1
|
Waykar R, Kumarapillai S. Breast cancer histopathology, classification and clinical management: Current perspectives. Bioinformation 2024; 20:2069-2079. [PMID: 40230896 PMCID: PMC11993385 DOI: 10.6026/9732063002002069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 04/16/2025] Open
Abstract
Breast cancer (BC) manifests as a diverse group of malignancies and presents as a wide array of tumors with distinct morphological, biological and clinical characteristics. Molecular classification of BC serves as the basis for current precision-oriented therapeutic strategies. Upcoming therapeutic strategies will emphasize personalized medicine and tailoring treatments according to each patient's specific needs. These approaches will involve modulating the therapy intensity based on the biological characteristics of tumours and early predictive indicators, allowing for more precise and adaptable care in oncology. Additionally, there remains an unfulfilled requirement for the creation of new medications to treat breast cancer in its early stages, as well as in advanced cases. This review article presents an extensive examination of breast cancer, delving into its prevalence, contributing factors, molecular and cellular features and therapeutic interventions.
Collapse
Affiliation(s)
- Ravindra Waykar
- Department of Pharmacy, Lincoln University College, Wisma Lincoln, Jalan SS 6/12, 47301 Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Srinivasakumar Kumarapillai
- Department of Pharmacy, Lincoln University College, Wisma Lincoln, Jalan SS 6/12, 47301 Petaling Jaya, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
2
|
Reddy T, Puri A, Guzman-Rojas L, Thomas C, Qian W, Zhou J, Zhao H, Mahboubi B, Oo A, Cho YJ, Kim B, Thaiparambil J, Rosato R, Martinez KO, Chervo MF, Ayerbe C, Giese N, Wink D, Lockett S, Wong S, Chang J, Krishnamurthy S, Yam C, Moulder S, Piwnica-Worms H, Meric-Bernstam F, Chang J. NOS inhibition sensitizes metaplastic breast cancer to PI3K inhibition and taxane therapy via c-JUN repression. Nat Commun 2024; 15:10737. [PMID: 39737957 PMCID: PMC11685991 DOI: 10.1038/s41467-024-54651-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/19/2024] [Indexed: 01/01/2025] Open
Abstract
Metaplastic breast cancer (MpBC) is a highly chemoresistant subtype of breast cancer with no standardized therapy options. A clinical study in anthracycline-refractory MpBC patients suggested that nitric oxide synthase (NOS) inhibitor NG-monomethyl-l-arginine (L-NMMA) may augment anti-tumor efficacy of taxane. We report that NOS blockade potentiated response of human MpBC cell lines and tumors to phosphoinositide 3-kinase (PI3K) inhibitor alpelisib and taxane. Mechanistically, NOS blockade leads to a decrease in the S-nitrosylation of c-Jun NH2-terminal kinase (JNK)/c-Jun complex to repress its transcriptional output, leading to enhanced tumor differentiation and associated chemosensitivity. As a result, combined NOS and PI3K inhibition with taxane targets MpBC stem cells and improves survival in patient-derived xenograft models relative to single-/dual-agent therapy. Similarly, biopsies from MpBC tumors that responded to L-NMMA+taxane therapy showed a post-treatment reversal of epithelial-to-mesenchymal transition and decreased stemness. Our findings suggest that combined inhibition of iNOS and PI3K is a unique strategy to decrease chemoresistance and improve clinical outcomes in MpBC.
Collapse
Affiliation(s)
- Tejaswini Reddy
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Neal Cancer Center, Houston, TX, USA
| | - Akshjot Puri
- Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Neal Cancer Center, Houston, TX, USA
| | | | - Christoforos Thomas
- Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Neal Cancer Center, Houston, TX, USA
| | - Wei Qian
- Houston Methodist Research Institute, Houston, TX, USA
| | - Jianying Zhou
- Houston Methodist Research Institute, Houston, TX, USA
| | - Hong Zhao
- Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Neal Cancer Center, Houston, TX, USA
| | - Bijan Mahboubi
- Adams School of Dentistry, University of North Carolina, Chapel Hill, USA
| | - Adrian Oo
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Young-Jae Cho
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | | | | | | | | | - Camila Ayerbe
- McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Noah Giese
- Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Neal Cancer Center, Houston, TX, USA
| | - David Wink
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD, USA
| | - Stephen Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Stephen Wong
- Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Neal Cancer Center, Houston, TX, USA
| | - Jeffrey Chang
- McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Clinton Yam
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | - Jenny Chang
- Houston Methodist Research Institute, Houston, TX, USA.
- Houston Methodist Neal Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Gonzalez ME, Brophy B, Eido A, Leonetti AE, Djomehri SI, Augimeri G, Carruthers NJ, Cavalcante RG, Giordano F, Andò S, Nesvizhskii AI, Fearon ER, Kleer CG. CCN6 Suppresses Metaplastic Breast Carcinoma by Antagonizing Wnt/β-Catenin Signaling to Inhibit EZH2-Driven EMT. Cancer Res 2024; 84:3235-3249. [PMID: 39024552 PMCID: PMC11444886 DOI: 10.1158/0008-5472.can-23-4054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Metaplastic breast carcinomas (mBrCA) are a highly aggressive subtype of triple-negative breast cancer with histologic evidence of epithelial-to-mesenchymal transition and aberrant differentiation. Inactivation of the tumor suppressor gene cellular communication network factor 6 (CCN6; also known as Wnt1-induced secreted protein 3) is a feature of mBrCAs, and mice with conditional inactivation of Ccn6 in mammary epithelium (Ccn6-KO) develop spindle mBrCAs with epithelial-to-mesenchymal transition. Elucidation of the precise mechanistic details of how CCN6 acts as a tumor suppressor in mBrCA could help identify improved treatment strategies. In this study, we showed that CCN6 interacts with the Wnt receptor FZD8 and coreceptor LRP6 on mBrCA cells to antagonize Wnt-induced activation of β-catenin/TCF-mediated transcription. The histone methyltransferase EZH2 was identified as a β-catenin/TCF transcriptional target in Ccn6-KO mBrCA cells. Inhibiting Wnt/β-catenin/TCF signaling in Ccn6-KO mBrCA cells led to reduced EZH2 expression, decreased histone H3 lysine 27 trimethylation, and deregulation of specific target genes. Pharmacologic inhibition of EZH2 reduced growth and metastasis of Ccn6-KO mBrCA mammary tumors in vivo. Low CCN6 is significantly associated with activated β-catenin and high EZH2 in human spindle mBrCAs compared with other subtypes. Collectively, these findings establish CCN6 as a key negative regulator of a β-catenin/TCF/EZH2 axis and highlight the inhibition of β-catenin or EZH2 as a potential therapeutic approach for patients with spindle mBrCAs. Significance: CCN6 deficiency drives metaplastic breast carcinoma growth and metastasis by increasing Wnt/β-catenin activation to upregulate EZH2, identifying EZH2 inhibition as a mechanistically guided treatment strategy for this deadly form of breast cancer.
Collapse
Affiliation(s)
- Maria E Gonzalez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Bryce Brophy
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Ahmad Eido
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Adele E Leonetti
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Sabra I Djomehri
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Giuseppina Augimeri
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Eric R Fearon
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Celina G Kleer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
4
|
Wu M, Sun L, Song T. OTUB1-mediated inhibition of ubiquitination: a growing list of effectors, multiplex mechanisms, and versatile functions. Front Mol Biosci 2024; 10:1261273. [PMID: 38264570 PMCID: PMC10803509 DOI: 10.3389/fmolb.2023.1261273] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Protein ubiquitination plays a pivotal role in protein homeostasis. Ubiquitination may regulate the stability, activity, protein-protein interaction, and localization of a protein. Ubiquitination is subject to regulation by two groups of counteracting enzymes, the E3 ubiquitin ligases and deubiquitinases. Consistently, deubiquitinases are involved in essentially all biological processes. OTUB1, an OTU-family deubiquitinase, is a critical regulator of development, cancer, DNA damage response, and immune response. OTUB1 antagonizes the ubiquitination of a wide-spectrum of proteins through at least two different mechanisms. Besides direct deubiquitination, OTUB1 can also inhibit ubiquitination by non-canonically blocking ubiquitin transfer from certain ubiquitin-conjugases (E2). In this review, we start with a general background of protein ubiquitination and deubiquitination. Next, we introduce the basic characteristics of OTUB1 and then elaborate on the updated biological functions of OTUB1. Afterwards, we discuss potential mechanisms underlying the versatility and specificity of OTUB1 functions. In the end, we discuss the perspective that OTUB1 can be a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Miaomiao Wu
- Deparment of Obstetrics and Gynecology, Shuyang Hospital of Traditional Chinese Medicine, Suqian, China
| | - Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Ismail Y, Zakaria AS, Allam R, Götte M, Ibrahim SA, Hassan H. Compartmental Syndecan-1 (CD138) expression as a novel prognostic marker in triple-negative metaplastic breast cancer. Pathol Res Pract 2024; 253:154994. [PMID: 38071886 DOI: 10.1016/j.prp.2023.154994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Metaplastic breast cancer (MpBC) is rare, aggressive, and mostly triple-negative (TN) subtype of BC. We aimed to investigate the potential prognostic significance of Syndecan-1 (SDC1/CD138) expression in this unique tumor. METHODS Archived charts of 50 TNBC patients [21 MpBC and 29 invasive ductal carcinoma (IDC)] were retrospectively evaluated. Corresponding paraffin blocks were used for immunohistochemical (IHC) staining of SDC1. Compartmental (epithelial membranous, stromal, and cytoplasmic) staining scores were expressed in quartiles (Q) and correlated with disease-free survival (DFS) and overall survival (OS). RESULTS The median follow-up period was 54.6 months (range: 2.2-112.7). MpBC patients showed significantly worse DFS and OS than IDC (p = 0.007 and 0.004, respectively). MpBC demonstrated significantly higher Q4 stromal and membranous SDC1 compared to IDC (p = 0.016 and 0.021, respectively), whereas IDC exhibited significantly higher cytoplasmic Q4 SDC1 than MpBC (p = 0.015). Stromal Q4 SDC1 expression was found to be an independent factor associated with MpBC relative to IDC (OR: 6.7, 95% CI: 1.24-36.90; p = 0.028). Stromal Q4 SDC1 expression was also an independent prognostic parameter for worse DFS and OS compared to Q1-3 in the whole cohort (HR: 4.2, 95% CI: 1.6-10.5; p = 0.003 and HR: 5.8; 95% CI: 2.2-15.3; p < 0.001, respectively). In MpBC, cytoplasmic Q1-3 SDC1 expression was an independent prognostic indicator for worse OS compared with their IDC counterparts (HR: 2.837, 95% CI: 1.048-7.682; p = 0.04). CONCLUSION This study suggests, for the first time, that differential expression and localization of SDC1 may contribute to the pathogenesis and prognosis of TN-MpBC. Therefore, targeting SDC1 (CD138) could emerge as a novel therapeutic approach for this devastating disease.
Collapse
Affiliation(s)
- Yahia Ismail
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Al-Shimaa Zakaria
- Pathology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Rasha Allam
- Cancer Epidemiology and Biostatistics Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster 48149 Germany
| | | | - Hebatallah Hassan
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|
6
|
Augimeri G, Gonzalez ME, Paolì A, Eido A, Choi Y, Burman B, Djomehri S, Karthikeyan SK, Varambally S, Buschhaus JM, Chen YC, Mauro L, Bonofiglio D, Nesvizhskii AI, Luker GD, Andò S, Yoon E, Kleer CG. A hybrid breast cancer/mesenchymal stem cell population enhances chemoresistance and metastasis. JCI Insight 2023; 8:e164216. [PMID: 37607007 PMCID: PMC10561721 DOI: 10.1172/jci.insight.164216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/15/2023] [Indexed: 08/23/2023] Open
Abstract
Patients with triple-negative breast cancer remain at risk for metastatic disease despite treatment. The acquisition of chemoresistance is a major cause of tumor relapse and death, but the mechanisms are far from understood. We have demonstrated that breast cancer cells (BCCs) can engulf mesenchymal stem/stromal cells (MSCs), leading to enhanced dissemination. Here, we show that clinical samples of primary invasive carcinoma and chemoresistant breast cancer metastasis contain a unique hybrid cancer cell population coexpressing pancytokeratin and the MSC marker fibroblast activation protein-α. We show that hybrid cells form in primary tumors and that they promote breast cancer metastasis and chemoresistance. Using single-cell microfluidics and in vivo models, we found that there are polyploid senescent cells within the hybrid cell population that contribute to metastatic dissemination. Our data reveal that Wnt Family Member 5A (WNT5A) plays a crucial role in supporting the chemoresistance properties of hybrid cells. Furthermore, we identified that WNT5A mediates hybrid cell formation through a phagocytosis-like mechanism that requires BCC-derived IL-6 and MSC-derived C-C Motif Chemokine Ligand 2. These findings reveal hybrid cell formation as a mechanism of chemoresistance and suggest that interrupting this mechanism may be a strategy in overcoming breast cancer drug resistance.
Collapse
Affiliation(s)
- Giuseppina Augimeri
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria E. Gonzalez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center and
| | - Alessandro Paolì
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Ahmad Eido
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center and
| | - Yehyun Choi
- Department of Electrical Engineering and Computer Science and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Boris Burman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sabra Djomehri
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center and
| | | | | | - Johanna M. Buschhaus
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, Department of Computational and Systems Biology, Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Gary D. Luker
- Rogel Cancer Center and
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Euisik Yoon
- Rogel Cancer Center and
- Department of Electrical Engineering and Computer Science and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Celina G. Kleer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center and
| |
Collapse
|
7
|
Zhao Y, Ruan J, Li Z, Su X, Chen K, Lin Y, Cai Y, Wang P, Liu B, Schlüter D, Liang G, Wang X. OTUB1 inhibits breast cancer by non-canonically stabilizing CCN6. Clin Transl Med 2023; 13:e1385. [PMID: 37608493 PMCID: PMC10444971 DOI: 10.1002/ctm2.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND CCN6 is a matricellular protein that critically regulates the tumourigenesis and progression of breast cancer. Although the tumour-suppressive function of CCN6 has been extensively studied, molecular mechanisms regulating protein levels of CCN6 remain largely unclear. This study aims to investigate the regulation of CCN6 by ubiquitination and deubiquitinating enzymes (DUBs) in breast cancer. METHODS A screening assay was performed to identify OTUB1 as the DUB for CCN6. Various biochemical methods were applied to elucidate the molecular mechanism of OTUB1 in the regulation of CCN6. The role of OTUB1-CCN6 interaction in breast cancer was studied with cell experiments and the allograft model. The correlation of OTUB1 and CCN6 in human breast cancer was determined by immunohistochemistry and Western blot. RESULTS We found that CCN6 protein levels were controlled by the ubiquitin-proteasome system. The K48 ubiquitination and degradation of CCN6 was inhibited by OTUB1, which directly interacted with CCN6 through its linker domain. Furthermore, OTUB1 inhibited the ubiquitination of CCN6 in a non-canonical manner. Deletion of OTUB1, concomitant with reduced CCN6 abundance, increased the migration, proliferation and viability of breast cancer cells. Supplementation of CCN6 abolished the effect of OTUB1 deletion on breast cancer. Importantly, OTUB1 expression was downregulated in human breast cancer and positively correlated with CCN6 levels. CONCLUSION This study identified OTUB1 as a novel regulator of CCN6 in breast cancer.
Collapse
Affiliation(s)
- Ying Zhao
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jing Ruan
- Department of PathologyThe First Affiliated HospitalWenzhou Medical UniversityWenzhouChina
| | - Zhongding Li
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Xian Su
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Kangmin Chen
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Yimin Lin
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Yuepiao Cai
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Peng Wang
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Baohua Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital EpidemiologyHannover Medical SchoolHannoverGermany
- Cluster of Excellence RESIST (EXC 2155)Hannover Medical SchoolHannoverGermany
| | - Guang Liang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouChina
| | - Xu Wang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Institute of Medical Microbiology and Hospital EpidemiologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
8
|
Zheng C, Fu C, Wen Y, Liu J, Lin S, Han H, Han Z, Xu C. Clinical characteristics and overall survival prognostic nomogram for metaplastic breast cancer. Front Oncol 2023; 13:1030124. [PMID: 36937402 PMCID: PMC10018193 DOI: 10.3389/fonc.2023.1030124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Background Metaplastic breast cancer (MBC) is a rare breast tumor and the prognostic factors for survival in patients still remain controversial. This study aims to develop and validate a nomogram to predict the overall survival (OS) of patients with MBC. Methods We searched the Surveillance, Epidemiology, and End Results (SEER) database for data about patients including metaplastic breast cancer and infiltrating ductal carcinoma (IDC) from 2010 to 2018. The survival outcomes of patients between MBC and IDC were analyzed and compared with the Kaplan-Meier (KM) method. MBC patients were randomly allocated to the training set and validation I set by a ratio of eight to two. Meanwhile, the performance of this model was validated again by the validation II set, which consisted of MBC patients from the Union Hospital of Fujian Medical University between 2010 and 2018. The independent prognostic factors were selected by univariate and multivariate Cox regression analyses. The nomogram was constructed to predict individual survival outcomes for MBC patients. The discriminative power, calibration, and clinical effectiveness of the nomogram were evaluated by the concordance index (C-index), the receiver operating characteristic (ROC) curve, and the decision curve analysis (DCA). Results MBC had a significantly higher T stage (T2 and above accounting for 75.1% vs 39.9%), fewer infiltrated lymph nodes (N0 accounted for 76.2% vs 67.7%), a lower proportion of ER (22.2% vs 81.2%), PR (13.6% vs 71.4%), and HER-2(6.7% vs 17.7%) positive, radiotherapy(51.6% vs 58.0%) but more chemotherapy(67.5% vs 44.7%), and a higher rate of mastectomy(53.2% vs 36.8%), which was discovered when comparing the clinical baseline data between MBC and IDC. Age at diagnosis, T, N, and M stage, as well as surgery and radiation treatment, were all significant independent prognostic factors for overall survival (OS). In the validation I cohort, the nomogram's C-index (0.769 95% CI 0.710 -0.828) was indicated to be considerably higher than the standard AJCC model's (0.700 95% CI 0.644 -0.756). Nomogram's great predictive capability capacity further was supported by the comparatively high C-index of the validation II sets (0.728 95%CI 0.588-0.869). Conclusions Metaplastic breast cancer is more aggressive, with a worse clinical prognosis than IDC. This nomogram is recommended for patients with MBC, both American and Chinese, which can help clinicians make more accurate individualized survival analyses.
Collapse
Affiliation(s)
- Caihong Zheng
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Chengbin Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Yahui Wen
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jiameng Liu
- Department of Breast Surgery, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shunguo Lin
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Hui Han
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhonghua Han
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
- *Correspondence: Zhonghua Han, ; Chunsen Xu,
| | - Chunsen Xu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
- *Correspondence: Zhonghua Han, ; Chunsen Xu,
| |
Collapse
|
9
|
Gonzalez ME, Naimo GD, Anwar T, Paolì A, Tekula SR, Kim S, Medhora N, Leflein SA, Itkin J, Trievel R, Kidwell KM, Chen YC, Mauro L, Yoon E, Andò S, Kleer CG. EZH2 T367 phosphorylation activates p38 signaling through lysine methylation to promote breast cancer progression. iScience 2022; 25:104827. [PMID: 35992062 PMCID: PMC9389258 DOI: 10.1016/j.isci.2022.104827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/10/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) are frequently poorly differentiated with high propensity for metastasis. Enhancer of zeste homolog 2 (EZH2) is the lysine methyltransferase of polycomb repressive complex 2 that mediates transcriptional repression in normal cells and in cancer through H3K27me3. However, H3K27me3-independent non-canonical functions of EZH2 are incompletely understood. We reported that EZH2 phosphorylation at T367 by p38α induces TNBC metastasis in an H3K27me3-independent manner. Here, we show that cytosolic EZH2 methylates p38α at lysine 139 and 165 leading to enhanced p38α stability and that p38 methylation and activation require T367 phosphorylation of EZH2. Dual inhibition of EZH2 methyltransferase and p38 kinase activities downregulates pEZH2-T367, H3K27me3, and p-p38 pathways in vivo and reduces TNBC growth and metastasis. These data uncover a cooperation between EZH2 canonical and non-canonical mechanisms and suggest that inhibition of these pathways may be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Maria E. Gonzalez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Giuseppina Daniela Naimo
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Talha Anwar
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - Alessandro Paolì
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Shilpa R. Tekula
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Suny Kim
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Natasha Medhora
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Shoshana A. Leflein
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jacob Itkin
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Raymond Trievel
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Kelley M. Kidwell
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, Department of Computational and Systems Biology, Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science and Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Celina G. Kleer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Tran M, Leflein SA, Gonzalez ME, Kleer CG. The matricellular protein CCN6 differentially regulates mitochondrial metabolism in normal epithelium and in metaplastic breast carcinomas. J Cell Commun Signal 2021; 16:433-445. [PMID: 34811632 DOI: 10.1007/s12079-021-00657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
Metaplastic breast carcinoma (MBC) is an aggressive subtype of triple negative breast cancer with undefined precursors, limited response to chemotherapy, and frequent distant metastasis. Our laboratory has reported that CCN6/WISP3, a secreted protein that regulates growth factor signaling, is downregulated in over 85% of MBCs. Through generation of a mammary epithelial cell-specific Ccn6 knockout mouse model (MMTV-cre;Ccn6fl/fl) we have demonstrated that CCN6 is a tumor suppressor for MBC; MMTV-cre;Ccn6fl/fl mice develop tumors recapitulating the histopathology and proteogenomic landscape of human MBC, but the mechanisms need further investigation. In this study, we report that preneoplastic mammary glands of 8-week-old MMTV-Cre;Ccn6fl/fl female mice show significant downregulation of mitochondrial respiratory chain genes compared to controls, which are further downregulated in MBCs of MMTV-Cre;Ccn6fl/fl mice and humans. We found that CCN6 downregulation in non-tumorigenic breast cells reduces mitochondrial respiration and increases resistance to stress-induced apoptosis compared to controls. Intracellular ectopic CCN6 protein localizes to the mitochondria in MDA-MB-231 mesenchymal-like breast cancer cells, increases mitochondrial respiration and generation of reactive oxygen species, and reverses doxorubicin resistance of MBC cells. Our data highlight a novel function of CCN6 in the regulation of redox states in preneoplastic progression and suggest potential preventative and treatment strategies against MBC based on CCN6 upregulation.
Collapse
Affiliation(s)
- Mai Tran
- Department of Pathology, 4217 Rogel Cancer Center, University of Michigan Medical School, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shoshana A Leflein
- Department of Pathology, 4217 Rogel Cancer Center, University of Michigan Medical School, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria E Gonzalez
- Department of Pathology, 4217 Rogel Cancer Center, University of Michigan Medical School, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Celina G Kleer
- Department of Pathology, 4217 Rogel Cancer Center, University of Michigan Medical School, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA. .,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
11
|
Shah VV, Duncan AD, Jiang S, Stratton SA, Allton KL, Yam C, Jain A, Krause PM, Lu Y, Cai S, Tu Y, Zhou X, Zhang X, Jiang Y, Carroll CL, Kang Z, Liu B, Shen J, Gagea M, Manu SM, Huo L, Gilcrease M, Powell RT, Guo L, Stephan C, Davies PJ, Parker-Thornburg J, Lozano G, Behringer RR, Piwnica-Worms H, Chang JT, Moulder SL, Barton MC. Mammary-specific expression of Trim24 establishes a mouse model of human metaplastic breast cancer. Nat Commun 2021; 12:5389. [PMID: 34508101 PMCID: PMC8433435 DOI: 10.1038/s41467-021-25650-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/17/2021] [Indexed: 12/24/2022] Open
Abstract
Conditional overexpression of histone reader Tripartite motif containing protein 24 (TRIM24) in mouse mammary epithelia (Trim24COE) drives spontaneous development of mammary carcinosarcoma tumors, lacking ER, PR and HER2. Human carcinosarcomas or metaplastic breast cancers (MpBC) are a rare, chemorefractory subclass of triple-negative breast cancers (TNBC). Comparison of Trim24COE metaplastic carcinosarcoma morphology, TRIM24 protein levels and a derived Trim24COE gene signature reveals strong correlation with human MpBC tumors and MpBC patient-derived xenograft (PDX) models. Global and single-cell tumor profiling reveal Met as a direct oncogenic target of TRIM24, leading to aberrant PI3K/mTOR activation. Here, we find that pharmacological inhibition of these pathways in primary Trim24COE tumor cells and TRIM24-PROTAC treatment of MpBC TNBC PDX tumorspheres decreased cellular viability, suggesting potential in therapeutically targeting TRIM24 and its regulated pathways in TRIM24-expressing TNBC.
Collapse
Affiliation(s)
- Vrutant V Shah
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aundrietta D Duncan
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA
- Salarius Pharmaceuticals, Houston, TX, USA
| | - Shiming Jiang
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Thoracic Head and Neck Medicine Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sabrina A Stratton
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kendra L Allton
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Neurodegeneration Consortium, Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clinton Yam
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhinav Jain
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA
| | - Patrick M Krause
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yue Lu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shirong Cai
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yizheng Tu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinhui Zhou
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaomei Zhang
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Jiang
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher L Carroll
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute of Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhijun Kang
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute of Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Liu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Shen
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mihai Gagea
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sebastian M Manu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Huo
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Gilcrease
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Reid T Powell
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX, USA
| | - Lei Guo
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX, USA
| | - Clifford Stephan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX, USA
| | - Peter J Davies
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX, USA
| | - Jan Parker-Thornburg
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA
| | - Richard R Behringer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA
| | - Helen Piwnica-Worms
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey T Chang
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA.
- Department of Integrative Biology and Pharmacology, University of Texas Health Sciences Center at Houston, Houston, TX, USA.
| | - Stacy L Moulder
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Michelle Craig Barton
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA.
- Division of Oncological Sciences, Cancer Early Detection Advanced Research, Center Knight Cancer Institute Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
12
|
Jia Q, Xu B, Zhang Y, Ali A, Liao X. CCN Family Proteins in Cancer: Insight Into Their Structures and Coordination Role in Tumor Microenvironment. Front Genet 2021; 12:649387. [PMID: 33833779 PMCID: PMC8021874 DOI: 10.3389/fgene.2021.649387] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
The crosstalk between tumor cells and the tumor microenvironment (TME), triggers a variety of critical signaling pathways and promotes the malignant progression of cancer. The success rate of cancer therapy through targeting single molecule of this crosstalk may be extremely low, whereas co-targeting multiple components could be complicated design and likely to have more side effects. The six members of cellular communication network (CCN) family proteins are scaffolding proteins that may govern the TME, and several studies have shown targeted therapy of CCN family proteins may be effective for the treatment of cancer. CCN protein family shares similar structures, and they mutually reinforce and neutralize each other to serve various roles that are tightly regulated in a spatiotemporal manner by the TME. Here, we review the current knowledge on the structures and roles of CCN proteins in different types of cancer. We also analyze CCN mRNA expression, and reasons for its diverse relationship to prognosis in different cancers. In this review, we conclude that the discrepant functions of CCN proteins in different types of cancer are attributed to diverse TME and CCN truncated isoforms, and speculate that targeting CCN proteins to rebalance the TME could be a potent anti-cancer strategy.
Collapse
Affiliation(s)
- Qingan Jia
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Binghui Xu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Yaoyao Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Arshad Ali
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xia Liao
- Department of Nutrition, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Reddy TP, Rosato RR, Li X, Moulder S, Piwnica-Worms H, Chang JC. A comprehensive overview of metaplastic breast cancer: clinical features and molecular aberrations. Breast Cancer Res 2020; 22:121. [PMID: 33148288 PMCID: PMC7640663 DOI: 10.1186/s13058-020-01353-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/11/2020] [Indexed: 02/08/2023] Open
Abstract
Metaplastic breast cancer (MpBC) is an exceedingly rare breast cancer variant that is therapeutically challenging and aggressive. MpBC is defined by the histological presence of at least two cellular types, typically epithelial and mesenchymal components. This variant harbors a triple-negative breast cancer (TNBC) phenotype, yet has a worse prognosis and decreased survival compared to TNBC. There are currently no standardized treatment guidelines specifically for MpBC. However, prior studies have found that MpBC typically has molecular alterations in epithelial-to-mesenchymal transition, amplification of epidermal growth factor receptor, PI3K/Akt signaling, nitric oxide signaling, Wnt/β-catenin signaling, altered immune response, and cell cycle dysregulation. Some of these molecular alterations have been studied as therapeutic targets, in both the preclinical and clinical setting. This current review discusses the histological organization and cellular origins of MpBC, molecular alterations, the role of radiation therapy, and current clinical trials for MpBC.
Collapse
Affiliation(s)
- Tejaswini P Reddy
- Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.,Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Roberto R Rosato
- Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Xiaoxian Li
- Winship Cancer Institute, Emory University School of Medicine, 1365 Clifton Rd, Atlanta, GA, 30322, USA
| | - Stacy Moulder
- The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Helen Piwnica-Worms
- The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Jenny C Chang
- Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA. .,Houston Methodist Cancer Center/Weill Cornell Medicine, OPC 24, 6445 Main Street, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
Jia C, Wang G, Wang T, Fu B, Zhang Y, Huang L, Deng Y, Chen G, Wu X, Chen J, Pan Y, Tai Y, Liang J, Li X, Hu K, Xie B, Li S, Yang Y, Chen G, Zhang Q, Liu W. Cancer-associated Fibroblasts induce epithelial-mesenchymal transition via the Transglutaminase 2-dependent IL-6/IL6R/STAT3 axis in Hepatocellular Carcinoma. Int J Biol Sci 2020; 16:2542-2558. [PMID: 32792856 PMCID: PMC7415430 DOI: 10.7150/ijbs.45446] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) play crucial roles in enhancing cell survival, proliferation, invasion, and metastasis. We previously showed that hepatocellular carcinoma-derived CAFs (H-CAFs) promoted proliferation of hepatocellular carcinoma (HCC) cells. This study aimed to further explore the role of CAFs in HCC epithelial-mesenchymal transition (EMT) and the underlying mechanism. High CAF density was significantly associated with liver cirrhosis, inferior clinicopathologic characteristics, elevated EMT-associated markers, and poorer survival in human HCC. Within HCC cells, EMT was induced after co-culture with H-CAFs. Secretomic analysis showed that IL-6 and HGF were the key EMT-stimulating cytokines secreted by H-CAFs. Proteomic analysis revealed that TG2 was significantly upregulated in HCC cells with EMT phenotypes. Overexpression of TG2 promoted EMT of HCC cells, and knockdown of TG2 remarkably attenuated the H-CAF-induced EMT. Furthermore, during EMT, TG2 expression was enhanced after HCC cells were stimulated by IL-6, but not HGF. Inhibition of the IL-6/STAT3 signaling decreased TG2 expression. The principal TG2 transcription control element and a potential STAT3 binding site were identified using promoter analysis. Hence, H-CAFs facilitates HCC cells EMT mediated by IL-6, which in turn activates IL-6/IL6R/STAT3 axis to promote TG2 expression.
Collapse
Affiliation(s)
- Changchang Jia
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guoying Wang
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangzhou, China
| | - Tiantian Wang
- Department of medical oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Binsheng Fu
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangzhou, China
| | - Yincai Zhang
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangzhou, China
| | - Lei Huang
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yinan Deng
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangzhou, China
| | - Guanzhong Chen
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangzhou, China
| | - Xiaocai Wu
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangzhou, China
| | - Jianning Chen
- Department of pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuhang Pan
- Department of pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Tai
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinliang Liang
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuejiao Li
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kunhua Hu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bo Xie
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Sujun Li
- School of Informatics, computing and engineering, Indiana University, Bloomington, IN, USA
| | - Yang Yang
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangzhou, China
| | - Guihua Chen
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangzhou, China
| | - Qi Zhang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Leask A. Conjunction junction, what's the function? CCN proteins as targets in fibrosis and cancers. Am J Physiol Cell Physiol 2020; 318:C1046-C1054. [PMID: 32130070 PMCID: PMC7311738 DOI: 10.1152/ajpcell.00028.2020] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Cellular communication network (CCN) proteins are matricellular proteins that coordinate signaling among extracellular matrix, secreted proteins, and cell surface receptors. Their specific in vivo function is context-dependent, but they play profound roles in pathological conditions, such as fibrosis and cancers. Anti-CCN therapies are in clinical consideration. Only recently, however, has the function of these complex molecules begun to emerge. This review summarizes and interprets our current knowledge regarding these fascinating molecules and provides experimental evidence for their utility as therapeutic targets.
Collapse
Affiliation(s)
- Andrew Leask
- School of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
16
|
McMullen ER, Zoumberos NA, Kleer CG. Metaplastic Breast Carcinoma: Update on Histopathology and Molecular Alterations. Arch Pathol Lab Med 2020; 143:1492-1496. [PMID: 31765246 DOI: 10.5858/arpa.2019-0396-ra] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT— Metaplastic carcinoma is a rare, triple-negative carcinoma of the breast that exhibits transformation of part or all of its glandular carcinomatous component into a nonglandular, or metaplastic, component. The World Health Organization currently recognizes 5 variants of metaplastic carcinoma based on their histologic appearance. OBJECTIVE— To review the histologic classifications, differential diagnosis, prognosis, and recent laboratory studies of metaplastic breast carcinoma. DATA SOURCES.— We reviewed recently published studies that collectively examine metaplastic carcinomas, including results from our own research. CONCLUSIONS.— Metaplastic breast carcinoma has a broad spectrum of histologic patterns, often leading to a broad differential diagnosis. Diagnosis can typically be rendered by a combination of morphology and immunohistochemical staining for high-molecular-weight cytokeratins and p63. Recent studies elucidate new genes and pathways involved in the pathogenesis of metaplastic carcinoma, including the downregulation of CCN6 and WNT pathway gene mutations, and provide a novel MMTV-Cre;Ccn6fl/fl knockout disease-relevant mouse model to test new therapies.
Collapse
Affiliation(s)
- Emily R McMullen
- From the Department of Pathology (Drs McMullen, Zoumberos, and Kleer) and Rogel Cancer Center (Dr Kleer), University of Michigan Medical School, Ann Arbor
| | - Nicholas A Zoumberos
- From the Department of Pathology (Drs McMullen, Zoumberos, and Kleer) and Rogel Cancer Center (Dr Kleer), University of Michigan Medical School, Ann Arbor
| | - Celina G Kleer
- From the Department of Pathology (Drs McMullen, Zoumberos, and Kleer) and Rogel Cancer Center (Dr Kleer), University of Michigan Medical School, Ann Arbor
| |
Collapse
|
17
|
Quantitative proteomic landscape of metaplastic breast carcinoma pathological subtypes and their relationship to triple-negative tumors. Nat Commun 2020; 11:1723. [PMID: 32265444 PMCID: PMC7138853 DOI: 10.1038/s41467-020-15283-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
Metaplastic breast carcinoma (MBC) is a highly aggressive form of triple-negative cancer (TNBC), defined by the presence of metaplastic components of spindle, squamous, or sarcomatoid histology. The protein profiles underpinning the pathological subtypes and metastatic behavior of MBC are unknown. Using multiplex quantitative tandem mass tag-based proteomics we quantify 5798 proteins in MBC, TNBC, and normal breast from 27 patients. Comparing MBC and TNBC protein profiles we show MBC-specific increases related to epithelial-to-mesenchymal transition and extracellular matrix, and reduced metabolic pathways. MBC subtypes exhibit distinct upregulated profiles, including translation and ribosomal events in spindle, inflammation- and apical junction-related proteins in squamous, and extracellular matrix proteins in sarcomatoid subtypes. Comparison of the proteomes of human spindle MBC with mouse spindle (CCN6 knockout) MBC tumors reveals a shared spindle-specific signature of 17 upregulated proteins involved in translation and 19 downregulated proteins with roles in cell metabolism. These data identify potential subtype specific MBC biomarkers and therapeutic targets. Metaplastic breast carcinoma (MBC) is among the most aggressive subtypes of triple-negative breast cancer (TNBC) but the underlying proteome profiles are unknown. Here, the authors characterize the protein signatures of human MBC tissue samples and their relationship to TNBC and normal breast tissue.
Collapse
|
18
|
Kretzmann JA, Evans CW, Moses C, Sorolla A, Kretzmann AL, Wang E, Ho D, Hackett MJ, Dessauvagie BF, Smith NM, Redfern AD, Waryah C, Norret M, Iyer KS, Blancafort P. Tumour suppression by targeted intravenous non-viral CRISPRa using dendritic polymers. Chem Sci 2019; 10:7718-7727. [PMID: 31588320 PMCID: PMC6761875 DOI: 10.1039/c9sc01432b] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
This article demonstrates a fully synthetic strategy enabling CRISPR-mediated activation of tumour suppressor genes in vivo to reduce tumour burden.
Aberrant gene expression is a hallmark of cancer. Although transcription is traditionally considered ‘undruggable’, the development of CRISPR-associated protein 9 (Cas9) systems offers enormous potential to rectify cancer-associated transcriptional abnormalities in malignant cells. However delivery of this technology presents a critical challenge to overcome in order to realize clinical translation for cancer therapy. In this article we demonstrate for the first time, a fully synthetic strategy to enable CRISPR-mediated activation (CRISPRa) of tumour suppressor genes in vivo using a targeted intravenous approach. We show this via highly efficient transcriptional activation of two model tumour suppressor genes, Mammary Serine Protease Inhibitor (MASPIN, SERPINB5) and cysteine-rich 61/connective tissue growth factor/nephroblastoma-overexpressed 6 (CCN6, WISP3), in a mouse model of breast cancer. In particular, we demonstrate that targeted intravenous delivery of can be achieved using a novel nanoscale dendritic macromolecular delivery agent, with negligible toxicity and long lasting therapeutic effects, outlining a targeted effective formulation with potential to treat aggressive malignancies.
Collapse
Affiliation(s)
- Jessica A Kretzmann
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia . .,Harry Perkins Institute of Medical Research , 6 Verdun St , Nedlands , WA 6009 , Australia .
| | - Cameron W Evans
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia .
| | - Colette Moses
- Harry Perkins Institute of Medical Research , 6 Verdun St , Nedlands , WA 6009 , Australia . .,School of Human Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia
| | - Anabel Sorolla
- Harry Perkins Institute of Medical Research , 6 Verdun St , Nedlands , WA 6009 , Australia .
| | - Amy L Kretzmann
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia .
| | - Edina Wang
- Harry Perkins Institute of Medical Research , 6 Verdun St , Nedlands , WA 6009 , Australia .
| | - Diwei Ho
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia .
| | - Mark J Hackett
- Curtin Institute for Functional Molecules and Interfaces , Curtin Health Innovation Research Institute , Department of Chemistry , Curtin University , Bentley , WA 6845 , Australia
| | - Benjamin F Dessauvagie
- Anatomical Pathology, PathWest Laboratory Medicine , Fiona Stanley Hospital , Murdoch , WA , Australia.,School of Medicine , The University of Western Australia , Crawley , WA , Australia
| | - Nicole M Smith
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia .
| | - Andrew D Redfern
- School of Medicine , The University of Western Australia , Crawley , WA , Australia
| | - Charlene Waryah
- Harry Perkins Institute of Medical Research , 6 Verdun St , Nedlands , WA 6009 , Australia .
| | - Marck Norret
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia .
| | - K Swaminathan Iyer
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Hwy , Crawley , WA 6009 , Australia .
| | - Pilar Blancafort
- Harry Perkins Institute of Medical Research , 6 Verdun St , Nedlands , WA 6009 , Australia .
| |
Collapse
|
19
|
Djomehri SI, Burman B, Gonzalez ME, Takayama S, Kleer CG. A reproducible scaffold-free 3D organoid model to study neoplastic progression in breast cancer. J Cell Commun Signal 2019; 13:129-143. [PMID: 30515709 PMCID: PMC6381373 DOI: 10.1007/s12079-018-0498-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/21/2018] [Indexed: 12/21/2022] Open
Abstract
While 3D cellular models are useful to study biological processes, gel-embedded organoids have large variability. This paper describes high-yield production of large (~1 mm diameter), scaffold-free, highly-spherical organoids in a one drop-one organoid format using MCF10A cells, a non-tumorigenic breast cell line. These organoids display a hollow lumen and secondary acini, and express mammary gland-specific and progenitor markers, resembling normal human breast acini. When subjected to treatment with TGF-β, the hypoxia-mimetic reagent CoCl2, or co-culture with mesenchymal stem/stromal cells (MSC), the organoids increase collagen I production and undergo large phenotypic and morphological changes of neoplastic progression, which were reproducible and quantifiable. Advantages of this scaffold-free, 3D breast organoid model include high consistency and reproducibility, ability to measure cellular collagen I production without noise from exogenous collagen, and capacity to subject the organoid to various stimuli from the microenvironment and exogenous treatments with precise timing without concern of matrix binding. Using this system, we generated organoids from primary metaplastic mammary carcinomas of MMTV-Cre;Ccn6fl/fl mice, which retained the high grade spindle cell morphology of the primary tumors. The platform is envisioned to be useful as a standardized 3D cellular model to study how microenvironmental factors influence breast tumorigenesis, and to potential therapeutics.
Collapse
Affiliation(s)
- Sabra I Djomehri
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Molecular and Cellular Pathology Training Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Boris Burman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Maria E Gonzalez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Shuichi Takayama
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Celina G Kleer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
20
|
Gao H, Yin FF, Guan DX, Feng YX, Zheng QW, Wang X, Zhu M, Zhang XL, Cheng SQ, Chen TW, Jiang H, Zhang EB, Wang JJ, Ni QZ, Yuan YM, Zhang FK, Ma N, Cao HJ, Wang YK, Li JJ, Xie D. Liver cancer: WISP3 suppresses hepatocellular carcinoma progression by negative regulation of β-catenin/TCF/LEF signalling. Cell Prolif 2019; 52:e12583. [PMID: 30793395 PMCID: PMC6536422 DOI: 10.1111/cpr.12583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 01/09/2023] Open
Abstract
Objectives Wnt1‐inducible signalling pathway protein 3 (WISP3/CCN6) belongs to the CCN (CYR61/CTGF/NOV) family of proteins, dysregulation of this family contributed to the tumorigenicity of various tumours. In this study, we need to explore its role in hepatocellular carcinoma that remains largely elusive. Materials and Methods The expression of WISP3/CCN6 was analysed by qRT‐PCR and Western blotting. Effects of WISP3 on proliferation and metastasis of HCC cells were examined, respectively, by MTT assay and Boyden Chamber. Roles of WISP3 on HCC tumour growth and metastatic ability in vivo were detected in nude mice. Related mechanism study was confirmed by immunofluorescence and Western blotting. Results The expression of WISP3 was significantly downregulated in HCC clinical samples and cell lines, and reversely correlated with the tumour size. Forced expression of WISP3 in HCC cells significantly suppressed cell growth and migration in vitro as well as tumour growth and metastatic seeding in vivo. In contrast, downregulation of WISP3 accelerated cell proliferation and migration, and promoted in vivo metastasis. Further study revealed that WISP3 inhibited the translocation of β‐catenin to the nucleus by activating glycogen synthase kinase‐3β (GSK3β). Moreover, constitutively active β‐catenin blocked the suppressive effects of WISP3 on HCC. Conclusions Our study showed that WISP3 suppressed the progression of HCC by negative regulation of β‐catenin/TCF/LEF signalling, providing WISP3 as a potential therapeutic candidate for HCC.
Collapse
Affiliation(s)
- Hong Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fen-Fen Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dong-Xian Guan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Xiong Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian-Wen Zheng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiang Wang
- Department of Surgery, First People's Hospital Affiliated, Huzhou University, Huzhou, China
| | - Min Zhu
- Department of Surgery, First People's Hospital Affiliated, Huzhou University, Huzhou, China
| | - Xue-Li Zhang
- Department of General Surgery, Fengxian Hospital Affiliated to Southern Medical University, Shanghai, China
| | - Shu-Qun Cheng
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Tian-Wei Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao Jiang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Er-Bin Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Jing Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian-Zhi Ni
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Mei Yuan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feng-Kun Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ning Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hui-Jun Cao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Kang Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Jing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dong Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
21
|
Liu Y, Song Y, Ye M, Hu X, Wang ZP, Zhu X. The emerging role of WISP proteins in tumorigenesis and cancer therapy. J Transl Med 2019; 17:28. [PMID: 30651114 PMCID: PMC6335850 DOI: 10.1186/s12967-019-1769-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022] Open
Abstract
Accumulated evidence has demonstrated that WNT1 inducible signaling pathway protein (WISP) genes, which belong to members of the CCN growth factor family, play a pivotal role in tumorigenesis and progression of a broad spectrum of human cancers. Mounting studies have identified that WISP proteins (WISP1-3) exert different biological functions in various human malignancies. Emerging evidence indicates that WISP proteins are critically involved in cell proliferation, apoptosis, invasion and metastasis in cancers. Because the understanding of a direct function of WISP proteins in cancer development and progression has begun to emerge, in this review article, we describe the physiological function of WISP proteins in a variety of human cancers. Moreover, we highlight the current understanding of how the WISP protein is involved in tumorigenesis and cancer progression. Furthermore, we discuss that targeting WISP proteins could be a promising strategy for the treatment of human cancers. Hence, the regulation of WISP proteins could improve treatments for cancer patients.
Collapse
Affiliation(s)
- Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Z. Peter Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030 Anhui China
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| |
Collapse
|
22
|
McMullen ER, Gonzalez ME, Skala SL, Tran M, Thomas D, Djomehri SI, Burman B, Kidwell KM, Kleer CG. CCN6 regulates IGF2BP2 and HMGA2 signaling in metaplastic carcinomas of the breast. Breast Cancer Res Treat 2018; 172:577-586. [PMID: 30220054 DOI: 10.1007/s10549-018-4960-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/05/2018] [Indexed: 01/02/2023]
Abstract
PURPOSE Metaplastic breast carcinomas are an aggressive subtype of triple-negative breast cancer (TNBC) in which part or all of the adenocarcinoma transforms into a non-glandular component (e.g., spindled, squamous, or heterologous). We discovered that mammary-specific Ccn6/Wisp3 knockout mice develop mammary carcinomas with spindle and squamous differentiation that share upregulation of the oncofetal proteins IGF2BP2 (IMP2) and HMGA2 with human metaplastic carcinomas. Here, we investigated the functional relationship between CCN6, IGF2BP2, and HMGA2 proteins in vitro and in vivo, and their expression in human tissue samples. METHODS MMTV-cre;Ccn6fl/fl tumors and spindle TNBC cell lines were treated with recombinant CCN6 protein or vehicle. IGF2BP2 was downregulated using shRNAs in HME cells with stable CCN6 shRNA knockdown, and subjected to invasion and adhesion assays. Thirty-one human metaplastic carcinomas were arrayed in a tissue microarray (TMA) and immunostained for CCN6, IGF2BP2, and HMGA2. RESULTS CCN6 regulates IGF2BP2 and HMGA2 protein expression in MMTV-cre;Ccn6fl/fl tumors, in MDA-MB-231 and - 468, and in HME cells. CCN6 recombinant protein reduced IGF2BP2 and HMGA2 protein expression, and decreased growth of MMTV-cre;Ccn6fl/fl tumors in vivo. IGF2BP2 shRNA knockdown was sufficient to reverse the invasive abilities conferred by CCN6 knockdown in HME cells. Analyses of the TCGA Breast Cancer Cohort (n = 1238) showed that IGF2BP2 and HMGA2 are significantly upregulated in metaplastic carcinoma compared to other breast cancer subtypes. In clinical samples, low CCN6 is frequent in tumors with high IGF2BP2/HMGA2 with spindle and squamous differentiation. CONCLUSIONS These data shed light into the pathogenesis of metaplastic carcinoma and demonstrate a novel CCN6/IGF2BP2/HMGA2 oncogenic pathway with biomarker and therapeutic implications.
Collapse
Affiliation(s)
- Emily R McMullen
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Maria E Gonzalez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Stephanie L Skala
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Mai Tran
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Dafydd Thomas
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sabra I Djomehri
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Boris Burman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Kelley M Kidwell
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Biostatistics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Celina G Kleer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Pathology, University of Michigan Medical School, 4217 Rogel Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
23
|
Biochemical and Functional Characterization of Mouse Mammary Tumor Virus Full-Length Pr77 Gag Expressed in Prokaryotic and Eukaryotic Cells. Viruses 2018; 10:v10060334. [PMID: 29912170 PMCID: PMC6024702 DOI: 10.3390/v10060334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022] Open
Abstract
The mouse mammary tumor virus (MMTV) Pr77Gag polypeptide is an essential retroviral structural protein without which infectious viral particles cannot be formed. This process requires specific recognition and packaging of dimerized genomic RNA (gRNA) by Gag during virus assembly. Most of the previous work on retroviral assembly has used either the nucleocapsid portion of Gag, or other truncated Gag derivatives—not the natural substrate for virus assembly. In order to understand the molecular mechanism of MMTV gRNA packaging process, we expressed and purified full-length recombinant Pr77Gag-His6-tag fusion protein from soluble fractions of bacterial cultures. We show that the purified Pr77Gag-His6-tag protein retained the ability to assemble virus-like particles (VLPs) in vitro with morphologically similar immature intracellular particles. The recombinant proteins (with and without His6-tag) could both be expressed in prokaryotic and eukaryotic cells and had the ability to form VLPs in vivo. Most importantly, the recombinant Pr77Gag-His6-tag fusion proteins capable of making VLPs in eukaryotic cells were competent for packaging sub-genomic MMTV RNAs. The successful expression and purification of a biologically active, full-length MMTV Pr77Gag should lay down the foundation towards performing RNA–protein interaction(s), especially for structure-function studies and towards understanding molecular intricacies during MMTV gRNA packaging and assembly processes.
Collapse
|
24
|
Abstract
The extracellular matrix (ECM) has central roles in tissue integrity and remodeling throughout the life span of animals. While collagens are the most abundant structural components of ECM in most tissues, tissue-specific molecular complexity is contributed by ECM glycoproteins. The matricellular glycoproteins are categorized primarily according to functional criteria and represented predominantly by the thrombospondin, tenascin, SPARC/osteonectin, and CCN families. These proteins do not self-assemble into ECM fibrils; nevertheless, they shape ECM properties through interactions with structural ECM proteins, growth factors, and cells. Matricellular proteins also promote cell migration or morphological changes through adhesion-modulating or counter-adhesive actions on cell-ECM adhesions, intracellular signaling, and the actin cytoskeleton. Typically, matricellular proteins are most highly expressed during embryonic development. In adult tissues, expression is more limited unless activated by cues for dynamic tissue remodeling and cell motility, such as occur during inflammatory response and wound repair. Many insights in the complex roles of matricellular proteins have been obtained from studies of gene knockout mice. However, with the exception of chordate-specific tenascins, these are highly conserved proteins that are encoded in many animal phyla. This review will consider the increasing body of research on matricellular proteins in nonmammalian animal models. These models provide better access to the very earliest stages of embryonic development and opportunities to study biological processes such as limb and organ regeneration. In aggregate, this research is expanding concepts of the functions and mechanisms of action of matricellular proteins.
Collapse
Affiliation(s)
- Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
25
|
Matricellular CCN6 (WISP3) protein: a tumor suppressor for mammary metaplastic carcinomas. J Cell Commun Signal 2018; 12:13-19. [PMID: 29357008 DOI: 10.1007/s12079-018-0451-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 02/07/2023] Open
Abstract
Located at 6q22-23, Ccn6 (WISP3) encodes for a matrix-associated protein of the CCN family, characterized by regulatory, rather than structural, roles in development and cancer. CCN6, the least studied member of the CCN family, shares the conserved multimodular structure of CCN proteins, as well as their tissue and cell-type specific functions. In the breast, CCN6 is a critical regulator of epithelial-to-mesenchymal transitions (EMT) and tumor initiating cells. Studies using human breast cancer tissue samples demonstrated that CCN6 messenger RNA and protein are expressed in normal breast epithelia but reduced or lost in aggressive breast cancer phenotypes, especially inflammatory breast cancer and metaplastic carcinomas. Metaplastic carcinomas are mesenchymal-like triple negative breast carcinomas, enriched for markers of EMT and stemness. RNAseq analyses of the TCGA Breast Cancer cohort show reduced CCN6 expression in approximately 50% of metaplastic carcinomas compared to normal breast. Our group identified frameshift mutations of Ccn6 in a subset of human metaplastic breast carcinoma. Importantly, conditional, mammary epithelial-cell specific ccn6 (wisp3) knockout mice develop invasive high-grade mammary carcinomas that recapitulate human spindle cell metaplastic carcinomas, demonstrating a tumor suppressor function for ccn6. Our studies on CCN6 functions in metaplastic carcinoma highlight the potential of CCN6 as a novel therapeutic approach for this specific type of breast cancer.
Collapse
|
26
|
Chung WC, Zhang S, Challagundla L, Zhou Y, Xu K. Lunatic Fringe and p53 Cooperatively Suppress Mesenchymal Stem-Like Breast Cancer. Neoplasia 2017; 19:885-895. [PMID: 28938159 PMCID: PMC5608590 DOI: 10.1016/j.neo.2017.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 12/05/2022]
Abstract
Claudin-low breast cancer (CLBC) is a poor prognosis molecular subtype showing stemness and mesenchymal features. We previously discovered that deletion of a Notch signaling modulator, Lunatic Fringe (Lfng), in the mouse mammary gland induced a subset of tumors resembling CLBC. Here we report that deletion of one copy of p53 on this background not only accelerated mammary tumor development but also led to a complete penetrance of the mesenchymal stem-like phenotype. All mammary tumors examined in the Lfng/p53 compound mutant mice displayed a mesenchymal/spindloid pathology. These tumors showed high level expressions of epithelial-to-mesenchymal transition (EMT) markers including Vimentin, Twist, and PDGFRα, a gene known to be enriched in CLBC. Prior to tumor onset, Lfng/p53 mutant mammary glands exhibited increased levels of Vimentin and E-cadherin, but decreased expressions of cytokeratin 14 and cytokeratin 8, accompanied by elevated basal cell proliferation and an expanded mammary stem cell-enriched population. Lfng/p53 mutant glands displayed increased accumulation of Notch3 intracellular fragment, up-regulation of Hes5 and down-regulation of Hes1. Analysis in human breast cancer datasets found the lowest HES1 and second lowest LFNG expressions in CLBC among molecular subtypes, and low level of LFNG is associated with poor survival. Immunostaining of human breast cancer tissue array found correlation between survival and LFNG immunoreactivity. Finally, patients carrying TP53 mutations express lower LFNG than patients with wild type TP53. Taken together, these data revealed genetic interaction between Lfng and p53 in mammary tumorigenesis, established a new mouse model resembling CLBC, and may suggest targeting strategy for this disease.
Collapse
Affiliation(s)
- Wen-Cheng Chung
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Shubing Zhang
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lavanya Challagundla
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yunyun Zhou
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Keli Xu
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA; Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|