1
|
Jakobsen MZ, Brøndum RF, Gregersen H, Due H, Dybkær K. A systematic literature review on clonal evolution events preceding relapse in multiple myeloma. Crit Rev Oncol Hematol 2025; 205:104560. [PMID: 39549892 DOI: 10.1016/j.critrevonc.2024.104560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
Despite considerable treatment advances, multiple myeloma (MM) remains an incurable hematological cancer due to treatment resistance. A systematic literature search was conducted to identify determinants for clonal evolution driving relapse and drug resistance in MM. A total of 631 non-duplicate publications were screened of which 28 articles were included for data extraction. Genetic alterations, mutational signatures, evolutionary trajectories, and non-genetic determinants were identified as key topics to characterize clonal evolution in relapsed MM. A variety of factors led to clonal diversification and increased tumor mutation burden, such as MAPK-Ras mutations and incremental changes related to chromosomal bands 1 and 17, while mutational signature analyses revealed that APOBEC activity and melphalan treatment leave a distinct impact on the clonal composition in MM genomes. To capture and dissect tumor heterogeneity, our review suggests combining methods or using technical approaches with high resolution to assess the impact of clonal evolution.
Collapse
Affiliation(s)
- Maja Zimmer Jakobsen
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Rasmus Froberg Brøndum
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Center for Clinical Data Science, Aalborg University, and Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Gregersen
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Hanne Due
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Karen Dybkær
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark.
| |
Collapse
|
2
|
Okamoto H, Mizutani S, Tsukamoto T, Katsuragawa-Taminishi Y, Kawaji-Kanayama Y, Mizuhara K, Muramatsu A, Isa R, Fujino T, Shimura Y, Ichikawa K, Kuroda J. Robust anti-myeloma effect of TAS0612, an RSK/AKT/S6K inhibitor, with venetoclax regardless of cytogenetic abnormalities. Leukemia 2025; 39:211-221. [PMID: 39438587 DOI: 10.1038/s41375-024-02439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Multiple myeloma (MM) remains a difficult-to-treat disease even with the latest therapeutic advances due to the complex, overlapping, and heterogeneous cytogenetic, genetic, and molecular abnormalities. To address this challenging problem, we previously identified the universal and critical roles of RSK2 and AKT, the effector signaling molecules downstream of PDPK1, regardless of cytogenetic and genetic profiles. Based on this, in this study, we investigated the anti-myeloma potency of TAS0612, a triple inhibitor against RSK, including RSK2, AKT, and S6K. Treatment with TAS0612 exerted the anti-proliferative effect via cell cycle blockade and the induction of apoptosis in human myeloma-derived cell lines (HMCLs) with diverse cytogenetic and genetic profiles. Ex vivo treatment with TAS0612 also significantly reduced the viability of patient-derived primary myeloma cells with diverse cytogenetic profiles. TAS0612 simultaneously caused the upregulation of several tumor suppressor genes, modulated prognostic genes according to the MMRF CoMMpass data, and downregulated a series of Myc- and mTOR-related genes. Moreover, the combination of TAS0612 with venetoclax (VEN) showed the synergy in inducing apoptosis in HMCLs irrespective of the t(11;14) translocation status. TAS0612 alone and combined with VEN are new potent candidate therapeutic strategies for MM, regardless of cytogenetic/genetic profiles, facilitating its future clinical development.
Collapse
Affiliation(s)
- Haruya Okamoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Shinsuke Mizutani
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Taku Tsukamoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Yoko Katsuragawa-Taminishi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Yuka Kawaji-Kanayama
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Kentaro Mizuhara
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Ayako Muramatsu
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Reiko Isa
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Takahiro Fujino
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Yuji Shimura
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
- Department of Blood Transfusion, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koji Ichikawa
- Taiho Pharmaceutical Co. Ltd., Tsukuba, Ibaraki, Japan
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan.
| |
Collapse
|
3
|
Nakamoto-Matsubara R, Nardi V, Horick N, Fukushima T, Han RS, Shome R, Ochi K, Panaroni C, Fulzele K, Rexha F, Branagan AR, Cirstea D, Yee AJ, Scadden DT, Raje NS. Integration of clinical outcomes and molecular features in extramedullary disease in multiple myeloma. Blood Cancer J 2024; 14:224. [PMID: 39715752 DOI: 10.1038/s41408-024-01190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Multiple myeloma (MM) remains incurable despite novel therapeutics. A major contributor to the development of relapsed/refractory and resistant MM is extraosseous extramedullary disease (EMD), whose molecular biology is still not fully understood. We analyzed 528 MM patients who presented to our institution between 2014 and 2021 and who had undergone molecular testing. We defined EMD as organ plasmacytoma distinct from bones and evaluated patients for the development of EMD with the goal of defining their molecular characteristics. Here, we show that RAS/BRAF mutations are likely essential for the development of EMD. Our results also indicate that the underlying reason for the negative outcomes in patients with poor prognostic factors such as duplication 1q and deletion 17p is largely due to the development of EMD. However, the presence of TP53 mutation remains a poor prognostic factor regardless of EMD development. Furthermore, mutation sites of TP53 were different between EMD versus non-EMD patients, with gain-of-function mutations enriched in patients with EMD. Our data highlights distinct molecular abnormalities in patients with EMD and provides potential mechanistic insights for novel therapeutic targets for the future.
Collapse
Affiliation(s)
- Rie Nakamoto-Matsubara
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Valentina Nardi
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nora Horick
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Tsuyoshi Fukushima
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryan S Han
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Rajib Shome
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Kiyosumi Ochi
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Cristina Panaroni
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Keertik Fulzele
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Farah Rexha
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Andrew R Branagan
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Diana Cirstea
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Andrew J Yee
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noopur S Raje
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Ram M, Fraser MR, Vieira dos Santos J, Tasakis R, Islam A, Abo-Donia JU, Parekh S, Lagana A. The Genetic and Molecular Drivers of Multiple Myeloma: Current Insights, Clinical Implications, and the Path Forward. Pharmgenomics Pers Med 2024; 17:573-609. [PMID: 39723112 PMCID: PMC11669356 DOI: 10.2147/pgpm.s350238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Background Multiple myeloma (MM) is a hematological malignancy characterized by the clonal proliferation of malignant plasma cells within the bone marrow. The disease's complexity is underpinned by a variety of genetic and molecular abnormalities that drive its progression. Methods This review was conducted through a state-of-The-art literature search, primarily utilizing PubMed to gather peer-reviewed articles. We focused on the most comprehensive and cited studies to ensure a thorough understanding of the genetic and molecular landscapes of MM. Results We detail primary and secondary alterations such as translocations, hyperdiploidy, single nucleotide variants (SNVs), copy number alterations (CNAs), gene fusions, epigenetic modifications, non-coding RNAs, germline predisposing variants, and the influence of the tumor microenvironment (TME). Our analysis highlights the heterogeneity of MM and the challenges it poses in treatment and prognosis, emphasizing the distinction between driver mutations, which actively contribute to oncogenesis, and passenger mutations, which arise due to genomic instability and do not contribute to disease progression. Conclusion & Future Perspectives We report key controversies and challenges in defining the genetic drivers of MM, and examine their implications for future therapeutic strategies. We discuss the importance of systems biology approaches in understanding the dependencies and interactions among these alterations, particularly highlighting the impact of double and triple-hit scenarios on disease outcomes. By advancing our understanding of the molecular drivers and their interactions, this review sets the stage for novel therapeutic targets and strategies, ultimately aiming to improve clinical outcomes in MM patients.
Collapse
Affiliation(s)
- Meghana Ram
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Junia Vieira dos Santos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rafail Tasakis
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ariana Islam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jannah Usama Abo-Donia
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samir Parekh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandro Lagana
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
5
|
Lu Q, Yang D, Li H, Niu T, Tong A. Multiple myeloma: signaling pathways and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:25. [PMID: 38961036 PMCID: PMC11222366 DOI: 10.1186/s43556-024-00188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy of plasma cells, characterized by osteolytic bone lesions, anemia, hypercalcemia, renal failure, and the accumulation of malignant plasma cells. The pathogenesis of MM involves the interaction between MM cells and the bone marrow microenvironment through soluble cytokines and cell adhesion molecules, which activate various signaling pathways such as PI3K/AKT/mTOR, RAS/MAPK, JAK/STAT, Wnt/β-catenin, and NF-κB pathways. Aberrant activation of these pathways contributes to the proliferation, survival, migration, and drug resistance of myeloma cells, making them attractive targets for therapeutic intervention. Currently, approved drugs targeting these signaling pathways in MM are limited, with many inhibitors and inducers still in preclinical or clinical research stages. Therapeutic options for MM include non-targeted drugs like alkylating agents, corticosteroids, immunomodulatory drugs, proteasome inhibitors, and histone deacetylase inhibitors. Additionally, targeted drugs such as monoclonal antibodies, chimeric antigen receptor T cells, bispecific T-cell engagers, and bispecific antibodies are being used in MM treatment. Despite significant advancements in MM treatment, the disease remains incurable, emphasizing the need for the development of novel or combined targeted therapies based on emerging theoretical knowledge, technologies, and platforms. In this review, we highlight the key role of signaling pathways in the malignant progression and treatment of MM, exploring advances in targeted therapy and potential treatments to offer further insights for improving MM management and outcomes.
Collapse
Affiliation(s)
- Qizhong Lu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Donghui Yang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hexian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
6
|
Malamos P, Papanikolaou C, Gavriatopoulou M, Dimopoulos MA, Terpos E, Souliotis VL. The Interplay between the DNA Damage Response (DDR) Network and the Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway in Multiple Myeloma. Int J Mol Sci 2024; 25:6991. [PMID: 39000097 PMCID: PMC11241508 DOI: 10.3390/ijms25136991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
The DNA damage response (DDR) network and the mitogen-activated protein kinase (MAPK) signaling pathway are crucial mechanisms for the survival of all living beings. An accumulating body of evidence suggests that there is crosstalk between these two systems, thus favoring the appropriate functioning of multi-cellular organisms. On the other hand, aberrations within these mechanisms are thought to play a vital role in the onset and progression of several diseases, including cancer, as well as in the emergence of drug resistance. Here, we provide an overview of the current knowledge regarding alterations in the DDR machinery and the MAPK signaling pathway as well as abnormalities in the DDR/MAPK functional crosstalk in multiple myeloma, the second most common hematologic malignancy. We also present the latest advances in the development of anti-myeloma drugs targeting crucial DDR- and MAPK-associated molecular components. These data could potentially be exploited to discover new therapeutic targets and effective biomarkers as well as for the design of novel clinical trials. Interestingly, they might provide a new approach to increase the efficacy of anti-myeloma therapy by combining drugs targeting the DDR network and the MAPK signaling pathway.
Collapse
Affiliation(s)
- Panagiotis Malamos
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece; (P.M.); (C.P.)
| | - Christina Papanikolaou
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece; (P.M.); (C.P.)
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (M.G.); (M.A.D.); (E.T.)
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (M.G.); (M.A.D.); (E.T.)
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (M.G.); (M.A.D.); (E.T.)
| | - Vassilis L. Souliotis
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece; (P.M.); (C.P.)
| |
Collapse
|
7
|
Heestermans R, Schots R, De Becker A, Van Riet I. Liquid Biopsies as Non-Invasive Tools for Mutation Profiling in Multiple Myeloma: Application Potential, Challenges, and Opportunities. Int J Mol Sci 2024; 25:5208. [PMID: 38791247 PMCID: PMC11121516 DOI: 10.3390/ijms25105208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Over the last decades, the survival of multiple myeloma (MM) patients has considerably improved. However, despite the availability of new treatments, most patients still relapse and become therapy-resistant at some point in the disease evolution. The mutation profile has an impact on MM patients' outcome, while typically evolving over time. Because of the patchy bone marrow (BM) infiltration pattern, the analysis of a single bone marrow sample can lead to an underestimation of the known genetic heterogeneity in MM. As a result, interest is shifting towards blood-derived liquid biopsies, which allow for a more comprehensive and non-invasive genetic interrogation without the discomfort of repeated BM aspirations. In this review, we compare the application potential for mutation profiling in MM of circulating-tumor-cell-derived DNA, cell-free DNA and extracellular-vesicle-derived DNA, while also addressing the challenges associated with their use.
Collapse
Affiliation(s)
- Robbe Heestermans
- Department of Clinical Biology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Translational Oncology Research Center (Team Hematology and Immunology), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Rik Schots
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Translational Oncology Research Center (Team Hematology and Immunology), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ann De Becker
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Translational Oncology Research Center (Team Hematology and Immunology), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ivan Van Riet
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Translational Oncology Research Center (Team Hematology and Immunology), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
8
|
Muraleva NA, Kolosova NG. P38 MAPK Signaling in the Retina: Effects of Aging and Age-Related Macular Degeneration. Int J Mol Sci 2023; 24:11586. [PMID: 37511345 PMCID: PMC10380409 DOI: 10.3390/ijms241411586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible visual impairment worldwide. Age is the greatest risk factor for AMD but the underlying mechanism remains unascertained, resulting in a lack of effective therapies. Growing evidence shows that dysregulation of the p38 MAPK signaling pathway (SP) contributes to aging and neurodegenerative diseases; however, information about its alteration in the retina with age and during AMD development is limited. To assess the contribution of alterations in p38 MAPK signaling to AMD, we compared age-associated changes in p38 MAPK SP activity in the retina between Wistar rats (control) and OXYS rats, which develop AMD-like retinopathy spontaneously. We analyzed changes in the mRNA levels of genes of this SP in the retina (data of RNA-seq) and evaluated the phosphorylation/activation of key kinases using Western blotting at different stages of AMD-like pathology including the preclinical stage. p38 MAPK SP activity increased in the retinas of healthy Wistar rats with age. The manifestation and dramatic progression of AMD-like pathology in OXYS rats was accompanied by hyperphosphorylation of p38 MAPK and MK2 as key p38 MAPK SP kinases. Retinopathy progression co-occurred with the enhancement of p38 MAPK-dependent phosphorylation of CryaB at Ser59 in the retina.
Collapse
Affiliation(s)
- Natalia A. Muraleva
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentieva Avenue, 630090 Novosibirsk, Russia;
| | | |
Collapse
|
9
|
Rosenberg AS. From mechanism to resistance - changes in the use of dexamethasone in the treatment of multiple myeloma. Leuk Lymphoma 2023; 64:283-291. [PMID: 36308022 DOI: 10.1080/10428194.2022.2136950] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucocorticoids, including dexamethasone, have been a mainstay of treatment for multiple myeloma (MM) for decades. In current treatment protocols and NCCN clinical practice guidelines, dexamethasone is included in all phases of MM treatment as a key adjunct to novel therapies within all preferred therapy regimen, augmenting clinical response rates to these agents. The inclusion of dexamethasone in MM treatment regimens, combined with novel agents, continues to deliver good response rates. Further understanding of drug combinations and dose modifications is anticipated to enhance clinical care, mitigate toxicities and optimize outcomes. New formulations are providing the opportunity for a reduction in pill burden and potential for medication errors, whereby improving treatment adherence. Here, we summarize and discuss the role of dexamethasone in the treatment of MM, its mechanism of action and doses used, and provide a critical appraisal current evidence and its clinical implications.
Collapse
|
10
|
Muraleva NA, Kolosova NG. Alteration of the MEK1/2–ERK1/2 Signaling Pathway in the Retina Associated with Age and Development of AMD-Like Retinopathy. BIOCHEMISTRY (MOSCOW) 2023; 88:179-188. [PMID: 37072329 DOI: 10.1134/s0006297923020025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Age-related macular degeneration (AMD) is a complex neurodegenerative disease and a major cause of irreversible visual impairment in patients in developed countries. Although age is the greatest risk factor in AMD, molecular mechanisms involved in AMD remain unknown. Growing evidence shows that dysregulation of MAPK signaling contributes to aging and neurodegenerative diseases; however, the information on the role of MAPK upregulation in these processes is controversial. ERK1 and ERK2 participate in the maintenance of proteostasis through the regulation of protein aggregation induced by the endoplasmic reticulum stress and other stress-mediated cell responses. To assess the contribution of alterations in the ERK1/2 signaling to the AMD development, we compared age-associated changes in the activity of ERK1/2 signaling pathway in the retina of Wistar rats (control) and OXYS rats that develop AMD-like retinopathy spontaneously. The activity of the ERK1/2 signaling increased during physiological aging in the retina of Wistar rats. The manifestation and progression of the AMD-like pathology in the retina of OXYS rats was accompanied by hyperphosphorylation of ERK1/2 and MEK1/2, the key kinases of the ERK1/2 signaling pathway. The progression of the AMD-like pathology was also associated with the ERK1/2-dependent tau protein hyperphosphorylation and increase in the ERK1/2-dependent phosphorylation of alpha B crystallin at Ser45 in the retina.
Collapse
Affiliation(s)
- Natalia A Muraleva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Nataliya G Kolosova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
11
|
Abramson HN. Recent Advances in the Applications of Small Molecules in the Treatment of Multiple Myeloma. Int J Mol Sci 2023; 24:2645. [PMID: 36768967 PMCID: PMC9917049 DOI: 10.3390/ijms24032645] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Therapy for multiple myeloma (MM), a hematologic neoplasm of plasma cells, has undergone remarkable changes over the past 25 years. Small molecules (molecular weight of less than one kDa), together with newer immunotherapies that include monoclonal antibodies, antibody-drug conjugates, and most recently, chimeric antigen receptor (CAR) T-cells, have combined to double the disease's five-year survival rate to over 50% during the past few decades. Despite these advances, the disease is still considered incurable, and its treatment continues to pose substantial challenges, since therapeutic refractoriness and patient relapse are exceedingly common. This review focuses on the current pipeline, along with the contemporary roles and future prospects for small molecules in MM therapy. While small molecules offer prospective benefits in terms of oral bioavailability, cellular penetration, simplicity of preparation, and improved cost-benefit considerations, they also pose problems of toxicity due to off-target effects. Highlighted in the discussion are recent developments in the applications of alkylating agents, immunomodulators, proteasome inhibitors, apoptosis inducers, kinesin spindle protein inhibitors, blockers of nuclear transport, and drugs that affect various kinases involved in intracellular signaling pathways. Molecular and cellular targets are described for each class of agents in relation to their roles as drivers of MM.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
12
|
Cobimetinib Alone and Plus Venetoclax With/Without Atezolizumab in Patients With Relapsed/Refractory Multiple Myeloma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:e59-e70. [PMID: 36450626 DOI: 10.1016/j.clml.2022.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Mitogen-activated protein kinase pathway mutations are present in >50% of patients with relapsed/refractory (R/R) multiple myeloma (MM). MEK inhibitors show limited single-agent activity in R/R MM; combination with B-cell lymphoma-2 (BCL-2) and programmed death-ligand 1 inhibition may improve efficacy. This phase Ib/II trial (NCT03312530) evaluated safety and efficacy of cobimetinib (cobi) alone and in combination with venetoclax (ven) with/without atezolizumab (atezo) in patients with R/R MM. PATIENTS AND METHODS Forty-nine patients were randomized 1:2:2 to cobi 60 mg/day on days 1-21 (n = 6), cobi 40 mg/day on days 1-21 + ven 800 mg/day on days 1-28 with/without atezo 840 mg on days 1 and 15 of 28-day cycles (cobi-ven, n = 22; cobi-ven-atezo, n = 21). Safety run-in cohorts evaluated cobi-ven and cobi-ven-atezo dose levels. RESULTS Any-grade common adverse events (AEs) with cobi, cobi-ven, and cobi-ven-atezo, respectively, included diarrhea (33.3%, 81.8%, 90.5%) and nausea (16.7%, 50.0%, 66.7%); common grade ≥3 AEs included anemia (0%, 22.7%, 23.8%), neutropenia (0%, 13.6%, 38.1%), and thrombocytopenia (0%, 18.2%, 23.8%). The overall response rate for all-comers was 0% (cobi), 27.3% (cobi-ven), and 28.6% (cobi-ven-atezo), and 0%, 50.0%, and 100%, respectively, in patients with t(11;14)+. Biomarker analysis demonstrated non-t(11;14) patient selection with NRAS/KRAS/BRAF mutation or high BCL-2/BCL-2-L1 ratio (>52% of the study population) could enrich for responders to the cobi-ven combination. CONCLUSIONS Cobi-ven and cobi-ven-atezo demonstrated manageable safety with moderate activity in all-comers, and higher activity in patients with t(11;14)+ MM, supporting a biomarker-driven approach for ven in MM.
Collapse
|
13
|
Giliberto M, Santana LM, Holien T, Misund K, Nakken S, Vodak D, Hovig E, Meza-Zepeda LA, Coward E, Waage A, Taskén K, Skånland SS. Mutational analysis and protein profiling predict drug sensitivity in multiple myeloma cell lines. Front Oncol 2022; 12:1040730. [PMID: 36523963 PMCID: PMC9745900 DOI: 10.3389/fonc.2022.1040730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2023] Open
Abstract
INTRODUCTION Multiple myeloma (MM) is a heterogeneous disease where cancer-driver mutations and aberrant signaling may lead to disease progression and drug resistance. Drug responses vary greatly, and there is an unmet need for biomarkers that can guide precision cancer medicine in this disease. METHODS To identify potential predictors of drug sensitivity, we applied integrated data from drug sensitivity screening, mutational analysis and functional signaling pathway profiling in 9 cell line models of MM. We studied the sensitivity to 33 targeted drugs and their association with the mutational status of cancer-driver genes and activity level of signaling proteins. RESULTS We found that sensitivity to mitogen-activated protein kinase kinase 1 (MEK1) and phosphatidylinositol-3 kinase (PI3K) inhibitors correlated with mutations in NRAS/KRAS, and PI3K family genes, respectively. Phosphorylation status of MEK1 and protein kinase B (AKT) correlated with sensitivity to MEK and PI3K inhibition, respectively. In addition, we found that enhanced phosphorylation of proteins, including Tank-binding kinase 1 (TBK1), as well as high expression of B cell lymphoma 2 (Bcl-2), correlated with low sensitivity to MEK inhibitors. DISCUSSION Taken together, this study shows that mutational status and signaling protein profiling might be used in further studies to predict drug sensitivities and identify resistance markers in MM.
Collapse
Affiliation(s)
- Mariaserena Giliberto
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Leonardo Miranda Santana
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway
| | - Toril Holien
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Hematology, St. Olav’s University Hospital, Trondheim, Norway
- Department of Immunology and Transfusion Medicine, St. Olav’s University Hospital, Trondheim, Norway
| | - Kristine Misund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sigve Nakken
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Daniel Vodak
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eivind Hovig
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Leonardo A. Meza-Zepeda
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eivind Coward
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Bioinformatics Core Facility, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anders Waage
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Hematology, St. Olav’s University Hospital, Trondheim, Norway
- Department of Immunology and Transfusion Medicine, St. Olav’s University Hospital, Trondheim, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sigrid S. Skånland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Oncogenic RAS commandeers amino acid sensing machinery to aberrantly activate mTORC1 in multiple myeloma. Nat Commun 2022; 13:5469. [PMID: 36115844 PMCID: PMC9482638 DOI: 10.1038/s41467-022-33142-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Oncogenic RAS mutations are common in multiple myeloma (MM), an incurable malignancy of plasma cells. However, the mechanisms of pathogenic RAS signaling in this disease remain enigmatic and difficult to inhibit therapeutically. We employ an unbiased proteogenomic approach to dissect RAS signaling in MM. We discover that mutant isoforms of RAS organize a signaling complex with the amino acid transporter, SLC3A2, and MTOR on endolysosomes, which directly activates mTORC1 by co-opting amino acid sensing pathways. MM tumors with high expression of mTORC1-dependent genes are more aggressive and enriched in RAS mutations, and we detect interactions between RAS and MTOR in MM patient tumors harboring mutant RAS isoforms. Inhibition of RAS-dependent mTORC1 activity synergizes with MEK and ERK inhibitors to quench pathogenic RAS signaling in MM cells. This study redefines the RAS pathway in MM and provides a mechanistic and rational basis to target this mode of RAS signaling. RAS mutations are commonly found in multiple myeloma (MM). Here, the authors show that oncogenic RAS mutations activate mTORC1 signalling in MM and combining mTORC1 and MEK/ERK inhibitors synergize to improve survival in preclinical models.
Collapse
|
15
|
Raimondi V, Iannozzi NT, Burroughs-Garcìa J, Toscani D, Storti P, Giuliani N. A personalized molecular approach in multiple myeloma: the possible use of RAF/RAS/MEK/ERK and BCL-2 inhibitors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:463-479. [PMID: 36071980 PMCID: PMC9446161 DOI: 10.37349/etat.2022.00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/08/2022] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM) is a blood cancer that derives from plasma cells (PCs), which will accumulate in the bone marrow (BM). Over time, several drugs have been developed to treat this disease that is still uncurable. The therapies used to treat the disease target immune activity, inhibit proteasome activity, and involve the use of monoclonal antibodies. However, MM is a highly heterogeneous disease, in fact, there are several mutations in signaling pathways that are particularly important for MM cell biology and that are possible therapeutic targets. Indeed, some studies suggest that MM is driven by mutations within the rat sarcoma virus (RAS) signaling cascade, which regulates cell survival and proliferation. The RAS/proto-oncogene, serine/threonine kinase (RAF)/mitogen-activated extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK signaling pathway is deregulated in several cancers, for which drugs have been developed to inhibit these pathways. In addition to the signaling pathways, the disease implements mechanisms to ensure the survival and consequently a high replicative capacity. This strategy consists in the deregulation of apoptosis. In particular, some cases of MM show overexpression of anti-apoptotic proteins belonging to the B cell lymphoma 2 (BCL-2) family that represent a possible druggable target. Venetoclax is an anti-BCL-2 molecule used in hematological malignancies that may be used in selected MM patients based on their molecular profile. We focused on the possible effects in MM of off-label drugs that are currently used for other cancers with the same molecular characteristics. Their use, combined with the current treatments, could be a good strategy against MM.
Collapse
Affiliation(s)
- Vincenzo Raimondi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | | | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Paola Storti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;Hematology, “Azienda Ospedaliero-Universitaria di Parma”, 43126 Parma, Italy
| |
Collapse
|
16
|
Elnaggar M, Agte S, Restrepo P, Ram M, Melnekoff D, Adamopoulos C, Stevens MM, Kappes K, Leshchenko V, Verina D, Jagannath S, Poulikakos PI, Parekh S, Laganà A. Triple MAPK inhibition salvaged a relapsed post-BCMA CAR-T cell therapy multiple myeloma patient with a BRAF V600E subclonal mutation. J Hematol Oncol 2022; 15:109. [PMID: 35978321 PMCID: PMC9382834 DOI: 10.1186/s13045-022-01330-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022] Open
Abstract
Background Multiple Myeloma (MM) is a progressive plasma cell neoplasm characterized by heterogeneous clonal expansion. Despite promising response rates achieved with anti-BCMA CAR-T cell therapy, patients may still relapse and there are currently no clear therapeutic options in post-CAR-T settings. In this report, we present a case of a post-BCMA CAR-T relapsed/refractory (RR) MM patient with skin extramedullary disease (EMD) in which a novel MAPK inhibition combinatorial strategy was implemented based on next-generation sequencing and in vitro experiments. Case presentation A 61-year-old male with penta-refractory MM penta- (IgA lambda), ISS stage 3 with hyperdiploidy, gain of 1q21 and del13 was treated with anti-BCMA CAR-T cell therapy, achieving a best response of VGPR. He progressed after 6 months and was salvaged for a short period with autologous stem cell transplantation. Eventually, he progressed with extramedullary disease manifested as subcutaneous nodules. Based on whole-exome sequencing, we identified a BRAF (V600E) dominant subclone in both bone marrow and cutaneous plasmacytoma. Following in vitro experiments, and according to our previous studies, we implemented a triple MAPK inhibition strategy under which the patient achieved a very good partial response for 110 days, which allowed to bridge him to subsequent clinical trials and eventually achieve a stringent complete response (sCR). Conclusion Here, we show the applicability, effectiveness, and tolerability the triple MAPK inhibition strategy in the context of post-BCMA CAR-T failure in specific subset of patients. The triple therapy could bridge our hospice bound RRMM patient with BRAF (V600E) to further therapeutic options where sCR was achieved. We will further evaluate triple MAPK inhibition in patients with BRAF V600E in a precision medicine clinical trial launching soon. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-022-01330-3.
Collapse
Affiliation(s)
- Muhammad Elnaggar
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarita Agte
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paula Restrepo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meghana Ram
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Melnekoff
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christos Adamopoulos
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Katerina Kappes
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Violetta Leshchenko
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Verina
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sundar Jagannath
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Poulikos I Poulikakos
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samir Parekh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandro Laganà
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Ernst T, Aebi S, Zander A, Zander T. Partial response to dabrafenib and trametinib in relapsed BRAF V600E-Mutated multiple myeloma and possible mechanisms of resistance. BMJ Case Rep 2022; 15:15/4/e246264. [PMID: 35396243 PMCID: PMC8996037 DOI: 10.1136/bcr-2021-246264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BRAF V600E mutations are detected in 3%–10% of patients with multiple myeloma (MM) and are associated with more aggressive disease, higher frequency of extramedullary growth and shorter survival. Monotherapy with the BRAF inhibitor vemurafenib has been disappointing in MM. In patients with BRAF-mutated melanoma, MEK and BRAF inhibition has been a successful approach. Here we describe a very good partial response and possible mechanisms of resistance to a combination of the BRAF inhibitor dabrafenib and the MEK inhibitor trametinib in a patient with BRAF V600E-mutant refractory MM.
Collapse
Affiliation(s)
- Tina Ernst
- Medical Oncology, Zuger Kantonsspital, Baar, Switzerland
| | - Stefan Aebi
- Medical Oncology, Luzerner Kantonsspital, Luzern, Switzerland
| | - Andrea Zander
- Radiology/Nuclear Medicine, Luzerner Kantonsspital, Luzern, Switzerland
| | - Thilo Zander
- Medical Oncology, Luzerner Kantonsspital, Luzern, Switzerland
| |
Collapse
|
18
|
Oh KY, Kim JH, Cho SD, Yoon HJ, Lee JI, Hong SD. BRAF V600E and previously unidentified KRAS G12C mutations in odontogenic tumors may affect MAPK activation differently depending on tumor type. Genes Chromosomes Cancer 2022; 61:481-490. [PMID: 35353428 DOI: 10.1002/gcc.23040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
Although several types of odontogenic tumors share the same mutations in MAPK pathway genes, their effects on MAPK activation remain unclarified. This study aimed to evaluate the associations between these mutations and ERK phosphorylation in ameloblastoma and mixed odontogenic tumors (MOTs) and to analyze the expression pattern of phosphorylated ERK (p-ERK) for determining the involvement of MAPK activation in the development and progression of odontogenic tumors. Forty-three odontogenic tumors consisting of 18 ameloblastomas and 25 MOTs were analyzed for BRAF, KRAS, and NRAS mutations by Sanger sequencing. The expressions of BRAFV600E protein and p-ERK were detected by immunohistochemistry. The associations of mutation status and p-ERK expression were statistically analyzed. In ameloblastoma cells, the effect of BRAFV600E inhibition on MAPK activation was investigated. In benign MOTs, BRAFV600E mutations were neither expressed at the protein level nor associated with p-ERK expression. In contrast, BRAFV600E -mutant ameloblastic fibrosarcoma showed co-expression of BRAF V600E protein and p-ERK, especially in the sarcomatous component. In ameloblastoma, p-ERK was predominantly expressed in the tumor periphery showing a significant correlation with BRAFV600E mutations, and in vitro BRAFV600E inhibition decreased ERK phosphorylation. KRASG12C mutations, previously unidentified in odontogenic tumors, were detected in one case each of benign MOT and ameloblastoma; only the latter was high-p-ERK. In conclusion, unlike in benign MOTs, BRAFV600E and KRASG12C mutations lead to MAPK activation in ameloblastoma, suggesting their role as therapeutic targets. p-ERK intratumoral heterogeneity indicates that MAPK pathway activation may be associated with sarcomatous proliferation of ameloblastic fibrosarcoma and infiltrative behavior of ameloblastoma. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kyu-Young Oh
- Department of Oral Pathology, Seoul National University Dental Hospital, Seoul, Republic of Korea.,Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hoon Kim
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, Seoul National University Dental Hospital, Seoul, Republic of Korea.,Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hye-Jung Yoon
- Department of Oral Pathology, Seoul National University Dental Hospital, Seoul, Republic of Korea.,Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jae-Il Lee
- Department of Oral Pathology, Seoul National University Dental Hospital, Seoul, Republic of Korea.,Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Seong-Doo Hong
- Department of Oral Pathology, Seoul National University Dental Hospital, Seoul, Republic of Korea.,Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Abstract
Multiple myeloma is a common hematological malignancy of plasma cells, the terminally differentiated B cells that secrete antibodies as part of the adaptive immune response. Significant progress has been made in treating multiple myeloma, but this disease remains largely incurable, and most patients will eventually suffer a relapse of disease that becomes refractory to further therapies. Moreover, a portion of patients with multiple myeloma present with disease that is refractory to all treatments from the initial diagnosis, and no current therapeutic approaches can help. Therefore, the task remains to advance new therapeutic strategies to help these vulnerable patients. One strategy to meet this challenge is to unravel the complex web of pathogenic signaling pathways in malignant plasma cells and use this information to design novel precision medicine strategies to assist these patients most at risk.
Collapse
Affiliation(s)
- Arnold Bolomsky
- Wilhelminen Cancer Research Institute, Dept. of Medicine I, Wilhelminenspital, Vienna Austria
| | - Ryan M. Young
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Lymphoid Malignancies Branch, Bethesda MD 20892,Lymphoid Malignancies Branch, Center for Cancer Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD. 20892, , 240-858-3513
| |
Collapse
|
20
|
Vendramini E, Bomben R, Pozzo F, Bittolo T, Tissino E, Gattei V, Zucchetto A. KRAS and RAS-MAPK Pathway Deregulation in Mature B Cell Lymphoproliferative Disorders. Cancers (Basel) 2022; 14:666. [PMID: 35158933 PMCID: PMC8833570 DOI: 10.3390/cancers14030666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
KRAS mutations account for the most frequent mutations in human cancers, and are generally correlated with disease aggressiveness, poor prognosis, and poor response to therapies. KRAS is required for adult hematopoiesis and plays a key role in B cell development and mature B cell proliferation and survival, proved to be critical for B cell receptor-induced ERK pathway activation. In mature B cell neoplasms, commonly seen in adults, KRAS and RAS-MAPK pathway aberrations occur in a relevant fraction of patients, reaching high recurrence in some specific subtypes like multiple myeloma and hairy cell leukemia. As inhibitors targeting the RAS-MAPK pathway are being developed and improved, it is of outmost importance to precisely identify all subgroups of patients that could potentially benefit from their use. Herein, we review the role of KRAS and RAS-MAPK signaling in malignant hematopoiesis, focusing on mature B cell lymphoproliferative disorders. We discuss KRAS and RAS-MAPK pathway aberrations describing type, incidence, mutual exclusion with other genetic abnormalities, and association with prognosis. We review the current therapeutic strategies applied in mature B cell neoplasms to counteract RAS-MAPK signaling in pre-clinical and clinical studies, including most promising combination therapies. We finally present an overview of genetically engineered mouse models bearing KRAS and RAS-MAPK pathway aberrations in the hematopoietic compartment, which are valuable tools in the understanding of cancer biology and etiology.
Collapse
Affiliation(s)
- Elena Vendramini
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (R.B.); (F.P.); (T.B.); (E.T.); (V.G.); (A.Z.)
| | | | | | | | | | | | | |
Collapse
|
21
|
YTHDF2 promotes multiple myeloma cell proliferation via STAT5A/MAP2K2/p-ERK axis. Oncogene 2022; 41:1482-1491. [PMID: 35075244 DOI: 10.1038/s41388-022-02191-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 12/27/2022]
Abstract
Multiple myeloma (MM) is still incurable partially due to lacking effective therapeutic targets. Aberrant N6-methyladenosine (m6A) RNA modification plays a vital role in many cancers, however few researches are executed in MM. We first screened the m6A-related genes in MM patient cohorts and correlated these genes with patient outcomes. We found that YTHDF2, a well-recognized m6A reader, was increased in MM patients and associated with poor outcomes. Decreased YTHDF2 expression hampered MM cell proliferation in vitro and in vivo, while enforced YTHDF2 expression reversed those effects. The analyses of m6A-RIP-seq and RIP-PCR indicated that STAT5A was the downstream target of YTHDF2, which was binding to the m6A modification site of STAT5A to promote its mRNA degradation. ChIP-seq and PCR assays revealed that STAT5A suppressed MM cell proliferation by occupying the transcription site of MAP2K2 to decrease ERK phosphorylation. In addition, we confirmed that YTHDF2 mediated the unphosphorylated form of STAT5A to inhibit the expression of MAP2K2/p-ERK. In conclusion, our study highlights that YTHDF2/STAT5A/MAP2K2/p-ERK axis plays a key role in MM proliferation and targeting YTHDF2 may be a promising therapeutic strategy.
Collapse
|
22
|
Vonka V, Hirsch I. Prophylactic vaccines against cancers of non-infectious origin: a dream or a real possibility? Cent Eur J Public Health 2022; 29:247-258. [PMID: 35026062 DOI: 10.21101/cejph.a7219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/23/2021] [Indexed: 11/15/2022]
Abstract
The dramatic progress in tumour biology and immunology in the past several years has opened new avenues for the treatment and prevention of cancer. One of the great contributions of the immunotherapeutic approaches is an increasing understanding of the immunology of cancer, which is, gradually creating conditions for the development of prophylactic anti-cancer vaccines. Efficient vaccines have been developed and employed for the prophylaxis of two frequent cancers of viral origin, namely cervical cancer and liver cancer. The new knowledge on the interactions between the immune system and the malignant tumors seems to provide means for the development of prophylactic vaccines against cancers developing due to the mutations in the proto-oncogenes converting their products into oncoproteins. According to the present estimates, these cancers form a great majority of human malignancies. Recent evidence has indicated that the immune system recognizes such mutated proteins, and that the development of cancer is due to the failure of the immune system to eliminate neoplastic cells. Followingly, it can be expected that inducing immunity against the mutated epitopes will increase the capacity of the body to deal with the initiated precancerous cells. In the present paper this hypothesis is primarily discussed in the relationship with colorectal cancer (CRC), which seems to be a well-fitting candidate for prophylactic vaccination. CRC is the third most frequent malignancy and the fourth most common cause of cancer mortality. Mutations of two proto-oncogenes, namely RAS and RAF, are involved in the majority of CRC cases and, in addition, they are shared with other human malignancies. Therefore, the strategy to be used for prophylaxis of CRC is discussed together with several other frequent human cancers, namely lung cancer, pancreatic duct cancer and melanoma. The prophylactic vaccines proposed are aimed at the reduction of the incidence of these and, to a lesser extent, some other cancers.
Collapse
Affiliation(s)
- Vladimír Vonka
- Institute of Haematology and Blood Transfusion, Emeritus, Prague, Czech Republic
| | - Ivan Hirsch
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
23
|
Sacco A, Federico C, Todoerti K, Ziccheddu B, Palermo V, Giacomini A, Ravelli C, Maccarinelli F, Bianchi G, Belotti A, Ribolla R, Favasuli V, Revenko AS, Macleod AR, Willis B, Cai H, Hauser J, Rooney C, Willis SE, Martin PL, Staniszewska A, Ambrose H, Hanson L, Cattaneo C, Tucci A, Rossi G, Ronca R, Neri A, Mitola S, Bolli N, Presta M, Moschetta M, Ross S, Roccaro AM. Specific targeting of the KRAS mutational landscape in myeloma as a tool to unveil the elicited antitumor activity. Blood 2021; 138:1705-1720. [PMID: 34077955 PMCID: PMC9710471 DOI: 10.1182/blood.2020010572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
Alterations in KRAS have been identified as the most recurring somatic variants in the multiple myeloma (MM) mutational landscape. Combining DNA and RNA sequencing, we studied 756 patients and observed KRAS as the most frequently mutated gene in patients at diagnosis; in addition, we demonstrated the persistence or de novo occurrence of the KRAS aberration at disease relapse. Small-molecule inhibitors targeting KRAS have been developed; however, they are selective for tumors carrying the KRASG12C mutation. Therefore, there is still a need to develop novel therapeutic approaches to target the KRAS mutational events found in other tumor types, including MM. We used AZD4785, a potent and selective antisense oligonucleotide that selectively targets and downregulates all KRAS isoforms, as a tool to dissect the functional sequelae secondary to KRAS silencing in MM within the context of the bone marrow niche and demonstrated its ability to significantly silence KRAS, leading to inhibition of MM tumor growth, both in vitro and in vivo, and confirming KRAS as a driver and therapeutic target in MM.
Collapse
Affiliation(s)
- Antonio Sacco
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Cinzia Federico
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Katia Todoerti
- Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Bachisio Ziccheddu
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Valentina Palermo
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giada Bianchi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Angelo Belotti
- Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | | | - Vanessa Favasuli
- Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | | | | | | | - Joana Hauser
- Oncology R &D, AstraZeneca, Cambridge, United Kingdom; and
| | - Claire Rooney
- Oncology R &D, AstraZeneca, Cambridge, United Kingdom; and
| | | | | | | | - Helen Ambrose
- Oncology R &D, AstraZeneca, Cambridge, United Kingdom; and
| | - Lyndsey Hanson
- Oncology R &D, AstraZeneca, Cambridge, United Kingdom; and
| | | | | | - Giuseppe Rossi
- Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonino Neri
- Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Niccolò Bolli
- Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Sarah Ross
- Oncology R &D, AstraZeneca, Cambridge, United Kingdom; and
| | - Aldo M. Roccaro
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
24
|
Podar K, Leleu X. Relapsed/Refractory Multiple Myeloma in 2020/2021 and Beyond. Cancers (Basel) 2021; 13:5154. [PMID: 34680303 PMCID: PMC8534171 DOI: 10.3390/cancers13205154] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the challenges imposed by the COVID-19 pandemic, exciting therapeutic progress continues to be made in MM. New drug approvals for relapsed/refractory (RR)MM in 2020/2021 include the second CD38 monoclonal antibody, isatuximab, the first BCMA-targeting therapy and first-in-class antibody-drug conjugate (ADC) belantamab mafodotin, the first BCMA-targeting CAR T cell product Idecabtagen-Vicleucel (bb2121, Ide-Cel), the first in-class XPO-1 inhibitor selinexor, as well as the first-in-class anti-tumor peptide-drug conjugate, melflufen. The present introductory article of the Special Issue on "Advances in the Treatment of Relapsed and Refractory Multiple Myeloma: Novel Agents, Immunotherapies and Beyond" summarizes the most recent registration trials and emerging immunotherapies in RRMM, gives an overview on latest insights on MM genomics and on tumor-induced changes within the MM microenvironment, and presents some of the most promising rationally derived future therapeutic strategies.
Collapse
Affiliation(s)
- Klaus Podar
- Department of Internal Medicine 2, University Hospital Krems, Mitterweg 10, 3500 Krems an der Donau, Austria
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria
| | - Xavier Leleu
- Department of Hematology, and CIC1402 INSERM Unit, Poitiers University Hospital, 2 Rue de la Milétrie, 86021 Poitiers, France;
| |
Collapse
|
25
|
Cutler SD, Knopf P, Campbell CJV, Thoni A, El Hassan MA, Forward N, White D, Wagner J, Goudie M, Boudreau JE, Kennedy BE, Gujar S, Gaston D, Elnenaei MO. DMG26: A Targeted Sequencing Panel for Mutation Profiling to Address Gaps in the Prognostication of Multiple Myeloma. J Mol Diagn 2021; 23:1699-1714. [PMID: 34562616 DOI: 10.1016/j.jmoldx.2021.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/15/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022] Open
Abstract
Multiple myeloma presents with numerous primary genomic lesions that broadly dichotomize cases into hyperdiploidy or IgH translocated. Clinically, these large alterations are assessed by fluorescence in situ hybridization (FISH) for risk stratification at diagnosis. Secondary focal events, including indels and single-nucleotide variants, are also reported; however, their clinical correlates are poorly described, and FISH has insufficient resolution to assess many of them. In this study, we examined the exonic sequences of 26 genes reported to be mutated in >1% of patients with myeloma using a custom panel. We sequenced these exons to approximately 1000 times in a cohort of 76 patients from Atlantic Canada with detailed clinical correlates and in four multiple myeloma cell lines. Across the 76 patients, 255 mutations and 33 focal copy number variations were identified. High-severity mutations and mutations predicted by FATHMM-XF to be pathogenic identified patients with significantly reduced progression-free survival. These mutations were mutually exclusive from the Revised International Staging System high-risk FISH markers and were independent of all biochemical parameters of the Revised International Staging System. Applying our panel to patients classified by FISH to be standard risk successfully reclassified patients into high- and standard-risk groups. Furthermore, three patients in our cohort each had two high-risk markers; two of these patients developed plasma cell leukemia, a rare and severe clinical sequela of multiple myeloma.
Collapse
Affiliation(s)
- Samuel D Cutler
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Philipp Knopf
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Clinton J V Campbell
- Pathology & Molecular Medicine, Faculty of Health Sciences, McMaster University, Toronto, Ontario, Canada
| | - Andrea Thoni
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Pathology & Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | | | - Nicholas Forward
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Darrell White
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Julie Wagner
- Pathology & Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Marissa Goudie
- Pathology & Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Jeanette E Boudreau
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Barry E Kennedy
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shashi Gujar
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada; Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Daniel Gaston
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Pathology & Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada; Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada.
| | - Manal O Elnenaei
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Pathology & Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada; Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada.
| |
Collapse
|
26
|
Zhou F, Wang D, Zhou N, Chen H, Shi H, Peng R, Wei W, Wu L. Circular RNA Protein Tyrosine Kinase 2 Promotes Cell Proliferation, Migration and Suppresses Apoptosis via Activating MicroRNA-638 Mediated MEK/ERK, WNT/β-Catenin Signaling Pathways in Multiple Myeloma. Front Oncol 2021; 11:648189. [PMID: 34395238 PMCID: PMC8355695 DOI: 10.3389/fonc.2021.648189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Our previous study observed that circular RNA protein tyrosine kinase 2 (circ-PTK2) was upregulated and correlated with worse clinical features and unfavorable prognosis in multiple myeloma (MM) patients. Thus, this study aimed to further characterize the regulatory function of circ-PTK2 on cell malignant activities and its target microRNA-638 (miR-638) as well as downstream MEK/ERK, WNT/β-catenin signaling pathways in MM. The effect of circ-PTK2 on MM cell proliferation, apoptosis, migration, invasion and its potential target miRNAs was assessed by transfecting circ-PTK2 overexpression plasmids into U226 cells and circ-PTK2 knock-down plasmids into LP-1 cells. Furthermore, the interaction between circ-PTK2 and miR-638 mediated MEK/ERK and WNT/β-catenin signaling pathways was validated by rescue experiments. Circ-PTK2 was overexpressed in most MM cell lines compared to normal plasma cells. Overexpressing circ-PTK2 promoted proliferation and migration, inhibited apoptosis in U266 cells, but did not affect cell invasion; knocking down circ-PTK2 achieved opposite effect in LP-1 cells. Besides, circ-PTK2 reversely regulated miR-638 expression but not miR-4690, miR-6724, miR-6749 or miR-6775. The following luciferase reporter assay illustrated the direct bind of circ-PTK2 towards miR-638. In rescue experiments, overexpressing miR-638 suppressed proliferation, migration, while promoted apoptosis in both wild U266 cells and circ-PTK2-overexpressed U266 cells; meanwhile, overexpressing miR-638 also suppressed MEK/ERK and WNT/β-catenin pathways in both wild U266 cells and circ-PTK2-overexpressed U266 cells. Knocking down miR-638 achieved opposite effect in both wild LP-1 cells and circ-PTK2-knocked-down LP-1 cells. In conclusion, circ-PTK2 promotes cell proliferation, migration, suppresses cell apoptosis via miR-638 mediated MEK&ERK and WNT&β-catenin signaling pathways in MM.
Collapse
Affiliation(s)
- Fan Zhou
- Department of Hematology and Oncology, Shanghai Jing'an District Zhabei Central Hospital, Shanghai, China
| | - Dongjiao Wang
- Department of Hematology and Oncology, Shanghai Jing'an District Zhabei Central Hospital, Shanghai, China
| | - Nian Zhou
- Department of Hematology and Oncology, Shanghai Jing'an District Zhabei Central Hospital, Shanghai, China
| | - Haimin Chen
- Department of Hematology and Oncology, Shanghai Jing'an District Zhabei Central Hospital, Shanghai, China
| | - Haotian Shi
- Department of Hematology and Oncology, Shanghai Jing'an District Zhabei Central Hospital, Shanghai, China
| | - Rong Peng
- Department of Hematology and Oncology, Shanghai Jing'an District Zhabei Central Hospital, Shanghai, China
| | - Wei Wei
- Department of Hematology and Oncology, Shanghai Jing'an District Zhabei Central Hospital, Shanghai, China
| | - Lixia Wu
- Department of Hematology and Oncology, Shanghai Jing'an District Zhabei Central Hospital, Shanghai, China
| |
Collapse
|
27
|
Yasui H, Kobayashi M, Sato K, Kondoh K, Ishida T, Kaito Y, Tamura H, Handa H, Tsukune Y, Sasaki M, Komatsu N, Tanaka N, Tanaka J, Kizaki M, Kawamata T, Makiyama J, Yokoyama K, Imoto S, Tojo A, Imai Y. Circulating cell-free DNA in the peripheral blood plasma of patients is an informative biomarker for multiple myeloma relapse. Int J Clin Oncol 2021; 26:2142-2150. [PMID: 34259983 DOI: 10.1007/s10147-021-01991-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Multiple myeloma (MM) is an incurable hematological malignancy. Despite the introduction of several novel drugs, most patients relapse. Biomarkers to identify the early signs of relapse will make it possible to adjust the therapeutic strategy before the disease worsens. Although understanding genetic changes is important for the treatment of MM, currently known biomarkers of relapse, including serum free-light chains and monoclonal paraproteins, are not associated with genetic changes. METHODS We therefore performed a multicenter study to examine the usefulness of circulating cell-free DNA (cfDNA) present in the peripheral blood (PB) plasma of patients as a biomarker for MM relapse. RESULTS We identified several driver mutations by combined analysis of next-generation sequencing and existing databases of candidate oncogenes. Furthermore, relapse was detected more sensitively by monitoring the circulating cfDNA with these driver mutations than by conventional serum free-light chain examination. CONCLUSION These results suggest the potential utility of cfDNA in the PB plasma of patients as a relevant early biomarker for MM relapse.
Collapse
Affiliation(s)
- Hiroshi Yasui
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masayuki Kobayashi
- Division of Molecular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Hematology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Kota Sato
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Kanya Kondoh
- Division of Molecular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tadao Ishida
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Yuta Kaito
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Hideto Tamura
- Department of Hematology, Nippon Medical School, Tokyo, Japan.,Division of Diabetes, Endocrinology and Hematology, Department of Internal Medicine, Dokkyo Medical University Saitama Medical Center, Mibu, Japan
| | - Hiroshi Handa
- Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yutaka Tsukune
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Makoto Sasaki
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Norio Komatsu
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Norina Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Masahiro Kizaki
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Toyotaka Kawamata
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Junya Makiyama
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuaki Yokoyama
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Imoto
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Arinobu Tojo
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Division of Molecular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Imai
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
28
|
MEK1/2-ERK Pathway Alterations as a Therapeutic Target in Sporadic Alzheimer's Disease: A Study in Senescence-Accelerated OXYS Rats. Antioxidants (Basel) 2021; 10:antiox10071058. [PMID: 34208998 PMCID: PMC8300733 DOI: 10.3390/antiox10071058] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia worldwide, with no cure. There is growing interest in mitogen-activated protein kinases (MAPKs) as possible pathogenesis-related therapeutic targets in AD. Previously, using senescence-accelerated OXYS rats, which simulate key characteristics of the sporadic AD type, we have shown that prolonged treatment with mitochondria-targeted antioxidant plastoquinonyl-decyltriphenylphosphonium (SkQ1) during active progression of AD-like pathology improves the activity of many signaling pathways (SPs) including the p38 MAPK SP. In this study, we continued to investigate the mechanisms behind anti-AD effects of SkQ1 in OXYS rats and focused on hippocampal extracellular regulated kinases’ (ERK1 and -2) activity alterations. According to high-throughput RNA sequencing results, SkQ1 eliminated differences in the expression of eight out of nine genes involved in the ERK1/2 SP, compared to untreated control (Wistar) rats. Western blotting and immunofluorescent staining revealed that SkQ1 suppressed ERK1/2 activity via reductions in the phosphorylation of kinases ERK1/2, MEK1, and MEK2. SkQ1 decreased hyperphosphorylation of tau protein, which is present in pathological aggregates in AD. Thus, SkQ1 alleviates AD pathology by suppressing MEK1/2-ERK1/2 SP activity in the OXYS rat hippocampus and may be a promising candidate drug for human AD.
Collapse
|
29
|
Targeting Reactive Oxygen Species Metabolism to Induce Myeloma Cell Death. Cancers (Basel) 2021; 13:cancers13102411. [PMID: 34067602 PMCID: PMC8156203 DOI: 10.3390/cancers13102411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a common hematological disease characterized by the accumulation of clonal malignant plasma cells in the bone marrow. Over the past two decades, new therapeutic strategies have significantly improved the treatment outcome and patients survival. Nevertheless, most MM patients relapse underlying the need of new therapeutic approaches. Plasma cells are prone to produce large amounts of immunoglobulins causing the production of intracellular ROS. Although adapted to high level of ROS, MM cells die when exposed to drugs increasing ROS production either directly or by inhibiting antioxidant enzymes. In this review, we discuss the efficacy of ROS-generating drugs for inducing MM cell death and counteracting acquired drug resistance specifically toward proteasome inhibitors.
Collapse
|
30
|
Li G, Yin J, Wu Z, Li S, He A, Sun Z. Expression level of miRNA in the peripheral blood of patients with multiple myeloma and its clinical significance. Am J Transl Res 2021; 13:5343-5349. [PMID: 34150128 PMCID: PMC8205780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the expression level of serum miRNA-192-5p and its clinical value in the diagnosis and care of patients with multiple myeloma (MM). METHODS Eighty-eight patients with MM admitted to our hospital from June 2017 to April 2020 were selected as the observation group. In addition, 70 patients who received osteoporosis testing in our hospital in the corresponding period but were excluded from having MM and haematological malignancy were selected as the control group. The relative expression level of serum miRNA-192-5p was detected. The expression level of serum miRNA and its correlation with patient-related clinical parameters were compared and analyzed. The ROC curve was used to analyze its diagnostic efficacy for MM. RESULTS The relative expression level of serum miRNA-192-5p in MM patients was remarkably lower than that in the control group (P < 0.05); the AUC area of serum miRNA-192-5p in patients with a diagnosis of MM was 0.853, with a cutoff value of 0.72, the sensitivity of 86.30%, and the specificity of 81.20%, P = 0.030. The relative expression level of miRNA-192-5p in the serum of patients with high β2-MG and creatinine levels was markedly reduced compared to that in patients with low β2-MG levels (P < 0.05); the relative expression level of miRNA-192-5p in the serum of patients with low hemoglobin and albumin levels was markedly reduced compared to that in patients with normal hemoglobin and albumin (P < 0.05); and there was significantly negative correlation between the relative expression level of miRNA-192-5p in the serum of MM patients and IgG and IgA levels, respectively (P < 0.05). CONCLUSION miRNA-192-5p may serve as an auxiliary diagnostic tool in the diagnosis of MM. Furthermore, because there is certain correlation between serum miRNA-192-5p and MM progression and prognosis, it may be regarded as a novel marker for MM monitoring.
Collapse
Affiliation(s)
- Guangbao Li
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang UniversityShaoyang 422000, P. R. China
| | - Jianwen Yin
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang UniversityShaoyang 422000, P. R. China
| | - Zutong Wu
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang UniversityShaoyang 422000, P. R. China
| | - Shizhong Li
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang UniversityShaoyang 422000, P. R. China
| | - Aijun He
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang UniversityShaoyang 422000, P. R. China
| | - Zhenzhen Sun
- Department of Peadiatrics, The First Affiliated Hospital of Shaoyang UniversityShaoyang 422000, P. R. China
| |
Collapse
|
31
|
Hu J, Cai D, Zhao Z, Zhong GC, Gong J. Suppression of Heterogeneous Nuclear Ribonucleoprotein C Inhibit Hepatocellular Carcinoma Proliferation, Migration, and Invasion via Ras/MAPK Signaling Pathway. Front Oncol 2021; 11:659676. [PMID: 33937074 PMCID: PMC8087488 DOI: 10.3389/fonc.2021.659676] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most common malignant tumor, has high fatality and recurrence rates. Accumulating evidence shows that heterogeneous nuclear ribonucleoprotein C (HNRNPC), which is mainly involved in RNA splicing, export, and translation, promotes progression and metastasis of multiple tumor types; however, the effects of HNRNPC in HCC are unknown. In the present study, high levels of HNRNPC were detected in tumor tissues compared with para-tumor tissues by immunohistochemical and western blot assays. Furthermore, Cox proportional hazards regression models, the Kaplan–Meier method, and clinicopathologic features analysis showed that HNRNPC was not only an independent prognostic factor for both overall and disease-free survival in HCC but also a predictor of large tumor size and advanced tumor stage. Functional experiments revealed that silencing of HNRNPC not only led to arrest of more HCC cells at G0/G1 phase to inhibit their proliferation, but also suppressed EMT process to block their invasion, and migration in vitro; this was related to the Ras/MAPK signaling pathway. In addition, blocking of HCC cell proliferation regulated by HNRNPC silencing was observed in vivo. Finally, rescue tests showed that after recovery of Ras/MAPK signaling pathway activity by treatment with Ras agonists, the proliferation, migration, and invasion suppression of Huh-7 and Hep 3B cell lines caused by HNRNPC knockdown was partially reversed. Taken together, these results indicate that HNRNPC knockdown inhibits HCC cell proliferation, migration and invasion, in part via the Ras/MAPK signaling pathway. Thus, HNRNPC may have an important role in the progression of HCC and represents a promising biomarker for evaluation of prognosis and a potential therapeutic target in HCC patients.
Collapse
Affiliation(s)
- Jiejun Hu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong Cai
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhibo Zhao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guo-Chao Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
John L, Krauth MT, Podar K, Raab MS. Pathway-Directed Therapy in Multiple Myeloma. Cancers (Basel) 2021; 13:1668. [PMID: 33916289 PMCID: PMC8036678 DOI: 10.3390/cancers13071668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple Myeloma (MM) is a malignant plasma cell disorder with an unmet medical need, in particular for relapsed and refractory patients. Molecules within deregulated signaling pathways, including the RAS/RAF/MEK/ERK, but also the PI3K/AKT-pathway belong to the most promising evolving therapeutic targets. Rationally derived compounds hold great therapeutic promise to target tumor-specific abnormalities rather than general MM-associated vulnerabilities. This paradigm is probably best depicted by targeting mutated BRAF: while well-tolerated, remarkable responses have been achieved in selected patients by inhibition of BRAFV600E alone or in combination with MEK. Targeting of AKT has also shown promising results in a subset of patients as monotherapy or to resensitize MM-cells to conventional treatment. Approaches to target transcription factors, convergence points of signaling cascades such as p53 or c-MYC, are emerging as yet another exciting strategy for pathway-directed therapy. Informed by our increasing knowledge on the impact of signaling pathways in MM pathophysiology, rationally derived Precision-Medicine trials are ongoing. Their results are likely to once more fundamentally change treatment strategies in MM.
Collapse
Affiliation(s)
- Lukas John
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany;
- CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Maria Theresa Krauth
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria;
| | - Klaus Podar
- Department of Internal Medicine, Karl Landsteiner University of Health Sciences, Mitterweg 10, 3500 Krems an der Donau, Austria;
| | - Marc-Steffen Raab
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany;
- CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
33
|
Li S, Fu J, Yang J, Ma H, Bhutani D, Mapara MY, Marcireau C, Lentzsch S. Targeting the GCK pathway: a novel and selective therapeutic strategy against RAS-mutated multiple myeloma. Blood 2021; 137:1754-1764. [PMID: 33036022 PMCID: PMC8020269 DOI: 10.1182/blood.2020006334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022] Open
Abstract
In multiple myeloma (MM), frequent mutations of NRAS, KRAS, or BRAF are found in up to 50% of newly diagnosed patients. The majority of the NRAS, KRAS, and BRAF mutations occur in hotspots causing constitutive activation of the corresponding proteins. Thus, targeting RAS mutation in MM will increase therapeutic efficiency and potentially overcome drug resistance. We identified germinal center kinase (GCK) as a novel therapeutic target in MM with RAS mutation. GCK knockdown (KD) in MM cells demonstrated in vitro and in vivo that silencing of GCK induces MM cell growth inhibition, associated with blocked MKK4/7-JNK phosphorylation and impaired degradation of IKZF1/3, BCL-6, and c-MYC. These effects were rescued by overexpression of a short hairpin RNA (shRNA)-resistant GCK, thereby excluding the potential off-target effects of GCK KD. In contrast, overexpression of shRNA-resistant GCK kinase-dead mutant (K45A) inhibited MM cell proliferation and failed to rescue the effects of GCK KD on MM growth inhibition, indicating that GCK kinase activity is critical for regulating MM cell proliferation and survival. Importantly, the higher sensitivity to GCK KD in RASMut cells suggests that targeting GCK is effective in MM, which harbors RAS mutations. In accordance with the effects of GCK KD, the GCK inhibitor TL4-12 dose-dependently downregulated IKZF1 and BCL-6 and led to MM cell proliferation inhibition accompanied by induction of apoptosis. Here, our data identify GCK as a novel target in RASMut MM cells, providing a rationale to treat RAS mutations in MM. Furthermore, GCK inhibitors might represent an alternative therapy to overcome immunomodulatory drug resistance in MM.
Collapse
Affiliation(s)
| | | | | | - Huihui Ma
- Columbia Center for Translational Immunology, College of Physicians and Surgeons, Columbia University, New York, NY; and
| | | | - Markus Y Mapara
- Columbia Center for Translational Immunology, College of Physicians and Surgeons, Columbia University, New York, NY; and
| | | | | |
Collapse
|
34
|
Dong SS, Dong DD, Yang ZF, Zhu GQ, Gao DM, Chen J, Zhao Y, Liu BB. Exosomal miR-3682-3p Suppresses Angiogenesis by Targeting ANGPT1 via the RAS-MEK1/2-ERK1/2 Pathway in Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:633358. [PMID: 33869178 PMCID: PMC8044774 DOI: 10.3389/fcell.2021.633358] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/04/2021] [Indexed: 12/24/2022] Open
Abstract
Background Angiogenesis is a crucial process in tumorigenesis and development. The role of exosomes derived from hepatocellular carcinoma (HCC) cells in angiogenesis has not been clearly elucidated. Methods and Results Exosomes were isolated from HCC cell lines (HCCLM3, MHCC97L, and PLC/RFP/5) by ultracentrifugation and identified by nano transmission electron microscopy (TEM), NanoSight analysis and western blotting, respectively. In vitro and in vivo analyses showed that exosomes isolated from highly metastatic HCC cells enhanced the migration, invasion and tube formation of human umbilical vein endothelial cells (HUVECs) compared to exosomes derived from poorly metastatic HCC cells. In addition, microarray analysis of HCC-Exos was conducted to identify potential functional molecules, and miR-3682-3p expression was found to be significantly downregulated in exosomes isolated from highly metastatic HCC cells. By in vitro gain-of-function experiments, we found that HCC cells secreted exosomal miR-3682-3p, which negatively regulates angiopoietin-1 (ANGPT1), and this led to inhibition of RAS-MEK1/2-ERK1/2 signaling in endothelial cells and eventually impaired angiogenesis. Conclusion Our study elucidates that exosomal miR-3682-3p attenuates angiogenesis by targeting ANGPT1 through RAS-MEK1/2-ERK1/2 signaling and provides novel potential targets for liver cancer therapy.
Collapse
Affiliation(s)
- Shuang-Shuang Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Dan-Dan Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhang-Fu Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Gui-Qi Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Dong-Mei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jie Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yan Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Bin-Bin Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| |
Collapse
|
35
|
Theodorakakou F, Dimopoulos MA, Kastritis E. Mutation-dependent treatment approaches for patients with complex multiple myeloma. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1893605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Foteini Theodorakakou
- Plasma Cell Dyscrasia Unit, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios A. Dimopoulos
- Plasma Cell Dyscrasia Unit, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Plasma Cell Dyscrasia Unit, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
36
|
Fan F, Malvestiti S, Vallet S, Lind J, Garcia-Manteiga JM, Morelli E, Jiang Q, Seckinger A, Hose D, Goldschmidt H, Stadlbauer A, Sun C, Mei H, Pecherstorfer M, Bakiri L, Wagner EF, Tonon G, Sattler M, Hu Y, Tassone P, Jaeger D, Podar K. JunB is a key regulator of multiple myeloma bone marrow angiogenesis. Leukemia 2021; 35:3509-3525. [PMID: 34007044 PMCID: PMC8632680 DOI: 10.1038/s41375-021-01271-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 02/04/2023]
Abstract
Bone marrow (BM) angiogenesis significantly influences disease progression in multiple myeloma (MM) patients and correlates with adverse prognosis. The present study shows a statistically significant correlation of the AP-1 family member JunB with VEGF, VEGFB, and IGF1 expression levels in MM. In contrast to the angiogenic master regulator Hif-1α, JunB protein levels were independent of hypoxia. Results in tumor-cell models that allow the induction of JunB knockdown or JunB activation, respectively, corroborated the functional role of JunB in the production and secretion of these angiogenic factors (AFs). Consequently, conditioned media derived from MM cells after JunB knockdown or JunB activation either inhibited or stimulated in vitro angiogenesis. The impact of JunB on MM BM angiogenesis was finally confirmed in a dynamic 3D model of the BM microenvironment, a xenograft mouse model as well as in patient-derived BM sections. In summary, in continuation of our previous study (Fan et al., 2017), the present report reveals for the first time that JunB is not only a mediator of MM cell survival, proliferation, and drug resistance, but also a promoter of AF transcription and consequently of MM BM angiogenesis. Our results thereby underscore worldwide efforts to target AP-1 transcription factors such as JunB as a promising strategy in MM therapy.
Collapse
Affiliation(s)
- Fengjuan Fan
- grid.412839.50000 0004 1771 3250Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ,grid.7700.00000 0001 2190 4373Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
| | - Stefano Malvestiti
- grid.7700.00000 0001 2190 4373Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
| | - Sonia Vallet
- grid.488547.2Department of Internal Medicine II, University Hospital Krems, Krems an der Donau, Austria ,grid.459693.4Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Judith Lind
- grid.459693.4Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Jose Manuel Garcia-Manteiga
- grid.18887.3e0000000417581884Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eugenio Morelli
- grid.411489.10000 0001 2168 2547Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy ,grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA
| | - Qinyue Jiang
- grid.412839.50000 0004 1771 3250Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anja Seckinger
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Heidelberg, Germany ,grid.8767.e0000 0001 2290 8069Laboratory of Hematology and Immunology & Laboratory for Myeloma Research, Vrije Universiteit Brussel (VUB) Belgium, Brussels, Belgium
| | - Dirk Hose
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Heidelberg, Germany ,grid.8767.e0000 0001 2290 8069Laboratory of Hematology and Immunology & Laboratory for Myeloma Research, Vrije Universiteit Brussel (VUB) Belgium, Brussels, Belgium
| | - Hartmut Goldschmidt
- grid.7700.00000 0001 2190 4373Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany ,grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Stadlbauer
- grid.5330.50000 0001 2107 3311Department of Neurosurgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany ,grid.459693.4Institute of Medical Radiology, University Hospital St. Pölten, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Chunyan Sun
- grid.412839.50000 0004 1771 3250Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Mei
- grid.412839.50000 0004 1771 3250Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Martin Pecherstorfer
- grid.488547.2Department of Internal Medicine II, University Hospital Krems, Krems an der Donau, Austria
| | - Latifa Bakiri
- grid.22937.3d0000 0000 9259 8492Genes & Disease Group, Department of Dermatology, Medical University of Vienna (MUW), Vienna, Austria
| | - Erwin F. Wagner
- grid.22937.3d0000 0000 9259 8492Genes & Disease Group, Department of Dermatology, Medical University of Vienna (MUW), Vienna, Austria ,grid.22937.3d0000 0000 9259 8492Genes & Disease Group, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria
| | - Giovanni Tonon
- grid.18887.3e0000000417581884Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy ,grid.18887.3e0000000417581884Functional Genomics of Cancer Unit, Experimental Oncology Division, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martin Sattler
- grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA ,grid.62560.370000 0004 0378 8294Department of Surgery, Brigham and Women’s Hospital, Boston, MA USA
| | - Yu Hu
- grid.412839.50000 0004 1771 3250Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pierfrancesco Tassone
- grid.411489.10000 0001 2168 2547Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Dirk Jaeger
- grid.7700.00000 0001 2190 4373Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
| | - Klaus Podar
- grid.7700.00000 0001 2190 4373Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany ,grid.488547.2Department of Internal Medicine II, University Hospital Krems, Krems an der Donau, Austria ,grid.459693.4Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| |
Collapse
|
37
|
Abdollahi P, Köhn M, Børset M. Protein tyrosine phosphatases in multiple myeloma. Cancer Lett 2020; 501:105-113. [PMID: 33290866 DOI: 10.1016/j.canlet.2020.11.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022]
Abstract
Many cell signaling pathways are activated or deactivated by protein tyrosine phosphorylation and dephosphorylation, catalyzed by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), respectively. Even though PTPs are as important as PTKs in this process, their role has been neglected for a long time. Multiple myeloma (MM) is a cancer of plasma cells, which is characterized by production of monoclonal immunoglobulin, anemia and destruction of bone. MM is still incurable with high relapse frequency after treatment. In this review, we highlight the PTPs that were previously described in MM or have a role that can be relevant in a myeloma context. Our purpose is to show that despite the importance of PTPs in MM pathogenesis, many unanswered questions in this field need to be addressed. This might help to detect novel treatment strategies for MM patients.
Collapse
Affiliation(s)
- Pegah Abdollahi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Clinic of Medicine, St. Olavs Hospital, Trondheim, Norway; Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany.
| | - Maja Köhn
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany.
| | - Magne Børset
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Immunology and Transfusion Medicine, St. Olavs Hospital, Trondheim, Norway.
| |
Collapse
|
38
|
Abstract
The genetic alterations in cancer cells are tightly linked to signaling pathway dysregulation. Ras is a key molecule that controls several tumorigenesis-related processes, and mutations in RAS genes often lead to unbiased intensification of signaling networks that fuel cancer progression. In this article, we review recent studies that describe mutant Ras-regulated signaling routes and their cross-talk. In addition to the two main Ras-driven signaling pathways, i.e., the RAF/MEK/ERK and PI3K/AKT/mTOR pathways, we have also collected emerging data showing the importance of Ras in other signaling pathways, including the RAC/PAK, RalGDS/Ral, and PKC/PLC signaling pathways. Moreover, microRNA-regulated Ras-associated signaling pathways are also discussed to highlight the importance of Ras regulation in cancer. Finally, emerging data show that the signal alterations in specific cell types, such as cancer stem cells, could promote cancer development. Therefore, we also cover the up-to-date findings related to Ras-regulated signal transduction in cancer stem cells.
Collapse
Affiliation(s)
- Tamás Takács
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gyöngyi Kudlik
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Anita Kurilla
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Bálint Szeder
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - László Buday
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Medical Chemistry, Semmelweis University Medical School, Budapest, Hungary
| | - Virag Vas
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
39
|
Guo C, Chénard-Poirier M, Roda D, de Miguel M, Harris SJ, Candilejo IM, Sriskandarajah P, Xu W, Scaranti M, Constantinidou A, King J, Parmar M, Turner AJ, Carreira S, Riisnaes R, Finneran L, Hall E, Ishikawa Y, Nakai K, Tunariu N, Basu B, Kaiser M, Lopez JS, Minchom A, de Bono JS, Banerji U. Intermittent schedules of the oral RAF-MEK inhibitor CH5126766/VS-6766 in patients with RAS/RAF-mutant solid tumours and multiple myeloma: a single-centre, open-label, phase 1 dose-escalation and basket dose-expansion study. Lancet Oncol 2020; 21:1478-1488. [PMID: 33128873 DOI: 10.1016/s1470-2045(20)30464-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND CH5126766 (also known as VS-6766, and previously named RO5126766), a novel MEK-pan-RAF inhibitor, has shown antitumour activity across various solid tumours; however, its initial development was limited by toxicity. We aimed to investigate the safety and toxicity profile of intermittent dosing schedules of CH5126766, and the antitumour activity of this drug in patients with solid tumours and multiple myeloma harbouring RAS-RAF-MEK pathway mutations. METHODS We did a single-centre, open-label, phase 1 dose-escalation and basket dose-expansion study at the Royal Marsden National Health Service Foundation Trust (London, UK). Patients were eligible for the study if they were aged 18 years or older, had cancers that were refractory to conventional treatment or for which no conventional therapy existed, and if they had a WHO performance status score of 0 or 1. For the dose-escalation phase, eligible patients had histologically or cytologically confirmed advanced or metastatic solid tumours. For the basket dose-expansion phase, eligible patients had advanced or metastatic solid tumours or multiple myeloma harbouring RAS-RAF-MEK pathway mutations. During the dose-escalation phase, we evaluated three intermittent oral schedules (28-day cycles) in patients with solid tumours: (1) 4·0 mg or 3·2 mg CH5126766 three times per week; (2) 4·0 mg CH5126766 twice per week; and (3) toxicity-guided dose interruption schedule, in which treatment at the recommended phase 2 dose (4·0 mg CH5126766 twice per week) was de-escalated to 3 weeks on followed by 1 week off if patients had prespecified toxic effects (grade 2 or worse diarrhoea, rash, or creatinine phosphokinase elevation). In the basket dose-expansion phase, we evaluated antitumour activity at the recommended phase 2 dose, determined from the dose-escalation phase, in biomarker-selected patients. The primary endpoints were the recommended phase 2 dose at which no more than one out of six patients had a treatment-related dose-limiting toxicity, and the safety and toxicity profile of each dosing schedule. The key secondary endpoint was investigator-assessed response rate in the dose-expansion phase. Patients who received at least one dose of the study drug were evaluable for safety and patients who received one cycle of the study drug and underwent baseline disease assessment were evaluable for response. This trial is registered with ClinicalTrials.gov, NCT02407509. FINDINGS Between June 5, 2013, and Jan 10, 2019, 58 eligible patients were enrolled to the study: 29 patients with solid tumours were included in the dose-escalation cohort and 29 patients with solid tumours or multiple myeloma were included in the basket dose-expansion cohort (12 non-small-cell lung cancer, five gynaecological malignancy, four colorectal cancer, one melanoma, and seven multiple myeloma). Median follow-up at the time of data cutoff was 2·3 months (IQR 1·6-3·5). Dose-limiting toxicities included grade 3 bilateral retinal pigment epithelial detachment in one patient who received 4·0 mg CH5126766 three times per week, and grade 3 rash (in two patients) and grade 3 creatinine phosphokinase elevation (in one patient) in those who received 3·2 mg CH5126766 three times per week. 4·0 mg CH5126766 twice per week (on Monday and Thursday or Tuesday and Friday) was established as the recommended phase 2 dose. The most common grade 3-4 treatment-related adverse events were rash (11 [19%] patients), creatinine phosphokinase elevation (six [11%]), hypoalbuminaemia (six [11%]), and fatigue (four [7%]). Five (9%) patients had serious treatment-related adverse events. There were no treatment-related deaths. Eight (14%) of 57 patients died during the trial due to disease progression. Seven (27% [95% CI 11·6-47·8]) of 26 response-evaluable patients in the basket expansion achieved objective responses. INTERPRETATION To our knowledge, this is the first study to show that highly intermittent schedules of a RAF-MEK inhibitor has antitumour activity across various cancers with RAF-RAS-MEK pathway mutations, and that this inhibitor is tolerable. CH5126766 used as a monotherapy and in combination regimens warrants further evaluation. FUNDING Chugai Pharmaceutical.
Collapse
Affiliation(s)
- Christina Guo
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Maxime Chénard-Poirier
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Desamparados Roda
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Maria de Miguel
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Samuel J Harris
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Irene Moreno Candilejo
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Priya Sriskandarajah
- Division of Cancer Therapeutics, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Wen Xu
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Mariana Scaranti
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Anastasia Constantinidou
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Jenny King
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Mona Parmar
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Alison J Turner
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | | | - Ruth Riisnaes
- Cancer Biomarkers, The Institute of Cancer Research, London, UK
| | - Laura Finneran
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Emma Hall
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Yuji Ishikawa
- Translational Research Division, Chugai Pharmaceutical, Tokyo, Japan
| | - Kiyohiko Nakai
- Translational Research Division, Chugai Pharmaceutical, Tokyo, Japan
| | - Nina Tunariu
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Bristi Basu
- Department of Oncology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Martin Kaiser
- Division of Molecular Pathology and Myeloma Molecular Therapy Group, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Juanita Suzanne Lopez
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Anna Minchom
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Johann S de Bono
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Udai Banerji
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
40
|
Seibold M, Stühmer T, Kremer N, Mottok A, Scholz CJ, Schlosser A, Leich E, Holzgrabe U, Brünnert D, Barrio S, Kortüm KM, Solimando AG, Chatterjee M, Einsele H, Rosenwald A, Bargou RC, Steinbrunn T. RAL GTPases mediate multiple myeloma cell survival and are activated independently of oncogenic RAS. Haematologica 2020; 105:2316-2326. [PMID: 33054056 PMCID: PMC7556628 DOI: 10.3324/haematol.2019.223024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/10/2019] [Indexed: 11/17/2022] Open
Abstract
Oncogenic RAS provides crucial survival signaling for up to half of multiple myeloma cases, but has so far remained a clinically undruggable target. RAL is a member of the RAS superfamily of small GTPases and is considered to be a potential mediator of oncogenic RAS signaling. In primary multiple myeloma, we found RAL to be overexpressed in the vast majority of samples when compared with pre-malignant monoclonal gammopathy of undetermined significance or normal plasma cells. We analyzed the functional effects of RAL abrogation in myeloma cell lines and found that RAL is a critical mediator of survival. RNAi-mediated knockdown of RAL resulted in rapid induction of tumor cell death, an effect which was independent from signaling via mitogen-activated protein kinase, but appears to be partially dependent on Akt activity. Notably, RAL activation was not correlated with the presence of activating RAS mutations and remained unaffected by knockdown of oncogenic RAS. Furthermore, transcriptome analysis yielded distinct RNA expression signatures after knockdown of either RAS or RAL. Combining RAL depletion with clinically relevant anti-myeloma agents led to enhanced rates of cell death. Our data demonstrate that RAL promotes multiple myeloma cell survival independently of oncogenic RAS and, thus, this pathway represents a potential therapeutic target in its own right.
Collapse
Affiliation(s)
- Marcel Seibold
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Thorsten Stühmer
- Comprehensive Cancer Center Mainfranken, Chair of Translational Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Nadine Kremer
- Comprehensive Cancer Center Mainfranken, Chair of Translational Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Anja Mottok
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | | | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Ellen Leich
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Daniela Brünnert
- Comprehensive Cancer Center Mainfranken, Chair of Translational Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Santiago Barrio
- Hematology Department, Hospital 12 de Octubre, Complutense University, Madrid, Spain
| | - K. Martin Kortüm
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | | | - Manik Chatterjee
- Comprehensive Cancer Center Mainfranken, Chair of Translational Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | | | - Ralf C. Bargou
- Comprehensive Cancer Center Mainfranken, Chair of Translational Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Torsten Steinbrunn
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
41
|
Integrated phosphoproteomics and transcriptional classifiers reveal hidden RAS signaling dynamics in multiple myeloma. Blood Adv 2020; 3:3214-3227. [PMID: 31698452 DOI: 10.1182/bloodadvances.2019000303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
A major driver of multiple myeloma (MM) is thought to be aberrant signaling, yet no kinase inhibitors have proven successful in the clinic. Here, we employed an integrated, systems approach combining phosphoproteomic and transcriptome analysis to dissect cellular signaling in MM to inform precision medicine strategies. Unbiased phosphoproteomics initially revealed differential activation of kinases across MM cell lines and that sensitivity to mammalian target of rapamycin (mTOR) inhibition may be particularly dependent on mTOR kinase baseline activity. We further noted differential activity of immediate downstream effectors of Ras as a function of cell line genotype. We extended these observations to patient transcriptome data in the Multiple Myeloma Research Foundation CoMMpass study. A machine-learning-based classifier identified surprisingly divergent transcriptional outputs between NRAS- and KRAS-mutated tumors. Genetic dependency and gene expression analysis revealed mutated Ras as a selective vulnerability, but not other MAPK pathway genes. Transcriptional analysis further suggested that aberrant MAPK pathway activation is only present in a fraction of RAS-mutated vs wild-type RAS patients. These high-MAPK patients, enriched for NRAS Q61 mutations, have inferior outcomes, whereas RAS mutations overall carry no survival impact. We further developed an interactive software tool to relate pharmacologic and genetic kinase dependencies in myeloma. Collectively, these predictive models identify vulnerable signaling signatures and highlight surprising differences in functional signaling patterns between NRAS and KRAS mutants invisible to the genomic landscape. These results will lead to improved stratification of MM patients in precision medicine trials while also revealing unexplored modes of Ras biology in MM.
Collapse
|
42
|
Li X, Yang Y, Yi X. Protein Kinase D 1 Predicts Poor Treatment Response and Unfavorable Survival of Bortezomib-Based Treatment, and Its Knockdown Enhances Drug Sensitivity to Bortezomib in Multiple Myeloma. Technol Cancer Res Treat 2020; 19:1533033820936770. [PMID: 32799769 PMCID: PMC7436836 DOI: 10.1177/1533033820936770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective: The present study aimed to explore the correlation of protein kinase D 1 with prognosis in bortezomib-treated multiple myeloma patients and further investigate the effect of protein kinase D 1 knockdown on drug sensitivity to bortezomib in multiple myeloma cells. Methods: Totally, 104 de novo symptomatic multiple myeloma patients treated with bortezomib-based regimens and 30 healthy controls were recruited. Bone marrow mononuclear cells–derived plasma cells were collected from multiple myeloma patients before initial treatment and from healthy controls on the bone marrow donation, respectively, then protein kinase D 1 protein/messenger RNA expressions were detected by Western blot and reverse transcription quantitative polymerase chain reaction, respectively. The effect of protein kinase D 1 knockdown on drug sensitivity to bortezomib was detected by transfecting protein kinase D 1 knockdown plasmid and control plasmid into RPMI8226 and U266 cells. Results: Protein kinase D 1 protein/messenger RNA expressions were both upregulated in multiple myeloma patients compared with healthy controls and presented good value in differentiating multiple myeloma patients from healthy controls. Furthermore, protein kinase D 1 protein/messenger RNA expressions were both associated with high International Staging System stage and t (4; 14). Furthermore, both complete response rate and overall response rate were reduced in protein kinase D 1 high patients compared with protein kinase D 1 low patients; similarly, progression-free survival and overall survival were both decreased in protein kinase D 1 high patients compared with protein kinase D 1 low patients. In addition, in RPMI8226 and U266 multiple myeloma cells, protein kinase D 1 knockdown increased drug sensitivity to bortezomib. Conclusion: Protein kinase D 1 has the potential to predict poor treatment response and unfavorable survival of bortezomib-based treatment in multiple myeloma patients, and its knockdown enhanced drug sensitivity to bortezomib in multiple myeloma cells.
Collapse
Affiliation(s)
- Xuesong Li
- Chinese Traditional Medicine Comprehensive Ward, Wuhan No. 1 Hospital, Wuhan, China
| | - Ying Yang
- Department of Oncology, Wuhan No. 1 Hospital, Wuhan, China
| | - Xue Yi
- Department of Hematology, Wuhan No. 1 Hospital, Wuhan, China
| |
Collapse
|
43
|
Akhtar S, Ali TA, Faiyaz A, Khan OS, Raza SS, Kulinski M, Omri HE, Bhat AA, Uddin S. Cytokine-Mediated Dysregulation of Signaling Pathways in the Pathogenesis of Multiple Myeloma. Int J Mol Sci 2020; 21:5002. [PMID: 32679860 PMCID: PMC7403981 DOI: 10.3390/ijms21145002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic disorder of B lymphocytes characterized by the accumulation of malignant plasma cells (PCs) in the bone marrow. The altered plasma cells overproduce abnormal monoclonal immunoglobulins and also stimulate osteoclasts. The host's immune system and microenvironment are of paramount importance in the growth of PCs and, thus, in the pathogenesis of the disease. The interaction of MM cells with the bone marrow (BM) microenvironment through soluble factors and cell adhesion molecules causes pathogenesis of the disease through activation of multiple signaling pathways, including NF-κβ, PI3K/AKT and JAK/STAT. These activated pathways play a critical role in the inhibition of apoptosis, sustained proliferation, survival and migration of MM cells. Besides, these pathways also participate in developing resistance against the chemotherapeutic drugs in MM. The imbalance between inflammatory and anti-inflammatory cytokines in MM leads to an increased level of pro-inflammatory cytokines, which in turn play a significant role in dysregulation of signaling pathways and proliferation of MM cells; however, the association appears to be inadequate and needs more research. In this review, we are highlighting the recent findings on the roles of various cytokines and growth factors in the pathogenesis of MM and the potential therapeutic utility of aberrantly activated signaling pathways to manage the MM disease.
Collapse
Affiliation(s)
- Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.A.); (T.A.A.); (A.F.); (M.K.)
| | - Tayyiba A. Ali
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.A.); (T.A.A.); (A.F.); (M.K.)
| | - Ammara Faiyaz
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.A.); (T.A.A.); (A.F.); (M.K.)
| | - Omar S. Khan
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA;
| | - Syed Shadab Raza
- Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow 226003, India;
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.A.); (T.A.A.); (A.F.); (M.K.)
| | - Halima El Omri
- National Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar;
| | - Ajaz A. Bhat
- Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar;
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.A.); (T.A.A.); (A.F.); (M.K.)
- Dermatology Institute, Department of Dermatology and Venereology, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
44
|
Li Q, Huang HJ, Ma J, Wang Y, Cao Z, Karlin-Neumann G, Janku F, Liu Z. RAS/RAF mutations in tumor samples and cell-free DNA from plasma and bone marrow aspirates in multiple myeloma patients. J Cancer 2020; 11:3543-3550. [PMID: 32284750 PMCID: PMC7150446 DOI: 10.7150/jca.43729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 11/05/2022] Open
Abstract
Purpose: To evaluate the detection of gene mutations in bone marrow biopsy and circulating free DNA (cfDNA) from plasma in multiple myeloma (MM). Experimental design: We used cell-free DNA from plasma and bone marrow to test BRAF V600, KRAS G12/G13, NRAS G12/G13 and NRAS Q61 mutations using multiplex assays for droplet digital PCR (ddPCR), and evaluated results with clinical outcomes. Results: We found of 83 patients, the detectable mutation frequencies for the above four genes were 4 (5%), 13 (16%), 3 (4%) and 14 (17%) in bone marrow, respectively. The median variant allelic frequency (VAF) in most mutations were 1.595%. In 17 paired cfDNA samples, the detectable mutation frequencies for the above four genes were 5 (30%), 1 (6%), 0 (0%) and 3 (18%) respectively, and the median VAF rate was 2.9%. Agreement between bone marrow DNA and plasma cfDNA were 76%, 100%, 100% and 100% compared to the tissue detections, respectively. In 17 patients with paired bone marrow and plasma samples, the above four mutations were 3 (18%), 1 (6%), 0 (0%) and 2 (12%) respectively, with the agreement rates of 88%, 88%, 100% and 100% compared to tissue detections. Of 57 patients with available outcome data, high mutation VAF had a shorter median survival than patients with low mutation VAF (P=0.0322). Conclusions: Oncogenic mutations in BRAF, KRAS and NRAS genes can be detected in the bone marrow and plasma cfDNA with ddPCR in patients with MM patients and high VAF is associated with short survival.
Collapse
Affiliation(s)
- Qian Li
- Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Helen J Huang
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jing Ma
- Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yafei Wang
- Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zeng Cao
- Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | | | - Filip Janku
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhiqiang Liu
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, School of Basic Medical Science, Tianjin Medical University; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| |
Collapse
|
45
|
Exon-4 Mutations in KRAS Affect MEK/ERK and PI3K/AKT Signaling in Human Multiple Myeloma Cell Lines. Cancers (Basel) 2020; 12:cancers12020455. [PMID: 32079091 PMCID: PMC7072554 DOI: 10.3390/cancers12020455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 01/12/2023] Open
Abstract
Approximately 20% of multiple myeloma (MM) cases harbor a point mutation in KRAS. However, there is still no final consent on whether KRAS-mutations are associated with disease outcome. Specifically, no data exist on whether KRAS-mutations have an impact on survival of MM patients at diagnosis in the era of novel agents. Direct blockade of KRAS for therapeutic purposes is mostly impossible, but recently a mutation-specific covalent inhibitor targeting KRASp.G12C entered into clinical trials. However, other KRAS hotspot-mutations exist in MM patients, including the less common exon-4 mutations. For the current study, the coding regions of KRAS were deep-sequenced in 80 newly diagnosed MM patients, uniformely treated with three cycles of bortezomib plus dexamethasone and cyclophosphamide (VCD)-induction, followed by high-dose chemotherapy and autologous stem cell transplantation. Moreover, the functional impact of KRASp.G12A and the exon-4 mutations p.A146T and p.A146V on different survival pathways was investigated. Specifically, KRASWT, KRASp.G12A, KRASp.A146T, and KRASp.A146V were overexpressed in HEK293 cells and the KRASWT MM cell lines JJN3 and OPM2 using lentiviral transduction and the Sleeping Beauty vector system. Even though KRAS-mutations were not correlated with survival, all KRAS-mutants were found capable of potentially activating MEK/ERK- and sustaining PI3K/AKT-signaling in MM cells.
Collapse
|
46
|
Farswan A, Gupta A, Gupta R, Kaur G. Imputation of Gene Expression Data in Blood Cancer and Its Significance in Inferring Biological Pathways. Front Oncol 2020; 9:1442. [PMID: 31970084 PMCID: PMC6960109 DOI: 10.3389/fonc.2019.01442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/03/2019] [Indexed: 01/29/2023] Open
Abstract
Purpose: Gene expression data generated from microarray technology is often analyzed for disease diagnostics and treatment. However, this data suffers with missing values that may lead to inaccurate findings. Since data capture is expensive, time consuming, and is required to be collected from subjects, it is worthwhile to recover missing values instead of re-collecting the data. In this paper, a novel but simple method, namely, DSNN (Doubly Sparse DCT domain with Nuclear Norm minimization) has been proposed for imputing missing values in microarray data. Extensive experiments including pathway enrichment have been carried out on four blood cancer dataset to validate the method as well as to establish the significance of imputation. Methods: A new method, namely, DSNN, was proposed for missing value imputation on gene expression data. Method was validated on four dataset, CLL, AML, MM (Spanish data), and MM (Indian data). All the dataset were downloaded from GEO repository. Missing values were introduced in the original data from 10 to 90% in steps of 10% because method validation requires ground truth. Quantitative results on normalized mean square error (NMSE) between the ground truth and imputed data were computed. To further validate and establish the significance of the proposed imputation method, two experiments were carried out on the data imputed with the proposed method, data imputed with the state-of-art methods, and data with missing values. In the first experiment, classification of normal vs. cancer subjects was carried out. In the second experiment, biological significance of imputation was ascertained by identifying top candidate tumor drivers using the existing state-of-the-art SPARROW algorithm, followed by gene list enrichment analysis on top candidate drivers. Results: Quantitative NMSE results of the DSNN method were compared with three state-of-the-art imputation methods. DSNN method was observed to perform better compared to these other methods both at high as well as low observable data. Experiment-1 demonstrated superior results on classification with imputation compared to that performed on missing data matrix as well as compared to classification on imputed data with existing methods. In experiment-2, cancer affected pathways were discovered with higher significance in the data imputed with the proposed method compared to those discovered with the missing data matrix. Conclusion: Missing value problem in microarray data is a serious problem and can adversely influence downstream analysis. A novel method, namely, DSNN is proposed for missing value imputation. The method is validated quantitatively on the application of classification and biologically by performing pathway enrichment analysis.
Collapse
Affiliation(s)
- Akanksha Farswan
- SBILab, Department of ECE, Indraprastha Institute of Information Technology-Delhi, New Delhi, India
| | - Anubha Gupta
- SBILab, Department of ECE, Indraprastha Institute of Information Technology-Delhi, New Delhi, India
| | - Ritu Gupta
- Laboratory Oncology Unit, Dr. B.R.A. IRCH, AIIMS, New Delhi, India
| | - Gurvinder Kaur
- Laboratory Oncology Unit, Dr. B.R.A. IRCH, AIIMS, New Delhi, India
| |
Collapse
|
47
|
Merrill NM, Lachacz EJ, Vandecan NM, Ulintz PJ, Bao L, Lloyd JP, Yates JA, Morikawa A, Merajver SD, Soellner MB. Molecular determinants of drug response in TNBC cell lines. Breast Cancer Res Treat 2020; 179:337-347. [PMID: 31655920 PMCID: PMC7323911 DOI: 10.1007/s10549-019-05473-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE There is a need for biomarkers of drug efficacy for targeted therapies in triple-negative breast cancer (TNBC). As a step toward this, we identify multi-omic molecular determinants of anti-TNBC efficacy in cell lines for a panel of oncology drugs. METHODS Using 23 TNBC cell lines, drug sensitivity scores (DSS3) were determined using a panel of investigational drugs and drugs approved for other indications. Molecular readouts were generated for each cell line using RNA sequencing, RNA targeted panels, DNA sequencing, and functional proteomics. DSS3 values were correlated with molecular readouts using a FDR-corrected significance cutoff of p* < 0.05 and yielded molecular determinant panels that predict anti-TNBC efficacy. RESULTS Six molecular determinant panels were obtained from 12 drugs we prioritized based on their efficacy. Determinant panels were largely devoid of DNA mutations of the targeted pathway. Molecular determinants were obtained by correlating DSS3 with molecular readouts. We found that co-inhibiting molecular correlate pathways leads to robust synergy across many cell lines. CONCLUSIONS These findings demonstrate an integrated method to identify biomarkers of drug efficacy in TNBC where DNA predictions correlate poorly with drug response. Our work outlines a framework for the identification of novel molecular determinants and optimal companion drugs for combination therapy based on these correlates.
Collapse
Affiliation(s)
- Nathan M Merrill
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Eric J Lachacz
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Nathalie M Vandecan
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Peter J Ulintz
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Liwei Bao
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - John P Lloyd
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Joel A Yates
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Aki Morikawa
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Sofia D Merajver
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA.
| | - Matthew B Soellner
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
48
|
Lhoumaud P, Badri S, Rodriguez-Hernaez J, Sakellaropoulos T, Sethia G, Kloetgen A, Cornwell M, Bhattacharyya S, Ay F, Bonneau R, Tsirigos A, Skok JA. NSD2 overexpression drives clustered chromatin and transcriptional changes in a subset of insulated domains. Nat Commun 2019; 10:4843. [PMID: 31649247 PMCID: PMC6813313 DOI: 10.1038/s41467-019-12811-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
CTCF and cohesin play a key role in organizing chromatin into topologically associating domain (TAD) structures. Disruption of a single CTCF binding site is sufficient to change chromosomal interactions leading to alterations in chromatin modifications and gene regulation. However, the extent to which alterations in chromatin modifications can disrupt 3D chromosome organization leading to transcriptional changes is unknown. In multiple myeloma, a 4;14 translocation induces overexpression of the histone methyltransferase, NSD2, resulting in expansion of H3K36me2 and shrinkage of antagonistic H3K27me3 domains. Using isogenic cell lines producing high and low levels of NSD2, here we find oncogene activation is linked to alterations in H3K27ac and CTCF within H3K36me2 enriched chromatin. A logistic regression model reveals that differentially expressed genes are significantly enriched within the same insulated domain as altered H3K27ac and CTCF peaks. These results identify a bidirectional relationship between 2D chromatin and 3D genome organization in gene regulation.
Collapse
Affiliation(s)
- Priscillia Lhoumaud
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | - Sana Badri
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | | | - Theodore Sakellaropoulos
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, 10016, USA
| | - Gunjan Sethia
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | - Andreas Kloetgen
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | - MacIntosh Cornwell
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | - Sourya Bhattacharyya
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ferhat Ay
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Richard Bonneau
- Department of Biology, Center for Genomics and Systems Biology, NYU, New York, NY, 10003, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, 10016, USA
| | - Jane A Skok
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA.
- Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
49
|
Da Vià MC, Solimando AG, Garitano-Trojaola A, Barrio S, Munawar U, Strifler S, Haertle L, Rhodes N, Teufel E, Vogt C, Lapa C, Beilhack A, Rasche L, Einsele H, Kortüm KM. CIC Mutation as a Molecular Mechanism of Acquired Resistance to Combined BRAF-MEK Inhibition in Extramedullary Multiple Myeloma with Central Nervous System Involvement. Oncologist 2019; 25:112-118. [PMID: 32043788 DOI: 10.1634/theoncologist.2019-0356] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
Combined MEK-BRAF inhibition is a well-established treatment strategy in BRAF-mutated cancer, most prominently in malignant melanoma with durable responses being achieved through this targeted therapy. However, a subset of patients face primary unresponsiveness despite presence of the activating mutation at position V600E, and others acquire resistance under treatment. Underlying resistance mechanisms are largely unknown, and diagnostic tests to predict tumor response to BRAF-MEK inhibitor treatment are unavailable. Multiple myeloma represents the second most common hematologic malignancy, and point mutations in BRAF are detectable in about 10% of patients. Targeted inhibition has been successfully applied, with mixed responses observed in a substantial subset of patients mirroring the widespread spatial heterogeneity in this genomically complex disease. Central nervous system (CNS) involvement is an extremely rare, extramedullary form of multiple myeloma that can be diagnosed in less than 1% of patients. It is considered an ultimate high-risk feature, associated with unfavorable cytogenetics, and, even with intense treatment applied, survival is short, reaching less than 12 months in most cases. Here we not only describe the first patient with an extramedullary CNS relapse responding to targeted dabrafenib and trametinib treatment, we furthermore provide evidence that a point mutation within the capicua transcriptional repressor (CIC) gene mediated the acquired resistance in this patient. KEY POINTS: BRAF mutations constitute an attractive druggable target in multiple myeloma. This is the first genomic dissection of the central nervous system involvement in a multiple myeloma patient harboring a druggable BRAFV600E mutation. Deep genomic characterization of the extramedullary lesion prompted a personalized therapeutic approach. Acquisition of CIC mutation confers a mechanism of BRAF-MEK inhibitor drug resistance in multiple myeloma. The in silico interrogation of the CoMMpass clinical study revealed 10 patients with somatic mutations of CIC and its downregulation at gene expression level in multiple myeloma. CIC gene silencing decreases the sensitivity of multiple myeloma cells to BRAF-MEK inhibition in vitro. The correlation between CIC downregulation and ETV4/5 nuclear factor expression in multiple myeloma BRAF-mutant cells is shown for the first time. CIC mutation, its downregulation, and the related downstream effect on MMP24 support disseminative potential providing new clues in the extramedullary biology definition.
Collapse
Affiliation(s)
| | - Antonio Giovanni Solimando
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | - Santiago Barrio
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Umair Munawar
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Susanne Strifler
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Larissa Haertle
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Nadine Rhodes
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Eva Teufel
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Cornelia Vogt
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Beilhack
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - K Martin Kortüm
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
50
|
Anwer F, Gee KM, Iftikhar A, Baig M, Russ AD, Saeed S, Zar MA, Razzaq F, Carew J, Nawrocki S, Al-Kateb H, Cavalcante Parr NN, McBride A, Valent J, Samaras C. Future of Personalized Therapy Targeting Aberrant Signaling Pathways in Multiple Myeloma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2019; 19:397-405. [PMID: 31036508 PMCID: PMC6626550 DOI: 10.1016/j.clml.2019.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/19/2019] [Accepted: 03/17/2019] [Indexed: 12/19/2022]
Abstract
Multiple myeloma (MM) is a genetically complex disease. Identification of mutations and aberrant signaling pathways that contribute to the progression of MM and drug resistance has potential to lead to specific targets and personalized treatment. Aberrant signal pathways include RAS pathway activation due to RAS or BRAF mutations (targeted by vemurafenib alone or combined with cobimetinib), BCL-2 overexpression in t(11:14) (targeted by venetoclax), JAK2 pathway activation (targeted by ruxolitinib), NF-κB pathway activation (treated with DANFIN combined with bortezomib), MDM2 overexpression, and PI3K/mTOR pathway activation (targeted by BEZ235). Cyclin D1 (CCND1) and MYC are also emerging as key potential targets. In addition, histone deacetylase inhibitors are already in use for the treatment of MM in combination therapy, and targeted inhibition of FGFR3 (AZD4547) is effective in myeloma cells with t(4;14) translocation. Bromodomain and extra terminal (BET) protein antagonists decrease the expression of MYC and have displayed promising antimyeloma activity. A better understanding of the alterations in signaling pathways that promote MM progression will further inform the development of precision therapy for patients.
Collapse
Affiliation(s)
- Faiz Anwer
- Taussig Cancer Center, Department of Hematology, Medical Oncology, Cleveland Clinic, Cleveland, OH.
| | - Kevin Mathew Gee
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ
| | - Ahmad Iftikhar
- Department of Medicine, The University of Arizona, Tucson, AZ
| | - Mirza Baig
- Department of Medicine, Summit Medical Group, Summit, NJ
| | | | - Sabina Saeed
- College of Public Health, The University of Arizona, Tucson, AZ
| | - Muhammad Abu Zar
- Department of Medicine, Division of Hematology & Oncology, The University of Arizona, Tucson, AZ
| | - Faryal Razzaq
- Department of Medicine, Division of Hematology & Oncology, The University of Arizona, Tucson, AZ
| | - Jennifer Carew
- Department of Medicine, Division of Hematology & Oncology, The University of Arizona, Tucson, AZ
| | - Steffan Nawrocki
- Department of Medicine, Division of Hematology & Oncology, The University of Arizona, Tucson, AZ
| | - Hussam Al-Kateb
- Division of Human Genetics, Children's Hospital, Cincinnati, OH
| | | | - Ali McBride
- College of Pharmacy, The University of Arizona, Tucson, AZ
| | - Jason Valent
- Taussig Cancer Center, Department of Hematology, Medical Oncology, Cleveland Clinic, Cleveland, OH
| | - Christy Samaras
- Taussig Cancer Center, Department of Hematology, Medical Oncology, Cleveland Clinic, Cleveland, OH
| |
Collapse
|