affiliation(s)
- Colin L Welsh
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sarah Allen
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, United States
| | - Lalima K Madan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
7
|
Huang Y, Liu P, Luo J, Zhu C, Lu C, Zhao N, Zhao W, Cui W, Yang X. Par6 Enhances Glioma Invasion by Activating MEK/ERK Pathway Through a LIN28/let-7d Positive Feedback Loop. Mol Neurobiol 2023; 60:1626-1644. [PMID: 36542194 DOI: 10.1007/s12035-022-03171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
The invasion of glioblastoma usually results in the recurrence and poor prognosis in patients with glioma. However, the underlying mechanisms involved in glioma invasion remains undefined. In this study, immunohistochemistry analyses of glioma specimens demonstrated that high expression of Par6 was positively correlated with malignancy and poor prognosis of patients with glioma. Par6-overexpressing glioma cells showed much more fibroblast-like morphology, suggesting that regulation of Par6 expression might be associated with tumor invasion in glioma cells. Further study indicated that Par6 overexpression subsequently increased CD44 and N-cadherin expression to enhance glioma invasion through activating MEK/ERK/STAT3 pathway, in vivo and in vitro. Moreover, we found that LIN28/let-7d axis was involved in this process via a positive feedback loop, suggesting that MEK/ERK/LIN28/let-7d/STAT3 cascade might be essential for Par6-mediated glioma invasion. Therefore, these data highlight the roles of Par6 in glioma invasion, and Par6 may serve as a potential therapeutic target for patients with glioma.
Collapse
Affiliation(s)
- Yishan Huang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Pei Liu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Juanjuan Luo
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Chenchen Zhu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Chunjiao Lu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Na Zhao
- Department of Pharmacology, College of Life Science and Biopharmaceutical of Shenyang Pharmaceutical University, Shenyang, China
| | - Weijiang Zhao
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wei Cui
- Department of Pharmacology, College of Life Science and Biopharmaceutical of Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaojun Yang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| |
Collapse
|
8
|
Asmamaw MD, Shi XJ, Zhang LR, Liu HM. A comprehensive review of SHP2 and its role in cancer. Cell Oncol 2022; 45:729-753. [PMID: 36066752 DOI: 10.1007/s13402-022-00698-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 12/26/2022] Open
Abstract
Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase ubiquitously expressed mainly in the cytoplasm of several tissues. SHP2 modulates diverse cell signaling events that control metabolism, cell growth, differentiation, cell migration, transcription and oncogenic transformation. It interacts with diverse molecules in the cell, and regulates key signaling events including RAS/ERK, PI3K/AKT, JAK/STAT and PD-1 pathways downstream of several receptor tyrosine kinases (RTKs) upon stimulation by growth factors and cytokines. SHP2 acts as both a phosphatase and a scaffold, and plays prominently oncogenic functions but can be tumor suppressor in a context-dependent manner. It typically acts as a positive regulator of RTKs signaling with some inhibitory functions reported as well. SHP2 expression and activity is regulated by such factors as allosteric autoinhibition, microRNAs, ubiquitination and SUMOylation. Dysregulation of SHP2 expression or activity causes many developmental diseases, and hematological and solid tumors. Moreover, upregulated SHP2 expression or activity also decreases sensitivity of cancer cells to anticancer drugs. SHP2 is now considered as a compelling anticancer drug target and several classes of SHP2 inhibitors with different mode of action are developed with some already in clinical trial phases. Moreover, novel SHP2 substrates and functions are rapidly growing both in cell and cancer. In view of this, we comprehensively and thoroughly reviewed literatures about SHP2 regulatory mechanisms, substrates and binding partners, biological functions, roles in human cancers, and different classes of small molecule inhibitors target this oncoprotein in cancer.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Xiao-Jing Shi
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450052, People's Republic of China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China. .,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, Henan Province, 450001, People's Republic of China.
| |
Collapse
|
9
|
Tang X, Qi C, Zhou H, Liu Y. Critical roles of PTPN family members regulated by non-coding RNAs in tumorigenesis and immunotherapy. Front Oncol 2022; 12:972906. [PMID: 35957898 PMCID: PMC9360549 DOI: 10.3389/fonc.2022.972906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 12/22/2022] Open
Abstract
Since tyrosine phosphorylation is reversible and dynamic in vivo, the phosphorylation state of proteins is controlled by the opposing roles of protein tyrosine kinases (PTKs) and protein tyrosine phosphatase (PTPs), both of which perform critical roles in signal transduction. Of these, intracellular non-receptor PTPs (PTPNs), which belong to the largest class I cysteine PTP family, are essential for the regulation of a variety of biological processes, including but not limited to hematopoiesis, inflammatory response, immune system, and glucose homeostasis. Additionally, a substantial amount of PTPNs have been identified to hold crucial roles in tumorigenesis, progression, metastasis, and drug resistance, and inhibitors of PTPNs have promising applications due to striking efficacy in antitumor therapy. Hence, the aim of this review is to summarize the role played by PTPNs, including PTPN1/PTP1B, PTPN2/TC-PTP, PTPN3/PTP-H1, PTPN4/PTPMEG, PTPN6/SHP-1, PTPN9/PTPMEG2, PTPN11/SHP-2, PTPN12/PTP-PEST, PTPN13/PTPL1, PTPN14/PEZ, PTPN18/PTP-HSCF, PTPN22/LYP, and PTPN23/HD-PTP, in human cancer and immunotherapy and to comprehensively describe the molecular pathways in which they are implicated. Given the specific roles of PTPNs, identifying potential regulators of PTPNs is significant for understanding the mechanisms of antitumor therapy. Consequently, this work also provides a review on the role of non-coding RNAs (ncRNAs) in regulating PTPNs in tumorigenesis and progression, which may help us to find effective therapeutic agents for tumor therapy.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Clinical Laboratory Diagnostics, Binzhou Medical University, Binzhou, China
| | - Chumei Qi
- Department of Clinical Laboratory, Dazhou Women and Children’s Hospital, Dazhou, China
| | - Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| |
Collapse
|
10
|
Tseng PC, Chen CL, Lee KY, Feng PH, Wang YC, Satria RD, Lin CF. Epithelial-to-mesenchymal transition hinders interferon-γ-dependent immunosurveillance in lung cancer cells. Cancer Lett 2022; 539:215712. [PMID: 35490920 DOI: 10.1016/j.canlet.2022.215712] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/23/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) is involved in cancer metastasis; nevertheless, interferon (IFN)-γ induces anticancer activities by causing cell growth suppression, cytotoxicity, and migration inhibition. Regarding the poor response to exogenously administered IFN-γ as anticancer therapy, it was hypothesized that malignant cells may acquire a means of escaping from IFN-γ immunosurveillance, likely through an EMT-related process. A genomic analysis of human lung cancers revealed a negative link between the EMT and IFN-γ signaling, while compared to human lung adenocarcinoma A549 cells, IFN-γ-hyporesponsive AS2 cells exhibited mesenchymal characteristics. Chemically, physically, and genetically engineered EMT attenuated IFN-γ-induced IFN regulatory factor 1 transactivation. Poststimulation of transforming growth factor-β induced the EMT and also selectively retarded IFN-γ-responsive gene expression as well as IFN-γ-induced signal transducer and activator of transcription 1 activation, major histocompatibility complex I, and CD54 expression, cell migration/invasion inhibition, and direct/indirect cytotoxicity. Without changes in IFN-γ receptors, excessive oxidative activation of Src homology-2 containing phosphatase 2 (SHP2) in cells undergoing the EMT primarily caused cellular hyporesponsiveness to IFN-γ signaling and cytotoxicity, while combining an SHP2 inhibitor or antioxidant sensitized EMT-associated AS2 and mesenchymal A549 cells to IFN-γ-induced priming effects on tumor necrosis factor-related apoptosis-inducing ligand cytotoxicity. In cell line-derived xenograft models, combined treatment with IFN-γ and an SHP2 inhibitor induced enhanced anticancer activities. These results imply that EMT-associated SHP2 activation inhibits IFN-γ signaling, facilitating lung cancer cell escape from IFN-γ immunosurveillance.
Collapse
Affiliation(s)
- Po-Chun Tseng
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kang-Yuan Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, 11031, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, 11031, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Chih Wang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Rahmat Dani Satria
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia; Clinical Laboratory Installation, Dr. Sardjito Central General Hospital, Yogyakarta, 55281, Indonesia
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei, 11031, Taiwan; International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
11
|
Kanumuri R, Pasupuleti SK, Burns SS, Ramdas B, Kapur R. Targeting SHP2 phosphatase in hematological malignancies. Expert Opin Ther Targets 2022; 26:319-332. [PMID: 35503226 PMCID: PMC9239432 DOI: 10.1080/14728222.2022.2066518] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/12/2022] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) is a ubiquitously expressed, non-receptor protein tyrosine phosphatase encoded by the PTPN11 gene. Gain-of-function (GOF) mutations in PTPN11 are associated with the development of various hematological malignancies and Noonan syndrome with multiple lentigines (NS-ML). Preclinical studies performed with allosteric SHP2 inhibitors and combination treatments of SHP2 inhibitors with inhibitors of downstream regulators (such as MEK, ERK, and PD-1/PD-L1) demonstrate improved antitumor benefits. However, the development of novel SHP2 inhibitors is necessary to improve the therapeutic strategies for hematological malignancies and tackle drug resistance and disease relapse. AREAS COVERED This review examines the structure of SHP2, its function in various signaling cascades, the consequences of constitutive activation of SHP2 and potential therapeutic strategies to treat SHP2-driven hematological malignancies. EXPERT OPINION While SHP2 inhibitors have exhibited promise in preclinical trials, numerous challenges remain in translation to the clinic, including drug resistance. Although PROTAC-based SHP2 degraders show better efficacy than SHP2 inhibitors, novel strategies need to be designed to improve SHP2-specific therapies in hematologic malignancies. Genome-wide CRISPR screening should also be used to identify molecules that confer resistance to SHP2 inhibitors. Targeting these molecules together with SHP2 can increase the target specificity and reduce drug resistance.
Collapse
Affiliation(s)
- Rahul Kanumuri
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Santhosh Kumar Pasupuleti
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarah S Burns
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Baskar Ramdas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Reuben Kapur
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Lu Z, Yuan S, Ruan L, Tu Z, Liu H. Partitioning defective 6 homolog alpha (PARD6A) promotes epithelial–mesenchymal transition via integrin β1-ILK-SNAIL1 pathway in ovarian cancer. Cell Death Dis 2022; 13:304. [PMID: 35379775 PMCID: PMC8980072 DOI: 10.1038/s41419-022-04756-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
Abstract
Partitioning-defective protein 6 (Par6) family proteins have been demonstrated to be closely associated with the occurrence and development of cancers. It is well accepted that dysregulation of epithelial–mesenchymal transition (EMT) greatly contributes to carcinogenesis and metastases of ovarian cancer. So far, the roles of Par6 in EMT of ovarian cancer are not clear. Functional experiments were carried out to study the roles of PARD6A in EMT of ovarian cancer in vitro and in vivo, and EMT pathways potentially affected by PARD6A expression were screened. We found that PARD6A was significantly highly expressed in tissues of ovarian cancer patients in III-IV stages, poorly differentiated or with lymphatic metastases versus I-II stages, moderately or well differentiated, or without lymphatic metastases, respectively. PARD6A knockdown suppressed EMT of SKOV3 and A2780 cells in vitro and ovarian cancer metastasis in vivo, while overexpression of PARD6A promoted EMT in HO8910 and OVCAR8 cells. It was indicated that PARD6A affected EMT of ovarian cancer cells through SNAIL1 signaling pathway and subsequently modulated the expression of VIMENTIN and E-cadherin, which was further confirmed by knockdown and overexpression of SNAIL1 experiments. PARD6A was also demonstrated to regulate expression of SNAIL1 by modulating integrin β1 and ILK proteins, specifically it was shown that the transcription of SNAIL1 was regulated by ILK in this study. In addition, expression of ILK in ovarian cancer tissues was demonstrated to be correlated with tumor stages and lymphatic metastases clinically. In this study, we identified a novel role of PARD6A as an inducer of cell migration and invasion, which is likely to play an important role in metastasis of ovarian cancer. The molecular pathways of EMT mediated by PARD6A-Integrin β1-ILK-SNAIL1 and finally implemented by E-cadherin and VIMENTIN may provide a novel strategy for drug development for ovarian cancer therapy in the near future.
Collapse
|
13
|
Prognostic significance of SHP2 (PTPN11) expression in solid tumors: A meta-analysis. PLoS One 2022; 17:e0262931. [PMID: 35061863 PMCID: PMC8782321 DOI: 10.1371/journal.pone.0262931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/08/2022] [Indexed: 11/19/2022] Open
Abstract
Background SHP2 is a latent biomarker for predicting the survivals of solid tumors. However, the current researches were controversial. Therefore, a meta-analysis is necessary to assess the prognosis of SHP2 on tumor patients. Materials and methods Searched in PubMed, EMBASE and web of science databases for published studies until Jun 20, 2021. A meta-analysis was performed to evaluate the affect of SHP2 in clinical stages, disease-free survival (DFS) and overall survival (OS) in tumor patients. Results This study showed that the expression of SHP2 had no significant correlation with clinical stages (OR: 0.91; 95% CI, 0.60–1.38; P = 0.65), DFS (HR = 0.88; 95%CI: 0.58–1.34; P = 0.56) and OS (HR = 1.07, 95%CI: 0.79–1.45, P = 0.67), but the prognostic effect varied greatly with tumor sites. High SHP2 expression was positively related to early clinical stage in hepatocellular carcinoma, not associated with clinical stage in the most of solid tumors, containing laryngeal carcinoma, pancreatic carcinoma and gastric carcinoma, etc. Higher expression of SHP2 could predict longer DFS in colorectal carcinoma, while predict shorter DFS in hepatocellular carcinoma. No significant difference was observed in DFS for non-small cell lung carcinoma and thyroid carcinoma. Higher SHP2 expression was distinctly related to shorter OS in pancreatic carcinoma and laryngeal carcinoma. The OS of the other solid tumors was not significantly different. Conclusions The prognostic value of SHP2 might not equivalent in different tumors. The prognostic effect of SHP2 is highly influenced by tumor sites.
Collapse
|
14
|
Protein Tyrosine Phosphatases: Mechanisms in Cancer. Int J Mol Sci 2021; 22:ijms222312865. [PMID: 34884670 PMCID: PMC8657787 DOI: 10.3390/ijms222312865] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Protein tyrosine kinases, especially receptor tyrosine kinases, have dominated the cancer therapeutics sphere as proteins that can be inhibited to selectively target cancer. However, protein tyrosine phosphatases (PTPs) are also an emerging target. Though historically known as negative regulators of the oncogenic tyrosine kinases, PTPs are now known to be both tumor-suppressive and oncogenic. This review will highlight key protein tyrosine phosphatases that have been thoroughly investigated in various cancers. Furthermore, the different mechanisms underlying pro-cancerous and anti-cancerous PTPs will also be explored.
Collapse
|
15
|
SHP2 as a Potential Therapeutic Target in Diffuse-Type Gastric Carcinoma Addicted to Receptor Tyrosine Kinase Signaling. Cancers (Basel) 2021; 13:cancers13174309. [PMID: 34503119 PMCID: PMC8430696 DOI: 10.3390/cancers13174309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Diffuse-type gastric carcinoma (DGC) is characterized by rapid infiltrative growth associated with massive stroma and frequent peritoneal dissemination, which leads to poor patient outcomes. In this study, we found that the oncogenic tyrosine phosphatase SHP2 is tyrosine-phosphorylated downstream of the amplified receptor tyrosine kinases (RTKs) Met and fibroblast growth factor receptor 2 (FGFR2) in DGC cell lines. SHP2 knockdown or pharmacological inhibition selectively suppressed the growth of DGC addicted to amplified Met and FGFR2. Moreover, targeting SHP2 abrogated malignant phenotypes, including peritoneal dissemination, of Met-addicted DGC and could overcome acquired resistance to Met inhibitors. Our findings suggest that SHP2 is a potential target for the treatment of DGC addicted to amplified RTK signaling. Abstract Diffuse-type gastric carcinoma (DGC) exhibits aggressive progression associated with rapid infiltrative growth, massive fibrosis, and peritoneal dissemination. Gene amplification of Met and fibroblast growth factor receptor 2 (FGFR2) receptor tyrosine kinases (RTKs) has been observed in DGC. However, the signaling pathways that promote DGC progression downstream of these RTKs remain to be fully elucidated. We previously identified an oncogenic tyrosine phosphatase, SHP2, using phospho-proteomic analysis of DGC cells with Met gene amplification. In this study, we characterized SHP2 in the progression of DGC and assessed the therapeutic potential of targeting SHP2. Although SHP2 was expressed in all gastric carcinoma cell lines examined, its tyrosine phosphorylation preferentially occurred in several DGC cell lines with Met or FGFR2 gene amplification. Met or FGFR inhibitor treatment or knockdown markedly reduced SHP2 tyrosine phosphorylation. Knockdown or pharmacological inhibition of SHP2 selectively suppressed the growth of DGC cells addicted to Met or FGFR2, even when they acquired resistance to Met inhibitors. Moreover, SHP2 knockdown or pharmacological inhibition blocked the migration and invasion of Met-addicted DGC cells in vitro and their peritoneal dissemination in a mouse xenograft model. These results indicate that SHP2 is a critical regulator of the malignant progression of RTK-addicted DGC and may be a therapeutic target.
Collapse
|
16
|
Molecular subversion of Cdc42 signalling in cancer. Biochem Soc Trans 2021; 49:1425-1442. [PMID: 34196668 PMCID: PMC8412110 DOI: 10.1042/bst20200557] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Cdc42 is a member of the Rho family of small GTPases and a master regulator of the actin cytoskeleton, controlling cell motility, polarity and cell cycle progression. This small G protein and its regulators have been the subject of many years of fruitful investigation and the advent of functional genomics and proteomics has opened up new avenues of exploration including how it functions at specific locations in the cell. This has coincided with the introduction of new structural techniques with the ability to study small GTPases in the context of the membrane. The role of Cdc42 in cancer is well established but the molecular details of its action are still being uncovered. Here we review alterations found to Cdc42 itself and to key components of the signal transduction pathways it controls in cancer. Given the challenges encountered with targeting small G proteins directly therapeutically, it is arguably the regulators of Cdc42 and the effector signalling pathways downstream of the small G protein which will be the most tractable targets for therapeutic intervention. These will require interrogation in order to fully understand the global signalling contribution of Cdc42, unlock the potential for mapping new signalling axes and ultimately produce inhibitors of Cdc42 driven signalling.
Collapse
|
17
|
Jiang D, He Y, Mo Q, Liu E, Li X, Huang L, Zhang Q, Chen F, Li Y, Shao H. PRICKLE1, a Wnt/PCP signaling component, is overexpressed and associated with inferior prognosis in acute myeloid leukemia. J Transl Med 2021; 19:211. [PMID: 34001134 PMCID: PMC8130533 DOI: 10.1186/s12967-021-02873-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/03/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Prickle planar cell polarity protein 1 (PRICKLE1), a core component of the non-canonical Wnt/planar cell polarity (PCP) pathway, was recently reported to be upregulated and correlated with poor prognosis in solid cancers. However, the effect of PRICKLE1 on acute myeloid leukemia (AML) remains unknown. This study aims to characterize the prognostic significance of PRICKLE1 expression in patients with AML. METHODS RNA-seq was performed to compare mRNA expression profiles of AML patients and healthy controls. qRT-PCR and western blotting were used to analyze the expression of PRICKLE1 in AML patients and cell lines, and two independent datasets (TCGA-LAML and TARGET-AML) online were used to validate the expression results. The correlations between the expression of PRICKLE1 and clinical features were further analyzed. RESULTS Our data showed that PRICKLE1 expression levels were markedly high in AML patients at the time of diagnosis, decreased after complete remission and increased again at relapse. Of note, PRICKLE1 was highly expressed in drug resistant AML cells and monocytic-AML patients. High PRICKLE1 expression was found in FLT3/DNMT3A/IDH1/IDH2-mutant AML and associated with poor prognosis. Furthermore, high expression of PRICKLE1 may be correlated with migration and invasion components upregulation in AML patients. CONCLUSIONS These results indicated that high PRICKLE1 expression may be a poor prognostic biomarker and therapeutic target of AML.
Collapse
Affiliation(s)
- Duanfeng Jiang
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanjuan He
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuyu Mo
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Enyi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Li
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihua Huang
- Center for Medical Experiments, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Zhang
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangping Chen
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Haigang Shao
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
18
|
Dong L, Han D, Meng X, Xu M, Zheng C, Xia Q. Activating Mutation of SHP2 Establishes a Tumorigenic Phonotype Through Cell-Autonomous and Non-Cell-Autonomous Mechanisms. Front Cell Dev Biol 2021; 9:630712. [PMID: 33777940 PMCID: PMC7991796 DOI: 10.3389/fcell.2021.630712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/04/2021] [Indexed: 01/18/2023] Open
Abstract
Gain-of-function mutation of SHP2 is a central regulator in tumorigenesis and cancer progression through cell-autonomous mechanisms. Activating mutation of SHP2 in microenvironment was identified to promote cancerous transformation of hematopoietic stem cell in non-autonomous mechanisms. It is interesting to see whether therapies directed against SHP2 in tumor or microenvironmental cells augment antitumor efficacy. In this review, we summarized different types of gain-of-function SHP2 mutations from a human disease. In general, gain-of-function mutations destroy the auto-inhibition state from wild-type SHP2, leading to consistency activation of SHP2. We illustrated how somatic or germline mutation of SHP2 plays an oncogenic role in tumorigenesis, stemness maintenance, invasion, etc. Moreover, the small-molecule SHP2 inhibitors are considered as a potential strategy for enhancing the efficacy of antitumor immunotherapy and chemotherapy. We also discussed the interconnection between phase separation and activating mutation of SHP2 in drug resistance of antitumor therapy.
Collapse
Affiliation(s)
- Lei Dong
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Da Han
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Xinyi Meng
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Mengchuan Xu
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Chuwen Zheng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Qin Xia
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
19
|
Tripathi RKP, Ayyannan SR. Emerging chemical scaffolds with potential SHP2 phosphatase inhibitory capabilities - A comprehensive review. Chem Biol Drug Des 2020; 97:721-773. [PMID: 33191603 DOI: 10.1111/cbdd.13807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
The drug discovery panorama is cluttered with promising therapeutic targets that have been deserted because of inadequate authentication and screening failures. Molecular targets formerly tagged as "undruggable" are nowadays being more cautiously cross-examined, and whilst they stay intriguing, numerous targets are emerging more accessible. Protein tyrosine phosphatases (PTPs) excellently exemplifies a class of molecular targets that have transpired as druggable, with several small molecules and antibodies recently turned available for further development. In this respect, SHP2, a PTP, has emerged as one of the potential targets in the current pharmacological research, particularly for cancer, due to its critical role in various signalling pathways. Recently, few molecules with excellent potency have entered clinical trials, but none could reach the clinic. Consequently, search for novel, non-toxic, and specific SHP2 inhibitors are on purview. In this review, general aspects of SHP2 including its structure and mechanistic role in carcinogenesis have been presented. It also sheds light on the development of novel molecular architectures belonging to diverse chemical classes that have been proposed as SHP2-specific inhibitors along with their structure-activity relationships (SARs), stemming from chemical, mechanism-based and computer-aided studies reported since January 2015 to July 2020 (excluding patents), focusing on their potency and selectivity. The encyclopedic facts and discussions presented herein will hopefully facilitate researchers to design new ligands with better efficacy and selectivity against SHP2.
Collapse
Affiliation(s)
- Rati Kailash Prasad Tripathi
- Department of Pharmaceutical Science, Sushruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar, Assam, India.,Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
20
|
Pardella E, Pranzini E, Leo A, Taddei ML, Paoli P, Raugei G. Oncogenic Tyrosine Phosphatases: Novel Therapeutic Targets for Melanoma Treatment. Cancers (Basel) 2020; 12:E2799. [PMID: 33003469 PMCID: PMC7599540 DOI: 10.3390/cancers12102799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Despite a large number of therapeutic options available, malignant melanoma remains a highly fatal disease, especially in its metastatic forms. The oncogenic role of protein tyrosine phosphatases (PTPs) is becoming increasingly clear, paving the way for novel antitumor treatments based on their inhibition. In this review, we present the oncogenic PTPs contributing to melanoma progression and we provide, where available, a description of new inhibitory strategies designed against these enzymes and possibly useful in melanoma treatment. Considering the relevance of the immune infiltrate in supporting melanoma progression, we also focus on the role of PTPs in modulating immune cell activity, identifying interesting therapeutic options that may support the currently applied immunomodulating approaches. Collectively, this information highlights the value of going further in the development of new strategies targeting oncogenic PTPs to improve the efficacy of melanoma treatment.
Collapse
Affiliation(s)
- Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Angela Leo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Giovanni Raugei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| |
Collapse
|
21
|
Valdivia A, Cárdenas A, Brenet M, Maldonado H, Kong M, Díaz J, Burridge K, Schneider P, San Martín A, García-Mata R, Quest AFG, Leyton L. Syndecan-4/PAR-3 signaling regulates focal adhesion dynamics in mesenchymal cells. Cell Commun Signal 2020; 18:129. [PMID: 32811537 PMCID: PMC7433185 DOI: 10.1186/s12964-020-00629-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/17/2020] [Indexed: 01/04/2023] Open
Abstract
Background Syndecans regulate cell migration thus having key roles in scarring and wound healing processes. Our previous results have shown that Thy-1/CD90 can engage both αvβ3 integrin and Syndecan-4 expressed on the surface of astrocytes to induce cell migration. Despite a well-described role of Syndecan-4 during cell movement, information is scarce regarding specific Syndecan-4 partners involved in Thy-1/CD90-stimulated cell migration. Methods Mass spectrometry (MS) analysis of complexes precipitated with the Syndecan-4 cytoplasmic tail peptide was used to identify potential Syndecan-4-binding partners. The interactions found by MS were validated by immunoprecipitation and proximity ligation assays. The conducted research employed an array of genetic, biochemical and pharmacological approaches, including: PAR-3, Syndecan-4 and Tiam1 silencing, active Rac1 GEFs affinity precipitation, and video microscopy. Results We identified PAR-3 as a Syndecan-4-binding protein. Its interaction depended on the carboxy-terminal EFYA sequence present on Syndecan-4. In astrocytes where PAR-3 expression was reduced, Thy-1-induced cell migration and focal adhesion disassembly was impaired. This effect was associated with a sustained Focal Adhesion Kinase activation in the siRNA-PAR-3 treated cells. Our data also show that Thy-1/CD90 activates Tiam1, a PAR-3 effector. Additionally, we found that after Syndecan-4 silencing, Tiam1 activation was decreased and it was no longer recruited to the membrane. Syndecan-4/PAR-3 interaction and the alteration in focal adhesion dynamics were validated in mouse embryonic fibroblast (MEF) cells, thereby identifying this novel Syndecan-4/PAR-3 signaling complex as a general mechanism for mesenchymal cell migration involved in Thy-1/CD90 stimulation. Conclusions The newly identified Syndecan-4/PAR-3 signaling complex participates in Thy-1/CD90-induced focal adhesion disassembly in mesenchymal cells. The mechanism involves focal adhesion kinase dephosphorylation and Tiam1 activation downstream of Syndecan-4/PAR-3 signaling complex formation. Additionally, PAR-3 is defined here as a novel adhesome-associated component with an essential role in focal adhesion disassembly during polarized cell migration. These novel findings uncover signaling mechanisms regulating cell migration, thereby opening up new avenues for future research on Syndecan-4/PAR-3 signaling in processes such as wound healing and scarring. Graphical abstract ![]()
Collapse
Affiliation(s)
- Alejandra Valdivia
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile. .,Center for studies on Exercise, Metabolism and Cancer (CEMC) and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile. .,Microscopy in Medicine (MiM) Core, Emory University, Atlanta, GA, 30322, USA. .,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,School of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA.
| | - Areli Cárdenas
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile.,Center for studies on Exercise, Metabolism and Cancer (CEMC) and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile
| | - Marianne Brenet
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile.,Center for studies on Exercise, Metabolism and Cancer (CEMC) and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile
| | - Horacio Maldonado
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile.,Department of Pediatrics, Pulmonology Division, Program for Rare and Interstitial Lung Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,UNC Catalyst for Rare Disease, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Milene Kong
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile.,Center for studies on Exercise, Metabolism and Cancer (CEMC) and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile.,Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Jorge Díaz
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile.,Center for studies on Exercise, Metabolism and Cancer (CEMC) and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile
| | - Keith Burridge
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Alejandra San Martín
- School of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Rafael García-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH, 43606, USA
| | - Andrew F G Quest
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile.,Center for studies on Exercise, Metabolism and Cancer (CEMC) and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile. .,Center for studies on Exercise, Metabolism and Cancer (CEMC) and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile.
| |
Collapse
|
22
|
Phosphatase-independent functions of SHP2 and its regulation by small molecule compounds. J Pharmacol Sci 2020; 144:139-146. [PMID: 32921395 DOI: 10.1016/j.jphs.2020.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
SHP2 is a non-receptor protein tyrosine phosphatase encoded by the PTPN11 gene in human. Clinically, SHP2 has been identified as a causal factor of several diseases, such as Noonan syndrome, LEOPARD syndrome as well as myeloid malignancies. Interestingly, both loss-of-function and gain-of-function mutations occur in the PTPN11 gene. Analyses by biochemical and cell biological means as well as probing with small molecule compounds have demonstrated that SHP2 has both phosphatase-dependent and independent functions. In comparison with its phosphatase activity, the non-phosphatase-like function of SHP2 has not been well introduced or summarized. This review mainly focuses on the phosphatase-independent functions and its regulation by small molecule compounds as well as their use for disease therapy.
Collapse
|
23
|
Xu N, Wu YP, Yin HB, Chen SH, Li XD, Xue XY, Gou X. SHCBP1 promotes tumor cell proliferation, migration, and invasion, and is associated with poor prostate cancer prognosis. J Cancer Res Clin Oncol 2020; 146:1953-1969. [PMID: 32447485 DOI: 10.1007/s00432-020-03247-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Prostate cancer (PCa) is an aggressive tumor. SHC SH2-domain-binding protein 1 (SHCBP1) has been identified frequently upregulated in various cancers, in addition to PCa. The aims of this study were to determine the relationships between SHCBP1 and clinicopathological characteristics of PCa and to explore the role of SHCBP1 in PCa proliferation and progression. METHODS Tissue microarray and immunohistochemistry were used to determine the prognostic significance of SHCBP1. The relationship between clinicopathological characteristics of PCa and SHCBP1 was then analyzed using Cox regression analyses. To investigate SHCBP1 functions in vitro and in vivo, we knocked down SHCBP1 in PCa cell lines and established xenograft mice models. A series of cytological function assays were utilized to determine the role of SHCBP1 in cell proliferation, migration, invasion, and apoptosis. RESULTS SHCBP1 was significantly upregulated in PCa tissues compared with BPH tissues. Patients with a higher expression of SHCBP1 were associated with poor survival outcomes than those with a lower expression of SHCBP1. Lentivirus-mediated shRNA knockdown of SHCBP1 in prostate cancer cell lines diminished cell growth, migration, and invasion dramatically both in vitro and in vivo, accompanied by an enhanced expression of large tumor suppressor 1 (LATS1) and tumor protein P53 (TP53) and inhibition of MDM2 proto-oncogene (MDM2), which suggested that SHCBP1 may promote proliferation and invasion in vitro via the LATS1-MDM2-TP53 pathway. The results of cycloheximide (CHX) and MG-132 assays indicated that SHCBP1 knockdown could attenuate the degradation of TP53 by the proteasome, prolong the half-life of TP53, and enhance the stabilization of TP53. CONCLUSION These findings suggest that SHCBP1 overexpression contributes to PCa progression and that targeting SHCBP1 might be therapeutically beneficial to patients with PCa.
Collapse
Affiliation(s)
- Ning Xu
- Departments of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China.,Departments of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Yu-Peng Wu
- Departments of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Hu-Bin Yin
- Departments of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
| | - Shao-Hao Chen
- Departments of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Xiao-Dong Li
- Departments of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Xue-Yi Xue
- Departments of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Xin Gou
- Departments of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
24
|
Bao L, Zhao Y, Liu C, Cao Q, Huang Y, Chen K, Song Z. The Identification of Key Gene Expression Signature and Biological Pathways in Metastatic Renal Cell Carcinoma. J Cancer 2020; 11:1712-1726. [PMID: 32194783 PMCID: PMC7052876 DOI: 10.7150/jca.38379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose: To investigate the potential mechanisms contributing to metastasis of clear cell renal cell carcinoma (ccRCC), screen the hub genes, associated pathways of metastatic ccRCC and identify potential biomarkers. Methods: The ccRCC metastasis gene expression profile GSE47352 was employed to analyze the differentially expressed genes (DEGs). DAVID was performed to assess Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The protein-protein interaction (PPI) network and modules were constructed. The function pathway, prognostic and diagnostic analysis of these hub genes was picked out to estimate their potential effects on metastasis of ccRCC. Results: A total of 873 DEGs were identified (503 upregulated genes and 370 downregulated genes). Meanwhile, top 20 hub genes were displayed. GO analysis showed that the top 20 hub genes were enriched in regulation of phosphatidylinositol 3-kinase signaling, positive regulation of DNA replication, protein autophosphorylation, protein tyrosine kinase activity, etc. KEGG analysis indicated these hub genes were enriched in the Ras signaling pathway, PI3K-Akt signaling pathway, HIF-1 signaling pathway, Pathways in cancer, etc. The GO and KEGG enrichment analyses for the hub genes disclosed important biological features of metastatic ccRCC. PPI network showed the interaction of top 20 hub genes. Gene Set Enrichment Analysis (GSEA) revealed that some of the hub genes was associated with metastasis, epithelial mesenchymal transition (EMT), hypoxia cancer and adipogenesis of ccRCC. Some top hub genes were distinctive and new discoveries compared with that of the existing associated researches. Conclusions: Our analysis uncovered that changes in signal pathways such as Ras signaling pathway, PI3K-Akt signaling pathway, etc. may be the main signatures of metastatic ccRCC. We identified several candidate biomarkers related with overall survival (OS) and disease-free survival (DFS) of ccRCC patients. Accordingly, they might be novel therapeutic targets and used as potential biomarkers for diagnosis, prognosis of ccRCC.
Collapse
Affiliation(s)
- Lin Bao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ye Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - ChenChen Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Cao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhengshuai Song
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
25
|
Yuan Y, Fan Y, Gao Z, Sun X, Zhang H, Wang Z, Cui Y, Song W, Wang Z, Zhang F, Niu R. SHP2 promotes proliferation of breast cancer cells through regulating Cyclin D1 stability via the PI3K/AKT/GSK3β signaling pathway. Cancer Biol Med 2020; 17:707-725. [PMID: 32944401 PMCID: PMC7476086 DOI: 10.20892/j.issn.2095-3941.2020.0056] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Objective: The tyrosine phosphatase SHP2 has a dual role in cancer initiation and progression in a tissue type-dependent manner. Several studies have linked SHP2 to the aggressive behavior of breast cancer cells and poorer outcomes in people with cancer. Nevertheless, the mechanistic details of how SHP2 promotes breast cancer progression remain largely undefined. Methods: The relationship between SHP2 expression and the prognosis of patients with breast cancer was investigated by using the TCGA and GEO databases. The expression of SHP2 in breast cancer tissues was analyzed by immunohistochemistry. CRISPR/Cas9 technology was used to generate SHP2-knockout breast cancer cells. Cell-counting kit-8, colony formation, cell cycle, and EdU incorporation assays, as well as a tumor xenograft model were used to examine the function of SHP2 in breast cancer proliferation. Quantitative RT-PCR, western blotting, immunofluorescence staining, and ubiquitination assays were used to explore the molecular mechanism through which SHP2 regulates breast cancer proliferation. Results: High SHP2 expression is correlated with poor prognosis in patients with breast cancer. SHP2 is required for the proliferation of breast cancer cells in vitro and tumor growth in vivo through regulation of Cyclin D1 abundance, thereby accelerating cell cycle progression. Notably, SHP2 modulates the ubiquitin-proteasome-dependent degradation of Cyclin D1 via the PI3K/AKT/GSK3β signaling pathway. SHP2 knockout attenuates the activation of PI3K/AKT signaling and causes the dephosphorylation and resultant activation of GSK3β. GSK3β then mediates phosphorylation of Cyclin D1 at threonine 286, thereby promoting the translocation of Cyclin D1 from the nucleus to the cytoplasm and facilitating Cyclin D1 degradation through the ubiquitin-proteasome system. Conclusions: Our study uncovered the mechanism through which SHP2 regulates breast cancer proliferation. SHP2 may therefore potentially serve as a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Yanling Fan
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Zicong Gao
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Xuan Sun
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - He Zhang
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Zhiyong Wang
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Yanfen Cui
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Weijie Song
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Zhaosong Wang
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Fei Zhang
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Ruifang Niu
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| |
Collapse
|
26
|
Liu P, Zhu C, Luo J, Lan S, Su D, Wang Q, Wei Z, Cui W, Xu C, Yang X. Par6 regulates cell cycle progression through enhancement of Akt/PI3K/GSK-3β signaling pathway activation in glioma. FASEB J 2020; 34:1481-1496. [PMID: 31914615 DOI: 10.1096/fj.201901629rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 02/05/2023]
Abstract
As the key factor of the polarity protein complex, Par6 not only regulates polarization processes, but also plays important roles in tumor metastasis and progression in many epithelium malignancy tumors. Here, we showed that Par6 is an essential component in glioma tumorigenesis. Our results indicated the aberrant expression of Par6 in malignant glioma tissues and cell lines. We found that the regulation of Par6 expression induces cell proliferation and tumor growth in vivo and in vitro. Additionally, RNA-seq revealed the effects of Par6 were associated with cyclin D1-regulated cell cycle progression in glioma cells. Moreover, our results demonstrated that the regulation of Par6 can enhance the activation of Akt/PI3K signaling pathway, and subsequently upregulate the expression level of GSK-3β protein, which then regulate cyclin D1-mediated cell cycle regulation. Furthermore, we found that TGF-β-induced the upregulation of Par6 expression may be involved in this process. The pathological analysis confirmed the correlation between Par6 expression and the prognosis in human glioma tissues, suggesting the regulation of Par6 expression regulates glioma tumorigenesis and progression. Thus, our findings showed that Par6 might be a potential biomarker for the diagnosis and providing a therapeutic strategy for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Pei Liu
- Neuroscience Center, Shantou University Medical College, Shantou, China
| | - Chenchen Zhu
- Neuroscience Center, Shantou University Medical College, Shantou, China
| | - Juanjuan Luo
- Neuroscience Center, Shantou University Medical College, Shantou, China
| | - Sheng Lan
- Neuroscience Center, Shantou University Medical College, Shantou, China
| | - Dongsheng Su
- Neuroscience Center, Shantou University Medical College, Shantou, China
| | - Qiongjin Wang
- Neuroscience Center, Shantou University Medical College, Shantou, China
| | - Zhe Wei
- Faculty of Medicine and Health, Lishui University, Lishui, China
| | - Wei Cui
- Department of Pharmacology, College of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang, China
| | - Chuan Xu
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaojun Yang
- Neuroscience Center, Shantou University Medical College, Shantou, China
| |
Collapse
|
27
|
Targeting SHP2 as a promising strategy for cancer immunotherapy. Pharmacol Res 2019; 152:104595. [PMID: 31838080 DOI: 10.1016/j.phrs.2019.104595] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/21/2019] [Accepted: 12/11/2019] [Indexed: 02/08/2023]
Abstract
Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) is a major phosphatase involved in several cellular processes. In recent years, SHP2 has been the focus of significant attention in human diseases, particular in cancer. Several studies have shown that SHP2 plays an important role in regulating immune cell functions in tumor microenvironment. A few clinical trials conducted using SHP2 allosteric inhibitors have shown remarkable anti-tumor benefits and good safety profiles. This review focuses on the current understanding of the regulation of SHP2 and highlights the vital roles of SHP2 in T lymphocytes, macrophages and cancer cells. It also summarizes the current development of SHP2 inhibitors as a promising strategy for cancer immunotherapy.
Collapse
|
28
|
An exome-wide rare variant analysis of Korean men identifies three novel genes predisposing to prostate cancer. Sci Rep 2019; 9:17173. [PMID: 31748686 PMCID: PMC6868235 DOI: 10.1038/s41598-019-53445-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 10/25/2019] [Indexed: 01/26/2023] Open
Abstract
Since prostate cancer is highly heritable, common variants associated with prostate cancer have been studied in various populations, including those in Korea. However, rare and low-frequency variants have a significant influence on the heritability of the disease. The contributions of rare variants to prostate cancer susceptibility have not yet been systematically evaluated in a Korean population. In this work, we present a large-scale exome-wide rare variant analysis of 7,258 individuals (985 cases with prostate cancer and 6,273 controls). In total, 19 rare variant loci spanning 7 genes contributed to an association with prostate cancer susceptibility. In addition to replicating previously known susceptibility genes (e.g., CDYL2, MST1R, GPER1, and PARD3B), 3 novel genes were identified (FDR q < 0.05), including the non-coding RNAs ENTPD3-AS1, LOC102724438, and protein-coding gene SPATA3. Additionally, 6 pathways were identified based on identified variants and genes, including estrogen signaling pathway, signaling by MST1, IL-15 production, MSP-RON signaling pathway, and IL-12 signaling and production in macrophages, which are known to be associated with prostate cancer. In summary, we report novel genes and rare variants that potentially play a role in prostate cancer susceptibility in the Korean population. These observations demonstrated a path towards one of the fundamental goals of precision medicine, which is to identify biomarkers for a subset of the population with a greater risk of disease than others.
Collapse
|
29
|
Yang F, Xu M, Wang S, Song L, Yu D, Li Y, Cao R, Xiong Z, Chen Z, Zhang Q, Zhao B, Wang S. Gain-Of-Function E76K-Mutant SHP2 Promotes Cell Proliferation, Metastasis, And Tumor Growth In Glioblastoma Through Activation Of The ERK/CREB Pathway. Onco Targets Ther 2019; 12:9435-9447. [PMID: 31807022 PMCID: PMC6844267 DOI: 10.2147/ott.s222881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose The aim of this study was to investigate the effects of gain-of-function (GOF) E76K-mutant Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) on the biological behaviors of glioblastoma (GBM) cells, and explore the molecular mechanisms of GBM progression. Methods Firstly, a negative control vector and vectors overexpressing SHP2 and E76K-mutant SHP2 were transduced into GBM cells (U87 and A172) using a lentivirus. The effect of GOF-mutant SHP2 on proliferation was measured using the MTT assay, flow cytometry, colony formation assay, and soft agar assay. Moreover, the migration and invasion of GBM cells were determined through the transwell assay. Related proteins of the extracellular signal-regulated kinase/cAMP response element binding protein (ERK/CREB) pathway were detected by Western blotting analysis. A xenograft model was established to confirm the tumor-promoting effect of GOF-mutant SHP2 in vivo. Finally, ERK was inhibited using a mitogen-activated protein kinase/ERK kinase inhibitor (U0126) to further explore the molecular mechanism of GOF-mutant SHP2 affecting GBM cells. Results After transduction, the expression of SHP2 in the SHP2-mutant and SHP2-overexpression groups was higher than that observed in the control and normal groups. Our data indicated that GOF-mutant SHP2 enhanced the abilities of GBM cells for proliferation, migration, and invasion in vitro, and promoted tumor growth in vivo. Mechanistically, the ERK/CREB pathway was activated, and the levels of relevant proteins were increased in the SHP2-mutant group. Furthermore, following inhibition of ERK in the GOF-SHP2 mutant group, the activation of CREB was also depressed, and the malignant biological behaviors were weakened accordingly. Conclusion The GOF-mutant SHP2 promoted GBM cell proliferation, metastasis, and tumor growth through the ERK/CREB pathway, providing a promising target for the treatment of GBM.
Collapse
Affiliation(s)
- Fan Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China.,Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Mo Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Shiqing Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Le Song
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Dandan Yu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Yao Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Rui Cao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Zhang Xiong
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China.,Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Zhijun Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Qian Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Siying Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
30
|
Li J, Xu H, Wang Q, Fu P, Huang T, Anas O, Zhao H, Xiong N. Pard3 suppresses glioma invasion by regulating RhoA through atypical protein kinase C/NF-κB signaling. Cancer Med 2019; 8:2288-2302. [PMID: 30848088 PMCID: PMC6536976 DOI: 10.1002/cam4.2063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/20/2019] [Accepted: 02/12/2019] [Indexed: 12/30/2022] Open
Abstract
Partitioning defective protein 3 (Pard3) has been reported to inhibit the progression of numerous human cancer cell types. However, the role of Pard3 in glioma progression remains unclear. In this study, the expression of Pard3 was measured in human gliomas of different grades by both quantitative polymerase chain reaction and Western blotting. The effect of Pard3 on glioma progression was tested using cell counting kit-8 assays, EdU assays, colony formation assays, cell migration, and invasion assays and tumor xenografts. The effect of Pard3 on Ras homolog family member A (RhoA) protein levels, subcellular localization, and transcriptional activity was measured by immunoblotting and immunofluorescence. Our results indicate that Pard3 functions as a tumor suppressor in gliomas and that the loss of Pard3 protein is strongly associated with a higher grade and poorer outcome. Pard3 overexpression inhibits glioma progression by upregulating RhoA protein levels. However, the level of GTP-RhoA protein remained unchanged. Further evidence demonstrates that Pard3 regulates RhoA protein levels, subcellular localization and transcriptional activity by activating atypical protein kinase C/NF-κB signaling. Mouse modeling experiments show that Pard3 overexpression inhibits glioma cell growth in vivo. Taken together, these findings identify RhoA as a novel target of Pard3 in gliomas and substantiate a novel regulatory role for Pard3 in glioma progression. This study reveals that Pard3 plays an inhibitory role in gliomas by regulating RhoA, which reveals a potential benefit for Pard3 activators in the prevention and therapy of gliomas.
Collapse
Affiliation(s)
- Junjun Li
- Department of Neurosurgery, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanP.R. China
| | - Hao Xu
- Department of Neurosurgery, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanP.R. China
| | - Qiangping Wang
- Department of Neurosurgery, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanP.R. China
| | - Peng Fu
- Department of Neurosurgery, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanP.R. China
| | - Tao Huang
- Department of Neurosurgery, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanP.R. China
| | - Omarkhalil Anas
- Section of Histology and Embryology, Department of AnatomyTongji Medical College, Huazhong University of Science and TechnologyWuhanP.R. China
| | - Hongyang Zhao
- Department of Neurosurgery, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanP.R. China
| | - Nanxiang Xiong
- Department of Neurosurgery, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanP.R. China
| |
Collapse
|
31
|
Wang X, Peng J, Yang Z, Zhou PJ, An N, Wei L, Zhu HH, Lu J, Fang YX, Gao WQ. Elevated expression of Gab1 promotes breast cancer metastasis by dissociating the PAR complex. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:27. [PMID: 30665442 PMCID: PMC6341703 DOI: 10.1186/s13046-019-1025-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/06/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Breast cancer (BCa) remains as the second leading cause of cancer-related death in women worldwide. The majority of the deaths are due to its progression to metastatic BCa. Although Grb2-associated binding protein 1 (Gab1) has been implicated in tumor proliferation and metastasis in multiple tumors including colorectal cancer, hepatocellular carcinoma and ovarian cancer, whether and how it regulates BCa metastasis are still poorly understood. METHODS Western blot assay and immunohistochemical (IHC) staining were performed to assess expression of Gab1 in primary and metastatic BCa clinical samples. Biological function assay studies in vitro and in vivo were employed to investigate the functions of Gab1 during BCa metastasis. Co-immunoprecipitation (co-IP) assessment, western blot assay and immunofluorescence (IF) staining were carried out to investigate the underlying mechanism for the function of Gab1 on BCa metastasis. RESULTS In this study, we found that expression level of Gab1 was increased significantly in BCa tissue samples compared to that in benign mammary hyperplastic tissues. Furthermore, elevated expression of Gab1 was positively associated with metastasis in HER2 and TNBC subtypes of BCa. In BCa cell line MDA-MB-231 and SK-BR3 cells, stable overexpression of Gab1 promoted, while knockdown of Gab1 inhibited cell migration in vitro and metastasis in vivo. Mechanistically, overexpression of Gab1 enhanced its interaction with Par3, a key component of the polarity-associated partitioning defective (PAR) complex, leading to a dissociation of the PAR complex. Consequently, dissociated PAR complex induced epithelial-to-mesenchymal transition (EMT) for breast tumor metastasis. By restoration assessment, we found that only re-expression of a fully functional Gab1, but not a mutant Gab1 that harbors either Par3 binding-deficiency or Par1b binding-deficiency, could reverse the repressive phenotype of cell migration in vitro and metastasis in vivo due to Gab1 knockdown. CONCLUSIONS Our findings indicate that elevated expression of Gab1 promotes BCa metastasis by dissociating the PAR complex that leads to EMT, implicating a role of Gab1 as a potential biomarker of metastatic BCa. Moreover, inhibition of Gab1 expression might be a promising therapeutic strategy for BCa metastasis.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Jing Peng
- Department of Breast Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Ziqiang Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Pei-Jie Zhou
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Na An
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Lianzi Wei
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Jinsong Lu
- Department of Breast Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Yu-Xiang Fang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China. .,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
32
|
Chen MJ, Wang YC, Wu DW, Chen CY, Lee H. Association of nuclear localization of SHP2 and YAP1 with unfavorable prognosis in non-small cell lung cancer. Pathol Res Pract 2019; 215:801-806. [PMID: 30685130 DOI: 10.1016/j.prp.2019.01.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/02/2019] [Accepted: 01/17/2019] [Indexed: 01/07/2023]
Abstract
Src homology region 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) is ubiquitously expressed in cytoplasmic localization, which in turn confers tumor malignancy and poor prognosis in various human cancers. YAP1 interacts with SHP2 to promote translocation of SHP2 to nucleus, which consequently promotes Wnt target activation. However, the oncogenic role of the nuclear localization of SHP2 in human cancers remains unclear. We hypothesized that nuclear SHP2 localization, in combination with nuclear YAP1 expression, could be associated with poor overall survival (OS) and relapse free survival (RFS) due to an increase in cyclin D1 and c-Myc mRNA expression following activation of Wnt/ß-catenin signaling. Immunohistochemical analysis of SHP2 and YAP1 protein expression in 102 tumors resected from patients with NSCLC revealed that nuclear SHP2 expression was well correlated with nuclear YAP1 expression (P < 0.001). Evaluation of cyclin D1 and c-Myc mRNA levels by the real-time reverse-phase polymerase chain reaction (RT-PCR) revealed that patients with high cyclin D1 and high c-Myc mRNA expressing tumors more commonly showed high nuclear YAP1 and high nuclear SHP2 (high/high) rather than the high/low, low/high, or low/low combinations (P < 0.001 for cyclin D1 and c-Myc). Kaplan-Meier and Cox-regression models showed OS and RFS to be poorer in patients in the high/high subgroup than in the low/low subgroup (OS: HR = 2.85, 95% CI, 1.52-5.35, P = 0.001; RFS: HR = 2.55, 95% CI, 1.37-4.72, P = 0.003). No prognostic significance was observed for the other two subgroups (low/high and high/low) when compared to the low/low subgroup in this study population. Therefore, we suggest that the prognostic value of SHP2 could reflect the nuclear localization of SHP2 and its interaction with nuclear YAP1, which led to subsequent upregulation of cyclin D1 and c-Myc mRNA expression via activation of the Wnt/ß-catenin signaling pathway.
Collapse
Affiliation(s)
- Ming-Jenn Chen
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan; Department of Sports Management, College of Leisure and Recreation Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.
| | - Yao-Chen Wang
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - De-Wei Wu
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Chi-Yi Chen
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
33
|
Nikshoar MS, Khosravi S, Jahangiri M, Zandi A, Miripour ZS, Bonakdar S, Abdolahad M. Distinguishment of populated metastatic cancer cells from primary ones based on their invasion to endothelial barrier by biosensor arrays fabricated on nanoroughened poly(methyl methacrylate). Biosens Bioelectron 2018; 118:51-57. [DOI: 10.1016/j.bios.2018.07.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 01/15/2023]
|
34
|
Cheng C, Ji Z, Sheng Y, Wang J, Sun Y, Zhao H, Li X, Wang X, He Y, Yao J, Wang L, Zhang C, Guo Y, Zhang J, Gao WQ, Zhu HH. Aphthous ulcer drug inhibits prostate tumor metastasis by targeting IKKɛ/TBK1/NF-κB signaling. Am J Cancer Res 2018; 8:4633-4648. [PMID: 30279728 PMCID: PMC6160770 DOI: 10.7150/thno.26687] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/12/2018] [Indexed: 12/25/2022] Open
Abstract
Tumor metastasis is the major cause of death for prostate cancer (PCa) patients. However, the treatment options for metastatic PCa are very limited. Epithelial-mesenchymal transition (EMT) has been reported to be an indispensable step for tumor metastasis and is suggested to associate with acquisition of cancer stem cell (CSC) attributes. We propose that small-molecule compounds that can reverse EMT or induce mesenchymal-epithelial transition (MET) of PCa cells may serve as drug candidates for anti-metastasis therapy. Methods: The promoters of CDH1 and VIM genes were sub-cloned to drive the expression of firefly and renilla luciferase reporter in a lentiviral vector. Mesenchymal-like PCa cells were infected with the luciferase reporter lentivirus and subjected to drug screening from a 1274 approved small-molecule drug library for the identification of agents to reverse EMT. The dosage-dependent effect of candidate compounds was confirmed by luciferase reporter assay and immunoblotting. Wound-healing assay, sphere formation, transwell migration assay, and in vivo intracardiac and orthotopic tumor xenograft experiments were used to evaluate the mobility, metastasis and tumor initiating capacity of PCa cells upon treatment. Possible downstream signaling pathways affected by the candidate compound treatment were analyzed by RNA sequencing and immunoblotting. Results: Drug screening identified Amlexanox, a drug used for recurrent aphthous ulcers, as a strong agent to reverse EMT. Amlexanox induced significant suppression of cell mobility, invasion, serial sphere formation and in vivo metastasis and tumor initiating capacity of PCa cells. Amlexanox treatment led to downregulation of the IKK-ɛ/ TBK1/ NF-κB signaling pathway. The effect of Amlexanox on EMT reversion and cell mobility inhibition can be mimicked by other IKK-ɛ/TBK1 inhibitors and rescued by reconstitution of dominant active NF-κB. Conclusions: Amlexanox can sufficiently suppress PCa metastasis by reversing EMT through downregulating the IKK-ɛ/TBK1/NF-κB signaling axis.
Collapse
|
35
|
Zhang X, Liu L, Deng X, Li D, Cai H, Ma Y, Jia C, Wu B, Fan Y, Lv Z. MicroRNA 483-3p targets Pard3 to potentiate TGF-β1-induced cell migration, invasion, and epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Oncogene 2018; 38:699-715. [PMID: 30171257 PMCID: PMC6756112 DOI: 10.1038/s41388-018-0447-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/09/2018] [Accepted: 07/14/2018] [Indexed: 01/06/2023]
Abstract
Anaplastic thyroid cancer (ATC) is associated with poor prognosis and is often untreatable. MicroRNA 483-3p (miR-483) and partitioning-defective 3 (Pard3), a member of the Pard family, have functions and regulatory mechanisms in ATC. The abnormal regulation of miR-483 may play an important role in tumorigenesis, and Par3 is known to regulate cell polarity, cell migration, and cell division. Tumor proliferation promoted by the regulation of miRNA expression can be regulated in thyroid cancer by upregulating transforming growth factor-β1 (TGF-β1), which is thought to interact with Pard3. When compared with adjacent non-tumor tissues, we found that miR-483 was upregulated and Pard3 was downregulated in 80 thyroid tumor samples. Disease-free survival was decreased when expression of miR-483 was upregulated and Pard3 expression was downregulated. Cell growth, migration, and invasion were induced by overexpression of miR-483. However, knockdown of miR-483 resulted in a loss of cell invasion and viability, both in vitro and in vivo. The expression of Pard3 was increased by the inhibition of miR-483, but TGF-β1-induced cell migration and invasion were decreased by miR-483 inhibition. A dual-luciferase reporter assay determined that Pard3 expression was downregulated when targeted with miR-483. The epithelial–mesenchymal transition (EMT), as well as Tiam1-Rac signaling, was induced by TGF-β1, which was decreased by the overexpression of Pard3. Pard3 decreased the inhibition of EMT and Tiam-Rac1 signaling, which resulted from transfection of ATC cells with miR-483. Overall, the results showed that downregulation of Pard3 resulted in increased cell invasion and EMT in ATC, which was promoted by treatment with miR-483. These findings suggest novel therapeutic targets and treatment strategies for this disease.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Lin Liu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Xianzhao Deng
- Center of Thyroid, Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Dan Li
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Haidong Cai
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Yushui Ma
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Chengyou Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Bo Wu
- Center of Thyroid, Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Youben Fan
- Center of Thyroid, Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China. .,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China.
| |
Collapse
|
36
|
Yang D, Xiao P, Li Q, Fu X, Pan C, Lu D, Wen S, Xia W, He D, Li H, Fang H, Shen Y, Xu Z, Lin A, Wang C, Yu X, Wu J, Sun J. Allosteric modulation of the catalytic VYD loop in Slingshot by its N-terminal domain underlies both Slingshot auto-inhibition and activation. J Biol Chem 2018; 293:16226-16241. [PMID: 30154244 DOI: 10.1074/jbc.ra118.004175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/21/2018] [Indexed: 12/22/2022] Open
Abstract
Slingshots are phosphatases that modulate cytoskeleton dynamics, and their activities are tightly regulated in different physiological contexts. Recently, abnormally elevated Slingshot activity has been implicated in many human diseases, such as cancer, Alzheimer's disease, and vascular diseases. Therefore, Slingshot-specific inhibitors have therapeutic potential. However, an enzymological understanding of the catalytic mechanism of Slingshots and of their activation by actin is lacking. Here, we report that the N-terminal region of human Slingshot2 auto-inhibits its phosphatase activity in a noncompetitive manner. pH-dependent phosphatase assays and leaving-group dependence studies suggested that the N-terminal domain of Slingshot2 regulates the stability of the leaving group of the product during catalysis by modulating the general acid Asp361 in the catalytic VYD loop. F-actin binding relieved this auto-inhibition and restored the function of the general acid. Limited tryptic digestion and biophysical studies identified large conformational changes in Slingshot2 after the F-actin binding. The dissociation of N-terminal structural elements, including Leu63, and the exposure of the loop between α-helix-2 and β-sheet-3 of the phosphatase domain served as the structural basis for Slingshot activation via F-actin binding in vitro and via neuregulin stimulation in cells. Moreover, we designed a FlAsH-BRET-based Slingshot2 biosensor whose readout was highly correlated with the in vivo phosphatase activities of Slingshot2. Our results reveal the auto-inhibitory mechanism and allosteric activation mechanisms of a human Slingshot phosphatase. They also contribute to the design of new strategies to study Slingshot regulation in various cellular contexts and to screen for new activators/inhibitors of Slingshot activity.
Collapse
Affiliation(s)
- Duxiao Yang
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Peng Xiao
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and.,the School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Qing Li
- the Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Xiaolei Fu
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Chang Pan
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Di Lu
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Shishuai Wen
- the School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Wanying Xia
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Dongfang He
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Hui Li
- the Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Hao Fang
- the School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yuemao Shen
- the School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Zhigang Xu
- the School of Life Science, Shandong University, Jinan, Shandong 250003, China
| | - Amy Lin
- the School of Medicine, Duke University, Durham, North Carolina 27705
| | - Chuan Wang
- the Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiao Yu
- the Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Jiawei Wu
- the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jinpeng Sun
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and .,the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China, and.,the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China
| |
Collapse
|
37
|
Wang X, Dong B, Zhang K, Ji Z, Cheng C, Zhao H, Sheng Y, Li X, Fan L, Xue W, Gao WQ, Zhu HH. E-cadherin bridges cell polarity and spindle orientation to ensure prostate epithelial integrity and prevent carcinogenesis in vivo. PLoS Genet 2018; 14:e1007609. [PMID: 30118484 PMCID: PMC6115016 DOI: 10.1371/journal.pgen.1007609] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 08/29/2018] [Accepted: 08/02/2018] [Indexed: 12/24/2022] Open
Abstract
Cell polarity and correct mitotic spindle positioning are essential for the maintenance of a proper prostate epithelial architecture, and disruption of the two biological features occurs at early stages in prostate tumorigenesis. However, whether and how these two epithelial attributes are connected in vivo is largely unknown. We herein report that conditional genetic deletion of E-cadherin, a key component of adherens junctions, in a mouse model results in loss of prostate luminal cell polarity and randomization of spindle orientations. Critically, E-cadherin ablation causes prostatic hyperplasia which progresses to invasive adenocarcinoma. Mechanistically, E-cadherin and the spindle positioning determinant LGN interacts with the PDZ domain of cell polarity protein SCRIB and form a ternary protein complex to bridge cell polarity and cell division orientation. These findings provide a novel mechanism by which E-cadherin acts an anchor to maintain prostate epithelial integrity and to prevent carcinogenesis in vivo. Luminal cells are the most abundant type of the prostate epithelial cells. Most prostate cancers also display a luminal phenotype. Horizontal cell division of luminal cells allows the surface expansion of the secretory prostate lumen and meanwhile maintains the monolayer and polarized epithelial architecture. Disruption of the epithelial integrity and appearance of multilayer epithelia are early events in prostate adenocarcinoma development. However, the molecular mechanism that ensures the horizontal division in luminal cells remains largely unknown. Here, we generated a genetically engineered mouse model in which E-cadherin, a key component of the adherens junction that serves to connect the lateral plasma membrane of neighboring epithelial cells, was knocked out in the prostate luminal cells. E-cadherin deletion leads to loss of cell polarity and disoriented cell division, which subsequently causes dysregulated cell proliferation and strongly predisposes mice for prostate tumorigenesis. Importantly, we revealed that E-cadherin acts as an anchor to recruit cell polarity protein SCRIB and spindle positioning determinant LGN to the lateral cell membrane, thereby ensure a proper alignment of the cell division plane. All these findings uncover a novel mechanism by which E-cadherin links cell polarity and spindle orientation to keep prostate epithelial integrity and prevent carcinogenesis.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Zhang
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongzhong Ji
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chaping Cheng
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Huifang Zhao
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yaru Sheng
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxia Li
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Liancheng Fan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (W-QG); (HHZ)
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (W-QG); (HHZ)
| |
Collapse
|
38
|
Nunes-Xavier CE, Mingo J, López JI, Pulido R. The role of protein tyrosine phosphatases in prostate cancer biology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:102-113. [PMID: 30401533 DOI: 10.1016/j.bbamcr.2018.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/18/2018] [Accepted: 06/28/2018] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) is the most frequent malignancy in the male population of Western countries. Although earlier detection and more active surveillance have improved survival, it is still a challenge how to treat advanced cases. Since androgen receptor (AR) and AR-related signaling pathways are fundamental in the growth of normal and neoplastic prostate cells, targeting androgen synthesis or AR activity constitutes the basis of the current hormonal therapies in PCa. However, resistance to these treatments develops, both by AR-dependent and -independent mechanisms. Thus, alternative therapeutic approaches should be developed to target more efficiently advanced disease. Protein tyrosine phosphatases (PTPs) are direct regulators of the protein- and residue-specific phosphotyrosine (pTyr) content of cells, and dysregulation of the cellular Tyr phosphorylation/dephosphorylation balance is a major driving event in cancer, including PCa. Here, we review the current knowledge on the role of classical PTPs in the growth, differentiation, and survival of epithelial prostate cells, and their potential as important players and therapeutic targets for modulation in PCa.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital Radiumhospitalet, N-0310 Oslo, Norway; Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Janire Mingo
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - José I López
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain; Department of Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), 48903 Barakaldo, Bizkaia, Spain
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
39
|
Chen C, Xue T, Fan P, Meng L, Wei J, Luo D. Cytotoxic activity of Shp2 inhibitor fumosorinone in human cancer cells. Oncol Lett 2018; 15:10055-10062. [PMID: 29928374 DOI: 10.3892/ol.2018.8593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/29/2018] [Indexed: 01/01/2023] Open
Abstract
Fumosorinone (Fumos) isolated from entomogenous fungi Isaria fumosorosea exhibited selective inhibition of Src homology phosphotyrosine phosphatase 2 inhibitor (Shp2) in our previous study. The purpose of the present study was to investigate the effects of Fumos on cell cycle arrest, tumor cell migration and the in vitro antiproliferative activity of Fumos alone or in combination with the commonly used cytotoxic drugs 5-fluoracil (5-FU) and p38 inhibitor SB203580. Fumos exhibited cytotoxicity against selected human cancel lines, including HeLa, MDA-MB-231 and MDA-MB-453 cell lines. Fumos exerted selective cytotoxic effects on the human cell lines. Flow cytometric and DAPI assays showed that Fumos did not induce cell apoptosis, however it induced cell cycle arrest at the G1 phase. Fumos inhibited cell migration though reducing the phosphorylation of focal adhesion kinase (FAK) at tyrosine (Tyr)861 and marginally increasing the phosphorylation of FAK at Tyr397, however, Fumos did not affect the phosphorylation of FAK at Tyr576 or Tyr925. The present study also examined the combination effect of Fumos with other chemical agents, including 5-FU and p38 inhibitor SB203580. Fumos exhibited a marked synergistic effect with these agents, particularly with 5-FU. In conclusion, Fumos showed potential anticancer bioactivity, and the combination effect of Fumos with 5-FU or with p38 inhibitor offers a more effective anticancer strategy for carcinoma treatment.
Collapse
Affiliation(s)
- Chuan Chen
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of The Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Tongdan Xue
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of The Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Peng Fan
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of The Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Linlin Meng
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of The Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Jingjing Wei
- College of Pharmaceutical Science, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Duqiang Luo
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of The Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China.,College of Pharmaceutical Science, Hebei University, Baoding, Hebei 071002, P.R. China
| |
Collapse
|
40
|
Ruan L, Shen Y, Lu Z, Shang D, Zhao Z, Lu Y, Wu Y, Zhang Y, Tu Z, Liu H. Roles of partitioning-defective protein 6 (Par6) and its complexes in the proliferation, migration and invasion of cancer cells. Clin Exp Pharmacol Physiol 2018; 44:909-913. [PMID: 28590507 DOI: 10.1111/1440-1681.12794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 12/12/2022]
Abstract
A pivotal regulator of cell polarity and homeostasis, partitioning-defective protein 6 (Par6) forms multicomponent complexes that not only regulate cell polarity and stabilize cell morphology, but have also been demonstrated to participate in the proliferation, migration and invasion of cancer cells. The transforming growth factor (TGF)-β and extracellular signal-regulated kinase (Erk) 1/2 pathways are the most thoroughly studied pathways involving Par6 in many cancers. Aurothiomalate has been used to disrupt the interaction between Par6 and atypical protein kinase C within the multicomponent complexes, and has been shown to effectively block transformed growth and metastasis in vitro and/or in vivo in a variety of cancers, including pancreatic, prostate and lung cancers, as well as alveolar rhabdomyosarcoma. It is likely that with further revelations regarding the critical roles of Par6 in cancer initiation, progression and metastasis, targeted therapies against Par6 will be discovered and prove effective preclinically, and hopefully clinically, in cancer treatment.
Collapse
Affiliation(s)
- Lingling Ruan
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Yanting Shen
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Ziwen Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Dongsheng Shang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zhicong Zhao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yongjin Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Yanfang Wu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yafei Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhigang Tu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
41
|
Rycaj K, Tang DG. Molecular determinants of prostate cancer metastasis. Oncotarget 2017; 8:88211-88231. [PMID: 29152153 PMCID: PMC5675705 DOI: 10.18632/oncotarget.21085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022] Open
Abstract
Metastatic cancer remains largely incurable and fatal. The general course of cancer, from the initiation of primary tumor formation and progression to metastasis, is a multistep process wherein tumor cells at each step must display specific phenotypic features. Distinctive capabilities required for primary tumor initiation and growth form the foundation, and sometimes may remain critical, for subsequent metastases. These phenotypic features must remain easily malleable during the acquisition of additional capabilities unique and essential to the metastatic process such as dissemination to distant tissues wherein tumor cells interact with foreign microenvironments. Thus, the metastatic phenotype is a culmination of multiple genetic and epigenetic alterations and subsequent selection for favorable traits under the pressure of ever-changing tumor microenvironments. Although our understanding of the molecular programs that drive cancer metastasis are incomplete, increasing evidence suggests that successful metastatic colonization relies on the dissemination of cancer stem cells (CSCs) with tumor-regenerating capacity and adaptive programs for survival in distant organs. In the past 2-3 years, a myriad of novel molecular regulators and determinants of prostate cancer metastasis have been reported, and in this Perspective, we comprehensively review this body of literature and summarize recent findings regarding cell autonomous molecular mechanisms critical for prostate cancer metastasis.
Collapse
Affiliation(s)
- Kiera Rycaj
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Dean G. Tang
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
42
|
Zhou PJ, Xue W, Peng J, Wang Y, Wei L, Yang Z, Zhu HH, Fang YX, Gao WQ. Elevated expression of Par3 promotes prostate cancer metastasis by forming a Par3/aPKC/KIBRA complex and inactivating the hippo pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:139. [PMID: 29017577 PMCID: PMC5633884 DOI: 10.1186/s13046-017-0609-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/02/2017] [Indexed: 12/15/2022]
Abstract
Background Prostate cancer (PCa) is one of the most frequent tumors and leading cause of cancer deaths among males worldwide. The majority of deaths are due to recurrence and subsequent development of the metastatic cancer. Although loss or dislocalization of polarity proteins has been implicated in embryogenesis deficiency and tumorigenesis, association of polarity protein expression levels with tumor metastasis remains unclear. Methods Bioinformatics, qRT-PCR, western blot and immunohistochemical (IHC) analyses were used to examine expression of Par3, a key component of polarity-associated partitioning defective (PAR) complex, in primary and metastatic clinical PCa samples. Loss-of-function and gain-of-function studies in vitro and in vivo were performed to determine the functions of Par3 during metastasis of PCa. Co-immunoprecipitation (co-IP), western blot, immunofluorescence (IF), chromatin immunoprecipitation (ChIP) and qRT-PCR analyses were conducted to investigate the underlying mechanism for the function of Par3 on PCa metastasis. Results In this study, we found that elevated expression of Par3 is positively associated with PCa metastasis. Knockdown of Par3 inhibits PCa cell migration and invasion in vitro and tumor metastasis in vivo, whereas overexpression of Par3 yields the opposite results. Mechanistically, Par3 suppresses phosphorylation of LATS to inactivate the Hippo pathway and enhances nuclear translocation of YAP by sequestrating KIBRA from the KIBRA/Merlin/FRMD6 complex and forming a Par3/aPKC/KIBRA complex. Stable knockdown of Par3 leads to restoration of the KIBRA/Merlin/FRMD6 complex and activation of the Hippo pathway, and then results in an inhibition on YAP nuclear translocation. In addition, in conjunction with the TEA domain (TEAD) transcription factor family, intranuclear YAP promotes the transcription of several pro-metastatic genes such as the matrix metalloproteinase (MMP) family, Zeb1, Snail1 and Twist1. Moreover, knockdown of Par3 downregulates expression of these pro-metastatic genes. Conclusions Our findings indicate that elevated expression of Par3 promotes PCa metastasis via KIBRA sequestration-mediated inactivation of the Hippo pathway to upregulate expression of pro-metastatic genes. Downregulation of Par3 expression may serve as a potential treatment approach for PCa metastasis by activating the Hippo pathway. Electronic supplementary material The online version of this article (10.1186/s13046-017-0609-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pei-Jie Zhou
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jinliang Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanqing Wang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lianzi Wei
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Ziqiang Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Yu-Xiang Fang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China. .,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China. .,Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
43
|
Frankson R, Yu ZH, Bai Y, Li Q, Zhang RY, Zhang ZY. Therapeutic Targeting of Oncogenic Tyrosine Phosphatases. Cancer Res 2017; 77:5701-5705. [PMID: 28855209 DOI: 10.1158/0008-5472.can-17-1510] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/12/2017] [Accepted: 08/24/2017] [Indexed: 01/01/2023]
Abstract
Protein tyrosine phosphatases (PTP) are exciting and novel targets for cancer drug discovery that work in concert with protein tyrosine kinases (PTK) in controlling cellular homeostasis. Given the activating role that some PTKs play in initiating growth factor-mediated cellular processes, PTPs are usually perceived as the negative regulators of these events and therefore tumor suppressive in nature. However, mounting evidence indicate that PTPs do not always antagonize the activity of PTKs in regulating tyrosine phosphorylation, but can also play dominant roles in the initiation and progression of signaling cascades that regulate cell functions. It follows, therefore, that PTP malfunction can actively contribute to a host of human disorders, in particular, cancer, metabolic syndromes, and autoimmune diseases. The Src homology domain containing phosphatase 2 (SHP2) and the three-membered family of phosphatases of regenerating liver (PRL) are infamously oncogenic members of the PTP superfamily. Both are established regulators of major cancer pathways such as Ras/ERK1/2, Src, JAK/STAT, JNK, NF-κB, and PTEN/PI3K/AKT. Furthermore, upregulation, mutation, or other dysregulation of these PTPs has been positively correlated with cancer initiation and progression. This review will provide topical coverage of target validation and drug discovery efforts made in targeting these oncogenic PTPs as compelling candidates for cancer therapy. Cancer Res; 77(21); 5701-5. ©2017 AACR.
Collapse
Affiliation(s)
- Rochelle Frankson
- Departments of Medicinal Chemistry and Molecular Pharmacology and Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| | - Zhi-Hong Yu
- Departments of Medicinal Chemistry and Molecular Pharmacology and Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| | - Yunpeng Bai
- Departments of Medicinal Chemistry and Molecular Pharmacology and Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| | - Qinglin Li
- Departments of Medicinal Chemistry and Molecular Pharmacology and Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| | - Ruo-Yu Zhang
- Departments of Medicinal Chemistry and Molecular Pharmacology and Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| | - Zhong-Yin Zhang
- Departments of Medicinal Chemistry and Molecular Pharmacology and Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
44
|
miR-302/367/LATS2/YAP pathway is essential for prostate tumor-propagating cells and promotes the development of castration resistance. Oncogene 2017; 36:6336-6347. [DOI: 10.1038/onc.2017.240] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/14/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022]
|
45
|
SHP2 negatively regulates HLA-ABC and PD-L1 expression via STAT1 phosphorylation in prostate cancer cells. Oncotarget 2017; 8:53518-53530. [PMID: 28881828 PMCID: PMC5581127 DOI: 10.18632/oncotarget.18591] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2) is a ubiquitous protein tyrosine phosphatase that activates the signal transduction pathways of several growth factors and cytokines. In our study, SHP2 expression was very high in prostate cancer (PCa) cell lines, and the expression of phospho-signal transducer and activator of transcription 1 (p-STAT1) and STAT1 was very low. SHP2 knockdown upregulated the expression of p-STAT1 and downregulated phospho-extracellular signal regulated kinase (p-ERK). SHP2 depletion also increased the expression of human leukocyte antigen (HLA)-ABC and programmed death ligand 1 (PD-L1). When tumor cells were pretreated with Janus kinase 2 (JAK2) inhibitor, SHP2 depletion failed to induce HLA-ABC and PD-L1 expression. Furthermore, treating tumor cells with the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) inhibitor PD0325901 did not upregulate HLA-ABC and PD-L1. SHP2 depletion was associated with increased T-cell activation (CD25 MFI of CD8+) by coculture of allogeneic healthy donor peripheral blood monocytes (PBMC) with SHP2 siRNA pretreated PCa cell lines. These results show that SHP2 targeting upregulates HLA-ABC and PD-L1 expression via STAT1 phosphorylation in PCa cells and SHP2 depletion could increase T-cell activation.
Collapse
|
46
|
Amey CL, Karnoub AE. Targeting Cancer Stem Cells-A Renewed Therapeutic Paradigm. ONCOLOGY & HEMATOLOGY REVIEW 2017; 13:45-55. [PMID: 33959299 PMCID: PMC8098671 DOI: 10.17925/ohr.2017.13.01.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Metastasis is often accompanied by radio- and chemotherapeutic resistance to anticancer treatments and is the major cause of death in cancer patients. Better understanding of how cancer cells circumvent therapeutic insults and how disseminated cancer clones generate life-threatening metastases would therefore be paramount to the development of effective therapeutic approaches for clinical management of malignant disease. Mounting reports over the past two decades have provided evidence for the existence of a minor population of highly malignant cells within liquid and solid tumors, which are capable of self-renewing and of regenerating secondary growths with the heterogeneity of the primary tumors from which they derive. These cells, called tumor-initiating cells or cancer stem cells (CSCs) exhibit increased resistance to standard radio- and chemotherapies and appear to have mechanisms that enable them to evade immune surveillance. CSCs are therefore considered to be responsible for systemic residual disease after cancer therapy, as well as for disease relapse. How CSCs develop, the nature of the interactions they establish with their microenvironment, their phenotypic and functional characteristics, as well as their molecular dependencies have all taken center stage in cancer therapy. Indeed, improved understanding of CSC biology is critical to the development of important CSC-based anti-neoplastic approaches that have the potential to radically improve cancer management. Here, we summarize some of the most pertinent elements regarding CSC development and properties, and highlight some of the clinical modalities in current development as anti-CSC therapeutics.
Collapse
Affiliation(s)
| | - Antoine E Karnoub
- Department of Pathology, Beth Israel Deaconess Cancer Center and Harvard Medical School, Boston, Massachusetts, US; Harvard Stem Cell Institute, Cambridge, Massachusetts, US; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, US
| |
Collapse
|
47
|
Shafer MER, Nguyen AHT, Tremblay M, Viala S, Béland M, Bertos NR, Park M, Bouchard M. Lineage Specification from Prostate Progenitor Cells Requires Gata3-Dependent Mitotic Spindle Orientation. Stem Cell Reports 2017; 8:1018-1031. [PMID: 28285879 PMCID: PMC5390093 DOI: 10.1016/j.stemcr.2017.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 12/31/2022] Open
Abstract
During prostate development, basal and luminal cell lineages are generated through symmetric and asymmetric divisions of bipotent basal cells. However, the extent to which spindle orientation controls division symmetry or cell fate, and the upstream factors regulating this process, are still elusive. We report that GATA3 is expressed in both prostate basal progenitor and luminal cells and that loss of GATA3 leads to a mislocalization of PRKCZ, resulting in mitotic spindle randomization during progenitor cell division. Inherently proliferative intermediate progenitor cells accumulate, leading to an expansion of the luminal compartment. These defects ultimately result in a loss of tissue polarity and defective branching morphogenesis. We further show that disrupting the interaction between PRKCZ and PARD6B is sufficient to recapitulate the spindle and cell lineage phenotypes. Collectively, these results identify a critical role for GATA3 in prostate lineage specification, and further highlight the importance of regulating spindle orientation for hierarchical cell lineage organization. Gata3 regulates prostate lineage specification and tissue architecture Loss of Gata3 causes aPKC mislocalization and mitotic spindle randomization aPKC-Par6 decoupling randomizes the spindle and perturbs lineage specification Spindle regulation prevents progenitor cell accumulation and tissue hyperplasia
Collapse
Affiliation(s)
- Maxwell E R Shafer
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 415, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Alana H T Nguyen
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 415, Montreal, QC H3A 1A3, Canada
| | - Mathieu Tremblay
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 415, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Sophie Viala
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 415, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Mélanie Béland
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 415, Montreal, QC H3A 1A3, Canada
| | - Nicholas R Bertos
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 415, Montreal, QC H3A 1A3, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 415, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada; Departments of Medicine and Oncology, McGill University, Montreal, QC H4A 3T2, Canada
| | - Maxime Bouchard
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 415, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
48
|
Sun X, Zhang J, Wang Z, Ji W, Tian R, Zhang F, Niu R. Shp2 Plays a Critical Role in IL-6-Induced EMT in Breast Cancer Cells. Int J Mol Sci 2017; 18:ijms18020395. [PMID: 28208810 PMCID: PMC5343930 DOI: 10.3390/ijms18020395] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 01/05/2023] Open
Abstract
Accumulative evidence demonstrates that the protein tyrosine phosphatase Shp2 functions as a powerful tumor promoter in many types of cancers. Abnormal expression of Shp2 has been implicated in many human malignancies. Overexpression of Shp2 in cancer tissues is correlated with cancer metastasis, resistance to targeted therapy, and poor prognosis. The well-known function of Shp2 is its positive role in regulating cellular signaling initiated by growth factors and cytokines, including interleukin-6 (IL-6). Several recent studies have shown that Shp2 is required for epithelial-mesenchymal transition (EMT), triggered by growth factors. However, whether Shp2 is involved in IL-6-signaling-promoted breast cancer EMT and progression, remains undefined. In this study, we showed that exogenous and endogenous IL-6 can enhance breast cancer invasion and migration, through the promotion of EMT. IL-6 also induces the activation of Erk1/2 and the phosphorylation of Shp2. Knockdown of Shp2 attenuated the IL-6-induced downregulation of E-cadherin, as well as IL-6-promoted cell migration and invasion. Moreover, by using Shp2 phosphatase mutants, phosphor-tyrosine mimicking, and deficiency mutants, we provided evidence that the phosphatase activity of Shp2 and its tyrosine phosphorylation, are necessary for the IL-6-induced downregulation of E-cadherin and the phosphorylation of Erk1/2. Our findings uncover an important function that links Shp2 to IL-6-promoted breast cancer progression.
Collapse
Affiliation(s)
- Xuan Sun
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Jie Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
- Cambridge-Suda Genome Research Center; Soochow University, Suzhou 215123, China.
| | - Zhiyong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Wei Ji
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Ran Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| |
Collapse
|
49
|
Shp2 Inhibits Proliferation of Esophageal Squamous Cell Cancer via Dephosphorylation of Stat3. Int J Mol Sci 2017; 18:ijms18010134. [PMID: 28085101 PMCID: PMC5297767 DOI: 10.3390/ijms18010134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022] Open
Abstract
Shp2 (Src-homology 2 domain-containing phosphatase 2) was originally reported as an oncogene in kinds of solid tumors and hematologic malignancies. However, recent studies indicated that Shp2 may act as tumor suppressors in several tumor types. We investigated the function of Shp2 in esophageal squamous cell cancer (ESCC). The expression level of Shp2 was analyzed in tumor tissues in comparison with adjacent normal tissues of ESCC patients by immunohistochemistry and Western blot. Shp2 was knocked down by Short hairpin RNA to evaluate its function in ESCC cell lines. The relationship between Shp2 and p-Stat3 (signal transducer and activator of transcription 3) in human ESCC tissues was statistically examined. A significant low expression of Shp2 was found in ESCC tissues. Low expression of Shp2 was related to poorer overall survival in patients from The Cancer Genome Atlas (TCGA) dataset. Knockdown of Shp2 increased the growth of ESCC cell lines both in vivo and vitro. Activation of Stat3 (p-Stat3) was induced by Shp2 depletion. Expression of p-Stat3 was negatively correlated with Shp2 expression in ESCC tissues. Furthermore, knockdown of Shp2 attenuated cisplatin-sensitivity of ESCC cells. Shp2 might suppress the proliferation of ESCC by dephosphorylation of p-Stat3 and represents a novel research field for targeted therapy.
Collapse
|
50
|
Rejon C, Al-Masri M, McCaffrey L. Cell Polarity Proteins in Breast Cancer Progression. J Cell Biochem 2016; 117:2215-23. [DOI: 10.1002/jcb.25553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Carlis Rejon
- Division of Experimental Medicine; Department of Oncology, Rosalind and Morris Goodman Cancer Research Centre, McGill University; Montreal Canada
| | - Maia Al-Masri
- Division of Experimental Medicine; Department of Oncology, Rosalind and Morris Goodman Cancer Research Centre, McGill University; Montreal Canada
| | - Luke McCaffrey
- Division of Experimental Medicine; Department of Oncology, Rosalind and Morris Goodman Cancer Research Centre, McGill University; Montreal Canada
| |
Collapse
|