1
|
Venkatasubramanian M, Schwartz L, Ramachandra N, Bennett J, Subramanian KR, Chen X, Gordon-Mitchell S, Fromowitz A, Pradhan K, Shechter D, Sahu S, Heiser D, Scherle P, Chetal K, Kulkarni A, Lee D, Zhou J, Myers KC, Tseng E, Weirauch MT, Grimes HL, Starczynowski DT, Verma A, Salomonis N. Splicing regulatory dynamics for precision analysis and treatment of heterogeneous leukemias. Sci Transl Med 2025; 17:eadr1471. [PMID: 40333990 DOI: 10.1126/scitranslmed.adr1471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/13/2024] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
The role of splicing dysregulation in cancer is underscored by splicing factor mutations; however, its impact in the absence of such rare mutations remains poorly understood. Prompted by the finding that splicing uniquely resolved genetic subtypes of cancer, we developed an unsupervised computational workflow called OncoSplice to comprehensively define tumor molecular landscapes. In adult and pediatric acute myeloid leukemia (AML), OncoSplice identified the spectrum of driver genetics from splicing profiles alone, defined more than a dozen previously unreported molecular subtypes recurrent across AML cohorts, and discovered a dominant splicing subtype that partially phenocopies U2AF1-mutant splicing. Although pediatric leukemias lack splicing factor mutations, this U2AF1-like subtype similarly spanned pediatric and adult AML genetics and consistently predicted poor prognosis. Using long-read single-cell RNA sequencing, we confirmed that discovered U2AF1-like splicing was shared across cell states, co-opted a healthy circadian gene program, was stable through relapse, and induced a leukemic stem cell program. Pharmacological inhibition of an implicated U2AF1-like splicing regulator, PRMT5, rescued leukemia missplicing and inhibited leukemic cell growth. Finally, genetic deletion of IRAK4, a common target of U2AF1-like and PRMT5 treatment, blocked leukemia development in xenograft models and induced differentiation. This work suggests that broad splicing dysregulation, in the absence of select mutations, is a therapeutic target in heterogeneous leukemias.
Collapse
Affiliation(s)
- Meenakshi Venkatasubramanian
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH 452293, USA
| | - Leya Schwartz
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, NY 10461, USA
| | - Nandini Ramachandra
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, NY 10461, USA
| | - Joshua Bennett
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Krithika R Subramanian
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoting Chen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Shanisha Gordon-Mitchell
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, NY 10461, USA
| | - Ariel Fromowitz
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, NY 10461, USA
| | - Kith Pradhan
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, NY 10461, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Srabani Sahu
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, NY 10461, USA
| | - Diane Heiser
- Prelude Therapeutics Incorporated, Wilmington, DE 19805, USA
| | - Peggy Scherle
- Prelude Therapeutics Incorporated, Wilmington, DE 19805, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Aishwarya Kulkarni
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH 452293, USA
| | - Davy Lee
- Pacific Biosciences, Menlo Park, CA 94025, USA
| | - Jeff Zhou
- Pacific Biosciences, Menlo Park, CA 94025, USA
| | - Kasiani C Myers
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | - Matthew T Weirauch
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Divisions of Human Genetics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - H Leighton Grimes
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Daniel T Starczynowski
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Amit Verma
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, NY 10461, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
2
|
Zhu S, Zhu R, Wang Y, Zhu J, Zong Y, Zhu L, Guo W. Comprehensive systems biology analysis reveals splicing factor contributions to cutaneous melanoma progression. Sci Rep 2025; 15:9486. [PMID: 40108329 PMCID: PMC11923367 DOI: 10.1038/s41598-025-93695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Cutaneous melanoma (CM) is an aggressive skin cancer with high metastatic potential and poor prognosis. Splicing factors, which regulate pre-mRNA alternative splicing (AS) events, have been suggested as potential therapeutic targets in CM. The objective of this study was to identify candidate splicing factors involved in CM through a systems biology approach and to elucidate their roles in CM progression. 390 AS events associated with patient survival were identified using bivariate Cox regression and receiver operating characteristic (ROC) analyses. 121 splicing factors significantly associated with patient prognosis were screened by univariate Cox regression analysis. A bipartite association network between AS events and splicing factors was constructed using Spearman correlation analysis. Based on the network topology, five candidate splice factors were identified. Among them, U2SURP, a poorly characterized serine/arginine-rich protein family member, was selected for further analysis in CM. Results indicated that U2SURP gene expression was significantly negatively correlated with the Immune Infiltration Score, the infiltration levels of dendritic cells, gamma-delta T cells, natural killer (NK) cells, and cytotoxic cells, as well as the expression of the immune checkpoint gene PD-1, suggesting that U2SURP may serve as a potential target for CM immunotherapy. Experimental validation showed that U2SURP mRNA and protein were overexpressed in CM cells, and silencing of U2SURP using siRNA significantly reduced CM cell survival, proliferation and migration. Furthermore, single-cell functional analysis showed that U2SURP gene expression was positively correlated with CM cell proliferation and differentiation. This study systematically identified candidate splicing factors involved in CM and provided new insights into the role of U2SURP in CM progression. These findings contribute to a deeper understanding of the pathogenesis of CM and establish new approaches for identifying splicing-related cancer therapeutic targets.
Collapse
Affiliation(s)
- Shuting Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Rui Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yanna Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Junru Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yifan Zong
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Liucun Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wenna Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Zhang W, Song X, Jin Z, Zhang Y, Li S, Jin F, Zheng A. U2AF2-SNORA68 promotes triple-negative breast cancer stemness through the translocation of RPL23 from nucleoplasm to nucleolus and c-Myc expression. Breast Cancer Res 2024; 26:60. [PMID: 38594783 PMCID: PMC11005140 DOI: 10.1186/s13058-024-01817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Small nucleolar RNAs (snoRNAs) play key roles in ribosome biosynthesis. However, the mechanism by which snoRNAs regulate cancer stemness remains to be fully elucidated. METHODS SNORA68 expression was evaluated in breast cancer tissues by in situ hybridization and qRT‒PCR. Proliferation, migration, apoptosis and stemness analyses were used to determine the role of SNORA68 in carcinogenesis and stemness maintenance. Mechanistically, RNA pull-down, RNA immunoprecipitation (RIP), cell fractionation and coimmunoprecipitation assays were conducted. RESULTS SNORA68 exhibited high expression in triple-negative breast cancer (TNBC) and was significantly correlated with tumor size (P = 0.048), ki-67 level (P = 0.037), and TNM stage (P = 0.015). The plasma SNORA68 concentration was significantly lower in patients who achieved clinical benefit. The SNORA68-high patients had significantly shorter disease-free survival (DFS) (P = 0.036). Functionally, SNORA68 was found to promote the cell stemness and carcinogenesis of TNBC in vitro and in vivo. Furthermore, elevated SNORA68 expression led to increased nucleolar RPL23 expression and retained RPL23 in the nucleolus by binding U2AF2. RPL23 in the nucleolus subsequently upregulated c-Myc expression. This pathway was validated using a xenograft model. CONCLUSION U2AF2-SNORA68 promotes TNBC stemness by retaining RPL23 in the nucleolus and increasing c-Myc expression, which provides new insight into the regulatory mechanism of stemness.
Collapse
Affiliation(s)
- Wenrong Zhang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xinyue Song
- Department of Pharmacology, Liaoning Province Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, China Medical University, Shenyang, Liaoning Province, China
| | - Zining Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yiqi Zhang
- Department of Breast Surgery, The First Hospital of Jinzhou Medical University, Shenyang, Liaoning Province, China
| | - Shan Li
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Feng Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Ang Zheng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
4
|
Chen W, Geng D, Chen J, Han X, Xie Q, Guo G, Chen X, Zhang W, Tang S, Zhong X. Roles and mechanisms of aberrant alternative splicing in melanoma - implications for targeted therapy and immunotherapy resistance. Cancer Cell Int 2024; 24:101. [PMID: 38462618 PMCID: PMC10926661 DOI: 10.1186/s12935-024-03280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Despite advances in therapeutic strategies, resistance to immunotherapy and the off-target effects of targeted therapy have significantly weakened the benefits for patients with melanoma. MAIN BODY Alternative splicing plays a crucial role in transcriptional reprogramming during melanoma development. In particular, aberrant alternative splicing is involved in the efficacy of immunotherapy, targeted therapy, and melanoma metastasis. Abnormal expression of splicing factors and variants may serve as biomarkers or therapeutic targets for the diagnosis and prognosis of melanoma. Therefore, comprehensively integrating their roles and related mechanisms is essential. This review provides the first detailed summary of the splicing process in melanoma and the changes occurring in this pathway. CONCLUSION The focus of this review is to provide strategies for developing novel diagnostic biomarkers and summarize their potential to alter resistance to targeted therapies and immunotherapy.
Collapse
Affiliation(s)
- Wanxian Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Deyi Geng
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Jiasheng Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Xiaosha Han
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Qihu Xie
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Genghong Guo
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Xuefen Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Wancong Zhang
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Shijie Tang
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Xiaoping Zhong
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China.
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China.
| |
Collapse
|
5
|
Venkatasubramanian M, Schwartz L, Ramachandra N, Bennett J, Subramanian KR, Chen X, Gordon-Mitchell S, Fromowitz A, Pradhan K, Shechter D, Sahu S, Heiser D, Scherle P, Chetal K, Kulkarni A, Myers KC, Weirauch MT, Grimes HL, Starczynowski DT, Verma A, Salomonis N. Broad de-regulated U2AF1 splicing is prognostic and augments leukemic transformation via protein arginine methyltransferase activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578798. [PMID: 38370617 PMCID: PMC10871255 DOI: 10.1101/2024.02.04.578798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The role of splicing dysregulation in cancer is underscored by splicing factor mutations; however, its impact in the absence of such rare mutations is poorly understood. To reveal complex patient subtypes and putative regulators of pathogenic splicing in Acute Myeloid Leukemia (AML), we developed a new approach called OncoSplice. Among diverse new subtypes, OncoSplice identified a biphasic poor prognosis signature that partially phenocopies U2AF1-mutant splicing, impacting thousands of genes in over 40% of adult and pediatric AML cases. U2AF1-like splicing co-opted a healthy circadian splicing program, was stable over time and induced a leukemia stem cell (LSC) program. Pharmacological inhibition of the implicated U2AF1-like splicing regulator, PRMT5, rescued leukemia mis-splicing and inhibited leukemic cell growth. Genetic deletion of IRAK4, a common target of U2AF1-like and PRMT5 treated cells, blocked leukemia development in xenograft models and induced differentiation. These analyses reveal a new prognostic alternative-splicing mechanism in malignancy, independent of splicing-factor mutations.
Collapse
Affiliation(s)
- Meenakshi Venkatasubramanian
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH
| | - Leya Schwartz
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, The Bronx, NY
| | - Nandini Ramachandra
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, The Bronx, NY
| | - Joshua Bennett
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Krithika R. Subramanian
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Xiaoting Chen
- Divisions of Human Genetics and Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Shanisha Gordon-Mitchell
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, The Bronx, NY
| | - Ariel Fromowitz
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, The Bronx, NY
| | - Kith Pradhan
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, The Bronx, NY
| | - David Shechter
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, The Bronx, NY
| | - Srabani Sahu
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, The Bronx, NY
| | - Diane Heiser
- Prelude Therapeutics Incorporated, Wilmington, DE
| | | | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Aishwarya Kulkarni
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH
| | - Kasiani C. Myers
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Matthew T. Weirauch
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Divisions of Human Genetics and Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - H. Leighton Grimes
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Daniel T. Starczynowski
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Amit Verma
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical Center, The Bronx, NY
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
6
|
Maltseva D, Tonevitsky A. RNA-binding proteins regulating the CD44 alternative splicing. Front Mol Biosci 2023; 10:1326148. [PMID: 38106992 PMCID: PMC10722200 DOI: 10.3389/fmolb.2023.1326148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
Alternative splicing is often deregulated in cancer, and cancer-specific isoform switches are part of the oncogenic transformation of cells. Accumulating evidence indicates that isoforms of the multifunctional cell-surface glycoprotein CD44 play different roles in cancer cells as compared to normal cells. In particular, the shift of CD44 isoforms is required for epithelial to mesenchymal transition (EMT) and is crucial for the maintenance of pluripotency in normal human cells and the acquisition of cancer stem cells phenotype for malignant cells. The growing and seemingly promising use of splicing inhibitors for treating cancer and other pathologies gives hope for the prospect of using such an approach to regulate CD44 alternative splicing. This review integrates current knowledge about regulating CD44 alternative splicing by RNA-binding proteins.
Collapse
Affiliation(s)
- Diana Maltseva
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Eraso P, Mazón MJ, Jiménez V, Pizarro-García P, Cuevas EP, Majuelos-Melguizo J, Morillo-Bernal J, Cano A, Portillo F. New Functions of Intracellular LOXL2: Modulation of RNA-Binding Proteins. Molecules 2023; 28:molecules28114433. [PMID: 37298909 DOI: 10.3390/molecules28114433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Lysyl oxidase-like 2 (LOXL2) was initially described as an extracellular enzyme involved in extracellular matrix remodeling. Nevertheless, numerous recent reports have implicated intracellular LOXL2 in a wide variety of processes that impact on gene transcription, development, differentiation, proliferation, migration, cell adhesion, and angiogenesis, suggesting multiple different functions for this protein. In addition, increasing knowledge about LOXL2 points to a role in several types of human cancer. Moreover, LOXL2 is able to induce the epithelial-to-mesenchymal transition (EMT) process-the first step in the metastatic cascade. To uncover the underlying mechanisms of the great variety of functions of intracellular LOXL2, we carried out an analysis of LOXL2's nuclear interactome. This study reveals the interaction of LOXL2 with numerous RNA-binding proteins (RBPs) involved in several aspects of RNA metabolism. Gene expression profile analysis of cells silenced for LOXL2, combined with in silico identification of RBPs' targets, points to six RBPs as candidates to be substrates of LOXL2's action, and that deserve a more mechanistic analysis in the future. The results presented here allow us to hypothesize novel LOXL2 functions that might help to comprehend its multifaceted role in the tumorigenic process.
Collapse
Affiliation(s)
- Pilar Eraso
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - María J Mazón
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Victoria Jiménez
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Patricia Pizarro-García
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Eva P Cuevas
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Jara Majuelos-Melguizo
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Jesús Morillo-Bernal
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Amparo Cano
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Portillo
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Mhatre A, Koroth J, Manjunath M, Kumar S S, Gawari R, Choudhary B. Multi-omics analysis of the Indian ovarian cancer cohort revealed histotype-specific mutation and gene expression patterns. Front Genet 2023; 14:1102114. [PMID: 37091785 PMCID: PMC10117685 DOI: 10.3389/fgene.2023.1102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction: In India, OVCa is women’s third most common and lethal cancer type, accounting for 6.7% of observed cancer incidences. The contribution of somatic mutations, aberrant expression of gene and splice forms in determining the cell fate, gene networks, tumour-specific variants, and the role of immune fraction infiltration have been proven essential in understanding tumorigenesis. However, their interplay in OVCa in a histotype-specific manner remains unclear in the Indian context. In the present study, we aimed to unravel the Indian population histotype-specific exome variants, differentially expressed gene modules, splice events and immune profiles of OVCa samples.Methods: We analysed 10 tumour samples across 4 ovarian cancer histotypes along with 2 normal patient samples. This included BCFtool utilities and CNVkit for exome, WGCNA and DESeq2 for obtaining differential module hub genes and dysregulated miRNA targets, CIBERSORTx for individual immune profiles and rMATS for tumour specific splice variants.Result: We identified population-specific novel mutations in Cancer Gene Census Tier1 and Tier2 genes. MUC16, MUC4, CIITA, and NCOR2 were among the most mutated genes, along with TP53. Transcriptome analysis showed significant overexpression of mutated genes MUC16, MUC4, and CIITA, whereas NCOR2 was downregulated. WGCNA revealed histotype-specific gene hubs and networks. Among the significant pathways, alteration in the immune system was one of the pathways, and immune profiling using CIBERSORTx revealed histotype-specific immune cell fraction. miRNA analysis revealed miR-200 family, miR-200a and miR-429 were upregulated in HGSOCs.Splice factor abrasion caused splicing perturbations, with the most abundant alternative splice event being exon skipping and the most spliced gene, SNHG17. Pathway analysis of spliced genes revealed translational elongation and Base excision repair as the pathways altered in OVCa.Conclusion: Integrated exome, transcriptome, and splicing patterns revealed different population-specific molecular signatures of ovarian cancer histotypes in the Indian Cohort.
Collapse
Affiliation(s)
- Anisha Mhatre
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Jinsha Koroth
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Meghana Manjunath
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
- Graduate Student Registered Under Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Ramesh Gawari
- Kidwai Cancer Institute of Oncology, Bangalore, India
| | - Bibha Choudhary
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
- *Correspondence: Bibha Choudhary,
| |
Collapse
|
9
|
Lobas AA, Solovyeva EM, Levitsky LI, Goncharov AO, Lyssuk EY, Larin SS, Moshkovskii SA, Gorshkov MV. Identification of Alternative Splicing in Proteomes of Human Melanoma Cell Lines without RNA Sequencing Data. Int J Mol Sci 2023; 24:2466. [PMID: 36768787 PMCID: PMC9916885 DOI: 10.3390/ijms24032466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Alternative splicing is one of the main regulation pathways in living cells beyond simple changes in the level of protein expression. Most of the approaches proposed in proteomics for the identification of specific splicing isoforms require a preliminary deep transcriptomic analysis of the sample under study, which is not always available, especially in the case of the re-analysis of previously acquired data. Herein, we developed new algorithms for the identification and validation of protein splice isoforms in proteomic data in the absence of RNA sequencing of the samples under study. The bioinformatic approaches were tested on the results of proteome analysis of human melanoma cell lines, obtained earlier by high-resolution liquid chromatography and mass spectrometry (LC-MS). A search for alternative splicing events for each of the cell lines studied was performed against the database generated from all known transcripts (RefSeq) and the one composed of peptide sequences, which included all biologically possible combinations of exons. The identifications were filtered using the prediction of both retention times and relative intensities of fragment ions in the corresponding mass spectra. The fragmentation mass spectra corresponding to the discovered alternative splicing events were additionally examined for artifacts. Selected splicing events were further validated at the mRNA level by quantitative PCR.
Collapse
Affiliation(s)
- Anna A. Lobas
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta M. Solovyeva
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Lev I. Levitsky
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anton O. Goncharov
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
| | - Elena Y. Lyssuk
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Sergey S. Larin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Sergei A. Moshkovskii
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Mikhail V. Gorshkov
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
10
|
David G, Reboutier D, Deschamps S, Méreau A, Taylor W, Padilla-Parra S, Tramier M, Audic Y, Paillard L. The RNA-binding proteins CELF1 and ELAVL1 cooperatively control the alternative splicing of CD44. Biochem Biophys Res Commun 2022; 626:79-84. [DOI: 10.1016/j.bbrc.2022.07.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
|
11
|
Zhou Z, Ren X, Zheng L, Li A, Zhou W. LncRNA NEAT1 stabilized Wnt3a via U2AF2 and activated Wnt/β-catenin pathway to alleviate ischemia stroke induced injury. Brain Res 2022; 1788:147921. [PMID: 35452660 DOI: 10.1016/j.brainres.2022.147921] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ischaemic stroke is the leading cause of mortality and disability in the world. LncRNA NEAT1 has been shown to play an important role in ischaemic injury, but the molecular mechanism remains unclear. METHODS qRT-PCR was used to determine the expression of lncRNA NEAT1 in OGD/R-induced BV-2 cells. Cell viability was assessed by an MTT assay, and cell apoptosis was assessed by flow cytometry. The expression of related proteins was evaluated by Western blotting and ELISA. The interactions among lncRNA NEAT1, U2AF2 and Wnt3a mRNA was demonstrated by RIP and RNA pulldown assays. XAV-939 was used as an inhibitor of the Wnt/β-catenin pathway. RESULTS LncRNA NEAT1 was found to be downregulated in OGD/R-induced BV-2 cells. Overexpression of lncRNA NEAT1 protected BV-2 cells against OGD/R-induced injury. LncRNA NEAT1 enhanced the stability of Wnt3a mRNA via U2AF2. Knockdown of Wnt3a or blockade of the Wnt/β-catenin pathway rescued the effect of lncRNA NEAT1. CONCLUSIONS LncRNA NEAT1 protected cells against OGD/R-induced apoptosis and the inflammatory response by activating the Wnt/β-catenin pathway through upregulation of Wnt3a in a U2AF2-dependent manner. LncRNA NEAT1 could be a promising therapeutic candidate for ischaemic stroke treatment in the future.
Collapse
Affiliation(s)
- Zhiwen Zhou
- Departments of Neurology, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, PR China
| | - Xiang Ren
- Departments of Neurology, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, PR China
| | - Lijun Zheng
- Departments of Neurology, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, PR China
| | - Aiping Li
- Departments of Neurology, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, PR China
| | - Wensheng Zhou
- Departments of Neurology, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, PR China.
| |
Collapse
|
12
|
Li Y, Chen S, Zhang X, Zhuo N. U2 small nuclear RNA auxiliary factor 2, transcriptionally activated by the transcription factor Dp-1/E2F transcription factor 1 complex, enhances the growth and aerobic glycolysis of leiomyosarcoma cells. Bioengineered 2022; 13:10200-10212. [PMID: 35502531 PMCID: PMC9278431 DOI: 10.1080/21655979.2022.2061286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The dysregulation of U2 Small Nuclear RNA Auxiliary Factor 2 (U2AF2) is associated with malignant behaviors of multiple types of tumors. In this study, we explored the association between U2AF2 dysregulation and the survival of patients with primary leiomyosarcoma, the regulatory effect of U2AF2 on cell growth/aerobic glycolysis, and the mechanisms of U2AF2 dysregulation at the transcriptional level. Gene expression and survival time of patients with primary leiomyosarcoma were extracted from TCGA-Sarcoma (SARC). Leiomyosarcoma cell lines SK-LMS-1 and SK-UT-1 were utilized to construct in vitro and in vivo models. Results showed that the higher U2AF2 expression group had significantly shorter progression-free survival (HR: 2.049, 95%CI: 1.136-3.697, p = 0.011) and disease-specific survival (4.656, 95%CI: 2.141-10.13, p < 0.001) compared to the lower U2AF2 expression group. U2AF2 knockdown suppressed leiomyosarcoma cell growth and aerobic glycolysis (decreased glucose uptake, lactate production, and extracellular acidification rate) in vitro. Tumors derived from SK-LMS-1 cells with U2AF2 knockdown grew significantly slower, with lower GLUT1, PGK1, and PGAM1 protein expression than the control groups. TFDP1 and E2F1 could interact with each other in leiomyosarcoma cells. Both TFDP1 and E2F1 could bind to the promoter of U2AF2 and exert a synergistic activating effect on U2AF2 transcription. In conclusion, this study revealed that U2AF2 upregulation is associated with poor survival of leiomyosarcoma. Its upregulation enhances proliferation and aerobic glycolysis of leiomyosarcoma cells in vitro and in vivo. TFDP1 and E2F1 can form a complex, which binds to the U2AF2 gene promoter and synergistically activates its transcription.
Collapse
Affiliation(s)
- Yuguo Li
- School of Clinical Medicine, Southwest Medical University, Luzhou Sichuan, China
| | - Sihao Chen
- School of Clinical Medicine, Southwest Medical University, Luzhou Sichuan, China
| | - Xin Zhang
- School of Clinical Medicine, Southwest Medical University, Luzhou Sichuan, China
| | - Naiqiang Zhuo
- Department of Orthopedics, Southwest Medical University, Luzhou Sichuan, China
| |
Collapse
|
13
|
Oncogenic tetraspanins: Implications for metastasis, drug resistance, cancer stem cell maintenance and diagnosis of leading cancers in females. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Huang Y, Zhu Q. Mechanisms Regulating Abnormal Circular RNA Biogenesis in Cancer. Cancers (Basel) 2021; 13:4185. [PMID: 34439339 PMCID: PMC8391333 DOI: 10.3390/cancers13164185] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs), which are a class of endogenous RNA with covalently closed loops, play important roles in epigenetic regulation of gene expression at both the transcriptional and post-transcriptional level. Accumulating evidence demonstrated that numerous circRNAs were abnormally expressed in tumors and their dysregulation was involved in the tumorigenesis and metastasis of cancer. Although the functional mechanisms of many circRNAs have been revealed, how circRNAs are dysregulated in cancer remains elusive. CircRNAs are generated by a "back-splicing" process, which is regulated by different cis-regulatory elements and trans-acting proteins. Therefore, how these cis and trans elements change during tumorigenesis and how they regulate the biogenesis of circRNAs in cancer are two questions that interest us. In this review, we summarized the pathways for the biogenesis of circRNAs; and then illustrated how circRNAs dysregulated in cancer by discussing the changes of cis-regulatory elements and trans-acting proteins that related to circRNA splicing and maturation in cancer.
Collapse
Affiliation(s)
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China;
| |
Collapse
|
15
|
Role of Metastasis Suppressor KAI1/CD82 in Different Cancers. JOURNAL OF ONCOLOGY 2021; 2021:9924473. [PMID: 34306081 PMCID: PMC8285166 DOI: 10.1155/2021/9924473] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023]
Abstract
Metastasis is one of the characteristics of malignant tumors and the main cause of death worldwide. The process of metastasis is mainly affected by tumor metastasis genes, tumor metastasis suppressor genes, tumor microenvironment, extracellular matrix degradation, and other factors. Thus, it is essential to elucidate the mechanism of metastasis and find the therapeutic targets in order to prevent the development of malignant tumors. KAI1/CD82, a member of tetraspanin superfamily of glycoproteins, has been reported as a tumor metastasis suppressor gene in various types of cancers without affecting the tumor formation. Many studies have demonstrated that low expression of KAI1/CD82 might lead to poor prognosis due to its interactions with other tetraspanins and integrins, resulting in the regulation of cell motility and invasion, cell-cell adhesion, and apoptosis. Considering its pathological and physiological significance, KAI1/CD82 could be a potential strategy for clinical predicting and preventing tumor progression and metastasis. The present review aims to discuss the role of KAI1/CD82 in metastasis for different cancers and examine its prospects as a metastasis biomarker and a therapeutic target.
Collapse
|
16
|
Erfani S, Hua H, Pan Y, Zhou BP, Yang XH. The Context-Dependent Impact of Integrin-Associated CD151 and Other Tetraspanins on Cancer Development and Progression: A Class of Versatile Mediators of Cellular Function and Signaling, Tumorigenesis and Metastasis. Cancers (Basel) 2021; 13:cancers13092005. [PMID: 33919420 PMCID: PMC8122392 DOI: 10.3390/cancers13092005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Tetraspanins are a family of molecules abundantly expressed on the surface of normal or tumor cells. They have been implicated in recruiting or sequestering key molecular regulators of malignancy of a variety of human cancers, including breast and lung cancers, glioblastoma and leukemia. Yet, how their actions take place remains mysterious due to a lack of traditional platform for molecular interactions. The current review digs into this mystery by examining findings from recent studies of multiple tetraspanins, particularly CD151. The molecular basis for differential impact of tetraspanins on tumor development, progression, and spreading to secondary sites is highlighted, and the complexity and plasticity of their control over tumor cell activities and interaction with their surroundings is discussed. Finally, an outlook is provided regarding tetraspanins as candidate biomarkers and targets for the diagnosis and treatment of human cancer. Abstract As a family of integral membrane proteins, tetraspanins have been functionally linked to a wide spectrum of human cancers, ranging from breast, colon, lung, ovarian, prostate, and skin carcinomas to glioblastoma. CD151 is one such prominent member of the tetraspanin family recently suggested to mediate tumor development, growth, and progression in oncogenic context- and cell lineage-dependent manners. In the current review, we summarize recent advances in mechanistic understanding of the function and signaling of integrin-associated CD151 and other tetraspanins in multiple cancer types. We also highlight emerging genetic and epigenetic evidence on the intrinsic links between tetraspanins, the epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs), and the Wnt/β-catenin pathway, as well as the dynamics of exosome and cellular metabolism. Finally, we discuss the implications of the highly plastic nature and epigenetic susceptibility of CD151 expression, function, and signaling for clinical diagnosis and therapeutic intervention for human cancer.
Collapse
Affiliation(s)
- Sonia Erfani
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
- Pharmacy Department, St. Elizabeth Healthcare, Edgewood, KY 41017, USA
| | - Hui Hua
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China; (H.H.); (Y.P.)
- Provincial Hospital, Hefei, Anhui 230001, China
| | - Yueyin Pan
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China; (H.H.); (Y.P.)
- Provincial Hospital, Hefei, Anhui 230001, China
| | - Binhua P. Zhou
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Xiuwei H. Yang
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
- Correspondence: ; Tel.: +1-859-323-1996
| |
Collapse
|
17
|
Chen Q, Gu M, Cai ZK, Zhao H, Sun SC, Liu C, Zhan M, Chen YB, Wang Z. TGF-β1 promotes epithelial-to-mesenchymal transition and stemness of prostate cancer cells by inducing PCBP1 degradation and alternative splicing of CD44. Cell Mol Life Sci 2021; 78:949-962. [PMID: 32440711 PMCID: PMC11072728 DOI: 10.1007/s00018-020-03544-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022]
Abstract
CD44 is a marker of cancer stem cell (CSC) in many types of tumors. Alternative splicing of its 20 exons generates various CD44 isoforms that have different tissue specific expression and functions, including the CD44 standard isoform (CD44s) encoded by the constant exons and the CD44 variant isoforms (CD44v) with variant exon insertions. Switching between the CD44v and CD44s isoforms plays pivotal roles in tumor progression. Here we reported a novel mechanism of CD44 alternative splicing induced by TGF-β1 and its connection to enhanced epithelial-to-mesenchymal transition (EMT) and stemness in human prostate cancer cells. TGF-β1 treatment increased the expression of CD44s and N-cadherin while decreased the expression of CD44v and E-cadherin in DU-145 prostate cancer cells. Other EMT markers and cancer stem cell markers were also upregulated after TGF-β1 treatment. RNAi knockdown of CD44 reversed the phenotype, which could be rescued by overexpressing CD44s but not CD44v, indicating the alternatively spliced isoform CD44s mediated the activity of TGF-β1 treatment. Mechanistically, TGF-β1 treatment induced the phosphorylation, poly-ubiquitination, and degradation of PCBP1, a well-characterized RNA binding protein known to regulate CD44 splicing. RNAi knockdown of PCBP1 was able to mimic TGF-β1 treatment to increase the expression of CD44s, as well as the EMT and cancer stem cell markers. In vitro and in vivo experiments were performed to show that CD44s promoted prostate cancer cell migration, invasion, and tumor initiation. Taken together, we defined a mechanism by which TGF-β1 induces CD44 alternative splicing and promotes prostate cancer progression.
Collapse
Affiliation(s)
- Qi Chen
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Meng Gu
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Zhi-Kang Cai
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Hu Zhao
- Department of Urology, Guanyun People's Hospital, Lianyungang, China
| | - Shi-Cheng Sun
- Department of Urology, Guanyun People's Hospital, Lianyungang, China
| | - Chong Liu
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yan-Bo Chen
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
18
|
Robles-Fort A, García-Robles I, Fernando W, Hoskin DW, Rausell C, Real MD. Dual Antimicrobial and Antiproliferative Activity of TcPaSK Peptide Derived from a Tribolium castaneum Insect Defensin. Microorganisms 2021; 9:222. [PMID: 33499187 PMCID: PMC7912591 DOI: 10.3390/microorganisms9020222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 02/08/2023] Open
Abstract
Antimicrobial peptides (AMPs) found in the innate immune system of a wide range of organisms might prove useful to fight infections, due to the reported slower development of resistance to AMPs. Increasing the cationicity and keeping moderate hydrophobicity of the AMPs have been described to improve antimicrobial activity. We previously found a peptide derived from the Tribolium castaneum insect defensin 3, exhibiting antrimicrobial activity against several human pathogens. Here, we analyzed the effect against Staphyloccocus aureus of an extended peptide (TcPaSK) containing two additional amino acids, lysine and asparagine, flanking the former peptide fragment in the original insect defensin 3 protein. TcPaSK peptide displayed higher antimicrobial activity against S. aureus, and additionally showed antiproliferative activity against the MDA-MB-231 triple negative breast cancer cell line. A SWATH proteomic analysis revealed the downregulation of proteins involved in cell growth and tumor progression upon TcPaSK cell treatment. The dual role of TcPaSK peptide as antimicrobial and antiproliferative agent makes it a versatile molecule that warrants exploration for its use in novel therapeutic developments as an alternative approach to overcome bacterial antibiotic resistance and to increase the efficacy of conventional cancer treatments.
Collapse
Affiliation(s)
- Aida Robles-Fort
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (A.R.-F.); (I.G.-R.); (C.R.)
| | - Inmaculada García-Robles
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (A.R.-F.); (I.G.-R.); (C.R.)
| | - Wasundara Fernando
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (W.F.); (D.W.H.)
| | - David W. Hoskin
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (W.F.); (D.W.H.)
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Carolina Rausell
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (A.R.-F.); (I.G.-R.); (C.R.)
| | - María Dolores Real
- Department of Genetics, University of Valencia, Burjassot, 46100 Valencia, Spain; (A.R.-F.); (I.G.-R.); (C.R.)
| |
Collapse
|
19
|
Mei C, Song PY, Zhang W, Zhou HH, Li X, Liu ZQ. Aberrant RNA Splicing Events Driven by Mutations of RNA-Binding Proteins as Indicators for Skin Cutaneous Melanoma Prognosis. Front Oncol 2020; 10:568469. [PMID: 33178596 PMCID: PMC7593665 DOI: 10.3389/fonc.2020.568469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/14/2020] [Indexed: 12/29/2022] Open
Abstract
The worldwide incidence of skin cutaneous melanoma (SKCM) is increasing at a more rapid rate than other tumors. Aberrant alternative splicing (AS) is found to be common in cancer; however, how this process contributes to cancer prognosis still remains largely unknown. Mutations in RNA-binding proteins (RBPs) may trigger great changes in the splicing process. In this study, we comprehensively analyzed DNA and RNA sequencing data and clinical information of SKCM patients, together with widespread changes in splicing patterns induced by RBP mutations. We screened mRNA expression-related and prognosis-related mutations in RBPs and investigated the potential affections of RBP mutations on splicing patterns. Mutations in 853 RBPs were demonstrated to be correlated with splicing aberrations (p < 0.01). Functional enrichment analysis revealed that these alternative splicing events (ASEs) may participate in tumor progress by regulating the modification process, cell-cycle checkpoint, metabolic pathways, MAPK signaling, PI3K-Akt signaling, and other important pathways in cancer. We also constructed a prediction model based on overall survival-related AS events (OS-ASEs) affected by RBP mutations, which exhibited a good predict efficiency with the area under the curve of 0.989. Our work highlights the importance of RBP mutations in splicing alterations and provides effective biomarkers for prediction of prognosis of SKCM.
Collapse
Affiliation(s)
- Chao Mei
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Key Laboratory of Biological Nanotechnology of National Health Commission, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Pei-Yuan Song
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Key Laboratory of Biological Nanotechnology of National Health Commission, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Key Laboratory of Biological Nanotechnology of National Health Commission, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Key Laboratory of Biological Nanotechnology of National Health Commission, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Xi Li
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Key Laboratory of Biological Nanotechnology of National Health Commission, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Key Laboratory of Biological Nanotechnology of National Health Commission, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Institute of Clinical Pharmacology, Central South University, Changsha, China
| |
Collapse
|
20
|
Jiang Y, Zhou J, Zhao J, Zhang H, Li L, Li H, Chen L, Hu J, Zheng W, Jing Z. The U2AF2 /circRNA ARF1/miR-342-3p/ISL2 feedback loop regulates angiogenesis in glioma stem cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:182. [PMID: 32894165 PMCID: PMC7487667 DOI: 10.1186/s13046-020-01691-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Glioma is the most common and lethal primary brain tumor in adults, and angiogenesis is one of the key factors contributing to its proliferation, aggressiveness, and malignant transformation. However, the discovery of novel oncogenes and the study of its molecular regulating mechanism based on circular RNAs (circRNAs) may provide a promising treatment target in glioma. METHODS Bioinformatics analysis, qPCR, western blotting, and immunohistochemistry were used to detect the expression levels of ISL2, miR-342-3p, circRNA ARF1 (cARF1), U2AF2, and VEGFA. Patient-derived glioma stem cells (GSCs) were established for the molecular experiments. Lentiviral-based infection was used to regulate the expression of these molecules in GSCs. The MTS, EDU, Transwell, and tube formation assays were used to detect the proliferation, invasion, and angiogenesis of human brain microvessel endothelial cells (hBMECs). RNA-binding protein immunoprecipitation, RNA pull-down, dual-luciferase reporter, and chromatin immunoprecipitation assays were used to detect the direct regulation mechanisms among these molecules. RESULTS We first identified a novel transcription factor related to neural development. ISL2 was overexpressed in glioma and correlated with poor patient survival. ISL2 transcriptionally regulated VEGFA expression in GSCs and promoted the proliferation, invasion, and angiogenesis of hBMECs via VEGFA-mediated ERK signaling. Regarding its mechanism of action, cARF1 upregulated ISL2 expression in GSCs via miR-342-3p sponging. Furthermore, U2AF2 bound to and promoted the stability and expression of cARF1, while ISL2 induced the expression of U2AF2, which formed a feedback loop in GSCs. We also showed that both U2AF2 and cARF1 had an oncogenic effect, were overexpressed in glioma, and correlated with poor patient survival. CONCLUSIONS Our study identified a novel feedback loop among U2AF2, cARF1, miR-342-3p, and ISL2 in GSCs. This feedback loop promoted glioma angiogenesis, and could provide an effective biomarker for glioma diagnosis and prognostic evaluation, as well as possibly being used for targeted therapy.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China.,Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Jinpeng Zhou
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Junshuang Zhao
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Haiying Zhang
- International Education College, Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Shenyang, 110042, China
| | - Long Li
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Hao Li
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Lian Chen
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Jiangfeng Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 100 Haining Road, Shanghai, 20080, China
| | - Wei Zheng
- Department of Histology and Embryology, College of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
| | - Zhitao Jing
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China.
| |
Collapse
|
21
|
Kato T, Mizutani K, Kawakami K, Fujita Y, Ehara H, Ito M. CD44v8-10 mRNA contained in serum exosomes as a diagnostic marker for docetaxel resistance in prostate cancer patients. Heliyon 2020; 6:e04138. [PMID: 32642575 PMCID: PMC7334415 DOI: 10.1016/j.heliyon.2020.e04138] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/28/2020] [Accepted: 06/01/2020] [Indexed: 01/10/2023] Open
Abstract
Background Docetaxel is first-line chemotherapy for castration-resistant prostate cancer (CRPC), but most patients acquire docetaxel resistance. CD44 has been shown to be involved in drug resistance of cancers including prostate cancer. We hypothesized that CD44 in serum exosomes could be a diagnostic marker for docetaxel resistance in CRPC patients. In this study, we examined CD44 protein and mRNA expression in cell lysates and exosomes isolated from prostate cancer cells, evaluated the effect of CD44v8-10 knockdown on docetaxel sensitivity and measured CD44 mRNA copy numbers contained in serum exosomes in prostate cancer patients. Materials and methods Docetaxel-sensitive PC-3 prostate cancer cells and docetaxel-resistant PC-3R cells established previously from parental PC-3 cells were used. CD44v8-10 knockdown was performed by siRNA transfection. Blood was collected from 50 docetaxel-naïve and 10 docetaxel-resistant patients and 15 control males. CD44 protein expression was evaluated by Western blotting. CD44 mRNA expression was measured by RT-digital PCR. Results The levels of CD44v8-10 protein and mRNA in cell lysates and exosomes were higher in PC-3R cells than in PC-3 cells. CD44v8-10 knockdown significantly increased docetaxel sensitivity of PC-3R cells. The CD44v8-10 mRNA copy numbers in serum exosomes were higher in docetaxel-resistant patients than in docetaxel-naïve patients and control males (median 46, 12 and 17 copies/mL serum, respectively, P = 0.032). In contrast, the serum exosomal mRNA copy numbers of CD44 standard isoform (CD44s) were not different among 3 groups (median 25, 14 and 13 copies/mL serum, respectively, P = 0.150). Conclusions CD44v8-10 may be involved in docetaxel resistance in prostate cancer and serum exosomal CD44v8-10 mRNA could be a diagnostic marker for docetaxel-resistant CRPC.
Collapse
Affiliation(s)
- Taku Kato
- Department of Urology, Gifu University Graduate School of Medicine, Gifu 501-1193, Japan.,Department of Urology, Asahi University Hospital, Gifu 500-8523, Japan
| | - Kosuke Mizutani
- Department of Urology, Gifu University Graduate School of Medicine, Gifu 501-1193, Japan
| | - Kyojiro Kawakami
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Yasunori Fujita
- Research Team for Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Hidetoshi Ehara
- Department of Urology, Asahi University Hospital, Gifu 500-8523, Japan
| | - Masafumi Ito
- Research Team for Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| |
Collapse
|
22
|
Shen L, Lei S, Zhang B, Li S, Huang L, Czachor A, Breitzig M, Gao Y, Huang M, Mo X, Zheng Q, Sun H, Wang F. Skipping of exon 10 in Axl pre-mRNA regulated by PTBP1 mediates invasion and metastasis process of liver cancer cells. Am J Cancer Res 2020; 10:5719-5735. [PMID: 32483414 PMCID: PMC7255001 DOI: 10.7150/thno.42010] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
The Axl gene is known to encode for a receptor tyrosine kinase involved in the metastasis process of cancer. In this study, we investigated the underlying molecular mechanism of Axl alternative splicing. Methods: The expression levels of PTBP1 in hepatocellular carcinoma (HCC) tissues were obtained from TCGA samples and cell lines. The effect of Axl-L, Axl-S, and PTBP1 on cell growth, migration, invasion tumor formation, and metastasis of liver cancer cells were measured by cell proliferation, wound-healing, invasion, xenograft tumor formation, and metastasis. Interaction between PTBP1 and Axl was explored using cross-link immunoprecipitation, RNA pull-down assays and RNA immunoprecipitation assays. Results: Knockdown of the PTBP1 and exon 10 skipping isoform of Axl (Axl-S), led to impaired invasion and metastasis in hepatoma cells. Immunoprecipitation results indicated that Axl-S protein binds more robustly with Gas6 ligand than Axl-L (exon 10 including) and is more capable of promoting phosphorylation of ERK and AKT proteins. Furthermore, cross-link immunoprecipitation and RNA-pulldown assays revealed that PTBP1 binds to the polypyrimidine sequence(TCCTCTCTGTCCTTTCTTC) on Axl-Intron 9. MS2-GFP-IP experiments demonstrated that PTBP1 competes with U2AF2 for binding to the aforementioned polypyrimidine sequence, thereby inhibiting alternative splicing and ultimately promoting Axl-S production. Conclusion: Our results highlight the biological significance of Axl-S and PTBP1 in tumor metastasis, and show that PTBP1 affects the invasion and metastasis of hepatoma cells by modulating the alternative splicing of Axl exon 10.
Collapse
|
23
|
Xue D, Cheng P, Jiang J, Ren Y, Wu D, Chen W. Systemic Analysis of the Prognosis-Related RNA Alternative Splicing Signals in Melanoma. Med Sci Monit 2020; 26:e921133. [PMID: 32199022 PMCID: PMC7111138 DOI: 10.12659/msm.921133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/13/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Alternative splicing (AS), the mechanism underlying the occurrence of protein diversity, may result in cancer genesis and development when it becomes out of control, as suggested by a growing number of studies. However, systemically analyze of AS events at the genome-wide level for skin cutaneous melanoma (SKCM) is still in a preliminary phase. This study aimed to systemically analyze the bioinformatics of the AS events at a genome-wide level using The Cancer Genome Atlas (TCGA) SKCM data. MATERIAL AND METHODS The SpliceSeq tool was used to analyze the AS profiles for SKCM clinical specimens from the TCGA database. The association between AS events and overall survival was analyzed by Cox regression analysis. AS event intersections and a gene interaction network were established by UpSet plot. A multivariate survival model was used to establish a feature genes prognosis model. RESULTS A total of 103 SKCM patients with full clinical parameters available were included in this study. We established an AS network that investigated the relationship between AS events and clinical prognosis information. Furthermore, 4 underlying feature genes of SKCM (MCF2L, HARS, TFR2, and RALGPS1) were found in the AS network. We performed function analysis as well as correlation analysis of AS events with gene expression. Using the multivariate survival model, we further confirmed the 4 genes that impacted the classifying SKCM prognosis at the level of AS events as well as gene expression, especially in wild-type SKCM. CONCLUSIONS AS events could be ideal indicators for SKCM prognosis. The key feature gene MCF2L played an important role in wild-type SKCM.
Collapse
Affiliation(s)
- Dan Xue
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Pu Cheng
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Jinxin Jiang
- Department of Surgical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Yunqing Ren
- Department of Dermatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Dang Wu
- Department of Radiation Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Wuzhen Chen
- Department of Surgical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
24
|
Wan Q, Sang X, Jin L, Wang Z. Alternative Splicing Events as Indicators for the Prognosis of Uveal Melanoma. Genes (Basel) 2020; 11:genes11020227. [PMID: 32098099 PMCID: PMC7074237 DOI: 10.3390/genes11020227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022] Open
Abstract
Growing evidence has revealed that abnormal alternative splicing (AS) events are closely related to carcinogenic processes. However, the comprehensive study on the prognostic value of splicing events involved in uveal melanoma (UM) is still lacking. Therefore, splicing data of 80 UM patients were obtained from the Cancer Genome Atlas (TCGA) SpliceSeq and RNA sequence data of UM and patient clinical features were downloaded from the Cancer Genome Atlas (TCGA) database to identify survival related splicing events in UM. As a result, a total of 37996 AS events of 17911 genes in UM were detected, among which 5299 AS events of 3529 genes were significantly associated with UM patients’ survival. Functional enrichment analysis revealed that this survival related splicing genes are corelated with mRNA catabolic process and ribosome pathway. Based on survival related splicing events, seven types of prognostic markers and the final overall prognostic signature could independently predict the overall survival of UM patients. Finally, an 11 spliced gene was identified in the final signature. On the basis of these 11 genes, we constructed a Support Vector Machine (SVM) classifier and evaluated it with leave-one-out cross-validation. The results showed that the 11 genes could determine short- and long-term survival with a predicted accuracy of 97.5%. Besides, the splicing factors and alternative splicing events correlation network was constructed to serve as therapeutic targets for UM treatment. Thus, our study depicts a comprehensive landscape of alternative splicing events in the prognosis of UM. The correlation network and associated pathways would provide additional potential targets for therapy and prognosis.
Collapse
|
25
|
Peng WZ, Liu JX, Li CF, Ma R, Jie JZ. hnRNPK promotes gastric tumorigenesis through regulating CD44E alternative splicing. Cancer Cell Int 2019; 19:335. [PMID: 31857793 PMCID: PMC6909542 DOI: 10.1186/s12935-019-1020-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/08/2019] [Indexed: 11/10/2022] Open
Abstract
Background The high prevalence of alternative splicing among genes implies the importance of genomic complexity in regulating normal physiological processes and diseases such as gastric cancer (GC). The standard form of stem cell marker CD44 (CD44S) and its alternatives with additional exons are reported to play important roles in multiple types of tumors, but the regulation mechanism of CD44 alternative splicing is not fully understood. Methods Here the expression of hnRNPK was analyzed among the Cancer Genome Atlas (TCGA) cohort of GC. The function of hnRNPK in GC cells was analyzed and its downstream targeted gene was identified by chromatin immunoprecipitation and dual luciferase report assay. Finally, effect of hnRNPK and its downstream splicing regulator on CD44 alternative splicing was investigated. Results The expression of hnRNPK was significantly increased in GC and its upregulation was associated with tumor stage and metastasis. Loss-of-function studies found that hnRNPK could promote GC cell proliferation, migration, and invasion. The upregulation of hnRNPK activates the expression of the splicing regulator SRSF1 by binding to the first motif upstream the start codon (- 65 to - 77 site), thereby increasing splicing activity and expression of an oncogenic CD44 isoform, CD44E (has additional variant exons 8 to 10, CD44v8-v10). Conclusion These findings revealed the importance of the hnRNPK-SRSF1-CD44E axis in promoting gastric tumorigenesis.
Collapse
Affiliation(s)
- Wei-Zhao Peng
- 1Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Ji-Xi Liu
- 2Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Chao-Feng Li
- 1Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Ren Ma
- 1Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Jian-Zheng Jie
- 1Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029 China
| |
Collapse
|
26
|
Ma FC, He RQ, Lin P, Zhong JC, Ma J, Yang H, Hu XH, Chen G. Profiling of prognostic alternative splicing in melanoma. Oncol Lett 2019; 18:1081-1088. [PMID: 31423168 PMCID: PMC6607279 DOI: 10.3892/ol.2019.10453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 04/12/2019] [Indexed: 12/18/2022] Open
Abstract
Alternative splicing can lead to the coding of proteins that act as promoters of cancer, which is associated with the progression of cancer. However, to the best of our knowledge, no systematic survival analysis of alternative splicing in melanoma has previously been reported. The present study conducted an in-depth analysis of integrated alternative splicing events detected in 96 patients with melanoma using data obtained from The Cancer Genome Atlas. Prognostic models and an alternative splicing correlation network were built for patients with melanoma. A total of 41,446 mRNA splicing events were detected in 9,780 genes and 2,348 alternative splicing events were identified to be significantly associated with overall survival of patients with melanoma. Of all the events used in the prognostic model, the model with alternate terminator alternative splicing events exhibited the highest efficiency for evaluating the outcome of patients with melanoma, with an area under the curve of 0.902. The present study identified prognostic predictors for melanoma and revealed alternative splicing networks in melanoma that could indicate underlying mechanisms.
Collapse
Affiliation(s)
- Fu-Chao Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Peng Lin
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jin-Cai Zhong
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hong Yang
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao-Hua Hu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
27
|
Urbanski L, Leclair N, Anczuków O. Alternative-splicing defects in cancer: Splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1476. [PMID: 29693319 PMCID: PMC6002934 DOI: 10.1002/wrna.1476] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/14/2022]
Abstract
Defects in alternative splicing are frequently found in human tumors and result either from mutations in splicing-regulatory elements of specific cancer genes or from changes in the regulatory splicing machinery. RNA splicing regulators have emerged as a new class of oncoproteins and tumor suppressors, and contribute to disease progression by modulating RNA isoforms involved in the hallmark cancer pathways. Thus, dysregulation of alternative RNA splicing is fundamental to cancer and provides a potentially rich source of novel therapeutic targets. Here, we review the alterations in splicing regulatory factors detected in human tumors, as well as the resulting alternatively spliced isoforms that impact cancer hallmarks, and discuss how they contribute to disease pathogenesis. RNA splicing is a highly regulated process and, as such, the regulators are themselves tightly regulated. Differential transcriptional and posttranscriptional regulation of splicing factors modulates their levels and activities in tumor cells. Furthermore, the composition of the tumor microenvironment can also influence which isoforms are expressed in a given cell type and impact drug responses. Finally, we summarize current efforts in targeting alternative splicing, including global splicing inhibition using small molecules blocking the spliceosome or splicing-factor-modifying enzymes, as well as splice-switching RNA-based therapeutics to modulate cancer-specific splicing isoforms. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
|
28
|
Gee MH, Han A, Lofgren SM, Beausang JF, Mendoza JL, Birnbaum ME, Bethune MT, Fischer S, Yang X, Gomez-Eerland R, Bingham DB, Sibener LV, Fernandes RA, Velasco A, Baltimore D, Schumacher TN, Khatri P, Quake SR, Davis MM, Garcia KC. Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes. Cell 2018; 172:549-563.e16. [PMID: 29275860 PMCID: PMC5786495 DOI: 10.1016/j.cell.2017.11.043] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/30/2017] [Accepted: 11/22/2017] [Indexed: 12/30/2022]
Abstract
The immune system can mount T cell responses against tumors; however, the antigen specificities of tumor-infiltrating lymphocytes (TILs) are not well understood. We used yeast-display libraries of peptide-human leukocyte antigen (pHLA) to screen for antigens of "orphan" T cell receptors (TCRs) expressed on TILs from human colorectal adenocarcinoma. Four TIL-derived TCRs exhibited strong selection for peptides presented in a highly diverse pHLA-A∗02:01 library. Three of the TIL TCRs were specific for non-mutated self-antigens, two of which were present in separate patient tumors, and shared specificity for a non-mutated self-antigen derived from U2AF2. These results show that the exposed recognition surface of MHC-bound peptides accessible to the TCR contains sufficient structural information to enable the reconstruction of sequences of peptide targets for pathogenic TCRs of unknown specificity. This finding underscores the surprising specificity of TCRs for their cognate antigens and enables the facile indentification of tumor antigens through unbiased screening.
Collapse
Affiliation(s)
- Marvin H Gee
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arnold Han
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shane M Lofgren
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John F Beausang
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Juan L Mendoza
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael E Birnbaum
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael T Bethune
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Suzanne Fischer
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xinbo Yang
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Raquel Gomez-Eerland
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - David B Bingham
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leah V Sibener
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ricardo A Fernandes
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew Velasco
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ton N Schumacher
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Purvesh Khatri
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephen R Quake
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
29
|
Cifdaloz M, Osterloh L, Graña O, Riveiro-Falkenbach E, Ximénez-Embún P, Muñoz J, Tejedo C, Calvo TG, Karras P, Olmeda D, Miñana B, Gómez-López G, Cañon E, Eyras E, Guo H, Kappes F, Ortiz-Romero PL, Rodríguez-Peralto JL, Megías D, Valcárcel J, Soengas MS. Systems analysis identifies melanoma-enriched pro-oncogenic networks controlled by the RNA binding protein CELF1. Nat Commun 2017; 8:2249. [PMID: 29269732 PMCID: PMC5740069 DOI: 10.1038/s41467-017-02353-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 11/23/2017] [Indexed: 12/19/2022] Open
Abstract
Melanomas are well-known for their altered mRNA expression profiles. Yet, the specific contribution of mRNA binding proteins (mRBPs) to melanoma development remains unclear. Here we identify a cluster of melanoma-enriched genes under the control of CUGBP Elav-like family member 1 (CELF1). CELF1 was discovered with a distinct prognostic value in melanoma after mining the genomic landscape of the 692 known mRBPs across different cancer types. Genome-wide transcriptomic, proteomic, and RNA-immunoprecipitation studies, together with loss-of-function analyses in cell lines, and histopathological evaluation in clinical biopsies, revealed an intricate repertoire of CELF1-RNA interactors with minimal overlap with other malignancies. This systems approach uncovered the oncogene DEK as an unexpected target and downstream effector of CELF1. Importantly, CELF1 and DEK were found to represent early-induced melanoma genes and adverse indicators of overall patient survival. These results underscore novel roles of CELF1 in melanoma, illustrating tumor type-restricted functions of RBPs in cancer.
Collapse
Affiliation(s)
- Metehan Cifdaloz
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Lisa Osterloh
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | | | - Erica Riveiro-Falkenbach
- Instituto de Investigación i+12, Hospital 12 de Octubre Medical School, Universidad Complutense, 28041, Madrid, Spain
| | | | | | - Cristina Tejedo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Tonantzin G Calvo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Panagiotis Karras
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - David Olmeda
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Belén Miñana
- Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | | | - Estela Cañon
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Eduardo Eyras
- Department of Experimental and Health Sciences, Universidad Pompeu Fabra, Barcelona, 08002, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Haihong Guo
- Institute of Biochemistry and Molecular Biology; Medical School, RWTH Aachen University, Aachen, 52074, Germany
| | - Ferdinand Kappes
- Institute of Biochemistry and Molecular Biology; Medical School, RWTH Aachen University, Aachen, 52074, Germany
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, No. 111, Ren Ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park (SIP), Suzhou, 215123, China
| | - Pablo L Ortiz-Romero
- Instituto de Investigación i+12, Hospital 12 de Octubre Medical School, Universidad Complutense, 28041, Madrid, Spain
| | - Jose L Rodríguez-Peralto
- Instituto de Investigación i+12, Hospital 12 de Octubre Medical School, Universidad Complutense, 28041, Madrid, Spain
| | - Diego Megías
- Confocal Microscopy Unit, (CNIO), Madrid, 28029, Spain
| | - Juan Valcárcel
- Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - María S Soengas
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain.
| |
Collapse
|
30
|
The impact of the RBM4-initiated splicing cascade on modulating the carcinogenic signature of colorectal cancer cells. Sci Rep 2017; 7:44204. [PMID: 28276498 PMCID: PMC5343574 DOI: 10.1038/srep44204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/06/2017] [Indexed: 12/31/2022] Open
Abstract
A growing body of studies has demonstrated that dysregulated splicing profiles constitute pivotal mechanisms for carcinogenesis. In this study, we identified discriminative splicing profiles of colorectal cancer (CRC) cells compared to adjacent normal tissues using deep RNA-sequencing (RNA-seq). The RNA-seq results and cohort studies indicated a relatively high ratio of exon 4-excluded neuro-oncological ventral antigen 1 (Nova1−4) and intron 2-retained SRSF6 (SRSF6+intron 2) transcripts in CRC tissues and cell lines. Nova1 variants exhibited differential effects on eliminating SRSF6 expression in CRC cells by inducing SRSF6+intron 2 transcripts which were considered to be the putative target of alternative splicing-coupled nonsense-mediated decay mechanism. Moreover, the splicing profile of vascular endothelial growth factor (VEGF)165/VEGF165b transcripts was relevant to SRSF6 expression, which manipulates the progression of CRC calls. These results highlight the novel and hierarchical role of an alternative splicing cascade that is involved in the development of CRC.
Collapse
|
31
|
Zaiden M, Feinshtein V, David A. Inhibition of CD44v3 and CD44v6 function blocks tumor invasion and metastatic colonization. J Control Release 2017; 257:10-20. [PMID: 28093296 DOI: 10.1016/j.jconrel.2017.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/12/2017] [Indexed: 12/12/2022]
Abstract
The prevention of cancer cell dissemination and secondary tumor formation are major goals of cancer therapy. Here, we report on the development of a new CD44-targeted copolymer carrying multiple copies of the A5G27 peptide, known for its ability to bind specifically to CD44v3 and CD44v6 on cancer cells and inhibit tumor cell migration, invasion, and angiogenesis. We hypothesized that conjugation of A5G27 to N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer would enhance tumor tissue accumulation, promote selective binding to cancer cells, with concomitant increased inhibition of cancer cell invasiveness and migration. Fluorescein-5-isothiocyanate or the near-infrared fluorophore IR783 were attached to the copolymer backbone through a non-cleavable linkage to assess in vitro binding to cancer cells and biodistribution of the polymer in 4T1 murine mammary adenocarcinoma-bearing mice, respectively. The anti-migratory activity was evaluated both in vitro and in vivo. The binding of the targeted copolymer to cancer cells correlated well with the level of CD44 expression, with the polymer being internalized more efficiently by cancer cells. Pre-treatment of mice with polymer-bound A5G27 significantly inhibited lung colonization of migrating 4T1 cells in vivo, with the targeted copolymer accumulating preferentially in subcutaneous 4T1 tumors, when compared to a non-targeted system. As such, the HPMA copolymer-A5G27 conjugate is a promising candidate for inhibiting cancer cell migration and can also be used as a drug or imaging probe carrier for detection and treatment of cancer.
Collapse
Affiliation(s)
- Michal Zaiden
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Valeria Feinshtein
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|