1
|
Li S, Sun H, Fang F, Zhang S, Chen J, Shao C, Fu Y, Chen L. The Spatial Transcriptomic Atlas of Human Limbus and Vital Niche Microenvironment Regulating the Fate of Limbal Epithelial Stem Cells. Invest Ophthalmol Vis Sci 2025; 66:52. [PMID: 40131296 PMCID: PMC11951063 DOI: 10.1167/iovs.66.3.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/02/2025] [Indexed: 03/26/2025] Open
Abstract
Purpose This study aimed to generate the spatial atlas of the human limbus using spatial transcriptomic technology and reveal the deep interaction among the niche microenvironment. Methods The spatial transcriptomic atlas of human limbus was performed using 10× Genomics Space Ranger software platform. Single-cell RNA sequencing data of human limbal epithelial stem cells (LESCs) were downloaded for integrating analysis. Results We profiled more than 400 spots within each sample and spatially located major cell types within the limbus area. LESCs were localized mainly in the basement membrane, and limbal niche cells were situated predominantly within the stromal area. Next, the limbus was divided into four regions based on histological structure, and the differential expressed genes among the four regions were analyzed. Notably, GPHB5 was highly expressed in the epithelium of the middle region and co-staining with deltaNp63 suggested it might be a novel potential biomarker of LESCs. Subsequently, limbal mesenchymal stem cells were found to exhibit the greatest amounts of ligands associated with LESCs. The widespread activity of COL6A2/CD44 signaling among limbal mesenchymal stem cells, melanocytes, immune cells, and LESCs indicate its essential role in mediating bidirectional communication via the collagen pathway. Conclusions This research mapped the spatial positioning of key cells within the limbal niche and detailed interactions between major cell types. These findings provide a foundation for further LESC research and enhance our understanding of corneal biology.
Collapse
Affiliation(s)
- Shiding Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Hao Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Fei Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Siyi Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Junzhao Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Chunyi Shao
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yao Fu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Liangbo Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
2
|
Wang L, Guo W, Tian Y, Wang J, Xu S, Shu W, Liang H, Chen M. Carboxypeptidase inhibitor Latexin (LXN) regulates intestinal organogenesis and intestinal remodeling involved in intestinal injury repair in mice. Int J Biol Macromol 2024; 279:135129. [PMID: 39208900 DOI: 10.1016/j.ijbiomac.2024.135129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/10/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The self-renewal and regeneration of intestinal epithelium are mainly driven by intestinal stem cells resided in crypts, which are crucial for rapid recovery intestinal tissue following injury. Latexin (LXN) is a highly expressed stem cell proliferation and differentiation related gene in intestinal tissue. However, it is still ambiguous whether LXN participates in intestine regeneration by regulating intestinal stem cells (ISCs). Here, we report that LXN colocalizes with Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) in intestinal crypts, and deletion of LXN upregulates the expression of Lgr5 in intestinal crypts. LXN deficiency promotes the proliferation of ISCs, thereby enhances the development of intestinal organoids. Mechanically, we show that LXN deficiency enhances the expression of Lgr5 in ISCs by activating the Yes-associated protein (YAP) and wingless (Wnt) signal pathways, thus accelerating intestinal normal growth and regeneration post-injury. In summary, these findings uncover a novel function of LXN in intestinal regeneration post-injury and intestinal organogenesis, suggesting the potential role of LXN in the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Lingzhu Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Wenwen Guo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Yang Tian
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Jingzhu Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Shaohua Xu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Wei Shu
- College of Biotechnology, Guilin Medical University, Guilin, China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China.
| | - Ming Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China.
| |
Collapse
|
3
|
Sarsenova M, Stepanjuk A, Saare M, Kasvandik S, Soplepmann P, Mikeltadze I, Götte M, Salumets A, Peters M. Carboxypeptidase Inhibitor LXN Expression in Endometrial Tissue Is Menstrual Cycle Phase-Dependent and Is Upregulated in Endometriotic Lesions. Genes (Basel) 2024; 15:1086. [PMID: 39202445 PMCID: PMC11353285 DOI: 10.3390/genes15081086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Endometriosis is a chronic hormone-dependent disease characterized by the spread of endometrial cells outside the uterus, which form endometriotic lesions and disrupt the functions of the affected organs. The etiopathogenesis of endometriosis is still unclear, and thus it is important to examine the genes that may contribute to the establishment of endometriotic lesions. The aim of this study was to investigate the expression of new potential candidate gene latexin (LXN), an inhibitor of carboxypeptidases, in endometrium and endometriotic lesions to elucidate its possible role in endometriosis development. LXN expression in tissues was assessed using quantitative reverse transcription PCR (qRT-PCR) analysis and immunohistochemical staining (IHC). The functions of LXN were examined using Transwell and MTT assays. qRT-PCR analysis revealed that LXN expression in endometrium was menstrual cycle-dependent, being lowest in the early-secretory phase and highest in the late-secretory phase and was significantly upregulated in endometriotic lesions. IHC confirmed LXN expression in endometrial stromal cells, and in vitro assays demonstrated that knockdown of LXN effectively reduced the migratory capacity of endometrial stromal cells while promoting cell viability. In conclusion, our results showed that LXN can be involved in the pathogenesis of endometriosis by regulating the proliferation and migration activity of endometriotic stromal cells.
Collapse
Affiliation(s)
- Meruert Sarsenova
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia; (M.S.); (M.S.); (A.S.)
- Department of Women’s and Children’s Health, Division of Obstetrics and Gynecology, Karolinska Institutet, and Karolinska University Hospital, 17177 Stockholm, Sweden
- Competence Centre on Health Technologies, 50411 Tartu, Estonia; (A.S.)
| | - Artjom Stepanjuk
- Competence Centre on Health Technologies, 50411 Tartu, Estonia; (A.S.)
| | - Merli Saare
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia; (M.S.); (M.S.); (A.S.)
- Competence Centre on Health Technologies, 50411 Tartu, Estonia; (A.S.)
| | - Sergo Kasvandik
- Competence Centre on Health Technologies, 50411 Tartu, Estonia; (A.S.)
| | | | - Iveta Mikeltadze
- Department of Surgical and Gynecological Oncology, Tartu University Hospital, 50406 Tartu, Estonia;
| | - Martin Götte
- Department of Gynecology, and Obstetrics, University Hospital of Münster, 48149 Münster, Germany;
| | - Andres Salumets
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia; (M.S.); (M.S.); (A.S.)
- Competence Centre on Health Technologies, 50411 Tartu, Estonia; (A.S.)
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, and Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Maire Peters
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia; (M.S.); (M.S.); (A.S.)
- Competence Centre on Health Technologies, 50411 Tartu, Estonia; (A.S.)
| |
Collapse
|
4
|
Deng F, Lei J, Qiu J, Zhao C, Wang X, Li M, Sun M, Zhang M, Gao Q. DNA methylation landscape in pregnancy-induced hypertension: progress and challenges. Reprod Biol Endocrinol 2024; 22:77. [PMID: 38978060 PMCID: PMC11229300 DOI: 10.1186/s12958-024-01248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Gestational hypertension (PIH), especially pre-eclampsia (PE), is a common complication of pregnancy. This condition poses significant risks to the health of both the mother and the fetus. Emerging evidence suggests that epigenetic modifications, particularly DNA methylation, may play a role in initiating the earliest pathophysiology of PIH. This article describes the relationship between DNA methylation and placental trophoblast function, genes associated with the placental microenvironment, the placental vascular system, and maternal blood and vascular function, abnormalities of umbilical cord blood and vascular function in the onset and progression of PIH, as well as changes in DNA methylation in the progeny of PIH, in terms of maternal, fetal, and offspring. We also explore the latest research on DNA methylation-based early detection, diagnosis and potential therapeutic strategies for PIH. This will enable the field of DNA methylation research to continue to enhance our understanding of the epigenetic regulation of PIH genes and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Fengying Deng
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Jiahui Lei
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Junlan Qiu
- Department of Oncology and Hematology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, 215153, P.R. China
| | - Chenxuan Zhao
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Xietong Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Min Li
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Miao Sun
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China.
| | - Meihua Zhang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
| | - Qinqin Gao
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China.
| |
Collapse
|
5
|
Yu Z, Liu H, Ye J, Liu Y, Xin L, Liu Q, Cheng Y, Yin L, Xu L. Integrative analysis identifies cancer cell-intrinsic RARRES1 as a predictor of prognosis and immune response in triple-negative breast cancer. Front Genet 2024; 15:1360507. [PMID: 38533207 PMCID: PMC10963550 DOI: 10.3389/fgene.2024.1360507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor prognosis and limited treatment options. Although immune checkpoint inhibitors (ICIs) have been proven to improve outcomes in TNBC patients, the potential mechanisms and markers that determine the therapeutic response to ICIs remains uncertain. Revealing the relationship and interaction between cancer cells and tumor microenvironment (TME) could be helpful in predicting treatment efficacy and developing novel therapeutic agents. By analyzing single-cell RNA sequencing dataset, we comprehensively profiled cell types and subpopulations as well as identified their signatures in the TME of TNBC. We also proposed a method for quantitatively assessment of the TME immune profile and provided a framework for identifying cancer cell-intrinsic features associated with TME through integrated analysis. Using integrative analyses, RARRES1 was identified as a TME-associated gene, whose expression was positively correlated with prognosis and response to ICIs in TNBC. In conclusion, this study characterized the heterogeneity of cellular components in TME of TNBC patients, and brought new insights into the relationship between cancer cells and TME. In addition, RARRES1 was identified as a potential predictor of prognosis and response to ICIs in TNBC.
Collapse
Affiliation(s)
- Zhengheng Yu
- Department of Thyroid and Breast Surgery, Peking University First Hospital, Beijing, China
| | - Hongjin Liu
- Department of Thyroid and Breast Surgery, Peking University First Hospital, Beijing, China
| | - Jingming Ye
- Department of Thyroid and Breast Surgery, Peking University First Hospital, Beijing, China
| | - Yinhua Liu
- Department of Thyroid and Breast Surgery, Peking University First Hospital, Beijing, China
| | - Ling Xin
- Department of Thyroid and Breast Surgery, Peking University First Hospital, Beijing, China
| | - Qian Liu
- Department of Thyroid and Breast Surgery, Peking University First Hospital, Beijing, China
| | - Yuanjia Cheng
- Department of Thyroid and Breast Surgery, Peking University First Hospital, Beijing, China
| | - Lu Yin
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Xu
- Department of Thyroid and Breast Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
6
|
Oxidative Stress Response Biomarkers of Ovarian Cancer Based on Single-Cell and Bulk RNA Sequencing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1261039. [PMID: 36743693 PMCID: PMC9897923 DOI: 10.1155/2023/1261039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 01/28/2023]
Abstract
Background The occurrence and development of ovarian cancer (OV) are significantly influenced by increased levels of oxidative stress (OS) byproducts and the lack of an antioxidant stress repair system. Hence, it is necessary to explore the markers related to OS in OV, which can aid in predicting the prognosis and immunotherapeutic response in patients with OV. Methods The single-cell RNA-sequencing (scRNA-seq) dataset GSE146026 was retrieved from the Gene Expression Omnibus (GEO) database, and Bulk RNA-seq data were obtained from TCGA and GTEx databases. The Seurat R package and SingleR package were used to analyze scRNA-seq and to identify OS response-related clusters based on ROS markers. The "limma" R package was used to identify the differentially expressed genes (DEGs) between normal and ovarian samples. The risk model was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis. The immune cell infiltration, genomic mutation, and drug sensitivity of the model were analyzed using the CIBERSORT algorithm, the "maftools," and the "pRRophetic" R packages, respectively. Results Based on scRNA-seq data, we identified 12 clusters; OS response-related genes had the strongest specificity for cluster 12. A total of 151 genes were identified from 2928 DEGs to be significantly correlated with OS response. Finally, nine prognostic genes were used to construct the risk score (RS) model. The risk score model was an independent prognostic factor for OV. The gene mutation frequency and tumor immune microenvironment in the high- and low-risk score groups were significantly different. The value of the risk score model in predicting immunotherapeutic outcomes was confirmed. Conclusions OS response-related RS model could predict the prognosis and immune responses in patients with OV and provide new strategies for cancer treatment.
Collapse
|
7
|
Bromodomain-containing protein 4 (BRD4) as an epigenetic regulator of fatty acid metabolism genes and ferroptosis. Cell Death Dis 2022; 13:912. [PMID: 36309482 PMCID: PMC9617950 DOI: 10.1038/s41419-022-05344-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Reprogramming lipid metabolism is considered a fundamental step in tumourigenesis that influences ferroptosis. However, molecular mechanisms between lipid metabolism and ferroptosis remain largely unknown. Results from the drug screening of 464 inhibitors (for 164 targets) applied to ferroptosis cells indicated that 4 inhibitors targeted bromodomain-containing protein 4 (BRD4) significantly inhibiting erastin-induced ferroptosis. Functional studies proved that the loss of BRD4 weakened oxidative catabolism in mitochondria, protecting cells from the excessive accumulation of lipid peroxides. Mechanism research revealed that the transcriptional levels of fatty acid metabolism-related genes (HADH, ACSL1 and ACAA2) participating in the β-oxidation of fatty acids (FAO) and polyunsaturated fatty acids (PUFAs) synthesis depended on the activity of super-enhancers (SEs) formed by BRD4 and HMGB2 in their promoter regions. Conclusively, this study demonstrated that BRD4 was indispensable for fatty acid metabolism based on its epigenetic regulatory mechanisms and affecting erastin-induced ferroptosis, providing a new theoretical reference for understanding the relationship between lipid metabolism and ferroptosis deeply.
Collapse
|
8
|
Geng X, Chi K, Liu C, Fu Z, Wang X, Meng L, Wang H, Cai G, Chen X, Hong Q. Interaction of RARRES1 with ICAM1 modulates macrophages to suppress the progression of kidney renal clear cell carcinoma. Front Immunol 2022; 13:982045. [PMID: 36353618 PMCID: PMC9638079 DOI: 10.3389/fimmu.2022.982045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Background RARRES1 is a tumor suppressor protein, and its expression is suppressed in various tumor cells. However, whether it participates in the immune response in kidney renal clear cell carcinoma (KIRC) is unknown, and the defined mechanism is not clear. Therefore, the mechanism of RARRES1 in KIRC is worthy of investigation. Methods We analysed the expression and function of RARRES1 with The Cancer Genome Atlas (TCGA) database. The Kaplan–Meier curve was adopted to estimate survival. RARRES1-correlated genes were obtained from the UALCAN database and subjected to Gene Ontology (GO) enrichment and protein–protein interaction (PPI) network analyses. The correlation analysis between tumor-infiltrating immune cells and selected genes were performed with TIMER database. We also investigated the possible function of RARRES1 in KIRC by coculturing Caki-1 cells with THP-1 cells. Immunofluorescence assay was performed to study the RARRES1 expression in difference grade KIRC tissues. Results The expression of RARRES1 was negatively correlated with survival in KIRC patients. The GO biological process term most significantly enriched with the RARRES1-correlated genes was regulation of cell adhesion. ICAM1, which exhibited a relatively highest correlation with RARRES1, is positively correlated with the infiltration level of macrophages. RARRES1 could enhance the expression of ICAM1 in Caki-1 cells and then induce the activation of M1 THP-1 cells to decrease the viability and induce the apoptosis of Caki-1 cells. Conclusion RARRES1 plays an antitumor role by promoting ICAM1 expression and inducing the activation of M1 macrophages. We offer insights into the molecular mechanism of KIRC and reveal a potential therapeutic target.
Collapse
Affiliation(s)
- Xiaodong Geng
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- Beidaihe Rehabilitation and Recuperation Center, Chinese People’s Liberation Army Joint Logistics Support Force, Qinhuangdao, China
| | - Kun Chi
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chao Liu
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Zhangning Fu
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xu Wang
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Liangliang Meng
- Department of Radiology, First Medical Centre of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Hanfeng Wang
- Department of Urology, Third Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- *Correspondence: Quan Hong,
| |
Collapse
|
9
|
Desjardins P, Le-Bel G, Ghio SC, Germain L, Guérin SL. The WNK1 kinase regulates the stability of transcription factors during wound healing of human corneal epithelial cells. J Cell Physiol 2022; 237:2434-2450. [PMID: 35150137 DOI: 10.1002/jcp.30698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/12/2022]
Abstract
Due to its superficial anatomical localization, the cornea is continuously subjected to injuries. Damages to the corneal epithelium trigger important changes in the composition of the extracellular matrix to which the basal human corneal epithelial cells (hCECs) attach. These changes are perceived by membrane-bound integrins and ultimately lead to re-epithelialization of the injured epithelium through intracellular signalin. Among the many downstream targets of the integrin-activated signaling pathways, WNK1 is the kinase whose activity is the most strongly increased during corneal wound healing. We previously demonstrated that pharmacological inhibition of WNK1 prevents proper closure of wounded human tissue-engineered cornea in vitro. In the present study, we investigated the molecular mechanisms by which WNK1 contributes to corneal wound healing. By exploiting transcription factors microarrays, electrophoretic mobility-shift assay, and gene profiling analyses, we demonstrated that the DNA binding properties and expression of numerous transcription factors (TFs), including the well-known, ubiquitous TFs specific protein 1 (Sp1) and activator protein 1 (AP1), were reduced in hCECs upon WNK1 inhibition by WNK463. This process appears to be mediated at least in part by alteration in both the ubiquitination and glycosylation status of these TFs. These changes in TFs activity and expression impacted the transcription of several genes, including that encoding the α5 integrin subunit, a well-known target of both Sp1 and AP1. Gene profiling revealed that only a moderate number of genes in hCECs had their level of expression significantly altered in response to WNK463 exposition. Interestingly, analysis of the microarray data for these deregulated genes using the ingenuity pathway analysis software predicted that hCECs would stop migrating and proliferating but differentiate more when they are grown in the presence of the WNK1 inhibitor. These results demonstrate that WNK1 plays a critical function by orienting hCECs into the appropriate biological response during the process of corneal wound healing.
Collapse
Affiliation(s)
- Pascale Desjardins
- Centre Universitaire d'Ophtalmologie - Recherche (CUO-Recherche) et Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada.,Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Gaëtan Le-Bel
- Centre Universitaire d'Ophtalmologie - Recherche (CUO-Recherche) et Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada.,Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Sergio C Ghio
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Lucie Germain
- Centre Universitaire d'Ophtalmologie - Recherche (CUO-Recherche) et Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada.,Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Sylvain L Guérin
- Centre Universitaire d'Ophtalmologie - Recherche (CUO-Recherche) et Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
10
|
Kan S, Li R, Tan Y, Yang F, Xu S, Wang L, Zhang L, Sun X, Chen X, Yang Y, Shu W, Wan H, Chen ZF, Liang H, Chen M. Latexin deficiency attenuates adipocyte differentiation and protects mice against obesity and metabolic disorders induced by high-fat diet. Cell Death Dis 2022; 13:175. [PMID: 35210404 PMCID: PMC8873487 DOI: 10.1038/s41419-022-04636-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/14/2022] [Accepted: 02/10/2022] [Indexed: 12/12/2022]
Abstract
AbstractObesity is a risk factor for many chronic diseases, and is associated with increased incidence rate of type 2 diabetes, hypertension, dyslipidemia and cardiovascular diseases. Adipocyte differentiation play critical role during development of obesity. Latexin (LXN), a mammalian carboxypeptidase inhibitor, plays important role in the proliferation and differentiation of stem cells, and highlights as a differentiation-associated gene that was significantly downregulated in prostate stem cells and whose expression increases through differentiation. However, it is unclear whether LXN is involved in adipocyte differentiation. The aim of this study was to evaluate the role of LXN on adipocyte differentiation, as well as its effects on high fat-induced obesity and metabolic disorders. In this study, we determine the expression of LXN in adipose tissue of lean and fat mice by Western blot, qPCR and immunohistochemistry. We found that LXN in fat tissues was continuous increased during the development of diet-induced obesity. We fed wild-type (WT) and LXN−/−mice with high-fat diet (HFD) to study the effects of LXN on obesity and related metabolic functions. We found that mice deficient in LXN showed resistance against high-fat diet (HFD)-induced obesity, glucose tolerance, insulin tolerance and hepatic steatosis. In vitro studies indicated that LXN was highly induced during adipocyte differentiation, and positively regulated adipocyte differentiation and adipogenesis in 3T3-L1 cells and primary preadipocytes. Functional analysis revealed that the expression of LXN was positively regulated by mTOR/RXR/PPARɤ signaling pathway during the differentiation of adipocytes, while LXN deletion decreased the protein level of PPARɤ in adipocyte through enhancing FABP4 mediated ubiquitination, which led to impaired adipocyte differentiation and lipogenesis. Collectively, our data provide evidence that LXN is a key positive regulator of adipocyte differentiation, and therapeutics targeting LXN could be effective in preventing obesity and its associated disorders in clinical settings.
Collapse
|
11
|
Pavlík V, Machalová V, Čepa M, Šínová R, Šafránková B, Kulhánek J, Drmota T, Kubala L, Huerta-Ángeles G, Velebný V, Nešporová K. Retinoic Acid Grafted to Hyaluronic Acid Activates Retinoid Gene Expression and Removes Cholesterol from Cellular Membranes. Biomolecules 2022; 12:biom12020200. [PMID: 35204701 PMCID: PMC8961547 DOI: 10.3390/biom12020200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
All-trans-retinoic acid (atRA) is a potent ligand that regulates gene expression and is used to treat several skin disorders. Hyaluronic acid (HA) was previously conjugated with atRA (HA-atRA) to obtain a novel amphiphilic compound. HA-atRA forms micelles that incorporate hydrophobic molecules and facilitate their transport through the skin. The aim of this study was to determine the influence of HA-atRA on gene expression in skin cells and to compare it with that of unbound atRA. Gene expression was investigated using microarrays and a luciferase system with a canonical atRA promoter. HA-atRA upregulated gene expression similarly to atRA. However, HA-atRA activated the expression of cholesterol metabolism genes, unlike atRA. Further investigation using HPLC and filipin III staining suggested that the treated cells induced cholesterol synthesis to replenish the cholesterol removed from the cells by HA-atRA. HA modified with oleate (HA-C18:1) removed cholesterol from the cells similarly to HA-atRA, suggesting that the cholesterol removal stemmed from the amphiphilic nature of the two derivatives. HA-atRA induces retinoid signaling. Thus, HA-atRA could be used to treat skin diseases, such as acne and psoriasis, where the combined action of atRA signaling and anti-inflammatory cholesterol removal may be potentially beneficial.
Collapse
Affiliation(s)
- Vojtěch Pavlík
- R&D Department, Contipro, a.s., 562 04 Dolní Dobrouč, Czech Republic; (V.M.); (M.Č.); (R.Š.); (B.Š.); (J.K.); (T.D.); (G.H.-Á.); (V.V.); (K.N.)
- Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
- Correspondence:
| | - Veronika Machalová
- R&D Department, Contipro, a.s., 562 04 Dolní Dobrouč, Czech Republic; (V.M.); (M.Č.); (R.Š.); (B.Š.); (J.K.); (T.D.); (G.H.-Á.); (V.V.); (K.N.)
| | - Martin Čepa
- R&D Department, Contipro, a.s., 562 04 Dolní Dobrouč, Czech Republic; (V.M.); (M.Č.); (R.Š.); (B.Š.); (J.K.); (T.D.); (G.H.-Á.); (V.V.); (K.N.)
| | - Romana Šínová
- R&D Department, Contipro, a.s., 562 04 Dolní Dobrouč, Czech Republic; (V.M.); (M.Č.); (R.Š.); (B.Š.); (J.K.); (T.D.); (G.H.-Á.); (V.V.); (K.N.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic;
| | - Barbora Šafránková
- R&D Department, Contipro, a.s., 562 04 Dolní Dobrouč, Czech Republic; (V.M.); (M.Č.); (R.Š.); (B.Š.); (J.K.); (T.D.); (G.H.-Á.); (V.V.); (K.N.)
| | - Jaromír Kulhánek
- R&D Department, Contipro, a.s., 562 04 Dolní Dobrouč, Czech Republic; (V.M.); (M.Č.); (R.Š.); (B.Š.); (J.K.); (T.D.); (G.H.-Á.); (V.V.); (K.N.)
| | - Tomáš Drmota
- R&D Department, Contipro, a.s., 562 04 Dolní Dobrouč, Czech Republic; (V.M.); (M.Č.); (R.Š.); (B.Š.); (J.K.); (T.D.); (G.H.-Á.); (V.V.); (K.N.)
| | - Lukáš Kubala
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Gloria Huerta-Ángeles
- R&D Department, Contipro, a.s., 562 04 Dolní Dobrouč, Czech Republic; (V.M.); (M.Č.); (R.Š.); (B.Š.); (J.K.); (T.D.); (G.H.-Á.); (V.V.); (K.N.)
| | - Vladimír Velebný
- R&D Department, Contipro, a.s., 562 04 Dolní Dobrouč, Czech Republic; (V.M.); (M.Č.); (R.Š.); (B.Š.); (J.K.); (T.D.); (G.H.-Á.); (V.V.); (K.N.)
| | - Kristina Nešporová
- R&D Department, Contipro, a.s., 562 04 Dolní Dobrouč, Czech Republic; (V.M.); (M.Č.); (R.Š.); (B.Š.); (J.K.); (T.D.); (G.H.-Á.); (V.V.); (K.N.)
| |
Collapse
|
12
|
Ropri AS, DeVaux RS, Eng J, Chittur SV, Herschkowitz JI. Cis-acting super-enhancer lncRNAs as biomarkers to early-stage breast cancer. Breast Cancer Res 2021; 23:101. [PMID: 34717732 PMCID: PMC8557595 DOI: 10.1186/s13058-021-01479-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Increased breast cancer screening over the past four decades has led to a substantial rise in the diagnosis of ductal carcinoma in situ (DCIS). Although DCIS lesions precede invasive ductal carcinoma (IDC), they do not always transform into cancer. The current standard-of-care for DCIS is an aggressive course of therapy to prevent invasive and metastatic disease resulting in over-diagnosis and over-treatment. Thus, there is a critical need to identify functional determinants of progression of DCIS to IDC to allow discrimination between indolent and aggressive disease. Recent studies show that super-enhancers, in addition to promoting other gene transcription, are themselves transcribed producing super-enhancer associated long noncoding RNAs (SE-lncRNAs). These SE-lncRNAs can interact with their associated enhancer regions in cis and influence activities and expression of neighboring genes. Furthermore, they represent a novel, untapped group of therapeutic targets. METHODS With an integrative analysis of enhancer loci with global expression of SE-lncRNAs in the MCF10A progression series, we have identified differentially expressed SE-lncRNAs which can identify mechanisms for DCIS to IDC progression. Furthermore, cross-referencing these SE-lncRNAs with patient samples in the The Cancer Genome Atlas (TCGA) database, we have unveiled 27 clinically relevant SE-lncRNAs that potentially interact with their enhancer to regulate nearby gene expression. To complement SE-lncRNA expression studies, we conducted an unbiased global analysis of super-enhancers that are acquired or lost in progression. RESULTS Here we designate SE-lncRNAs RP11-379F4.4 and RP11-465B22.8 as potential markers of progression of DCIS to IDC through regulation of the expression of their neighboring genes (RARRES1 and miR-200b, respectively). Moreover, we classified 403 super-enhancer regions in MCF10A normal cells, 627 in AT1, 1053 in DCIS, and 320 in CA1 cells. Comparison analysis of acquired/lost super-enhancer regions with super-enhancer regions classified in 47 ER positive patients, 10 triple negative breast cancer (TNBC) patients, and 11 TNBC cell lines reveal critically acquired pathways including STAT signaling and NF-kB signaling. In contrast, protein folding, and local estrogen production are identified as major pathways lost in progression. CONCLUSION Collectively, these analyses identify differentially expressed SE-lncRNAs and acquired/lost super-enhancers in progression of breast cancer important for promoting DCIS lesions to IDC.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Line
- Disease Progression
- Enhancer Elements, Genetic/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Membrane Proteins/genetics
- MicroRNAs/genetics
- RNA, Long Noncoding/genetics
- Receptors, Estrogen/metabolism
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/pathology
Collapse
Affiliation(s)
- Ali S Ropri
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, 1 Discovery Drive, Suite 317, Rensselaer, NY, 12144, USA.
| | - Rebecca S DeVaux
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, 1 Discovery Drive, Suite 317, Rensselaer, NY, 12144, USA
| | - Jonah Eng
- Bethlehem Central High School, Bethlehem Central School District, Delmar, NY, 12054, USA
| | - Sridar V Chittur
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, 1 Discovery Drive, Suite 317, Rensselaer, NY, 12144, USA
- Center for Functional Genomics, Cancer Research Center, University at Albany, Rensselaer, NY, 12144, USA
| | - Jason I Herschkowitz
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, 1 Discovery Drive, Suite 317, Rensselaer, NY, 12144, USA
| |
Collapse
|
13
|
Single-cell analysis reveals the pan-cancer invasiveness-associated transition of adipose-derived stromal cells into COL11A1-expressing cancer-associated fibroblasts. PLoS Comput Biol 2021; 17:e1009228. [PMID: 34283835 PMCID: PMC8323949 DOI: 10.1371/journal.pcbi.1009228] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/30/2021] [Accepted: 06/30/2021] [Indexed: 01/01/2023] Open
Abstract
During the last ten years, many research results have been referring to a particular type of cancer-associated fibroblasts associated with poor prognosis, invasiveness, metastasis and resistance to therapy in multiple cancer types, characterized by a gene expression signature with prominent presence of genes COL11A1, THBS2 and INHBA. Identifying the underlying biological mechanisms responsible for their creation may facilitate the discovery of targets for potential pan-cancer therapeutics. Using a novel computational approach for single-cell gene expression data analysis identifying the dominant cell populations in a sequence of samples from patients at various stages, we conclude that these fibroblasts are produced by a pan-cancer cellular transition originating from a particular type of adipose-derived stromal cells naturally present in the stromal vascular fraction of normal adipose tissue, having a characteristic gene expression signature. Focusing on a rich pancreatic cancer dataset, we provide a detailed description of the continuous modification of the gene expression profiles of cells as they transition from APOD-expressing adipose-derived stromal cells to COL11A1-expressing cancer-associated fibroblasts, identifying the key genes that participate in this transition. These results also provide an explanation to the well-known fact that the adipose microenvironment contributes to cancer progression.
Collapse
|
14
|
Maitland NJ. Resistance to Antiandrogens in Prostate Cancer: Is It Inevitable, Intrinsic or Induced? Cancers (Basel) 2021; 13:327. [PMID: 33477370 PMCID: PMC7829888 DOI: 10.3390/cancers13020327] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
Increasingly sophisticated therapies for chemical castration dominate first-line treatments for locally advanced prostate cancer. However, androgen deprivation therapy (ADT) offers little prospect of a cure, as resistant tumors emerge rather rapidly, normally within 30 months. Cells have multiple mechanisms of resistance to even the most sophisticated drug regimes, and both tumor cell heterogeneity in prostate cancer and the multiple salvage pathways result in castration-resistant disease related genetically to the original hormone-naive cancer. The timing and mechanisms of cell death after ADT for prostate cancer are not well understood, and off-target effects after long-term ADT due to functional extra-prostatic expression of the androgen receptor protein are now increasingly being recorded. Our knowledge of how these widely used treatments fail at a biological level in patients is deficient. In this review, I will discuss whether there are pre-existing drug-resistant cells in a tumor mass, or whether resistance is induced/selected by the ADT. Equally, what is the cell of origin of this resistance, and does it differ from the treatment-naïve tumor cells by differentiation or dedifferentiation? Conflicting evidence also emerges from studies in the range of biological systems and species employed to answer this key question. It is only by improving our understanding of this aspect of treatment and not simply devising another new means of androgen inhibition that we can improve patient outcomes.
Collapse
Affiliation(s)
- Norman J Maitland
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
15
|
Niada S, Giannasi C, Magagnotti C, Andolfo A, Brini AT. Proteomic analysis of extracellular vesicles and conditioned medium from human adipose-derived stem/stromal cells and dermal fibroblasts. J Proteomics 2020; 232:104069. [PMID: 33309826 DOI: 10.1016/j.jprot.2020.104069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/23/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
Abstract
Conditioned medium (CM) and extracellular vesicles (EV) from Adipose-derived Stem/stromal cells (ASC) and Dermal fibroblasts (DF) represent promising tools for therapeutic applications. Which one should be preferred is still under debate and no direct comparison of their proteome has been reported yet. Here, we apply quantitative proteomics to explore the protein composition of CM and EV from the two cell types. Data are available via ProteomeXchange (identifier PXD020219). We identified 1977 proteins by LC-MS/MS proteomic analysis. Unsupervised clustering analysis and PCA recognized CM and EV as separate groups. We identified 68 and 201 CM and EV specific factors. CM were enriched in proteins of endoplasmic reticulum, Golgi apparatus and lysosomes, whereas EV contained a large amount of GTPases, ribosome and translation factors. The analysis of ASC and DF secretomes revealed the presence of cell type-specific proteins. ASC-CM and -EV carried factors involved in ECM organization and immunological regulation, respectively. Conversely, DF-CM and -EV were enriched in epithelium development associated factors and -EV in Wnt signaling factors. In conclusion, this analysis provides evidence of a different protein composition between CM and EV and of the presence of cell type-specific bioactive mediators suggesting their specific future use as advanced therapy medicinal products. SIGNIFICANCE: The use of cell secretome presents several advantages over cell therapy such as the lower risks associated to the administration step and the avoidance of any potential risk of malignant transformation. The main secretome preparations consist in concentrated conditioned medium (CM) and extracellular vesicles (EV). Both of them showed well-documented therapeutic potentials. However, it is still not clear in which case it should be better to use one preparation over the other and an exhaustive comparison between their proteome has not been performed yet. The choice of the cell source is another relevant aspect that still needs to be addressed. In order to shed light on these questions we explored the protein composition of CM and EV obtained from Adipose-derived Stem/stromal Cells (ASC) and Dermal Fibroblasts (DF), by a comprehensive quantitative proteomics approach. The analysis showed a clear distinction between CM and EV proteome. CM were enriched in proteins of endoplasmic reticulum, Golgi apparatus and lysosomes, whereas EV contained a large amount of GTPases, ribosome and translation-related factors. Furthermore, the analysis of ASC and DF secretomes revealed specific biological processes for the different cell products. ASC secretome presented factors involved in ECM organization (hyaluronan and glycosaminoglycan metabolism) and immunological regulation (e.g. macrophage and IkB/NFkB signaling regulation), respectively. On the other hand, DF-CM and -EV were both enriched in epithelium development associated factors, whilst DF-CM in proteins involved in cellular processes regulation and -EV in Wnt signaling factors. In conclusion, our study shed a light on the different protein composition of CM and EV of two promising cell types, spanning from basic processes involved in secretion to specific pathways supporting their therapeutic potential and their possible future use as advanced therapy medicinal products.
Collapse
Affiliation(s)
| | | | - Cinzia Magagnotti
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Annapaola Andolfo
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Anna Teresa Brini
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
16
|
Wang CH, Wang LK, Wu CC, Chen ML, Kuo CY, Shyu RY, Tsai FM. Cathepsin V Mediates the Tazarotene-induced Gene 1-induced Reduction in Invasion in Colorectal Cancer Cells. Cell Biochem Biophys 2020; 78:483-494. [PMID: 32918681 DOI: 10.1007/s12013-020-00940-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023]
Abstract
Tazarotene-induced gene 1 (TIG1) is a retinoid acid receptor-responsive gene involved in cell differentiation and tumorigenesis. Aberrant methylation of CpG islands in the TIG1 promoter is found in multiple cancers. Currently, the exact mechanism underlying the anticancer effect of TIG1 is unknown. Here, we show that TIG1 interacts with cathepsin V (CTSV), which reduces CTSV stability and subsequently affects the production of activated urokinase-type plasminogen activator (uPA), an epithelial-mesenchymal transition-associated protein. Ectopic expression of CTSV increased the expression of activated uPA and the number of migrated and invaded cells, whereas ectopic TIG1 expression reversed the effects of CTSV on the uPA signaling pathway. Similar patterns in the production of activated uPA and number of migrated and invaded cells were also observed in TIG1-expressing and CTSV-knockdown cells. The results suggest that CTSV may participate in TIG1-regulated uPA activity and the associated downstream signaling pathway.
Collapse
Affiliation(s)
- Chun-Hua Wang
- Department of Dermatology, Taipei Tzuchi Hospital, Buddhist Tzuchi Medical Foundation, New Taipei City, 231, Taiwan
- School of Medicine, Tzu Chi University, Hualien, 970, Taiwan
| | - Lu-Kai Wang
- Radiation Biology Core Laboratory, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taoyuan, 333, Taiwan
| | - Chang-Chieh Wu
- Department of Surgery, Tri-Service General Hospital Keelung Branch, National Defense Medical Center, Keelung, 202, Taiwan
| | - Mao-Liang Chen
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City, 231, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City, 231, Taiwan
| | - Rong-Yaun Shyu
- Department of Internal Medicine, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City, 231, Taiwan.
| | - Fu-Ming Tsai
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City, 231, Taiwan.
| |
Collapse
|
17
|
Chen A, Feng Y, Lai H, Ju W, Li Z, Li Y, Wang A, Hong Q, Zhong F, Wei C, Fu J, Guan T, Liu B, Kretzler M, Lee K, He JC. Soluble RARRES1 induces podocyte apoptosis to promote glomerular disease progression. J Clin Invest 2020; 130:5523-5535. [PMID: 32634130 PMCID: PMC7524479 DOI: 10.1172/jci140155] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Using the Nephrotic Syndrome Study Network Consortium data set and other publicly available transcriptomic data sets, we identified retinoic acid receptor responder protein 1 (RARRES1) as a gene whose expression positively correlated with renal function decline in human glomerular disease. The glomerular expression of RARRES1, which is largely restricted to podocytes, increased in focal segmental glomerulosclerosis (FSGS) and diabetic kidney disease (DKD). TNF-α was a potent inducer of RARRES1 expression in cultured podocytes, and transcriptomic analysis showed the enrichment of cell death pathway genes with RARRES1 overexpression. The overexpression of RARRES1 indeed induced podocyte apoptosis in vitro. Notably, this effect was dependent on its cleavage in the extracellular domain, as the mutation of its cleavage site abolished the apoptotic effect. Mechanistically, the soluble RARRES1 was endocytosed and interacted with and inhibited RIO kinase 1 (RIOK1), resulting in p53 activation and podocyte apoptosis. In mice, podocyte-specific overexpression of RARRES1 resulted in marked glomerular injury and albuminuria, while the overexpression of RARRES1 cleavage mutant had no effect. Conversely, podocyte-specific knockdown of Rarres1 in mice ameliorated glomerular injury in the setting of adriamycin-induced nephropathy. Our study demonstrates an important role and the mechanism of RARRES1 in podocyte injury in glomerular disease.
Collapse
Affiliation(s)
- Anqun Chen
- Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ye Feng
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nephrology, Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Han Lai
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Zhengzhe Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yu Li
- Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Andrew Wang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Quan Hong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fang Zhong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tianjun Guan
- Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Bichen Liu
- Department of Nephrology, Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Renal Section, James J. Peters VA Medical Center, Bronx, New York, USA
| |
Collapse
|
18
|
Cersosimo F, Lonardi S, Bernardini G, Telfer B, Mandelli GE, Santucci A, Vermi W, Giurisato E. Tumor-Associated Macrophages in Osteosarcoma: From Mechanisms to Therapy. Int J Mol Sci 2020; 21:E5207. [PMID: 32717819 PMCID: PMC7432207 DOI: 10.3390/ijms21155207] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Osteosarcomas (OSs) are bone tumors most commonly found in pediatric and adolescent patients characterized by high risk of metastatic progression and recurrence after therapy. Effective therapeutic management of this disease still remains elusive as evidenced by poor patient survival rates. To achieve a more effective therapeutic management regimen, and hence patient survival, there is a need to identify more focused targeted therapies for OSs treatment in the clinical setting. The role of the OS tumor stroma microenvironment plays a significant part in the development and dissemination of this disease. Important components, and hence potential targets for treatment, are the tumor-infiltrating macrophages that are known to orchestrate many aspects of OS stromal signaling and disease progression. In particular, increased infiltration of M2-like tumor-associated macrophages (TAMs) has been associated with OS metastasis and poor patient prognosis despite currently used aggressive therapies regimens. This review aims to provide a summary update of current macrophage-centered knowledge and to discuss the possible roles that macrophages play in the process of OS metastasis development focusing on the potential influence of stromal cross-talk signaling between TAMs, cancer-stem cells and additional OSs tumoral microenvironment factors.
Collapse
Affiliation(s)
- Francesca Cersosimo
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (F.C.); (G.B.); (A.S.)
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (G.E.M.); (W.V.)
| | - Giulia Bernardini
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (F.C.); (G.B.); (A.S.)
| | - Brian Telfer
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK;
| | - Giulio Eugenio Mandelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (G.E.M.); (W.V.)
| | - Annalisa Santucci
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (F.C.); (G.B.); (A.S.)
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (G.E.M.); (W.V.)
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (F.C.); (G.B.); (A.S.)
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
19
|
Latexin deficiency in mice up-regulates inflammation and aggravates colitis through HECTD1/Rps3/NF-κB pathway. Sci Rep 2020; 10:9868. [PMID: 32555320 PMCID: PMC7299958 DOI: 10.1038/s41598-020-66789-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
The function of Latexin (LXN) in inflammation has attracted attention. However, no data are available regarding its role in colitis. We report that LXN is a suppressor of colitis. LXN deficiency leads to the severity of colitis in DSS-induced mice, and LXN is required for the therapeutic effect of retinoic acid on colitis. Using a proteomics approach, we demonstrate that LXN interacts and forms a functional complex with HECTD1 (an E3 ubiquitin ligase) and ribosomal protein subunit3 (Rps3). IκBα is one of the substrates of HECTD1. Ectopic expression of LXN leads to IκBα accumulation in intestinal epithelial cells, however, LXN knockdown enhances the interaction of HECTD1 and Rps3, contributing to the ubiquitination degradation of IκBα, and subsequently enhances inflammatory response. Thus, our findings provided a novel mechanism underlying LXN modulates colitis via HECTD1/Rps3/NF-κB pathway and significant implications for the development of novel strategies for the treatment of colitis by targeting LXN.
Collapse
|
20
|
Expression of RARRES1 and AGBL2 and progression of conventional renal cell carcinoma. Br J Cancer 2020; 122:1818-1824. [PMID: 32307444 PMCID: PMC7283229 DOI: 10.1038/s41416-020-0798-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Approximately 15% of clinically localised conventional renal cell carcinoma (RCC) will develop metastasis within 5 years of follow-up. The aim of this study was to identify biomarkers predicting the postoperative tumour relapse. METHODS Tissue microarrays of conventional RCC from a cohort of 691 patients without metastasis at the time of operation were analysed by immunohistochemistry for the expression of carboxypeptase inhibitor RARRES1 and its substrate carboxypeptidase AGBL2. Univariate and multivariate Cox regression models were addressed to postoperative tumour relapse and the metastasis-free survival time was estimated by Kaplan-Meier analysis. RESULTS In multivariate analysis, the lack of staining or cytoplasmic staining of RARRES1 was a significant risk factor indicating five times higher risk of cancer relapse. Combining its co-expression with AGBL2, we found that RARRES1 cytoplasmic/negative and AGBL2-positive/negative staining is a significant risk factor for tumour progression indicating 11-15 times higher risk of cancer relapse, whereas the membranous RARRES1 expression, especially its co-expression with AGBL2, associated with excellent disease outcome. CONCLUSIONS RARRES1 and AGBL2 expression defines groups of patients at low and high risk of tumour progression and may direct an active surveillance to detect metastasis as early as possible and to apply adjuvant therapy.
Collapse
|
21
|
Chen J, Zhao X, Ao L, Yin T, Yang J. Transcriptomic changes and potential regulatory mechanism of intrauterine human chorionic gonadotropin co-cultured with peripheral blood mononuclear cells infusion in mice with embryonic implantation dysfunction. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:99. [PMID: 32175392 DOI: 10.21037/atm.2019.12.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background This study aimed to explore whether intrauterine infusion of peripheral blood mononuclear cells (PBMCs) could induce favorable transcriptomic changes in the endometrium for embryo implantation and the potential mechanism. Methods Twenty-one mice were randomly divided to five groups, including a normal pregnancy (NP) group, an embryo implantation dysfunction (EID) group, an EID with human chorionic gonadotropin (hCG) group, an EID with PBMCs group, and an EID with hCG co-cultured with PBMCs group. The endometrium in the implantation window from mice were collected and determined by RNA sequencing (RNA-Seq), and the expression of significantly different genes with high degree of coincidence was recommended and validated by quantitative real-time polymerase chain reaction (qRT-PCR). Results There were totally 1,366 up-regulated and 1,374 down-regulated genes in the EID mice compared with the normal pregnant mice. We selected (fold change ≥2, P<0.05) and verified the candidate genes associated with embryo implantation, immune response and other reproductive processes in previous reports by qRT-PCR. Leukemia inhibitory factor (LIF), solute carrier family 15 member 2 (SLC15A2), retinoic acid receptor responder 1 (RARRES1), vascular cell adhesion molecule 1 (VCAM1) were down-regulated and musculin (MSC), chemokine (C-X-C motif) ligand 14 (CXCL14) were up-regulated significantly in EID group (P<0.05), and the synergistic effects of hCG were seen. In addition, the expression of glucocorticoid receptor (GR)-β in PBMCs of NP mice was higher than that of EID mice, and up-regulated GR-β in EID mice could significantly increase the expression of LIF, SLC15A2, RARRES1 and VCAM1, and decrease the expression of CXCL14 and MSC, which indicated GR-β might be a transcriptional factor of the six genes above. Conclusions Intrauterine PBMCs perfusion might improve the performance of impaired endometrial receptivity by regulating LIF, SLC15A2, RARRES1, VCAM1, MSC as well as CXCL14, and hCG could enhance the effect of PBMCs. In addition, GR-β, as a transcriptional factor, could regulate the six genes in PBMCs.
Collapse
Affiliation(s)
- Jiao Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Hubei Clinical Research Center for Assisted Reproductive and Embryonic Development, Wuhan 430060, China
| | - Xuehan Zhao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Hubei Clinical Research Center for Assisted Reproductive and Embryonic Development, Wuhan 430060, China
| | - Liangfei Ao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Hubei Clinical Research Center for Assisted Reproductive and Embryonic Development, Wuhan 430060, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Hubei Clinical Research Center for Assisted Reproductive and Embryonic Development, Wuhan 430060, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Hubei Clinical Research Center for Assisted Reproductive and Embryonic Development, Wuhan 430060, China
| |
Collapse
|
22
|
Mocker A, Schmidt M, Huebner H, Wachtveitl R, Cordasic N, Menendez-Castro C, Hartner A, Fahlbusch FB. Expression of Retinoid Acid Receptor-Responsive Genes in Rodent Models of Placental Pathology. Int J Mol Sci 2019; 21:ijms21010242. [PMID: 31905805 PMCID: PMC6981780 DOI: 10.3390/ijms21010242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 01/13/2023] Open
Abstract
In humans, retinoic acid receptor responders (RARRES) have been shown to be altered in third trimester placentas complicated by the pathologies preeclampsia (PE) and PE with intrauterine growth restriction (IUGR). Currently, little is known about the role of placental Rarres in rodents. Therefore, we examined the localization and expression of Rarres1 and 2 in placentas obtained from a Wistar rat model of isocaloric maternal protein restriction (E18.5, IUGR-like features) and from an eNOS-knockout mouse model (E15 and E18.5, PE-like features). In both rodent models, Rarres1 and 2 were mainly localized in the placental spongiotrophoblast and giant cells. Their placental expression, as well as the expression of the Rarres2 receptor chemokine-like receptor 1 (CmklR1), was largely unaltered at the examined gestational ages in both animal models. Our results have shown that RARRES1 and 2 may have different expression and roles in human and rodent placentas, thereby underlining immanent limitations of comparative interspecies placentology. Further functional studies are required to elucidate the potential involvement of these proteins in early placentogenesis.
Collapse
Affiliation(s)
- Alexander Mocker
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany; (A.M.); (M.S.); (C.M.-C.); (A.H.)
| | - Marius Schmidt
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany; (A.M.); (M.S.); (C.M.-C.); (A.H.)
| | - Hanna Huebner
- Department of Gynaecology and Obstetrics/Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Rainer Wachtveitl
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany; (R.W.); (N.C.)
| | - Nada Cordasic
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany; (R.W.); (N.C.)
| | - Carlos Menendez-Castro
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany; (A.M.); (M.S.); (C.M.-C.); (A.H.)
| | - Andrea Hartner
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany; (A.M.); (M.S.); (C.M.-C.); (A.H.)
| | - Fabian B. Fahlbusch
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany; (A.M.); (M.S.); (C.M.-C.); (A.H.)
- Correspondence: ; Tel.: +49-9131-853-3118; Fax: +49-9131-853-3714
| |
Collapse
|
23
|
Frame FM, Maitland NJ. Epigenetic Control of Gene Expression in the Normal and Malignant Human Prostate: A Rapid Response Which Promotes Therapeutic Resistance. Int J Mol Sci 2019; 20:E2437. [PMID: 31108832 PMCID: PMC6566891 DOI: 10.3390/ijms20102437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
A successful prostate cancer must be capable of changing its phenotype in response to a variety of microenvironmental influences, such as adaptation to treatment or successful proliferation at a particular metastatic site. New cell phenotypes emerge by selection from the large, genotypically heterogeneous pool of candidate cells present within any tumor mass, including a distinct stem cell-like population. In such a multicellular model of human prostate cancer, flexible responses are primarily governed not only by de novo mutations but appear to be dominated by a combination of epigenetic controls, whose application results in treatment resistance and tumor relapse. Detailed studies of these individual cell populations have resulted in an epigenetic model for epithelial cell differentiation, which is also instructive in explaining the reported high and inevitable relapse rates of human prostate cancers to a multitude of treatment types.
Collapse
Affiliation(s)
- Fiona M Frame
- The Cancer Research Unit, Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| | - Norman J Maitland
- The Cancer Research Unit, Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
24
|
The putative tumour suppressor protein Latexin is secreted by prostate luminal cells and is downregulated in malignancy. Sci Rep 2019; 9:5120. [PMID: 30914656 PMCID: PMC6435711 DOI: 10.1038/s41598-019-41379-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/28/2019] [Indexed: 11/09/2022] Open
Abstract
Loss of latexin (LXN) expression negatively correlates with the prognosis of several human cancers. Despite association with numerous processes including haematopoietic stem cell (HSC) fate, inflammation and tumour suppression, a clearly defined biological role for LXN is still lacking. Therefore, we sought to understand LXN expression and function in the normal and malignant prostate to assess its potential as a therapeutic target. Our data demonstrate that LXN is highly expressed in normal prostate luminal cells but downregulated in high Gleason grade cancers. LXN protein is both cytosolic and secreted by prostate cells and expression is directly and potently upregulated by all-trans retinoic acid (atRA). Whilst overexpression of LXN in prostate epithelial basal cells did not affect cell fate, LXN overexpression in the luminal cancer line LNCaP reduced plating efficiency. Transcriptome analysis revealed that LXN overexpression had no direct effects on gene expression but had significant indirect effects on important genes involved in both retinoid metabolism and IFN-associated inflammatory responses. These data highlight a potential role for LXN in retinoid signaling and inflammatory pathways. Investigating the effects of LXN on immune cell function in the tumour microenvironment (TME) may reveal how observed intratumoural loss of LXN affects the prognosis of many adenocarcinomas.
Collapse
|
25
|
Maimouni S, Lee MH, Sung YM, Hall M, Roy A, Ouaari C, Hwang YS, Spivak J, Glasgow E, Swift M, Patel J, Cheema A, Kumar D, Byers S. Tumor suppressor RARRES1 links tubulin deglutamylation to mitochondrial metabolism and cell survival. Oncotarget 2019; 10:1606-1624. [PMID: 30899431 PMCID: PMC6422194 DOI: 10.18632/oncotarget.26600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022] Open
Abstract
RARRES1, a retinoic acid regulated carboxypeptidase inhibitor associated with fatty acid metabolism, stem cell differentiation and tumorigenesis is among the most commonly methylated loci in multiple cancers but has no known mechanism of action. Here we show that RARRES1 interaction with cytoplasmic carboxypeptidase 2 (CCP2) inhibits tubulin deglutamylation, which in turn regulates the mitochondrial voltage dependent anion channel (VDAC1), mitochondrial membrane potential, AMPK activation, energy balance and metabolically reprograms cells and zebrafish to a more energetic and anabolic phenotype. Depletion of RARRES1 also increases expression of stem cell markers, promotes anoikis, anchorage independent growth and insensitivity to multiple apoptotic stimuli. As depletion of CCP2 or inhibition of VDAC1 reverses the effects of RARRES1 depletion on energy balance and cell survival we conclude that RARRES1 modulation of CCP2-modulated tubulin-mitochondrial VDAC1 interactions is a fundamental regulator of cancer and stem cell metabolism and survival.
Collapse
Affiliation(s)
- Sara Maimouni
- Department of Biochemical, Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Mi-Hye Lee
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - You-Me Sung
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Michael Hall
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Arpita Roy
- University of the District of Columbia, Washington, DC, USA
| | - Chokri Ouaari
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.,University of the District of Columbia, Washington, DC, USA
| | - Yoo-Seok Hwang
- Cancer & Developmental Biology Laboratory, National Cancer Institute-Frederick, Frederick, MD, USA
| | - Justin Spivak
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Eric Glasgow
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Matthew Swift
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Jay Patel
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Amrita Cheema
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Deepak Kumar
- University of the District of Columbia, Washington, DC, USA
| | - Stephen Byers
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.,Department of Biochemical, Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
26
|
Rolfe S, Lee SI, Shapiro L. Associations Between Genetic Data and Quantitative Assessment of Normal Facial Asymmetry. Front Genet 2018; 9:659. [PMID: 30631343 PMCID: PMC6315129 DOI: 10.3389/fgene.2018.00659] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Human facial asymmetry is due to a complex interaction of genetic and environmental factors. To identify genetic influences on facial asymmetry, we developed a method for automated scoring that summarizes local morphology features and their spatial distribution. A genome-wide association study using asymmetry scores from two local symmetry features was conducted and significant genetic associations were identified for one asymmetry feature, including genes thought to play a role in craniofacial disorders and development: NFATC1, SOX5, NBAS, and TCF7L1. These results provide evidence that normal variation in facial asymmetry may be impacted by common genetic variants and further motivate the development of automated summaries of complex phenotypes.
Collapse
Affiliation(s)
- Sara Rolfe
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, United States
| | - Su-In Lee
- Department of Genome Sciences, University of Washington, Seattle, WA, United States.,Department of Computer Science, University of Washington, Seattle, WA, United States
| | - Linda Shapiro
- Department of Computer Science, University of Washington, Seattle, WA, United States
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) produce mature blood cells throughout lifetime. Natural genetic diversity offers an important yet largely untapped reservoir for deciphering regulatory mechanisms of HSCs and hematopoiesis. In this review, we explore the role of latexin, identified by natural variation, in regulating homeostatic and stress hematopoiesis, unravel the underlying signaling pathways, and propose its therapeutic implication. RECENT FINDINGS Latexin acts endogenously in HSCs to negatively regulate their population size by enhancing apoptosis and by decreasing self-renewal. Deletion of latexin in vivo increases HSC repopulation capacity and survival, expands the entire hematopoietic system, and mitigates myelosuppression. Latexin inactivation downregulates thrombospondin 1 (Thbs1). It inhibits nuclear translocation of ribosomal protein subunit 3 (Rps3), a novel latexin-binding protein, and sensitizes hematopoietic cells to radiation-induced cell death. However, how latexin-Rps3 pathway regulates Thbs1 transcription is unclear. Latexin is downregulated in cancer cells because of promoter hypermethylation, but latexin-depleted mice do not inherently develop hematologic malignancies even with aging. The mechanism of action of latexin in tumorigenesis remains largely unknown. SUMMARY Understanding how latexin regulates HSC survival, self-renewal, and stress response will advance our knowledge of HSC biology. It will facilitate the development of a novel therapeutic strategy for hematopoietic regeneration and cancer treatment.
Collapse
|
28
|
Keysar SB, Eagles JR, Miller B, Jackson BC, Chowdhury FN, Reisinger J, Chimed TS, Le PN, Morton JJ, Somerset HL, Varella-Garcia M, Tan AC, Song JI, Bowles DW, Reyland ME, Jimeno A. Salivary Gland Cancer Patient-Derived Xenografts Enable Characterization of Cancer Stem Cells and New Gene Events Associated with Tumor Progression. Clin Cancer Res 2018; 24:2935-2943. [PMID: 29555661 DOI: 10.1158/1078-0432.ccr-17-3871] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/12/2018] [Accepted: 03/14/2018] [Indexed: 02/07/2023]
Abstract
Purpose: Salivary gland cancers (SGC) frequently present with distant metastases many years after diagnosis, suggesting a cancer stem cell (CSC) subpopulation that initiates late recurrences; however, current models are limited both in their availability and suitability to characterize these rare cells.Experimental Design: Patient-derived xenografts (PDX) were generated by engrafting patient tissue onto nude mice from one acinic cell carcinoma (AciCC), four adenoid cystic carcinoma (ACC), and three mucoepidermoid carcinoma (MEC) cases, which were derived from successive relapses from the same MEC patient. Patient and PDX samples were analyzed by RNA-seq and Exome-seq. Sphere formation potential and in vivo tumorigenicity was assessed by sorting for Aldefluor (ALDH) activity and CD44-expressing subpopulations.Results: For successive MEC relapses we found a time-dependent increase in CSCs (ALDH+CD44high), increasing from 0.2% to 4.5% (P=0.033), but more importantly we observed an increase in individual CSC sphere formation and tumorigenic potential. A 50% increase in mutational burden was documented in subsequent MEC tumors, and this was associated with increased expression of tumor-promoting genes (MT1E, LGR5, and LEF1), decreased expression of tumor-suppressor genes (CDKN2B, SIK1, and TP53), and higher expression of CSC-related proteins such as SOX2, MYC, and ALDH1A1. Finally, genomic analyses identified a novel NFIB-MTFR2 fusion in an ACC tumor and confirmed previously reported fusions (NTRK3-ETV6 and MYB-NFIB)Conclusions: Sequential MEC PDX models preserved key patient features and enabled the identification of genetic events putatively contributing to increases in both CSC proportion and intrinsic tumorigenicity, which mirrored the patient's clinical course. Clin Cancer Res; 24(12); 2935-43. ©2018 AACR.
Collapse
Affiliation(s)
- Stephen B Keysar
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado
| | - Justin R Eagles
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado
| | - Bettina Miller
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado
| | - Brian C Jackson
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado
| | | | - Julie Reisinger
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado
| | - Tugs-Saikhan Chimed
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado
| | - Phuong N Le
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado
| | - John J Morton
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado
| | | | - Marileila Varella-Garcia
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado
| | - Aik-Choon Tan
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado.,Department of Biostatistics and Informatics, University of Colorado School of Public Health, Denver, Colorado
| | - John I Song
- Department of Otolaryngology, UCDSOM, Denver, Colorado
| | - Daniel W Bowles
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado
| | - Mary E Reyland
- Department of Craniofacial Biology, University of Colorado Denver School of Dental Medicine, Denver, Colorado
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado. .,Department of Otolaryngology, UCDSOM, Denver, Colorado.,Gates Center for Regenerative Medicine, UCDSOM, Denver, Colorado
| |
Collapse
|
29
|
Huebner H, Hartner A, Rascher W, Strick RR, Kehl S, Heindl F, Wachter DL, Beckmann Md MW, Fahlbusch FB, Ruebner M. Expression and Regulation of Retinoic Acid Receptor Responders in the Human Placenta. Reprod Sci 2017; 25:1357-1370. [PMID: 29246089 DOI: 10.1177/1933719117746761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Retinoic acid (RA) signaling through its receptors (RARA, RARB, RARG, and the retinoic X receptor RXRA) is essential for healthy placental and fetal development. An important group of genes regulated by RA are the RA receptor responders (RARRES1, 2, and 3). We set out to analyze their expression and regulation in healthy and pathologically altered placentas of preeclampsia (PE) and intrauterine growth restriction (IUGR) as well as in trophoblast cell lines. METHODS We performed immunohistochemical staining on placental sections and analyzed gene expression by real-time polymerase chain reaction. Additionally, we performed cell culture experiments and stimulated Swan71 and Jeg-3 cells with different RA derivates and 2'-deoxy-5-azacytidine (AZA) to induce DNA demethylation. RESULTS RARRES1, 2, and 3 and RARA, RARB, RARG, and RXRA are expressed in the extravillous part of the placenta. RARRES1, RARA, RARG, and RXRA were additionally detected in villous cytotrophoblasts. RARRES gene expression was induced via activation of RARA, RARB, and RARG in trophoblast cells. RARRES1 was overexpressed in villous trophoblasts and the syncytiotrophoblast from PE placentas, but not in IUGR without PE. Promoter methylation was detectable for RARRES1 and RARB based on their sensitivity toward AZA treatment of trophoblast cell lines. DISCUSSION RARRES1, 2 and 3 are expressed in the functional compartments of the human placenta and can be regulated by RA. We hypothesize that the epigenetic suppression of trophoblast RARRES1 and RARB expression and the upregulation of RARRES1 in PE trophoblast cells suggest an involvement of environmental factors (eg, maternal vitamin A intake) in the pathogenesis of this pregnancy complication.
Collapse
Affiliation(s)
- Hanna Huebner
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Andrea Hartner
- 2 Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Rascher
- 2 Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Reiner R Strick
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sven Kehl
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Felix Heindl
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - David L Wachter
- 3 Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany * The authors are contributed equally
| | - Matthias W Beckmann Md
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Fabian B Fahlbusch
- 2 Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias Ruebner
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
30
|
Huebner H, Strick R, Wachter DL, Kehl S, Strissel PL, Schneider-Stock R, Hartner A, Rascher W, Horn LC, Beckmann MW, Ruebner M, Fahlbusch FB. Hypermethylation and loss of retinoic acid receptor responder 1 expression in human choriocarcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:165. [PMID: 29169400 PMCID: PMC5701501 DOI: 10.1186/s13046-017-0634-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/13/2017] [Indexed: 01/06/2023]
Abstract
Background Human placental development resembles tumorigenesis, due to the invasive and fusogenic potential of trophoblasts. However, these features are tightly controlled in trophoblasts. Disturbance of this spatial and temporal regulation is thought to contribute to the rare formation of choriocarcinomas. Promoter hypermethylation and loss of the tumor suppressor Retinoic acid receptor responder 1 (RARRES1) were shown to contribute to cancer progression. Our study investigated the epigenetic and transcriptional regulation of RARRES1 in healthy human placenta in comparison to choriocarcinoma cell lines and cases. Methods Three choriocarcinoma cell lines (Jeg-3, JAR and BeWo) were treated with three different retinoic acid derivates (Am580, Tazarotene and all-trans retinoic acid) and 5-aza-2′-deoxycytidine. We analyzed RARRES1 promoter methylation by pyrosequencing and performed realtime-PCR quantification to determine RARRES1 expression in placental tissue and trophoblastic cell lines. Additionally, RARRES1 was stained in healthy placentas and in biopsies of choriocarcinoma cases (n = 10) as well as the first trimester trophoblast cell line Swan71 by immunofluorescence and immunohistochemistry. Results In the choriocarcinoma cell lines, RARRES1 expression could not be induced by sole retinoic acid treatment. Stimulation with 5-aza-2′-deoxycytidine significantly induced RARRES1 expression, which then could be further increased with Am580, Tazarotene and all-trans retinoic acid. In comparison to healthy placenta, choriocarcinoma cell lines showed a hypermethylation of the RARRES1 promoter, which correlated with a reduced RARRES1 expression. In concordance, RARRES1 protein expression was lost in choriocarcinoma tissue. Additionally, in the trophoblastic cell line Swan71, we found a significant induction of RARRES1 expression with increased cell density, during mitosis and in syncytial knots. Conclusions Our findings showed that RARRES1 expression is absent in choriocarcinoma due to promoter methylation. Based on our analysis, we hypothesize that RARRES1 might exert tumor suppressive functions in multiple cellular processes (e.g. cell cycle regulation, adhesion, invasion and apoptosis). Electronic supplementary material The online version of this article (10.1186/s13046-017-0634-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- H Huebner
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - R Strick
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - D L Wachter
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - S Kehl
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - P L Strissel
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - R Schneider-Stock
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - A Hartner
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Loschgestraße 15, 91054 Erlangen, Erlangen, Germany
| | - W Rascher
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Loschgestraße 15, 91054 Erlangen, Erlangen, Germany
| | - L C Horn
- Division Molecular Pathology, Institute of Pathology, University of Leipzig, Leipzig, Germany
| | - M W Beckmann
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - M Ruebner
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - F B Fahlbusch
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Loschgestraße 15, 91054 Erlangen, Erlangen, Germany.
| |
Collapse
|
31
|
Zhou Q, Xian M, Xiang S, Xiang D, Shao X, Wang J, Cao J, Yang X, Yang B, Ying M, He Q. All-Trans Retinoic Acid Prevents Osteosarcoma Metastasis by Inhibiting M2 Polarization of Tumor-Associated Macrophages. Cancer Immunol Res 2017; 5:547-559. [PMID: 28515123 DOI: 10.1158/2326-6066.cir-16-0259] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/24/2017] [Accepted: 05/12/2017] [Indexed: 12/22/2022]
Abstract
M2-polarized tumor-associated macrophages (TAM) play a critical role in cancer invasion and metastasis. Here, we report that M2 macrophages enhanced metastasis of K7M2 WT osteosarcoma cells to the lungs in mice, thus establishing M2 TAMs as a therapeutic target for blocking osteosarcoma metastasis. We found that all-trans retinoic acid (ATRA) inhibited osteosarcoma metastasis via inhibiting the M2 polarization of TAMs. ATRA suppressed IL13- or IL4-induced M2-type macrophages, and then inhibited migration of osteosarcoma cells as promoted by M2-type macrophages in vitro ATRA reduced the number of pulmonary metastatic nodes of osteosarcoma and decreased expression of M2-type macrophages in metastatic nodes both in intravenous injection and orthotopic transplantation models. ATRA's effect was independent of conventional STAT3/6 or C/EBPβ signaling, which regulate M2-like polarization of macrophages. Quantitative genomic and functional analyses revealed that MMP12, a macrophage-secreted elastase, was elevated in IL13-skewed TAM polarization, whereas ATRA treatment downregulated IL13-induced secretion of MMP12. This downregulation correlates with the antimetastasis effect of ATRA. Our results show the role of TAM polarization in osteosarcoma metastasis, identify a therapeutic opportunity for antimetastasis treatment, and indicate ATRA treatment as an approach for preventing osteosarcoma metastasis via M2-type polarization intervention. Cancer Immunol Res; 5(7); 547-59. ©2017 AACR.
Collapse
Affiliation(s)
- Qian Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Miao Xian
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Senfeng Xiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Danyan Xiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuejing Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jincheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaochun Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
32
|
Lu CS, Shieh GS, Wang CT, Su BH, Su YC, Chen YC, Su WC, Wu P, Yang WH, Shiau AL, Wu CL. Chemotherapeutics-induced Oct4 expression contributes to drug resistance and tumor recurrence in bladder cancer. Oncotarget 2017; 8:30844-30858. [PMID: 27244887 PMCID: PMC5458172 DOI: 10.18632/oncotarget.9602] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 04/23/2016] [Indexed: 12/18/2022] Open
Abstract
Cancer cells initially characterized as sensitive to chemotherapy may acquire resistance to chemotherapy and lead to tumor recurrence through the expansion of drug-resistant population. Acquisition of drug resistance to conventional chemotherapy is a major obstacle in the treatment of recurrent cancer. Here we investigated whether anticancer drugs induced Oct4 expression, thereby contributing to acquired drug resistance and tumor recurrence in bladder cancer. We identified a positive correlation of Oct4 expression with tumor recurrence in 122 clinical specimens of superficial high-grade (stages T1-2) bladder transitional cell carcinoma (TCC). Increased Oct4 levels in bladder tumors were associated with short recurrence-free intervals in the patients. Chemotherapy induced Oct4 expression in bladder cancer cells. Notably, treatment with cisplatin increased CD44-positive bladder cancer cells expressing Oct4, representing cancer stem-like cell subpopulation. Forced expression of Oct4 reduced, whereas knockdown of Oct4 enhanced, drug sensitivity in bladder cancer cells. Furthermore, tumor cells overexpressing Oct4 responded poorly to cisplatin in vivo. In regard to clinical relevance, inhibition of Oct4 by all-trans retinoic acid (ATRA) synergistically increased sensitivity to cisplatin in bladder cancer cells. Furthermore, the combination of cisplatin and ATRA was superior to cisplatin alone in suppressing tumor growth. Therefore, our results provide evidence that Oct4 increases drug resistance and implicate that inhibition of Oct4 may be a therapeutic strategy to circumvent drug resistance.
Collapse
Affiliation(s)
- Chia-Sing Lu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Gia-Shing Shieh
- Department of Urology, Tainan Hospital, Ministry of Health and Welfare, Executive Yuan, Tainan, Taiwan
| | - Chung-Teng Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bing-Hua Su
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chu Su
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Cheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wu-Chou Su
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pensee Wu
- Institute for Science & Technology in Medicine, Keele University, Keele, United Kingdom
| | - Wen-Horng Yang
- Department of Urology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ai-Li Shiau
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Liang Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
33
|
MT4-MMP and EGFR expression levels are key biomarkers for breast cancer patient response to chemotherapy and erlotinib. Br J Cancer 2017; 116:742-751. [PMID: 28196064 PMCID: PMC5355928 DOI: 10.1038/bjc.2017.23] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/05/2017] [Indexed: 12/14/2022] Open
Abstract
Background: Triple-negative breast cancers (TNBC) are heterogeneous cancers with poor prognosis. We aimed to determine the clinical relevance of membrane type-4 matrix metalloproteinase (MT4-MMP), a membrane type matrix metalloproteinase that interacts with epidermal growth factor receptor (EGFR) overexpressed in >50% of TNBC. Methods: We conducted a retrospective immunohistochemical analysis on human TNBC samples (n=81) and validated our findings in in vitro and in vivo assays. Results: Membrane type-4 matrix metalloproteinase and EGFR are produced in 72.5% of TNBC samples, whereas those proteins are faintly produced by healthy tissues. Unexpectedly, tumour relapse after chemotherapy was reduced in samples highly positive for MT4-MMP. Mechanistically, this is ascribed to a higher sensitivity of MT4-MMP-producing cells to alkylating or intercalating chemotherapeutic agents, as assessed in vitro. In sharp contrast, MT4-MMP expression did not affect tumour cell sensitivity to paclitaxel that interferes with protease trafficking. Importantly, MT4-MMP expression sensitised cancer cells to erlotinib, a tyrosine kinase EGFR inhibitor. In a pre-clinical model, the growth of MT4-MMP overexpressing xenografts, but not of control ones, was reduced by epirubicin or erlotinib. The combination of suboptimal drug doses blocked drastically the growth of MT4-MMP-producing tumours. Conclusions: We demonstrate that MT4-MMP defines a sub-population of TNBC sensitive to a combination of DNA-targeting chemotherapeutic agents and anti-EGFR drugs.
Collapse
|
34
|
Basu B, Chakraborty J, Chandra A, Katarkar A, Baldevbhai JRK, Dhar Chowdhury D, Ray JG, Chaudhuri K, Chatterjee R. Genome-wide DNA methylation profile identified a unique set of differentially methylated immune genes in oral squamous cell carcinoma patients in India. Clin Epigenetics 2017; 9:13. [PMID: 28174608 PMCID: PMC5292006 DOI: 10.1186/s13148-017-0314-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/19/2017] [Indexed: 01/06/2023] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is one of the common malignancies in Southeast Asia. Epigenetic changes, mainly the altered DNA methylation, have been implicated in many cancers. Considering the varied environmental and genotoxic exposures among the Indian population, we conducted a genome-wide DNA methylation study on paired tumor and adjacent normal tissues of ten well-differentiated OSCC patients and validated in an additional 53 well-differentiated OSCC and adjacent normal samples. Results Genome-wide DNA methylation analysis identified several novel differentially methylated regions associated with OSCC. Hypermethylation is primarily enriched in the CpG-rich regions, while hypomethylation is mainly in the open sea. Distinct epigenetic drifts for hypo- and hypermethylation across CpG islands suggested independent mechanisms of hypo- and hypermethylation in OSCC development. Aberrant DNA methylation in the promoter regions are concomitant with gene expression. Hypomethylation of immune genes reflect the lymphocyte infiltration into the tumor microenvironment. Comparison of methylome data with 312 TCGA HNSCC samples identified a unique set of hypomethylated promoters among the OSCC patients in India. Pathway analysis of unique hypomethylated promoters indicated that the OSCC patients in India induce an anti-tumor T cell response, with mobilization of T lymphocytes in the neoplastic environment. Survival analysis of these epigenetically regulated immune genes suggested their prominent role in OSCC progression. Conclusions Our study identified a unique set of hypomethylated regions, enriched in the promoters of immune response genes, and indicated the presence of a strong immune component in the tumor microenvironment. These methylation changes may serve as potential molecular markers to define risk and to monitor the prognosis of OSCC patients in India. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0314-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Baidehi Basu
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, 700108 India
| | - Joyeeta Chakraborty
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, 700108 India
| | - Aditi Chandra
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, 700108 India
| | - Atul Katarkar
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, 700108 India.,Molecular Genetics Division, CSIR-Indian Institute of Chemical biology, 4 Raja S C Mullick Road, Kolkata, 700 032 India
| | | | | | - Jay Gopal Ray
- Dr. R Ahmed Dental College & Hospital, 114, A J C Bose Road, Kolkata, India
| | - Keya Chaudhuri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical biology, 4 Raja S C Mullick Road, Kolkata, 700 032 India
| | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, 700108 India
| |
Collapse
|
35
|
Zhang M, Osisami M, Dai J, Keller JM, Escara-Wilke J, Mizokami A, Keller ET. Bone Microenvironment Changes in Latexin Expression Promote Chemoresistance. Mol Cancer Res 2017; 15:457-466. [PMID: 28087740 DOI: 10.1158/1541-7786.mcr-16-0392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023]
Abstract
Although docetaxel is the standard of care for advanced prostate cancer, most patients develop resistance to docetaxel. Therefore, elucidating the mechanism that underlies resistance to docetaxel is critical to enhance therapeutic intervention. Mining cDNA microarray from the PC-3 prostate cancer cell line and its docetaxel-resistant derivative (PC3-TxR) revealed decreased latexin (LXN) expression in the resistant cells. LXN expression was inversely correlated with taxane resistance in a panel of prostate cancer cell lines. LXN knockdown conferred docetaxel resistance to prostate cancer cells in vitro and in vivo, whereas LXN overexpression reduced docetaxel resistance in several prostate cancer cell lines. A mouse model of prostate cancer demonstrated that prostate cancer cells developed resistance to docetaxel in the bone microenvironment, but not the soft tissue microenvironment. This was associated with decreased LXN expression in prostate cancer cells in the bone microenvironment compared with the soft tissue microenvironment. It was identified that bone stromal cells decreased LXN expression through methylation and induced chemoresistance in prostate cancer in vitro These findings reveal that a subset of prostate cancer develops docetaxel resistance through loss of LXN expression associated with methylation and that the bone microenvironment promotes this drug resistance phenotype.Implications: This study suggests that the LXN pathway should be further explored as a viable target for preventing or reversing taxane resistance in prostate cancer. Mol Cancer Res; 15(4); 457-66. ©2017 AACR.
Collapse
Affiliation(s)
- Mi Zhang
- Department of Urology, University of Michigan, Ann Arbor, Michigan.,Clinical Medicine Program, Xiangya Hospital, Central South University, Changsha, China
| | - Mary Osisami
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Jinlu Dai
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Jill M Keller
- Department of Urology, University of Michigan, Ann Arbor, Michigan.,Unit for Laboratory Animal Medicine, University of Michigan; Ann Arbor, Michigan
| | | | | | - Evan T Keller
- Department of Urology, University of Michigan, Ann Arbor, Michigan. .,Biointerfaces Institute, University of Michigan; Ann Arbor, Michigan
| |
Collapse
|
36
|
Re: The Early Effects of Rapid Androgen Deprivation on Human Prostate Cancer. Eur Urol 2016; 71:302-303. [PMID: 27638091 DOI: 10.1016/j.eururo.2016.08.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 08/27/2016] [Indexed: 11/21/2022]
|
37
|
Ruiz-Laguna J, Vélez JM, Pueyo C, Abril N. Global gene expression profiling using heterologous DNA microarrays to analyze alterations in the transcriptome of Mus spretus mice living in a heavily polluted environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:5853-5867. [PMID: 26590064 DOI: 10.1007/s11356-015-5824-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
Microarray platforms are a good approach for assessing biological responses to pollution as they enable the simultaneous analyses of changes in the expression of thousands of genes. As an omic and non-targeted methodology, this technique is open to unforeseen responses under particular environmental conditions. In this study, we successfully apply a commercial oligonucleotide microarray containing Mus musculus whole-genome probes to compare and assess the biological effects of living in a heavily polluted settlement, the Domingo Rubio stream (DRS), at the Huelva Estuary (SW Spain), on inhabitant free-living Mus spretus mice. Our microarray results show that mice living in DRS suffer dramatic changes in gene and protein expression compared with reference specimens. DRS mice showed alteration in the oxidative status of hepatocytes, with activation of both the innate and the acquired immune responses and the induction of chronic inflammation, accompanied by metabolic alterations that imply the accumulation of lipids in the liver (hepatic steatosis). The identified deregulated genes may be useful as biomarkers of environmental pollution.
Collapse
Affiliation(s)
- Julia Ruiz-Laguna
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071, Córdoba, Spain
| | - José M Vélez
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071, Córdoba, Spain
| | - Carmen Pueyo
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071, Córdoba, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071, Córdoba, Spain.
| |
Collapse
|
38
|
Soga T, Lim WL, Khoo ASB, Parhar IS. Kisspeptin Activates Ankrd 26 Gene Expression in Migrating Embryonic GnRH Neurons. Front Endocrinol (Lausanne) 2016; 7:15. [PMID: 26973595 PMCID: PMC4771921 DOI: 10.3389/fendo.2016.00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/28/2016] [Indexed: 12/27/2022] Open
Abstract
Kisspeptin, a newly discovered neuropeptide, regulates gonadotropin-releasing hormone (GnRH). Kisspeptins are a large RF-amide family of peptides. The kisspeptin coded by KiSS-1 gene is a 145-amino acid protein that is cleaved to C-terminal peptide kisspeptin-10. G-protein-coupled receptor 54 (GPR54) has been identified as a kisspeptin receptor, and it is expressed in GnRH neurons and in a variety of cancer cells. In this study, enhanced green fluorescent protein (EGFP) labeled GnRH cells with migratory properties, which express GPR54, served as a model to study the effects of kisspeptin on cell migration. We monitored EGFP-GnRH neuronal migration in brain slide culture of embryonic day 14 transgenic rat by live cell imaging system and studied the effects of kisspeptin-10 (1 nM) treatment for 36 h on GnRH migration. Furthermore, to determine kisspeptin-induced molecular pathways related with apoptosis and cytoskeletal changes during neuronal migration, we studied the expression levels of candidate genes in laser-captured EGFP-GnRH neurons by real-time PCR. We found that there was no change in the expression level of genes related to cell proliferation and apoptosis. The expression of ankyrin repeat domain-containing protein (ankrd) 26 in EGFP-GnRH neurons was upregulated by the exposure to kisspeptin. These studies suggest that ankrd 26 gene plays an unidentified role in regulating neuronal movement mediated by kisspeptin-GPR54 signaling, which could be a potential pathway to suppress cell migration.
Collapse
Affiliation(s)
- Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Wei Ling Lim
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Alan Soo-Beng Khoo
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Ishwar S. Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
- *Correspondence: Ishwar S. Parhar,
| |
Collapse
|
39
|
Frame FM, Pellacani D, Collins AT, Maitland NJ. Harvesting Human Prostate Tissue Material and Culturing Primary Prostate Epithelial Cells. Methods Mol Biol 2016; 1443:181-201. [PMID: 27246341 DOI: 10.1007/978-1-4939-3724-0_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In order to fully explore the biology of a complex solid tumor such as prostate cancer, it is desirable to work with patient tissue. Only by working with cells from a tissue can we take into account patient variability and tumor heterogeneity. Cell lines have long been regarded as the workhorse of cancer research and it could be argued that they are of most use when considered within a panel of cell lines, thus taking into account specified mutations and variations in phenotype between different cell lines. However, often very different results are obtained when comparing cell lines to primary cells cultured from tissue. It stands to reason that cells cultured from patient tissue represents a close-to-patient model that should and does produce clinically relevant data. This chapter aims to illustrate the methods of processing, storing and culturing cells from prostate tissue, with a description of potential uses.
Collapse
Affiliation(s)
- Fiona M Frame
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, North Yorkshire, YO10 5DD, UK.
| | - Davide Pellacani
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | - Anne T Collins
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | - Norman J Maitland
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, North Yorkshire, YO10 5DD, UK.
| |
Collapse
|
40
|
Xue Z, Zhou Y, Wang C, Zheng J, Zhang P, Zhou L, Wu L, Shan Y, Ye M, He Y, Cai Z. Latexin exhibits tumor-suppressor potential in pancreatic ductal adenocarcinoma. Oncol Rep 2015; 35:50-8. [PMID: 26530530 PMCID: PMC4699618 DOI: 10.3892/or.2015.4353] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/16/2015] [Indexed: 12/29/2022] Open
Abstract
Recent studies suggest that latexin (Lxn) expression is involved in stem cell regulation and that it plays significant roles in tumor cell migration and invasion. The clinicopathological significance of Lxn expression and its possible correlation with CD133 expression in pancreatic ductal adenocarcinoma (PDAC) is currently unknown. In the present study, immunohistochemical analysis was performed to determine Lxn and CD133 expression in 43 PDAC patient samples and in 32 corresponding adjacent non-cancerous samples. The results were analyzed and compared with patient age, gender, tumor site and size, histological grade, clinical stage and overall mean survival time. Lxn expression was clearly decreased in the PDAC tissues compared with that in the adjacent non-cancerous tissues, while CD133 expression was increased. Low Lxn expression in the PDAC tissues was significantly correlated with tumor size (P=0.002), histological grade (P=0.000), metastasis (P=0.007) and clinical stage (P=0.018), but not with age (P=0.451), gender (P=0.395) or tumor site (P=0.697). Kaplan-Meier survival analysis revealed that low Lxn expression was significantly correlated with reduced overall survival time (P=0.000). Furthermore, Lxn expression was found to be inversely correlated with CD133 expression (r=−0.485, P=0.001). Furthermore, CD133-positive MIA PaCa-2 pancreatic tumor cells were sorted by magnetic-activated cell sorting (MACS), and those that overexpressed Lxn exhibited a significantly higher rate of apoptosis and lower proliferative activity. Our findings suggest that Lxn may function as a tumor suppressor that targets CD133-positive pancreatic cancer cells.
Collapse
Affiliation(s)
- Zhanxiong Xue
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yuhui Zhou
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Cheng Wang
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jihang Zheng
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Pu Zhang
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lingling Zhou
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Liang Wu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yunfeng Shan
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Mengsi Ye
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yun He
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhenzhai Cai
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
41
|
Saraee F, Sagha M, Mohseni Kouchesfehani H, Abdanipour A, Maleki M, Nikougoftar M. Biological parameters influencing the human umbilical cord-derived mesenchymal stem cells' response to retinoic acid. Biofactors 2014; 40:624-635. [PMID: 25408532 DOI: 10.1002/biof.1192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/16/2014] [Accepted: 11/02/2014] [Indexed: 12/14/2022]
Abstract
Human umbilical cord-derived mesenchymal stem cells (HUCMSCs) are multipotent fetal stem cells that differentiate into various cell lineages. In recent years, they have gained attention for therapeutic applications but very little is known about their sensitivity to chemical agents such as widely used retinoic acid (RA). As a morphogen inducing differentiation of mesenchymal stem cells, RA has for a long time been known to be a potent teratogen promoting craniofacial and limb abnormality in vertebrate embryos. Here, using MTT assay and EB/AO staining as well as TUNEL assay we show that RA in a concentration-dependent manner induces apoptosis through upregulating Caspase expression and increasing Bax/Bcl2 ratio. Moreover, different biological parameters such as initial time seeding, cell density, passage number and duration of RA treatment play a major role in HUCMSCs cytotoxic response to this agent.
Collapse
Affiliation(s)
- Farnoosh Saraee
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Animal Sciences, School of Life Sciences, University of Kharazmi, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
42
|
You Y, Wen R, Pathak R, Li A, Li W, St Clair D, Hauer-Jensen M, Zhou D, Liang Y. Latexin sensitizes leukemogenic cells to gamma-irradiation-induced cell-cycle arrest and cell death through Rps3 pathway. Cell Death Dis 2014; 5:e1493. [PMID: 25341047 PMCID: PMC4237263 DOI: 10.1038/cddis.2014.443] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 11/09/2022]
Abstract
Leukemia is a leading cause of cancer death. Recently, the latexin (Lxn) gene was identified as a potential tumor suppressor in several types of solid tumors and lymphoma, and Lxn expression was found to be absent or downregulated in leukemic cells. Whether Lxn functions as a tumor suppressor in leukemia and what molecular and cellular mechanisms are involved are unknown. In this study, the myeloid leukemogenic FDC-P1 cell line was used as a model system and Lxn was ectopically expressed in these cells. Using the protein pull-down assay and mass spectrometry, ribosomal protein subunit 3 (Rps3) was identified as a novel Lxn binding protein. Ectopic expression of Lxn inhibited FDC-P1 growth in vitro. More surprisingly, Lxn enhanced gamma irradiation-induced DNA damages and induced cell-cycle arrest and massive necrosis, leading to depletion of FDC-P1 cells. Mechanistically, Lxn inhibited the nuclear translocation of Rps3 upon radiation, resulting in abnormal mitotic spindle formation and chromosome instability. Rps3 knockdown increased the radiation sensitivity of FDC-P1, confirming that the mechanism of action of Lxn is mediated by Rps3 pathway. Moreover, Lxn enhanced the cytotoxicity of chemotherapeutic agent, VP-16, on FDC-P1 cells. Our study suggests that Lxn itself not only suppresses leukemic cell growth but also potentiates the cytotoxic effect of radio- and chemotherapy on cancer cells. Lxn could be a novel molecular target that improves the efficacy of anti-cancer therapy.
Collapse
Affiliation(s)
- Y You
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - R Wen
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - R Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - A Li
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - W Li
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - D St Clair
- Gratuate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - M Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - D Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Y Liang
- 1] Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA [2] Gratuate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
43
|
Narvekar M, Xue HY, Tran NT, Mikhael M, Wong HL. A new nanostructured carrier design including oil to enhance the pharmaceutical properties of retinoid therapy and its therapeutic effects on chemo-resistant ovarian cancer. Eur J Pharm Biopharm 2014; 88:226-37. [DOI: 10.1016/j.ejpb.2014.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/17/2014] [Accepted: 04/28/2014] [Indexed: 02/06/2023]
|
44
|
Transcriptome profiling of the theca interna in transition from small to large antral ovarian follicles. PLoS One 2014; 9:e97489. [PMID: 24830430 PMCID: PMC4022581 DOI: 10.1371/journal.pone.0097489] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/17/2014] [Indexed: 11/19/2022] Open
Abstract
The theca interna layer of the ovarian follicle forms during the antral stage of follicle development and lies adjacent to and directly outside the follicular basal lamina. It supplies androgens and communicates with the granulosa cells and the oocyte by extracellular signaling. To better understand developmental changes in the theca interna, we undertook transcriptome profiling of the theca interna from small (3-5 mm, n = 10) and large (9-12 mm, n = 5) healthy antral bovine follicles, representing a calculated >7-fold increase in the amount of thecal tissue. Principal Component Analysis and hierarchical classification of the signal intensity plots for the arrays showed no clustering of the theca interna samples into groups depending on follicle size or subcategories of small follicles. From the over 23,000 probe sets analysed, only 76 were differentially expressed between large and small healthy follicles. Some of the differentially expressed genes were associated with processes such as myoblast differentiation, protein ubiquitination, nitric oxide and transforming growth factor β signaling. The most significant pathway affected from our analyses was found to be Wnt signaling, which was suppressed in large follicles via down-regulation of WNT2B and up-regulation of the inhibitor FRZB. These changes in the transcriptional profile could have been due to changes in cellular function or alternatively since the theca interna is composed of a number of different cell types it could have been due to any systematic change in the volume density of any particular cell type. However, our study suggests that the transcriptional profile of the theca interna is relatively stable during antral follicle development unlike that of granulosa cells observed previously. Thus both the cellular composition and cellular behavior of the theca interna and its contribution to follicular development appear to be relatively constant throughout the follicle growth phase examined.
Collapse
|
45
|
Rane J, Droop A, Pellacani D, Polson E, Simms M, Collins A, Caves L, Maitland N. Conserved two-step regulatory mechanism of human epithelial differentiation. Stem Cell Reports 2014; 2:180-8. [PMID: 24527392 PMCID: PMC3923223 DOI: 10.1016/j.stemcr.2014.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 12/11/2022] Open
Abstract
Human epithelia are organized in a hierarchical structure, where stem cells generate terminally differentiated cells via intermediate progenitors. This two-step differentiation process is conserved in all tissues, but it is not known whether a common gene set contributes to its regulation. Here, we show that retinoic acid (RA) regulates early human prostate epithelial differentiation by activating a tightly coexpressed set of 80 genes (e.g., TMPRSS2). Response kinetics suggested that some of these genes could be direct RA targets, whereas others are probably responding indirectly to RA stimulation. Comparative bioinformatic analyses of published tissue-specific microarrays and a large-scale transcriptomic data set revealed that these 80 genes are not only RA responsive but also significantly coexpressed in many human cell systems. The same gene set preferentially responds to androgens during terminal prostate epithelial differentiation, implying a cell-type-dependent interplay between RA and tissue-specific transcription factor-mediated signaling in regulating the two steps of epithelial differentiation. Four sets of coexpressed genes mark primary human prostate stem cell differentiation These gene sets are also tightly coexpressed in >150 human cell types Retinoic acid induces early differentiation while upregulating one of the gene sets Androgens preferentially regulate the same gene set during terminal differentiation
Collapse
Affiliation(s)
- Jayant K. Rane
- YCR Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire YO10 5DD, UK
| | - Alastair P. Droop
- YCR Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire YO10 5DD, UK
- York Centre for Complex Systems Analysis and Department of Biology, University of York, York, North Yorkshire YO10 5DD, UK
| | - Davide Pellacani
- YCR Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire YO10 5DD, UK
| | - Euan S. Polson
- YCR Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire YO10 5DD, UK
| | - Matthew S. Simms
- Department of Urology, Castle Hill Hospital, Cottingham, Humberside HU16 5JQ, UK
- Hull York Medical School, University of Hull, Hull, Humberside HU6 7RX, UK
| | - Anne T. Collins
- YCR Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire YO10 5DD, UK
| | - Leo S.D. Caves
- York Centre for Complex Systems Analysis and Department of Biology, University of York, York, North Yorkshire YO10 5DD, UK
| | - Norman J. Maitland
- YCR Cancer Research Unit, Department of Biology, University of York, York, North Yorkshire YO10 5DD, UK
- Corresponding author
| |
Collapse
|