1
|
Broomfield BJ, Tan CW, Qin RZ, Abberger H, Duckworth BC, Alvarado C, Dalit L, Lee CL, Shandre Mugan R, Mazrad ZA, Muramatsu H, Mackiewicz L, Williams BE, Chen J, Takanashi A, Fabb S, Pellegrini M, Rogers KL, Moon WJ, Pouton CW, Davis MJ, Nutt SL, Pardi N, Wimmer VC, Groom JR. Transient inhibition of type I interferon enhances CD8+ T cell stemness and vaccine protection. J Exp Med 2025; 222:e20241148. [PMID: 40062995 PMCID: PMC11893171 DOI: 10.1084/jem.20241148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/25/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Developing vaccines that promote CD8+ T cell memory is a challenge for infectious disease and cancer immunotherapy. TCF-1+ stem cell-like memory CD8+ T (TSCM) cells are important determinants of long-lived memory. Yet, the developmental requirements for TSCM cell formation are unclear. Here, we identify the temporal window for type I interferon receptor (IFNAR) blockade to drive TSCM cell generation following viral infection and mRNA-lipid nanoparticle vaccination. We reveal a reversible developmental trajectory where transcriptionally distinct TSCM cells emerged from a transitional precursor of exhausted T cellular state concomitant with viral clearance. TSCM cell differentiation correlated with T cell retention within the lymph node paracortex due to disrupted CXCR3 chemokine gradient formation. These effects were linked to increased antigen load and a counterintuitive increase in IFNγ, which controlled cell location. Vaccination with the IFNAR blockade promoted TSCM cell differentiation and enhanced protection against chronic infection. These findings propose an approach to vaccine design whereby modulation of inflammation promotes memory formation and function.
Collapse
Affiliation(s)
- Benjamin J. Broomfield
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Chin Wee Tan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Raymond Z. Qin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Hanna Abberger
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Brigette C. Duckworth
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Carolina Alvarado
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Lennard Dalit
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Chee Leng Lee
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Rekha Shandre Mugan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Zihnil A.I. Mazrad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Liana Mackiewicz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Bailey E. Williams
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Jinjin Chen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Asuka Takanashi
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Stewart Fabb
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Marc Pellegrini
- Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, Australia
| | - Kelly L. Rogers
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | | | - Colin W. Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Melissa J. Davis
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Stephen L. Nutt
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Verena C. Wimmer
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Joanna R. Groom
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
2
|
Saxena R, Gottlin EB, Campa MJ, He YW, Patz EF. Complement regulators as novel targets for anti-cancer therapy: A comprehensive review. Semin Immunol 2025; 77:101931. [PMID: 39826189 DOI: 10.1016/j.smim.2025.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/04/2025] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Cancer remains a formidable global health challenge requiring the continued exploration of innovative therapeutic approaches. While traditional treatment strategies including surgery, chemotherapy, and radiation therapy have had some success, primarily in early-stage disease, the quest for more targeted, personalized, safer, and effective therapies remains an ongoing pursuit. Over the past decade, significant advances in the field of tumor immunology have dramatically shifted a focus towards immunotherapy, although the ability to harness and coopt the immune system to treat cancer is still just beginning to be realized. One important area that has yet to be fully explored is the complement system, an integral part of innate immunity that has gathered attention recently as a source of potential targets for anti-cancer therapy. The complement system has a complex and context dependent role in cancer biology in that it not only contributes to immune surveillance but also may promote tumor progression. Complement regulators, including CD46, CD55, CD59, and complement factor H, exercise defined control over complement activation, and have also been acknowledged for their role in the tumor microenvironment. This review explores the intricate role of complement regulators in cancer development and progression, examining their potential as therapeutic targets, current strategies, challenges, and the evolving landscape of clinical research.
Collapse
Affiliation(s)
- Ruchi Saxena
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Elizabeth B Gottlin
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael J Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - You-Wen He
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Edward F Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Alekseeva ON, Hoa LT, Vorobyev PO, Kochetkov DV, Gumennaya YD, Naberezhnaya ER, Chuvashov DO, Ivanov AV, Chumakov PM, Lipatova AV. Receptors and Host Factors for Enterovirus Infection: Implications for Cancer Therapy. Cancers (Basel) 2024; 16:3139. [PMID: 39335111 PMCID: PMC11430599 DOI: 10.3390/cancers16183139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Enteroviruses, with their diverse clinical manifestations ranging from mild or asymptomatic infections to severe diseases such as poliomyelitis and viral myocarditis, present a public health threat. However, they can also be used as oncolytic agents. This review shows the intricate relationship between enteroviruses and host cell factors. Enteroviruses utilize specific receptors and coreceptors for cell entry that are critical for infection and subsequent viral replication. These receptors, many of which are glycoproteins, facilitate virus binding, capsid destabilization, and internalization into cells, and their expression defines virus tropism towards various types of cells. Since enteroviruses can exploit different receptors, they have high oncolytic potential for personalized cancer therapy, as exemplified by the antitumor activity of certain enterovirus strains including the bioselected non-pathogenic Echovirus type 7/Rigvir, approved for melanoma treatment. Dissecting the roles of individual receptors in the entry of enteroviruses can provide valuable insights into their potential in cancer therapy. This review discusses the application of gene-targeting techniques such as CRISPR/Cas9 technology to investigate the impact of the loss of a particular receptor on the attachment of the virus and its subsequent internalization. It also summarizes the data on their expression in various types of cancer. By understanding how enteroviruses interact with specific cellular receptors, researchers can develop more effective regimens of treatment, offering hope for more targeted and efficient therapeutic strategies.
Collapse
Affiliation(s)
- Olga N. Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Le T. Hoa
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pavel O. Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Dmitriy V. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Yana D. Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Elizaveta R. Naberezhnaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Denis O. Chuvashov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Peter M. Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Anastasia V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| |
Collapse
|
4
|
Bharti R, Dey G, Lin F, Lathia J, Reizes O. CD55 in cancer: Complementing functions in a non-canonical manner. Cancer Lett 2022; 551:215935. [PMID: 36216147 PMCID: PMC11019835 DOI: 10.1016/j.canlet.2022.215935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022]
Abstract
CD55, or decay accelerating factor, is a membrane lipid microdomain-associated, GPI-anchored protein implicated in the shielding of cells from complement-mediated attack via accelerating decay of C3 and C5. Loss of CD55 is associated with a number of pathologies due to hyperactivation of the complement system. CD55 is also implicated in cancer progression thought to be driven via its role in cell shielding mechanisms. We now appreciate that CD55 can signal intracellularly to promote malignant transformation, cancer progression, cell survival, angiogenesis, and inhibition of apoptosis. Outside-in signaling via CD55 is mediated by signaling pathways including JNK, JAK/STAT, MAPK/NF-κB, and LCK. Moreover, CD55 is enriched in the cancer stem cell (CSC) niche of multiple tumors including breast, ovarian, cervical, and can be induced by chemotherapeutics and hypoxic environments. CSCs are implicated in tumor recurrence and chemoresistance. Here, we review the unexpected roles of CD55 in cancer including the roles of canonical and noncanonical pathways that CD55 orchestrates. We will highlight opportunities for therapeutic targeting CD55 and gaps in the field that require more in-depth mechanistic insights.
Collapse
Affiliation(s)
- Rashmi Bharti
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Goutam Dey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Feng Lin
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
5
|
Xu X, Zhang W, Gao H, Tan Y, Guo Y, He T. Polyadenylate-binding protein cytoplasmic 1 mediates alternative splicing events of immune-related genes in gastric cancer cells. Exp Biol Med (Maywood) 2022; 247:1907-1916. [PMID: 36112850 PMCID: PMC9742748 DOI: 10.1177/15353702221121631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/29/2022] [Indexed: 12/29/2022] Open
Abstract
Polyadenylate-binding protein cytoplasmic 1 (PABPC1) is dysregulated in malignancies, which is considered as a potential therapeutic target for many cancer types. By alternative splicing (AS) for gastric cancer (GC), we described PABPC1-modulated AS events in this study. PABPC1 expression was analyzed in 408 GC tissues from The Cancer Genome Altas (TCGA) database. Human gastric adenocarcinoma (AGS) cells were transfected with PABPC1-specific small interfering RNA (siPABPC1) with siCtrl as a negative control. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was done for the determination of transcripts. To detect the differentially expressed genes (DEGs) and 10 different types of AS events, RNA sequencing (RNA-seq) was performed. DEGs were analyzed for functional categories including gene ontology, and the Kyoto encyclopedia of genes and genomes pathway were analyzed for DEGs. GC displayed an elevated expression of PABPC1. PABPC1 was efficiently knocked down in AGS cells. Here, we excavated 1234 PABPC1-regulated DEGs, among which 502 were down-regulated and 732 were up-regulated compared to the siCtrl group. A total of 94 DEGs were involved in inflammation and immune response. Results from qRT-PCR validated the up-regulation of 10 immune and inflammation-related DEGs in the siPABPC1 group. PABPC1 deficiency causes 1304 AS events differentially occurred in AGS cells. The most common type of AS events regulated by PABPC2 is alternative 5' splice sites. qRT-PCR confirmed the transcription level of five immune-related genes, in which AS events were detected in the siPABPC1 group. PABPC1 knockdown mediates AS events and thus the transcript level of immune and inflammation-related genes in AGS cells. PABPC1-regulated oncogenic AS events display potential as targets for therapeutic development.
Collapse
Affiliation(s)
- Xincai Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang, China
| | - Wenbin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang, China
| | - Hua Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang, China
| | - Yi Tan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang, China
| | - Yangchao Guo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang, China
| | - Tiehan He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang, China
| |
Collapse
|
6
|
Yoda H, Weiss WA. CD55, a potential immunotherapeutic target for MYCN-amplified neuroblastoma. Neuro Oncol 2022; 24:886-887. [PMID: 35090034 PMCID: PMC9159426 DOI: 10.1093/neuonc/noac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Hiroyuki Yoda
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - William A Weiss
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Departments of Neurology, Pediatrics, and Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Cimmino F, Montella A, Tirelli M, Avitabile M, Lasorsa VA, Visconte F, Cantalupo S, Maiorino T, De Angelis B, Morini M, Castellano A, Locatelli F, Capasso M, Iolascon A. FGFR1 is a potential therapeutic target in neuroblastoma. Cancer Cell Int 2022; 22:174. [PMID: 35488346 PMCID: PMC9052553 DOI: 10.1186/s12935-022-02587-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/13/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND FGFR1 regulates cell-cell adhesion and extracellular matrix architecture and acts as oncogene in several cancers. Potential cancer driver mutations of FGFR1 occur in neuroblastoma (NB), a neural crest-derived pediatric tumor arising in sympathetic nervous system, but so far they have not been studied experimentally. We investigated the driver-oncogene role of FGFR1 and the implication of N546K mutation in therapy-resistance in NB cells. METHODS Public datasets were used to predict the correlation of FGFR1 expression with NB clinical outcomes. Whole genome sequencing data of 19 paired diagnostic and relapse NB samples were used to find somatic mutations. In NB cell lines, silencing by short hairpin RNA and transient overexpression of FGFR1 were performed to evaluate the effect of the identified mutation by cell growth, invasion and cologenicity assays. HEK293, SHSY5Y and SKNBE2 were selected to investigate subcellular wild-type and mutated protein localization. FGFR1 inhibitor (AZD4547), alone or in combination with PI3K inhibitor (GDC0941), was used to rescue malignant phenotypes induced by overexpression of FGFR1 wild-type and mutated protein. RESULTS High FGFR1 expression correlated with low relapse-free survival in two independent NB gene expression datasets. In addition, we found the somatic mutation N546K, the most recurrent point mutation of FGFR1 in all cancers and already reported in NB, in one out of 19 matched primary and recurrent tumors. Loss of FGFR1 function attenuated invasion and cologenicity in NB cells, whereas FGFR1 overexpression enhanced oncogenicity. The overexpression of FGFR1N546K protein showed a higher nuclear localization compared to wild-type protein and increased cellular invasion and cologenicity. Moreover, N546K mutation caused the failure in response to treatment with FGFR1 inhibitor by activation of ERK, STAT3 and AKT pathways. The combination of FGFR1 and PI3K pathway inhibitors was effective in reducing the invasive and colonigenic ability of cells overexpressing FGFR1 mutated protein. CONCLUSIONS FGFR1 is an actionable driver oncogene in NB and a promising therapy may consist in targeting FGFR1 mutations in patients with therapy-resistant NB.
Collapse
Affiliation(s)
- Flora Cimmino
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Annalaura Montella
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80145, Naples, Italy
| | - Matilde Tirelli
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,European School of Molecular Medicine, Università Degli Studi di Milano, 20122, Milan, Italy
| | - Marianna Avitabile
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | | | - Feliciano Visconte
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Sueva Cantalupo
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80145, Naples, Italy
| | - Teresa Maiorino
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80145, Naples, Italy
| | - Biagio De Angelis
- Hematology/Oncology and Cell and Gene Therapy Department, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Aurora Castellano
- Paediatric Haematology/Oncology Department, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Franco Locatelli
- IRCCS Bambino Gesù Children's Hospital, Sapienza, University of Rome, 00165, Rome, Italy
| | - Mario Capasso
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy. .,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80145, Naples, Italy.
| | - Achille Iolascon
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy. .,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80145, Naples, Italy.
| |
Collapse
|
8
|
Investigation of Potential Genetic Biomarkers and Molecular Mechanism of Ulcerative Colitis Utilizing Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4921387. [PMID: 32190668 PMCID: PMC7073481 DOI: 10.1155/2020/4921387] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/28/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
Objectives To reveal the molecular mechanisms of ulcerative colitis (UC) and provide potential biomarkers for UC gene therapy. Methods We downloaded the GSE87473 microarray dataset from the Gene Expression Omnibus (GEO) and identified the differentially expressed genes (DEGs) between UC samples and normal samples. Then, a module partition analysis was performed based on a weighted gene coexpression network analysis (WGCNA), followed by pathway and functional enrichment analyses. Furthermore, we investigated the hub genes. At last, data validation was performed to ensure the reliability of the hub genes. Results Between the UC group and normal group, 988 DEGs were investigated. The DEGs were clustered into 5 modules using WGCNA. These DEGs were mainly enriched in functions such as the immune response, the inflammatory response, and chemotaxis, and they were mainly enriched in KEGG pathways such as the cytokine-cytokine receptor interaction, chemokine signaling pathway, and complement and coagulation cascades. The hub genes, including dual oxidase maturation factor 2 (DUOXA2), serum amyloid A (SAA) 1 and SAA2, TNFAIP3-interacting protein 3 (TNIP3), C-X-C motif chemokine (CXCL1), solute carrier family 6 member 14 (SLC6A14), and complement decay-accelerating factor (CD antigen CD55), were revealed as potential tissue biomarkers for UC diagnosis or treatment. Conclusions This study provides supportive evidence that DUOXA2, A-SAA, TNIP3, CXCL1, SLC6A14, and CD55 might be used as potential biomarkers for tissue biopsy of UC, especially SLC6A14 and DUOXA2, which may be new targets for UC gene therapy. Moreover, the DUOX2/DUOXA2 and CXCL1/CXCR2 pathways might play an important role in the progression of UC through the chemokine signaling pathway and inflammatory response.
Collapse
|
9
|
Murugesan T, Rajajeyabalachandran G, Kumar S, Nagaraju S, Jegatheesan SK. Targeting HIF-2α as therapy for advanced cancers. Drug Discov Today 2018; 23:1444-1451. [DOI: 10.1016/j.drudis.2018.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/27/2018] [Accepted: 05/02/2018] [Indexed: 12/14/2022]
|
10
|
Leung THY, Tang HWM, Siu MKY, Chan DW, Chan KKL, Cheung ANY, Ngan HYS. Human papillomavirus E6 protein enriches the CD55(+) population in cervical cancer cells, promoting radioresistance and cancer aggressiveness. J Pathol 2017; 244:151-163. [PMID: 28944962 DOI: 10.1002/path.4991] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/22/2022]
Abstract
Accumulating evidence indicates that the human papillomavirus (HPV) E6 protein plays a crucial role in the development of cervical cancer. Subpopulations of cells that reside within tumours are responsible for tumour resistance to cancer therapy and recurrence. However, the identity of such cells residing in cervical cancer and their relationship with the HPV-E6 protein have not been identified. Here, we isolated sphere-forming cells, which showed self-renewal ability, from primary cervical tumours. Gene expression profiling revealed that cluster of differentiation (CD) 55 was upregulated in primary cervical cancer sphere cells. Flow-cytometric analysis detected abundant CD55(+) populations among a panel of HPV-positive cervical cancer cell lines, whereas few CD55(+) cells were found in HPV-negative cervical cancer and normal cervical epithelial cell lines. The CD55(+) subpopulation isolated from the C33A cell line showed significant sphere-forming ability and enhanced tumourigenicity, cell migration, and radioresistance. In contrast, the suppression of CD55 in HPV-positive CaSki cells inhibited tumourigenicity both in vitro and in vivo, and sensitized cells to radiation treatment. In addition, ectopic expression of the HPV-E6 protein in HPV-negative cervical cancer cells dramatically enriched the CD55(+) subpopulation. CRISPR/Cas9 knockout of CD55 in an HPV-E6-overexpressing stable clone abolished the tumourigenic effects of the HPV-E6 protein. Taken together, our data suggest that HPV-E6 protein expression enriches the CD55(+) population, which contributes to tumourigenicity and radioresistance in cervical cancer cells. Targeting CD55 via CRISPR/Cas9 may represent a novel avenue for developing new strategies and effective therapies for the treatment of cervical cancer. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Thomas Ho-Yin Leung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Hermit Wai-Man Tang
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Michelle Kwan-Yee Siu
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - David Wai Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Karen Kar-Loen Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Annie Nga-Yin Cheung
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Hextan Yuen-Sheung Ngan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
11
|
Cimmino F, Pezone L, Avitabile M, Persano L, Vitale M, Sassi M, Bresolin S, Serafin V, Zambrano N, Scaloni A, Basso G, Iolascon A, Capasso M. Proteomic Alterations in Response to Hypoxia Inducible Factor 2α in Normoxic Neuroblastoma Cells. J Proteome Res 2016; 15:3643-3655. [PMID: 27596920 DOI: 10.1021/acs.jproteome.6b00457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxia inducible factor (HIF)-2α protein expression in solid tumors promotes stem-like phenotype in cancer stem cells and increases tumorigenic potential in nonstem cancer cells. Recently, we have shown that HIF-1/2α gene expression is correlated to neuroblastoma (NB) poor survival and to undifferentiated tumor state; HIF-2α protein was demonstrated to enhance aggressive features of the disease. In this study, we used proteomic experiments on NB cells to investigate HIF-2α downstream-regulated proteins or pathways with the aim of providing novel therapeutic targets or bad prognosis markers. We verified that pathways mostly altered by HIF-2α perturbation are involved in tumor progression. In particular, HIF-2α induces alteration of central metabolism and splicing control pathways. Simultaneously, WNT, RAS/MAPK, and PI3K/AKT activity or expression are affected and may impact the sensitivity and the intensity of HIF-2α-regulated pathways. Furthermore, genes coding the identified HIF-2α-related markers built a signature able to stratify NB patients with unfavorable outcome. Taken together, our findings underline the relevance of dissecting the downstream effects of a poor survival marker in developing targeted therapy and improving patient stratification. Future prospective studies are needed to translate the use of these data into the clinical practice.
Collapse
Affiliation(s)
- Flora Cimmino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II" , via Pansini, 5, 80131 Naples, Italy.,CEINGE Biotecnologie Avanzate , Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Lucia Pezone
- CEINGE Biotecnologie Avanzate , Via Gaetano Salvatore 486, 80145 Naples, Italy.,Scuola di Medicina e Chirurgia, Università degli Studi di Verona , 37129 Verona, Italy
| | - Marianna Avitabile
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II" , via Pansini, 5, 80131 Naples, Italy.,CEINGE Biotecnologie Avanzate , Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Luca Persano
- Istituto di Ricerca Pediatrica Città della Speranza - IRP , 35121 Padua, Italy
| | - Monica Vitale
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II" , via Pansini, 5, 80131 Naples, Italy.,CEINGE Biotecnologie Avanzate , Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Mauro Sassi
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council , 80147 Naples, Italy
| | - Silvia Bresolin
- Dipartimento di Salute della Donna e del Bambino, Università degli Studi di Padova , 35128 Padua, Italy
| | - Valentina Serafin
- Dipartimento di Salute della Donna e del Bambino, Università degli Studi di Padova , 35128 Padua, Italy
| | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II" , via Pansini, 5, 80131 Naples, Italy.,CEINGE Biotecnologie Avanzate , Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council , 80147 Naples, Italy
| | - Giuseppe Basso
- Dipartimento di Salute della Donna e del Bambino, Università degli Studi di Padova , 35128 Padua, Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II" , via Pansini, 5, 80131 Naples, Italy.,CEINGE Biotecnologie Avanzate , Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II" , via Pansini, 5, 80131 Naples, Italy.,CEINGE Biotecnologie Avanzate , Via Gaetano Salvatore 486, 80145 Naples, Italy
| |
Collapse
|