1
|
Li L, Tang Y, Qiu L, Li Z, Wang R. Extracellular matrix shapes cancer stem cell behavior in breast cancer: a mini review. Front Immunol 2025; 15:1503021. [PMID: 39850890 PMCID: PMC11754286 DOI: 10.3389/fimmu.2024.1503021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Today, cancer has become one of the leading global tragedies. It occurs when a small number of cells in the body mutate, causing some of them to evade the body's immune system and proliferate uncontrollably. Even more irritating is the fact that patients with cancers frequently relapse after conventional chemotherapy and radiotherapy, leading to additional suffering. Scientists thereby presume that cancer stem cells (CSCs) are the underlying cause of metastasis and recurrence. In recent years, it was shown that not only can chemotherapy and radiotherapy underperform in the treatment of breast cancer, but they can also increase the number of breast cancer stem cells (BCSCs) that transform regular breast cancer cells into their own population. Such data somewhat support the aforementioned hypothesis. Meanwhile, our understanding of the extracellular matrix (ECM) has changed considerably over the last decade. A lot of studies have bit by bit complemented human knowledge regarding how the ECM greatly shapes the behaviors of BCSCs. In this review, we highlighted the influence on BCSCs exerted by different critical components and biochemical properties of ECM.
Collapse
Affiliation(s)
- Lei Li
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Yidan Tang
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Zhengrui Li
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruo Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shengli Clinical Medical College of Fujian Medical University, Department of Breast Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| |
Collapse
|
2
|
Elkady N, Elgendy W, Badr MT, Aiad H, Samara M, Badr NM. Evaluation of the diagnostic utility of NCOA3, Maspin and VHL protein expression in pancreatic ductal adenocarcinoma: An immunohistochemical study. Ann Diagn Pathol 2024; 73:152356. [PMID: 38901088 DOI: 10.1016/j.anndiagpath.2024.152356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal tumor with a high mortality rate. The distinction between PDAC and chronic pancreatitis is sometimes challenging on routine histopathological examination, highlighting the need to identify biomarkers that can facilitate this distinction. This retrospective study was conducted to evaluate the diagnostic utility of nuclear receptor co-activator 3 (NCOA3), Maspin and Von Hippel-Lindau protein (VHL) immunostaining in PDAC. Eighty cases of PDAC, 46 cases of chronic pancreatitis and 53 normal pancreatic tissue were immunohistochemically assessed using NCOA3, Maspin and VHL antibodies on sections from a tissue microarray. NCOA3, Maspin and VHL were positive in 90 %, 100 % and 35 %, of PDAC cases respectively, whereas NCOA3, Maspin and VHL expressions were positive in 3.8 %, 0 and 100 % of normal pancreatic tissue and in 15.2 %, 21.7 % and 97.8 % of chronic pancreatitis cases respectively. Significant differences were observed between PDAC and other groups regarding NCOA3, Maspin and VHL expression (p < 0.001). The H scores of NCOA3, Maspin and VHL could significantly distinguish between PDAC and normal cases with high sensitivity (90 %, 100 % and 98.75 % respectively) and specificity (100 %, 100 % and 96.23 % respectively). Similar findings were found in the distinction between PDAC and chronic pancreatitis (Sensitivity: 90 %, 95.25 % and 98.75 %; specificity: 100 %, 100 % and 93.48 % for NCOA3, Maspin and VHL respectively). In conclusion, NCOA3 and Maspin were found to be significantly expressed in PDAC compared to non-tumorous tissue while VHL was significantly expressed in non-tumorous tissue. A panel of NCOA3, Maspin and VHL could potentially distinguish PDAC from non-tumorous pancreatic tissue.
Collapse
Affiliation(s)
- Noha Elkady
- Faculty of Medicine, Menoufia University, Egypt.
| | - Walaa Elgendy
- National Liver Institute, Menoufia University, Egypt
| | | | - Hayam Aiad
- Faculty of Medicine, Menoufia University, Egypt
| | - Manar Samara
- National Liver Institute, Menoufia University, Egypt
| | | |
Collapse
|
3
|
Ruan Z, Zhou W, Liu H, Wei J, Pan Y, Yan C, Wei X, Xiang W, Yan C, Chen S, Liu J. Precise detection of cell-type-specific domains in spatial transcriptomics. CELL REPORTS METHODS 2024; 4:100841. [PMID: 39127046 PMCID: PMC11384096 DOI: 10.1016/j.crmeth.2024.100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/17/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Cell-type-specific domains are the anatomical domains in spatially resolved transcriptome (SRT) tissues where particular cell types are enriched coincidentally. It is challenging to use existing computational methods to detect specific domains with low-proportion cell types, which are partly overlapped with or even inside other cell-type-specific domains. Here, we propose De-spot, which synthesizes segmentation and deconvolution as an ensemble to generate cell-type patterns, detect low-proportion cell-type-specific domains, and display these domains intuitively. Experimental evaluation showed that De-spot enabled us to discover the co-localizations between cancer-associated fibroblasts and immune-related cells that indicate potential tumor microenvironment (TME) domains in given slices, which were obscured by previous computational methods. We further elucidated the identified domains and found that Srgn may be a critical TME marker in SRT slices. By deciphering T cell-specific domains in breast cancer tissues, De-spot also revealed that the proportions of exhausted T cells were significantly increased in invasive vs. ductal carcinoma.
Collapse
Affiliation(s)
- Zhihan Ruan
- Centre for Bioinformatics and Intelligent Medicine, College of Computer Science, Nankai University, Tianjin 300350, China
| | - Weijun Zhou
- Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Hong Liu
- The Second Surgical Department of Breast Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Jinmao Wei
- Centre for Bioinformatics and Intelligent Medicine, College of Computer Science, Nankai University, Tianjin 300350, China
| | - Yichen Pan
- Centre for Bioinformatics and Intelligent Medicine, College of Computer Science, Nankai University, Tianjin 300350, China
| | - Chaoyang Yan
- Centre for Bioinformatics and Intelligent Medicine, College of Computer Science, Nankai University, Tianjin 300350, China
| | - Xiaoyi Wei
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Wenting Xiang
- Centre for Bioinformatics and Intelligent Medicine, College of Computer Science, Nankai University, Tianjin 300350, China
| | - Chengwei Yan
- Centre for Bioinformatics and Intelligent Medicine, College of Computer Science, Nankai University, Tianjin 300350, China
| | - Shengquan Chen
- School of Mathematical Sciences, Nankai University, Tianjin 300350, China
| | - Jian Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Computer Science, Nankai University, Tianjin 300350, China.
| |
Collapse
|
4
|
Manou D, Golfinopoulou MA, Alharbi SND, Alghamdi HA, Alzahrani FM, Theocharis AD. The Expression of Serglycin Is Required for Active Transforming Growth Factor β Receptor I Tumorigenic Signaling in Glioblastoma Cells and Paracrine Activation of Stromal Fibroblasts via CXCR-2. Biomolecules 2024; 14:461. [PMID: 38672477 PMCID: PMC11048235 DOI: 10.3390/biom14040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Serglycin (SRGN) is a pro-tumorigenic proteoglycan expressed and secreted by various aggressive tumors including glioblastoma (GBM). In our study, we investigated the interplay and biological outcomes of SRGN with TGFβRI, CXCR-2 and inflammatory mediators in GBM cells and fibroblasts. SRGN overexpression is associated with poor survival in GBM patients. High SRGN levels also exhibit a positive correlation with increased levels of various inflammatory mediators including members of TGFβ signaling pathway, cytokines and receptors including CXCR-2 and proteolytic enzymes in GBM patients. SRGN-suppressed GBM cells show decreased expressions of TGFβRI associated with lower responsiveness to the manipulation of TGFβ/TGFβRI pathway and the regulation of pro-tumorigenic properties. Active TGFβRI signaling in control GBM cells promotes their proliferation, invasion, proteolytic and inflammatory potential. Fibroblasts cultured with culture media derived by control SRGN-expressing GBM cells exhibit increased proliferation, migration and overexpression of cytokines and proteolytic enzymes including CXCL-1, IL-8, IL-6, IL-1β, CCL-20, CCL-2, and MMP-9. Culture media derived by SRGN-suppressed GBM cells fail to induce the above properties to fibroblasts. Importantly, the activation of fibroblasts by GBM cells not only relies on the expression of SRGN in GBM cells but also on active CXCR-2 signaling both in GBM cells and fibroblasts.
Collapse
Affiliation(s)
- Dimitra Manou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (D.M.); (M.-A.G.)
| | - Maria-Angeliki Golfinopoulou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (D.M.); (M.-A.G.)
| | - Sara Naif D. Alharbi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (S.N.D.A.); (H.A.A.); (F.M.A.)
| | - Hind A. Alghamdi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (S.N.D.A.); (H.A.A.); (F.M.A.)
| | - Fatimah Mohammed Alzahrani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (S.N.D.A.); (H.A.A.); (F.M.A.)
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (D.M.); (M.-A.G.)
| |
Collapse
|
5
|
Qian Y, Yang L, Chen J, Zhou C, Zong N, Geng Y, Xia S, Yang H, Bao X, Chen Y, Xu Y. SRGN amplifies microglia-mediated neuroinflammation and exacerbates ischemic brain injury. J Neuroinflammation 2024; 21:35. [PMID: 38287411 PMCID: PMC10826034 DOI: 10.1186/s12974-024-03026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Microglia is the major contributor of post-stroke neuroinflammation cascade and the crucial cellular target for the treatment of ischemic stroke. Currently, the endogenous mechanism underlying microglial activation following ischemic stroke remains elusive. Serglycin (SRGN) is a proteoglycan expressed in immune cells. Up to now, the role of SRGN on microglial activation and ischemic stroke is largely unexplored. METHODS Srgn knockout (KO), Cd44-KO and wild-type (WT) mice were subjected to middle cerebral artery occlusion (MCAO) to mimic ischemic stroke. Exogenous SRGN supplementation was achieved by stereotactic injection of recombinant mouse SRGN (rSRGN). Cerebral infarction was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Neurological functions were evaluated by the modified neurological severity score (mNSS) and grip strength. Microglial activation was detected by Iba1 immunostaining, morphological analysis and cytokines' production. Neuronal death was examined by MAP2 immunostaining and FJB staining. RESULTS The expression of SRGN and its receptor CD44 was significantly elevated in the ischemic mouse brains, especially in microglia. In addition, lipopolysaccharide (LPS) induced SRGN upregulation in microglia in vitro. rSRGN worsened ischemic brain injury in mice and amplified post-stroke neuroinflammation, while gene knockout of Srgn exerted reverse impacts. rSRGN promoted microglial proinflammatory activation both in vivo and in vitro, whereas Srgn-deficiency alleviated microglia-mediated inflammatory response. Moreover, the genetic deletion of Cd44 partially rescued rSRGN-induced excessed neuroinflammation and ischemic brain injury in mice. Mechanistically, SRGN boosted the activation of NF-κB signal, and increased glycolysis in microglia. CONCLUSION SRGN acts as a novel therapeutic target in microglia-boosted proinflammatory response following ischemic stroke.
Collapse
Affiliation(s)
- Yi Qian
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Lixuan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Jian Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Chao Zhou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Ningning Zong
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yang Geng
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Haiyan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yan Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China.
- Nanjing Neurology Medical Center, Nanjing, 210008, China.
| |
Collapse
|
6
|
Chen F, Lei L, Chen S, Zhao Z, Huang Y, Jiang G, Guo X, Li Z, Zheng Z, Wang J. Serglycin secreted by late-stage nucleus pulposus cells is a biomarker of intervertebral disc degeneration. Nat Commun 2024; 15:47. [PMID: 38167807 PMCID: PMC10761730 DOI: 10.1038/s41467-023-44313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Intervertebral disc degeneration is a natural process during aging and a leading cause of lower back pain. Here, we generate a comprehensive atlas of nucleus pulposus cells using single-cell RNA-seq analysis of human nucleus pulposus tissues (three males and four females, age 41.14 ± 18.01 years). We identify fibrotic late-stage nucleus pulposus cells characterized by upregulation of serglycin expression which facilitate the local inflammatory response by promoting the infiltration of inflammatory cytokines and macrophages. Finally, we discover that daphnetin, a potential serglycin ligand, substantially mitigates the local inflammatory response by downregulating serglycin expression in an in vivo mouse model, thus alleviating intervertebral disc degeneration. Taken together, we identify late-stage nucleus pulposus cells and confirm the potential mechanism by which serglycin regulates intervertebral disc degeneration. Our findings indicate that serglycin is a latent biomarker of intervertebral disc degeneration and may contribute to development of diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Fan Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, P.R. China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Linchuan Lei
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, P.R. China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shunlun Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, P.R. China
| | - Zhuoyang Zhao
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, P.R. China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuming Huang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, P.R. China
| | - Guowei Jiang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, P.R. China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xingyu Guo
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, P.R. China
| | - Zemin Li
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, P.R. China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China.
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, P.R. China.
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China.
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, P.R. China.
| |
Collapse
|
7
|
Yu TY, Zhang G, Chai XX, Ren L, Yin DC, Zhang CY. Recent progress on the effect of extracellular matrix on occurrence and progression of breast cancer. Life Sci 2023; 332:122084. [PMID: 37716504 DOI: 10.1016/j.lfs.2023.122084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer (BC) metastasis is an enormous challenge targeting BC therapy. The extracellular matrix (ECM), the principal component of the BC metastasis niche, is the pivotal driver of breast tumor development, whose biochemical and biophysical characteristics have attracted widespread attention. Here, we review the biological effects of ECM constituents and the influence of ECM stiffness on BC metastasis and drug resistance. We provide an overview of the relative signal transduction mechanisms, existing metastasis models, and targeted drug strategies centered around ECM stiffness. It will shed light on exploring more underlying targets and developing specific drugs aimed at ECM utilizing biomimetic platforms, which are promising for breast cancer treatment.
Collapse
Affiliation(s)
- Tong-Yao Yu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Xiao-Xia Chai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Li Ren
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China; Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, Zhejiang, PR China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China.
| |
Collapse
|
8
|
Ji Y, Lin Z, Li G, Tian X, Wu Y, Wan J, Liu T, Xu M. Identification and validation of novel biomarkers associated with immune infiltration for the diagnosis of osteosarcoma based on machine learning. Front Genet 2023; 14:1136783. [PMID: 37732314 PMCID: PMC10507254 DOI: 10.3389/fgene.2023.1136783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Objectives: Osteosarcoma is the most common primary malignant tumor in children and adolescents, and the 5-year survival of osteosarcoma patients gained no substantial improvement over the past decades. Effective biomarkers in diagnosing osteosarcoma are warranted to be developed. This study aims to explore novel biomarkers correlated with immune cell infiltration in the development and diagnosis of osteosarcoma. Methods: Three datasets (GSE19276, GSE36001, GSE126209) comprising osteosarcoma samples were extracted from Gene Expression Omnibus (GEO) database and merged to obtain the gene expression. Then, differentially expressed genes (DEGs) were identified by limma and potential biological functions and downstream pathways enrichment analysis of DEGs was performed. The machine learning algorithms LASSO regression model and SVM-RFE (support vector machine-recursive feature elimination) analysis were employed to identify candidate hub genes for diagnosing patients with osteosarcoma. Receiver operating characteristic (ROC) curves were developed to evaluate the discriminatory abilities of these candidates in both training and test sets. Furthermore, the characteristics of immune cell infiltration in osteosarcoma, and the correlations between these potential genes and immune cell abundance were illustrated using CIBERSORT. qRT-PCR and western blots were conducted to validate the expression of diagnostic candidates. Results: GEO datasets were divided into the training (merged GSE19276, GSE36001) and test (GSE126209) groups. A total of 71 DEGs were screened out in the training set, including 10 upregulated genes and 61 downregulated genes. These DEGs were primarily enriched in immune-related biological functions and signaling pathways. After machine learning by SVM-RFE and LASSO regression model, four biomarkers were chosen for the diagnostic nomogram for osteosarcoma, including ASNS, CD70, SRGN, and TRIB3. These diagnostic biomarkers all possessed high diagnostic values (AUC ranging from 0.900 to 0.955). Furthermore, these genes were significantly correlated with the infiltration of several immune cells, such as monocytes, macrophages M0, and neutrophils. Conclusion: Four immune-related candidate hub genes (ASNS, CD70, SRGN, TRIB3) with high diagnostic value were confirmed for osteosarcoma patients. These diagnostic genes were significantly connected with the immune cell abundance, suggesting their critical roles in the osteosarcoma tumor immune microenvironment. Our study provides highlights on novel diagnostic candidate genes with high accuracy for diagnosing osteosarcoma patients.
Collapse
Affiliation(s)
- Yuqiao Ji
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guoqing Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinyu Tian
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanlin Wu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Xu
- Department of Critical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Abplanalp WT, Schuhmacher B, Cremer S, Merten M, Shumliakivska M, Macinkovic I, Zeiher AM, John D, Dimmeler S. Cell-intrinsic effects of clonal hematopoiesis in heart failure. NATURE CARDIOVASCULAR RESEARCH 2023; 2:819-834. [PMID: 39196061 PMCID: PMC11357996 DOI: 10.1038/s44161-023-00322-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2024]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is caused by somatic mutations in hematopoietic stem cells and associates with worse prognosis in patients with heart failure. Patients harboring CHIP mutations show enhanced inflammation. However, whether these signatures are derived from the relatively low number of cells harboring mutations or are indicators of systemic pro-inflammatory activation that is associated with CHIP is unclear. Here we assess the cell-intrinsic effects of CHIP mutant cells in patients with heart failure. Using an improved single-cell sequencing pipeline (MutDetect-Seq), we show that DNMT3A mutant monocytes, CD4+ T cells and NK cells exhibit altered gene expression profiles. While monocytes showed increased genes associated with inflammation and phagocytosis, T cells and NK cells present increased activation signatures and effector functions. Increased paracrine signaling pathways are predicted and validated between mutant and wild-type monocytes and T cells, which amplify inflammatory circuits. Altogether, these data provide novel insights into how CHIP might promote a worse prognosis in patients with heart failure.
Collapse
Affiliation(s)
- Wesley T Abplanalp
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Berlin, Germany
- Cardiopulmonary Institute, Goethe University, Frankfurt, Germany
| | - Bianca Schuhmacher
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
- Cardiopulmonary Institute, Goethe University, Frankfurt, Germany
| | - Sebastian Cremer
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Berlin, Germany
- Cardiopulmonary Institute, Goethe University, Frankfurt, Germany
| | - Maximilian Merten
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Berlin, Germany
- Cardiopulmonary Institute, Goethe University, Frankfurt, Germany
| | - Mariana Shumliakivska
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Berlin, Germany
- Cardiopulmonary Institute, Goethe University, Frankfurt, Germany
| | - Igor Macinkovic
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
| | - Andreas M Zeiher
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Berlin, Germany
- Cardiopulmonary Institute, Goethe University, Frankfurt, Germany
| | - David John
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Berlin, Germany
- Cardiopulmonary Institute, Goethe University, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany.
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Berlin, Germany.
- Cardiopulmonary Institute, Goethe University, Frankfurt, Germany.
| |
Collapse
|
10
|
Karagiorgou Z, Fountas PN, Manou D, Knutsen E, Theocharis AD. Proteoglycans Determine the Dynamic Landscape of EMT and Cancer Cell Stemness. Cancers (Basel) 2022; 14:5328. [PMID: 36358747 PMCID: PMC9653992 DOI: 10.3390/cancers14215328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 03/15/2024] Open
Abstract
Proteoglycans (PGs) are pivotal components of extracellular matrices, involved in a variety of processes such as migration, invasion, morphogenesis, differentiation, drug resistance, and epithelial-to-mesenchymal transition (EMT). Cellular plasticity is a crucial intermediate phenotypic state acquired by cancer cells, which can modulate EMT and the generation of cancer stem cells (CSCs). PGs affect cell plasticity, stemness, and EMT, altering the cellular shape and functions. PGs control these functions, either by direct activation of signaling cascades, acting as co-receptors, or through regulation of the availability of biological compounds such as growth factors and cytokines. Differential expression of microRNAs is also associated with the expression of PGs and their interplay is implicated in the fine tuning of cancer cell phenotype and potential. This review summarizes the involvement of PGs in the regulation of EMT and stemness of cancer cells and highlights the molecular mechanisms.
Collapse
Affiliation(s)
- Zoi Karagiorgou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Panagiotis N. Fountas
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9010 Tromsø, Norway
- Centre for Clinical Research and Education, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
11
|
Wang YL, Ren D, Lu JL, Jiang H, Wei JZ, Lan J, Liu F, Qu SH. STAT3 regulates SRGN and promotes metastasis of nasopharyngeal carcinoma through the FoxO1-miR-148a-5p-CREB1 axis. J Transl Med 2022; 102:919-934. [PMID: 36775421 DOI: 10.1038/s41374-022-00733-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/26/2021] [Accepted: 01/03/2022] [Indexed: 11/08/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC), which is marked by a distinct distribution, is a common subtype of epithelial carcinoma arising from the nasopharyngeal mucosal lining. SRGN acts as an important and poor prognostic factor of NPC through multiple different mechanisms. However, the biological role and mechanism of SRGN in NPC remain unknown. Expression levels of miR-148a-5p, CREB1, FoxO1, and SRGN in NPC tissues and cell lines were tested by qRT-PCR or/and Western blot. The impacts of miR-148a-5p, CREB1, FoxO1, and SRGN on NPC cell viability, proliferation, migration, and invasion were estimated in vitro by CCK-8, colony formation, wound healing and Transwell experiments, and in vivo by a xenograft tumor model. JASPAR analysis was used to predict the binding activity of Foxo1 (CREB1) with the miR-148a-5p (SRGN) promoter, and the interaction was validated by EMSA and ChIP assays. The miR-148a-5p-CREB1 interaction was validated by a dual-luciferase reporter and RIP assays. CREB1 and SRGN were increased while miR-148a-5p was decreased in NPC. Silencing of SRGN and CREB1, as well as miR-148a-5p overexpression, repressed NPC tumor progression in vitro and in vivo. CREB1 promoted SRGN expression in NPC by targeting the promoter area of SRGN. Silencing of FoxO1 facilitated NPC tumor progression, while silencing of STAT3 repressed NPC tumor progression. FoxO1 bound to and regulated miR-148a-5p in NPC, and miR-148a-5p targeted CREB1. Additionally, FoxO1 knockdown abolished the downregulation of CREB1 and SRGN induced by STAT3 silencing. Our results suggest that STAT3 regulates SRGN and promotes the growth and metastasis of NPC through the FoxO1-miR-148a-5p-CREB1 axis.
Collapse
Affiliation(s)
- Yong-Li Wang
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, PR China.
| | - Dan Ren
- Department of Human Anatomy, Basic Medical College, Guangxi Medical University, Nanning, 530021, PR China
| | - Jin-Long Lu
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, PR China
| | - He Jiang
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, PR China
| | - Jia-Zhang Wei
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, PR China
| | - Jiao Lan
- Research Center of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, PR China
| | - Fei Liu
- Research Center of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, PR China
| | - Shen-Hong Qu
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, PR China.
| |
Collapse
|
12
|
Deb G, Cicala A, Papadas A, Asimakopoulos F. Matrix proteoglycans in tumor inflammation and immunity. Am J Physiol Cell Physiol 2022; 323:C678-C693. [PMID: 35876288 PMCID: PMC9448345 DOI: 10.1152/ajpcell.00023.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022]
Abstract
Cancer immunoediting progresses through elimination, equilibrium, and escape. Each of these phases is characterized by breaching, remodeling, and rebuilding tissue planes and structural barriers that engage extracellular matrix (ECM) components, in particular matrix proteoglycans. Some of the signals emanating from matrix proteoglycan remodeling are readily co-opted by the growing tumor to sustain an environment of tumor-promoting and immune-suppressive inflammation. Yet other matrix-derived cues can be viewed as part of a homeostatic response by the host, aiming to eliminate the tumor and restore tissue integrity. These latter signals may be harnessed for therapeutic purposes to tip the polarity of the tumor immune milieu toward anticancer immunity. In this review, we attempt to showcase the importance and complexity of matrix proteoglycan signaling in both cancer-restraining and cancer-promoting inflammation. We propose that the era of matrix diagnostics and therapeutics for cancer is fast approaching the clinic.
Collapse
Affiliation(s)
- Gauri Deb
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Alexander Cicala
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Athanasios Papadas
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| |
Collapse
|
13
|
Du X, Ding L, Huang S, Li F, Yan Y, Tang R, Ding X, Zhu Z, Wang W. Cathepsin L promotes chemresistance to neuroblastoma by modulating serglycin. Front Pharmacol 2022; 13:920022. [PMID: 36133820 PMCID: PMC9484481 DOI: 10.3389/fphar.2022.920022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Abstract
Cathepsin L (CTSL), a lysosomal acid cysteine protease, is found to play a critical role in chemosencitivity and tumor progression. However, the potential roles and molecular mechanisms of CTSL in chemoresistance in neuroblastoma (NB) are still unclear. In this study, the correlation between clinical characteristics, survival and CTSL expression were assessed in Versteeg dataset. The chemoresistant to cisplatin or doxorubicin was detected using CCK-8 assay. Western blot was employed to detect the expression of CTSL, multi-drug resistance proteins, autophagy-related proteins and apoptosis-related proteins in NB cells while knocking down CTSL. Lysosome staining was analyzed to access the expression levels of lysosomes in NB cells. The expression of apoptosis markers was analyzed with immunofluorescence. Various datasets were analyzed to find the potential protein related to CTSL. In addition, a subcutaneous tumor xenografts model in M-NSG mice was used to assess tumor response to CTSL inhibition in vivo. Based on the validation dataset (Versteeg), we confirmed that CTSL served as a prognostic marker for poor clinical outcome in NB patients. We further found that the expression level of CTSL was higher in SK-N-BE (2) cells than in IMR-32 cells. Knocking down CTSL reversed the chemoresistance in SK-N-BE (2) cells. Furthermore, combination of CTSL inhibition and chemotherapy potently blocked tumor growth in vivo. Mechanistically, CTSL promoted chemoresistance in NB cells by up-regulating multi-drug resistance protein ABCB1 and ABCG2, inhibiting the autophagy level and cell apoptpsis. Furthermore, we observed six datasets and found that Serglycin (SRGN) expression was positively associated with CTSL expresssion. CTSL could mediate chemoresistance by up-regulating SRGN expression in NB cells and SRGN expression was positively correlated with poor prognosis of NB patients. Taken together, our findings indicate that the CTSL promotes chemoresistance to cisplatin and doxorubicin by up-regulating the expression of multi-drug resistance proteins and inhibiting the autophagy level and cell apoptosis in NB cells. Thus, CTSL may be a therapeutic target for overcoming chemoresistant to cisplatin and doxorubicin in NB patients.
Collapse
Affiliation(s)
- Xiaohuan Du
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Leyun Ding
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Shungen Huang
- Department of Oncology, Children’s Hospital of Soochow University, Suzhou, China
| | - Fang Li
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Yinghui Yan
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Ruze Tang
- Department of Oncology, Children’s Hospital of Soochow University, Suzhou, China
| | - Xinyuan Ding
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- *Correspondence: Wenjuan Wang, ; Xinyuan Ding, ; Zengyan Zhu,
| | - Zengyan Zhu
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
- *Correspondence: Wenjuan Wang, ; Xinyuan Ding, ; Zengyan Zhu,
| | - Wenjuan Wang
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
- *Correspondence: Wenjuan Wang, ; Xinyuan Ding, ; Zengyan Zhu,
| |
Collapse
|
14
|
Xiao J, McGill JR, Nasir A, Lekan A, Johnson B, Wilkins DJ, Pearson GW, Tanner K, Goodarzi H, Glasgow E, Schlegel R, Agarwal S. Identifying drivers of breast cancer metastasis in progressively invasive subpopulations of zebrafish-xenografted MDA-MB-231. MOLECULAR BIOMEDICINE 2022; 3:16. [PMID: 35614362 PMCID: PMC9133282 DOI: 10.1186/s43556-022-00080-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer metastasis is the primary cause of the high mortality rate among human cancers. Efforts to identify therapeutic agents targeting cancer metastasis frequently fail to demonstrate efficacy in clinical trials despite strong preclinical evidence. Until recently, most preclinical studies used mouse models to evaluate anti-metastatic agents. Mouse models are time-consuming and expensive. In addition, an important drawback is that mouse models inadequately model the early stages of metastasis which plausibly leads to the poor correlation with clinical outcomes. Here, we report an in vivo model based on xenografted zebrafish embryos where we select for progressively invasive subpopulations of MDA-MB-231 breast cancer cells. A subpopulation analogous to circulating tumor cells found in human cancers was selected by injection of MDA-MB-231 cells into the yolk sacs of 2 days post-fertilized zebrafish embryos and selecting cells that migrated to the tail. The selected subpopulation derived from MDA-MB-231 cells were increasingly invasive in zebrafish. Isolation of these subpopulations and propagation in vitro revealed morphological changes consistent with activation of an epithelial-mesenchymal transition program. Differential gene analysis and knockdown of genes identified gene-candidates (DDIT4, MT1X, CTSD, and SERPINE1) as potential targets for anti-metastasis therapeutics. Furthermore, RNA-splicing analysis reinforced the importance of BIRC5 splice variants in breast cancer metastasis. This is the first report using zebrafish to isolate and expand progressively invasive populations of human cancer cells. The model has potential applications in understanding the metastatic process, identification and/or development of therapeutics that specifically target metastatic cells and formulating personalized treatment strategies for individual cancer patients.
Collapse
Affiliation(s)
- Jerry Xiao
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA.,Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Joseph R McGill
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Apsra Nasir
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Alexander Lekan
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA
| | - Bailey Johnson
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Devan J Wilkins
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA.,Eastern Virginia Medical School, Norfolk, VA, USA
| | - Gray W Pearson
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Eric Glasgow
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Richard Schlegel
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC, USA.
| |
Collapse
|
15
|
Tellez-Gabriel M, Tekpli X, Reine TM, Hegge B, Nielsen SR, Chen M, Moi L, Normann LS, Busund LTR, Calin GA, Mælandsmo GM, Perander M, Theocharis AD, Kolset SO, Knutsen E. Serglycin Is Involved in TGF-β Induced Epithelial-Mesenchymal Transition and Is Highly Expressed by Immune Cells in Breast Cancer Tissue. Front Oncol 2022; 12:868868. [PMID: 35494005 PMCID: PMC9047906 DOI: 10.3389/fonc.2022.868868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Serglycin is a proteoglycan highly expressed by immune cells, in which its functions are linked to storage, secretion, transport, and protection of chemokines, proteases, histamine, growth factors, and other bioactive molecules. In recent years, it has been demonstrated that serglycin is also expressed by several other cell types, such as endothelial cells, muscle cells, and multiple types of cancer cells. Here, we show that serglycin expression is upregulated in transforming growth factor beta (TGF-β) induced epithelial-mesenchymal transition (EMT). Functional studies provide evidence that serglycin plays an important role in the regulation of the transition between the epithelial and mesenchymal phenotypes, and it is a significant EMT marker gene. We further find that serglycin is more expressed by breast cancer cell lines with a mesenchymal phenotype as well as the basal-like subtype of breast cancers. By examining immune staining and single cell sequencing data of breast cancer tissue, we show that serglycin is highly expressed by infiltrating immune cells in breast tumor tissue.
Collapse
Affiliation(s)
- Marta Tellez-Gabriel
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Trine M. Reine
- Department of Interphase Genetics, Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Beate Hegge
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Stephanie R. Nielsen
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Meng Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Line Moi
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
- Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Lisa Svartdal Normann
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Research and Innovation, Vestre Viken Hospital Trust, Drammen, Norway
| | - Lill-Tove R. Busund
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
- Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gunhild M. Mælandsmo
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Maria Perander
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | | | - Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
- Centre for Clinical Research and Education, University Hospital of North Norway, Tromsø, Norway
- *Correspondence: Erik Knutsen,
| |
Collapse
|
16
|
Zhao Z, Wang Z, Wu Y, Liao D, Zhao B. Comprehensive analysis of TAMs marker genes in glioma for predicting prognosis and immunotherapy response. Mol Immunol 2022; 144:78-95. [DOI: 10.1016/j.molimm.2022.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/17/2022]
|
17
|
Castro-Amaya AM, Fernández-Avila L, Barrón-Gallardo CA, Moreno-Rios CE, Guevara-Hernández SN, Magaña-Torres MT, Pelayo-Aguirre CJ, Jave-Suárez LF, Aguilar-Lemarroy A. E6/E7 from Beta-2-HPVs 122, 38b, and 107 possess transforming properties in a fibroblast model in vitro. Exp Cell Res 2022; 414:113088. [PMID: 35276208 DOI: 10.1016/j.yexcr.2022.113088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022]
Abstract
Beta-2 Human papillomaviruses 38b, 107, and 122 have been frequently found in cervical cancer samples in western Mexico. Because their E6/E7 genes functions are not fully elucidated, we deepen into their transformation capabilities. To achieve this goal, primary human fibroblasts (FB) were transduced with E6/E7 genotype-specific viral particles. Additionally, E6/E7 from HPVs 16 and 18 were included as controls. All E6/E7-cell models increased their lifespan; however, it is important to highlight that FB-E6/E7-122 showed growth as accelerated as FB-E6/E7-16 and 18. Furthermore, both FB-E6/E7-38b and 122 exhibited abilities to migrate, and FB-E6/E7-122 presented high invasive capacity. On the other hand, ΔNp73 expression was found in all cell models, except for FB-pLVX (empty-vector). Finally, RNAseq found differentially expressed genes enriched in signaling pathways related to cell cycle, epithelial-mesenchymal transition, and cancer, among others. This study shows for the first time, the great transformative potential that genotypes of the Beta-2 also possess, especially HPV122. These Beta-2 HPVs can modulate some of the genes that are well known to be regulated by Alpha-HPVs, however, they also possess alternative strategies to modulate diverse signaling pathways. These data support the idea that Beta-2 HPVs should play an important role in co-infections with Alpha-HPV during carcinogenesis.
Collapse
Affiliation(s)
- Aribert Maryosly Castro-Amaya
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico; Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Leonardo Fernández-Avila
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico; Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Carlos Alfredo Barrón-Gallardo
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico; Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Carlos Eliu Moreno-Rios
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Sarah Naomi Guevara-Hernández
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - María Teresa Magaña-Torres
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Clarisa Jazmín Pelayo-Aguirre
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico; Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| | - Adriana Aguilar-Lemarroy
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico; Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
18
|
Molecular targets and therapeutics in chemoresistance of triple-negative breast cancer. Med Oncol 2021; 39:14. [PMID: 34812991 DOI: 10.1007/s12032-021-01610-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is a specific subtype of breast cancer (BC), which shows immunohistochemically negative expression of hormone receptor i.e., Estrogen receptor and Progesterone receptor along with the absence of Human Epidermal Growth Factor Receptor-2 (HER2/neu). In Indian scenario the prevalence of BC is 26.3%, whereas, in West Bengal the cases are of 18.4%. But the rate of TNBC has increased up to 31% and shows 27% of total BC. Conventional chemotherapy is effective only in the initial stages but with progression of the disease the effectivity gets reduced and shown almost no effect in later or advanced stages of TNBC. Thus, TNBC patients frequently develop resistance and metastasis, due to its peculiar triple-negative nature most of the hormonal therapies also fails. Development of chemoresistance may involve various factors, such as, TNBC heterogeneity, cancer stem cells (CSCs), signaling pathway deregulation, DNA repair mechanism, hypoxia, and other molecular factors. To overcome the challenges to treat TNBC various targets and molecules have been exploited including CSCs modulator, drug efflux transporters, hypoxic factors, apoptotic proteins, and regulatory signaling pathways. Moreover, to improve the targets and efficacy of treatments researchers are emphasizing on targeted therapy for TNBC. In this review, an effort has been made to focus on phenotypic and molecular variations in TNBC along with the role of conventional as well as newly identified pathways and strategies to overcome challenge of chemoresistance.
Collapse
|
19
|
Liu F, Li L, Lan M, Zou T, Kong Z, Cai T, Wu X, Cai Y. Psoralen-loaded polymeric lipid nanoparticles combined with paclitaxel for the treatment of triple-negative breast cancer. Nanomedicine (Lond) 2021; 16:2411-2430. [PMID: 34749510 DOI: 10.2217/nnm-2021-0241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background: Chemotherapeutic drugs are associated with toxic effects. Metastasis is the leading cause of death in breast cancer patients. Aim: To evaluate the antitumor effect of paclitaxel (PTX) combined with psoralen-loaded polymeric lipid nanoparticles (PSO-PLNs) in triple-negative breast cancer. Methods: After treatment of samples, cell viability, apoptosis, migration, invasion, expression of proteins in the IRAK1/NF-κB/FAK signal pathway, biodistribution and pathological characteristics were detected. Results: Compared with the control group, the PTX + PSO-PLNs group showed increased apoptosis and reduced migration, invasion and expression of phosphorylated IRAK1 and NF-κB, with significant inhibition of tumor growth and lung metastases and no obvious toxicity. Conclusion: Combined administration of PTX and PSO-PLNs exerted a synergistic effect and significantly inhibited the growth and metastasis of triple-negative breast cancer.
Collapse
Affiliation(s)
- Fengjie Liu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, PR China
| | - Lihong Li
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, PR China
| | - Meng Lan
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, PR China
| | - Tengteng Zou
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, PR China
| | - Zhaodi Kong
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, PR China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang, 110036, PR China
| | - Xiaoyu Wu
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, PR China
- Guangdong Key Lab of Traditional Chinese Medicine Information Technology, Jinan University, Guangzhou, 510632, PR China
| |
Collapse
|
20
|
Single-cell RNA sequencing reveals cell heterogeneity and transcriptome profile of breast cancer lymph node metastasis. Oncogenesis 2021; 10:66. [PMID: 34611125 PMCID: PMC8492772 DOI: 10.1038/s41389-021-00355-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Molecular mechanisms underlying breast cancer lymph node metastasis remain unclear. Using single-cell sequencing, we investigated the transcriptome profile of 96,796 single cells from 15 paired samples of primary tumors and axillary lymph nodes. We identified nine cancer cell subclusters including CD44 + / ALDH2 + /ALDH6A1 + breast cancer stem cells (BCSCs), which had a copy-number variants profile similar to that of normal breast tissue. Importantly, BCSCs existed only in primary tumors and evolved into metastatic clusters infiltrating into lymph nodes. Furthermore, transcriptome data suggested that NECTIN2-TIGIT-mediated interactions between metastatic breast cancer cells and tumor microenvironment (TME) cells, which promoted immune escape and lymph node metastasis. This study is the first to delineate the transcriptome profile of breast cancer lymph node metastasis using single-cell RNA sequencing. Our findings offer novel insights into the mechanisms underlying breast cancer metastasis and have implications in developing novel therapies to inhibit the initiation of breast cancer metastasis.
Collapse
|
21
|
He Y, Cheng D, Lian C, Liu Y, Luo W, Wang Y, Ma C, Wu Q, Tian P, He D, Jia Z, Lv X, Zhang X, Pan Z, Lu J, Xiao Y, Zhang P, Liang Y, Yang Q, Hu G. Serglycin induces osteoclastogenesis and promotes tumor growth in giant cell tumor of bone. Cell Death Dis 2021; 12:868. [PMID: 34556636 PMCID: PMC8460728 DOI: 10.1038/s41419-021-04161-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/24/2021] [Accepted: 09/08/2021] [Indexed: 11/09/2022]
Abstract
Giant cell tumor of bone (GCTB) is an aggressive osteolytic bone tumor characterized by the within-tumor presence of osteoclast-like multinucleated giant cells (MGCs), which are induced by the neoplastic stromal cells and lead to extensive bone destruction. However, the underlying mechanism of the pathological process of osteoclastogenesis in GCTB is poorly understood. Here we show that the proteoglycan Serglycin (SRGN) secreted by neoplastic stromal cells plays a crucial role in the formation of MGCs and tumorigenesis in GCTB. Upregulated SRGN expression and secretion are observed in GCTB tumor cells and patients. Stromal-derived SRGN promotes osteoclast differentiation from monocytes. SRGN knockdown in stromal cells inhibits tumor growth and bone destruction in a patient-derived orthotopic xenograft model of mice. Mechanistically SRGN interacts with CD44 on the cell surface of monocytes and thus activates focal adhesion kinase (FAK), leading to osteoclast differentiation. Importantly, blocking CD44 with a neutralizing antibody reduces the number of MGCs and suppresses tumorigenesis in vivo. Overall, our data reveal a mechanism of MGC induction in GCTB and support CD44-targeting approaches for GCTB treatment.
Collapse
Affiliation(s)
- Yunfei He
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dongdong Cheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cheng Lian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingjie Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenqian Luo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chengxin Ma
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiuyao Wu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pu Tian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dasa He
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenchang Jia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xianzhe Lv
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xue Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhen Pan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinxi Lu
- Department of General Surgery, Xinzhou District People's Hospital, Wuhan, China
| | - Yansen Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peiyuan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yajun Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qingcheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
22
|
Lv B, Gao G, Guo Y, Zhang Z, Liu R, Dai Z, Ju C, Liang Y, Tang X, Tang M, Lv XB. Serglycin promotes proliferation, migration, and invasion via the JAK/STAT signaling pathway in osteosarcoma. Aging (Albany NY) 2021; 13:21142-21154. [PMID: 34493692 PMCID: PMC8457593 DOI: 10.18632/aging.203392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/21/2021] [Indexed: 04/22/2023]
Abstract
BACKGROUND Osteosarcoma (OS) is a common disease in the world, and its pathogenesis is still unclear. This study aims to identify the key genes that promote the proliferation, invasion, and metastasis of osteosarcoma cells. METHOD GSE124768 and GSE126209 were downloaded from the Gene Expression Omnibus (GEO) database. The gene ontology and enrichment pathway were analyzed by FunRich software. qPCR and Western blot were used to detect the gene expression. After gene knockdown, Transwell and wound healing assays were conducted on osteosarcoma cells to detect whether the genes were defined before enhancing the invasion of osteosarcoma. RESULTS Totally, 341 mRNAs were found to be regulated differentially in osteosarcoma cells compared to osteoblasts. In addition, the expression level of Serglycin (SRGN) in osteosarcoma cells was higher than that in human osteoblasts. The invasion and proliferation ability of osteosarcoma cells with upregulated Serglycin was significantly increased, and on the contrary, decreased after Serglycin knockdown. Moreover, we preliminarily found that Serglycin may associate with the JAK/STAT signaling pathway. CONCLUSIONS By using microarray and bioinformatics analyses, differently expressed mRNAs were identified and a complete gene network was constructed. To our knowledge, we describe for the first time Serglycin as a potential biomarker.
Collapse
Affiliation(s)
- Bin Lv
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
- Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Guangyu Gao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| | - Yuhong Guo
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
- Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhiping Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
- Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Renfeng Liu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
- Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhengzai Dai
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
- Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Cheng Ju
- Beijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Yiping Liang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaofeng Tang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Tang
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu Province, China
| | - Xiao-Bin Lv
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Zhu Y, Cheung ALM. Proteoglycans and their functions in esophageal squamous cell carcinoma. World J Clin Oncol 2021; 12:507-521. [PMID: 34367925 PMCID: PMC8317653 DOI: 10.5306/wjco.v12.i7.507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/13/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly malignant disease that has a poor prognosis. Its high lethality is mainly due to the lack of symptoms at early stages, which culminates in diagnosis at a late stage when the tumor has already metastasized. Unfortunately, the common cancer biomarkers have low sensitivity and specificity in esophageal cancer. Therefore, a better understanding of the molecular mechanisms underlying ESCC progression is needed to identify novel diagnostic markers and therapeutic targets for intervention. The invasion of cancer cells into the surrounding tissue is a crucial step for metastasis. During metastasis, tumor cells can interact with extracellular components and secrete proteolytic enzymes to remodel the surrounding tumor microenvironment. Proteoglycans are one of the major components of extracellular matrix. They are involved in multiple processes of cancer cell invasion and metastasis by interacting with soluble bioactive molecules, surrounding matrix, cell surface receptors, and enzymes. Apart from having diverse functions in tumor cells and their surrounding microenvironment, proteoglycans also have diagnostic and prognostic significance in cancer patients. However, the functional significance and underlying mechanisms of proteoglycans in ESCC are not well understood. This review summarizes the proteoglycans that have been studied in ESCC in order to provide a comprehensive view of the role of proteoglycans in the progression of this cancer type. A long term goal would be to exploit these molecules to provide new strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Yun Zhu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
24
|
Sakabe T, Wakahara M, Shiota G, Umekita Y. Role of cytoplasmic localization of maspin in promoting cell invasion in breast cancer with aggressive phenotype. Sci Rep 2021; 11:11321. [PMID: 34059749 PMCID: PMC8166868 DOI: 10.1038/s41598-021-90887-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/19/2021] [Indexed: 12/31/2022] Open
Abstract
Mammary serine protease inhibitor (maspin) is a tumor suppressor gene that is downregulated during carcinogenesis and breast cancer progression. While the nuclear localization of maspin is essential for tumor suppression, we previously reported that the cytoplasmic localization of maspin was significantly correlated with poor prognosis in breast cancer patients. To understand the mechanisms that underlie oncogenic role of cytoplasmic maspin, we studied its biological function in breast cancer cell lines. Subcellular localization of maspin in MDA-MB-231 breast cancer cells was mainly detected in the cytoplasm, whereas in MCF10A mammary epithelial cells, maspin was present in both cytoplasm and nucleus. In MDA-MB-231 cells, maspin overexpression promoted cell proliferation and cell invasion, whereas maspin downregulation resulted in the opposite effect. Further, we observed that SRGN protein levels were increased in MDA-MB-231 cells stably overexpressing maspin. Finally, maspin overexpression in MDA-MB-231 cells resulted in the N-cadherin and epithelial mesenchymal transition (EMT)-related transcription factors upregulation, and TGFβ signaling pathway activation. These results suggested that cytoplasmic maspin enhances the invasive and metastatic potential in breast cancer cells with aggressive phenotype by inducing EMT via SRGN/TGFβ axis. This study demonstrated a novel biological function of cytoplasmic maspin in progression of breast cancer cells with an aggressive phenotype.
Collapse
Affiliation(s)
- Tomohiko Sakabe
- Department of Pathology, Faculty of Medicine, Tottori University, Yonago, 683-8503, Japan
| | - Makoto Wakahara
- Division of General Thoracic Surgery and Breast and Endocrine Surgery, Department of Surgery, Faculty of Medicine, Tottori University, Yonago, 683-8503, Japan
| | - Goshi Shiota
- Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, Faculty of Medicine, Tottori University, Yonago, 683-8503, Japan
| | - Yoshihisa Umekita
- Department of Pathology, Faculty of Medicine, Tottori University, Yonago, 683-8503, Japan.
| |
Collapse
|
25
|
Xie J, Qi X, Wang Y, Yin X, Xu W, Han S, Cai Y, Han W. Cancer-associated fibroblasts secrete hypoxia-induced serglycin to promote head and neck squamous cell carcinoma tumor cell growth in vitro and in vivo by activating the Wnt/β-catenin pathway. Cell Oncol (Dordr) 2021; 44:661-671. [PMID: 33651283 DOI: 10.1007/s13402-021-00592-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The tumor microenvironment (TME) is known to play a prominent role in the pathology of head and neck squamous cell carcinoma (HNSCC). Cancer-associated fibroblasts (CAFs) have been reported to regulate tumor progression, and serglycin (SRGN), one of the paracrine cytokines of CAFs, has been reported to play an important role in various signaling pathways. Hypoxia is a distinct feature of the HNSCC TME. Here, we investigated the mechanism underlying CAF-secreted SRGN leading to HNSCC progression under hypoxia. METHODS Immunohistochemical staining was used to detect SRGN expression in clinical HNSCC samples, after which its relation with patient survival was assessed. CAFs were isolated and SRGN expression and secretion by CAFs under normoxia and hypoxia were confirmed using qRT-PCR and ELISA assays, respectively. HNSCC sphere-forming abilities, stemness-related gene expression, and chemoresistance were assessed with or without SRGN treatment. A Wnt/β-catenin pathway inhibitor (PNU-75,654) was used to block its activation, after which nuclear translocation of β-catenin in the presence of SRGN with or without PNU-75,654 was evaluated. shRNAs were used to stably knock down SRGN expression in CAFs. HNSCC tumor cells with or without (SRGN silenced) CAFs were inoculated submucosally in nude mice after which tumor weights and sizes were determined to assess the effects of CAFs and SRGN on tumor growth. RESULTS We found that SRGN was expressed in both HNSCC tumor and stroma cells, and that high SRGN expression in the stroma cells, but not in the tumor cells, was significantly related to a poor patient survival. After the extraction of CAFs and normal fibroblasts (NFs) from paired tumor samples and adjacent normal tissues, respectively, we found that the expression of CAF-specific genes, including fibroblast activation protein (FAP) and alpha-smooth muscle actin (α-SMA), was clearly upregulated compared to the expression in NFs. The hypoxia marker HIF-1α was found to be expressed in tumor stroma cells. Hypoxyprobe immunofluorescence staining confirmed stromal hypoxia in an orthotopic tongue cancer mouse model. Using qRT-PCR and ELISA we found that a hypoxic TME upregulated SRGN expression and secretion by CAFs. SRGN markedly enhanced the sphere-forming ability, stemness-related gene expression and chemoresistance of HNSCC tumor cells. SRGN activated the Wnt/β-catenin pathway and promoted β-catenin nuclear translocation. An in vivo study confirmed that CAFs can accelerate HNSCC tumor growth, and that this effect can be counteracted by SRGN silencing. CONCLUSIONS Our data indicate that a hypoxic tumor stroma can lead to upregulation of SRGN expression. SRGN secreted by CAFs can promote β-catenin nuclear translocation to activate downstream signaling pathways, leading to enhanced HNSCC cell stemness, chemoresistance and accelerated tumor growth.
Collapse
Affiliation(s)
- Junqi Xie
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 22 Hankou Road, Nanjing, 210093, China
| | - Xiaofeng Qi
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, No 1055 Sanxiang Road, Soochow, 215004, China
| | - Yufeng Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China. .,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 22 Hankou Road, Nanjing, 210093, China.
| | - Xiteng Yin
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 22 Hankou Road, Nanjing, 210093, China
| | - Wenguang Xu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 22 Hankou Road, Nanjing, 210093, China
| | - Shengwei Han
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 22 Hankou Road, Nanjing, 210093, China
| | - Yu Cai
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 22 Hankou Road, Nanjing, 210093, China
| | - Wei Han
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China. .,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 22 Hankou Road, Nanjing, 210093, China.
| |
Collapse
|
26
|
Song C, Zhou C. HOXA10 mediates epithelial-mesenchymal transition to promote gastric cancer metastasis partly via modulation of TGFB2/Smad/METTL3 signaling axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:62. [PMID: 33563300 PMCID: PMC7874610 DOI: 10.1186/s13046-021-01859-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/28/2021] [Indexed: 01/06/2023]
Abstract
Background Homeobox A10 (HOXA10) belongs to the HOX gene family, which plays an essential role in embryonic development and tumor progression. We previously demonstrated that HOXA10 was significantly upregulated in gastric cancer (GC) and promoted GC cell proliferation. This study was designed to investigate the role of HOXA10 in GC metastasis and explore the underlying mechanism. Methods Immunohistochemistry (IHC) was used to evaluate the expression of HOXA10 in GC. In vitro cell migration and invasion assays as well as in vivo mice metastatic models were utilized to investigate the effects of HOXA10 on GC metastasis. GSEA, western blot, qRT-PCR and confocal immunofluorescence experiments preliminarily analyzed the relationship between HOXA10 and EMT. ChIP-qPCR, dual-luciferase reporter (DLR), co-immunoprecipitation (CoIP), colorimetric m6A assay and mice lung metastasis rescue models were performed to explore the mechanism by which HOXA10 accelerated the EMT process in GC. Results In this study, we demonstrated HOXA10 was upregulated in GC patients and the difference was even more pronounced in patients with lymph node metastasis (LNM) than without. Functionally, HOXA10 promoted migration and invasion of GC cells in vitro and accelerated lung metastasis in vivo. EMT was an important mechanism responsible for HOXA10-involved metastasis. Mechanistically, we revealed HOXA10 enriched in the TGFB2 promoter region, promoted transcription, increased secretion, thus triggered the activation of TGFβ/Smad signaling with subsequent enhancement of Smad2/3 nuclear expression. Moreover, HOXA10 upregulation elevated m6A level and METTL3 expression in GC cells possible by regulating the TGFB2/Smad pathway. CoIP and ChIP-qPCR experiments demonstrated that Smad proteins played an important role in mediating METTL3 expression. Furthermore, we found HOXA10 and METTL3 were clinically relevant, and METTL3 was responsible for the HOXA10-mediated EMT process by performing rescue experiments with western blot and in vivo mice lung metastatic models. Conclusions Our findings indicated the essential role of the HOXA10/TGFB2/Smad/METTL3 signaling axis in GC progression and metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01859-0.
Collapse
Affiliation(s)
- Chenlong Song
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chongzhi Zhou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Cao L, Luo FF, Huang HB, Huang TJ, Hu H, Zheng LS, Wang J, Peng LX, Qian CN, Huang BJ. The autoregulatory serglycin/CD44 axis drives stemness-like phenotypes in TNBC in a β-catenin-dependent manner. Clin Transl Med 2021; 11:e311. [PMID: 33634997 PMCID: PMC7851355 DOI: 10.1002/ctm2.311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022] Open
Affiliation(s)
- Li Cao
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Fei-Fei Luo
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Hong-Bin Huang
- Department of Pharmacy, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Tie-Jun Huang
- Department of Nuclear Medicine, The Second People's Hospital of Shenzhen, Shenzhen, People's Republic of China
| | - Hao Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Li-Sheng Zheng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Li-Xia Peng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| |
Collapse
|
28
|
Epigenetic Silencing of LMX1A Contributes to Cancer Progression in Lung Cancer Cells. Int J Mol Sci 2020; 21:ijms21155425. [PMID: 32751497 PMCID: PMC7432919 DOI: 10.3390/ijms21155425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Epigenetic modification is considered a major mechanism of the inactivation of tumor suppressor genes that finally contributes to carcinogenesis. LIM homeobox transcription factor 1α (LMX1A) is one of the LIM-homeobox-containing genes that is a critical regulator of growth and differentiation. Recently, LMX1A was shown to be hypermethylated and functioned as a tumor suppressor in cervical cancer, ovarian cancer, and gastric cancer. However, its role in lung cancer has not yet been clarified. In this study, we used public databases, methylation-specific PCR (MSP), reverse transcription PCR (RT-PCR), and bisulfite genomic sequencing to show that LMX1A was downregulated or silenced due to promoter hypermethylation in lung cancers. Treatment of lung cancer cells with the demethylating agent 5-aza-2'-deoxycytidine restored LMX1A expression. In the lung cancer cell lines H23 and H1299, overexpression of LMX1A did not affect cell proliferation but suppressed colony formation and invasion. These suppressive effects were reversed after inhibition of LMX1A expression in an inducible expression system in H23 cells. The quantitative RT-PCR (qRT-PCR) data showed that LMX1A could modulate epithelial mesenchymal transition (EMT) through E-cadherin (CDH1) and fibronectin (FN1). NanoString gene expression analysis revealed that all aberrantly expressed genes were associated with processes related to cancer progression, including angiogenesis, extracellular matrix (ECM) remodeling, EMT, cancer metastasis, and hypoxia-related gene expression. Taken together, these data demonstrated that LMX1A is inactivated through promoter hypermethylation and functions as a tumor suppressor. Furthermore, LMX1A inhibits non-small cell lung cancer (NSCLC) cell invasion partly through modulation of EMT, angiogenesis, and ECM remodeling.
Collapse
|
29
|
Ma Q, Gu W, Li T, Zhang K, Cui Y, Qu K, Wang N, Humphry R, Durkan C, Qiu J, Wang G. SRGN, a new identified shear-stress-responsive gene in endothelial cells. Mol Cell Biochem 2020; 474:15-26. [PMID: 32712749 DOI: 10.1007/s11010-020-03830-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
Abstract
Endothelial cells (ECs) play an important role in the pathogenesis of cardiovascular disease, especially atherosclerosis (AS). The abnormal wall shear stress (WSS) which directly contacts with ECs is the key stimulating factor leading to AS. However, the underlying mechanism of ECs responding to WSS is still incompletely understood. This study aims to explore the novel mechano-sensitive genes and its potential mechanism in response to WSS in ECs by employing bioinformatics methods based on previously available high-throughput data from zebrafish embryos, both before and after blood flow formation. Six common differentially expressed genes (DEGs) (SRGN, SLC12A3, SLC25A4, PVALB1, ITGAE.2, zgc:198419) were selected out from two high-throughput datasets (GSE126617 and GSE20707) in the GEO database. Among them, SRGN was chosen for further verification through the in vitro shear stress loading experiments with human umbilical vein endothelial cells (HUVECs) and the in vivo partial ligation of carotid artery in mice. Our data indicated that low shear stress (LSS) could enhance the expression of SRGN via the PKA/CREB-dependent signaling pathway. The proportion of Ki67+ cells and the concentration of nitric oxide (NO) were high in SRGN high expression cells, suggesting that SRGN may be involved in the proliferation of HUVECs. Furthermore, in the partial ligation of the carotid artery mice model, we observed that the expression of SRGN was significantly increased in atherosclerotic plaques induced by abnormal shear stress. Taken together, this study demonstrated that SRGN is a key gene in the response of ECs to WSS and could be involved in AS.
Collapse
Affiliation(s)
- Qinfeng Ma
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Faculty of Medicine, Bioengineering College, Chongqing University, Chongqing, 400030, China
| | - Wei Gu
- School of Medicine, Faculty of Medicine, Chongqing University, Chongqing, China
| | - Tianhan Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Faculty of Medicine, Bioengineering College, Chongqing University, Chongqing, 400030, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Faculty of Medicine, Bioengineering College, Chongqing University, Chongqing, 400030, China
| | - Yuliang Cui
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Faculty of Medicine, Bioengineering College, Chongqing University, Chongqing, 400030, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Faculty of Medicine, Bioengineering College, Chongqing University, Chongqing, 400030, China
| | - Nan Wang
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Rose Humphry
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Colm Durkan
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Faculty of Medicine, Bioengineering College, Chongqing University, Chongqing, 400030, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Faculty of Medicine, Bioengineering College, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
30
|
Yang T, Fu Z, Zhang Y, Wang M, Mao C, Ge W. Serum proteomics analysis of candidate predictive biomarker panel for the diagnosis of trastuzumab-based therapy resistant breast cancer. Biomed Pharmacother 2020; 129:110465. [PMID: 32887021 DOI: 10.1016/j.biopha.2020.110465] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive is a particularly aggressive type of the breast cancer. Trastuzumab-based therapy is a standard treatment for HER2-positive breast cancer, but some patients are resistant to the therapy. Serum proteins have been used to predict therapeutic benefit for various cancers, but whether serum proteins can serve as biomarkers for HER2-positive breast cancer remains unclear. Using an isobaric Tandem Mass Tag (TMT) label-based quantitative proteomic, we discovered 18 differentially expressed proteins in the serum of trastuzumab-based therapy resistant patients before therapy. Then, four proteins were selected and validated using an LC-MS/MS-based multiple reaction monitoring quantification method, and it was confirmed that three proteins (SRGN, LDHA and CST3) were correlated with trastuzumab-based therapy resistance. Finally, the trastuzumab-based therapy resistance diagnostic score was calculated and acquired by means of a logistic regression pattern based on the level of these three proteins. In summary, we develop a serum-based protein signature that potentially predicts the therapeutic effects of trastuzumab-based therapy for HER2-positive breast cancer patients.
Collapse
Affiliation(s)
- Ting Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Ziyi Fu
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Women's Hospital of Nanjing Medical University, Nanjing, China; Department of Oncology, First Affiliated Hospital, Nanjing Medical University, 210029 Nanjing, China
| | - Yin Zhang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Min Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Changfei Mao
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
31
|
Wang X, Xiong H, Liang D, Chen Z, Li X, Zhang K. The role of SRGN in the survival and immune infiltrates of skin cutaneous melanoma (SKCM) and SKCM-metastasis patients. BMC Cancer 2020; 20:378. [PMID: 32370744 PMCID: PMC7201763 DOI: 10.1186/s12885-020-06849-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 04/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is one of most aggressive type of cancers worldwide. Serglycin (SRGN) is an intracellular proteoglycan that playing an important role in various tumors. However, its effect on immune infiltrates and whether it associates with survival of SKCM and SKCM-metastasis patients has not been explored. METHODS We evaluated SRGN expression via the databases of Oncomine, Tumor Immune Estimation Resource (TIMER) and Gene Expression Profiling Interactive Analysis (GEPIA). The influence of SRGN expression on survival of SKCM and SKCM-metastasis patients was analyzed using TIMER database. Furthermore, the correlations between SRGN expression and immune infiltrates or gene marker sets of immune infiltrates were also analyzed via TIMER database. RESULTS We found that the expression of SRGN in SKCM and SKCM-metastasis tissues was significantly increased compared to the normal skin tissues (P < 0.001). Interestingly, it was showed that lower level of SRGN expression and lower immune infiltrates of B cell, CD8+ T cell, Neutrophil, and Dendritic cell were correlated with poor survival rate of SKCM and SKCM-metastasis patients (P < 0.001) but not SKCM primary patients. We also demonstrated that SRGN expression was positively associated with the immune infiltrates and diverse immune marker sets in SKCM and SKCM-metastasis. CONCLUSIONS Our findings indicated that SRGN was associated with the survival of SKCM and SKCM-metastasis patients. SRGN may be a new immune therapy target for treating SKCM and SKCM-metastasis.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Dermatology and Venerology, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Hui Xiong
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Daning Liang
- Department of Dermatology and Venerology, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Zhenzhen Chen
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiqing Li
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kun Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
32
|
Manou D, Bouris P, Kletsas D, Götte M, Greve B, Moustakas A, Karamanos NK, Theocharis AD. Serglycin activates pro-tumorigenic signaling and controls glioblastoma cell stemness, differentiation and invasive potential. Matrix Biol Plus 2020; 6-7:100033. [PMID: 33543029 PMCID: PMC7852318 DOI: 10.1016/j.mbplus.2020.100033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Despite the functional role of serglycin as an intracellular proteoglycan, a variety of malignant cells depends on its expression and constitutive secretion to advance their aggressive behavior. Serglycin arose to be a biomarker for glioblastoma, which is the deadliest and most treatment-resistant form of brain tumor, but its role in this disease is not fully elucidated. In our study we suppressed the endogenous levels of serglycin in LN-18 glioblastoma cells to decipher its involvement in their malignant phenotype. Serglycin suppressed LN-18 (LN-18shSRGN) glioblastoma cells underwent astrocytic differentiation characterized by induced expression of GFAP, SPARCL-1 and SNAIL, with simultaneous loss of their stemness capacity. In particular, LN-18shSRGN cells presented decreased expression of glioma stem cell-related genes and ALDH1 activity, accompanied by reduced colony formation ability. Moreover, the suppression of serglycin in LN-18shSRGN cells retarded the proliferative and migratory rate, the invasive potential in vitro and the tumor burden in vivo. The lack of serglycin in LN-18shSRGN cells was followed by G2 arrest, with subsequent reduction of the expression of cell-cycle regulators. LN-18shSRGN cells also exhibited impaired expression and activity of proteolytic enzymes such as MMPs, TIMPs and uPA, both in vitro and in vivo. Moreover, suppression of serglycin in LN-18shSRGN cells eliminated the activation of pro-tumorigenic signal transduction. Of note, LN-18shSRGN cells displayed lower expression and secretion levels of IL-6, IL-8 and CXCR-2. Concomitant, serglycin suppressed LN-18shSRGN cells demonstrated repressed phosphorylation of ERK1/2, p38, SRC and STAT-3, which together with PI3K/AKT and IL-8/CXCR-2 signaling control LN-18 glioblastoma cell aggressiveness. Collectively, the absence of serglycin favors an astrocytic fate switch and a less aggressive phenotype, characterized by loss of pluripotency, block of the cell cycle, reduced ability for ECM proteolysis and pro-tumorigenic signaling attenuation.
Collapse
Key Words
- ALDH1, aldehyde dehydrogenase 1
- Astrocytic differentiation
- CXCR, C-X-C chemokine receptor
- ECM, extracellular matrix
- EMT, epithelial to mesenchymal transition
- ERK, extracellular-signal-regulated kinase
- GFAP, glial fibrillary acid protein
- Glioblastoma
- IL, interleukin
- Interleukins
- MAPK, mitogen-activated protein kinase
- MMPs, metalloproteinases
- PGs, proteoglycans
- PI3K, phosphoinositide 3-kinase
- Proteoglycans
- Proteolytic enzymes
- SRGN, serglycin
- STAT-3, signal transducer and activator of transcription 3
- Serglycin
- Signaling
- Stemness
- TIMPs, tissue inhibitors of metalloproteinases
- uPA, urokinase plasminogen activator
Collapse
Affiliation(s)
- Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Panagiotis Bouris
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation & Ageing, Institute of Biosciences & Applications, National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital, Muenster, Germany
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, University Hospital, Muenster, Germany
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Sweden
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| |
Collapse
|
33
|
Zhang Z, Qiu N, Yin J, Zhang J, Liu H, Guo W, Liu M, Liu T, Chen D, Luo K, Li H, He Z, Liu J, Zheng G. SRGN crosstalks with YAP to maintain chemoresistance and stemness in breast cancer cells by modulating HDAC2 expression. Theranostics 2020; 10:4290-4307. [PMID: 32292495 PMCID: PMC7150493 DOI: 10.7150/thno.41008] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/19/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Chemoresistance is a significant obstacle to the effective treatment of breast cancer (BC), resulting in more aggressive behavior and worse clinical outcome. The molecular mechanisms underlying breast cancer chemoresistance remain unclear. Our microarray analysis had identified the overexpression of a small molecular glycoprotein serglycin (SRGN) in multidrug-resistant BC cells. Here, we aimed to investigate the role of SRGN in chemoresistance of breast cancer and elucidate the underlying mechanisms. Methods: SRNG overexpression was identified using microarray analysis and its clinical relevance was analyzed. To investigate the role of SRGN, we performed various in vitro and in vivo studies, as well as characterization of serum and tissue samples from BC patients. Chemosensitivity measurement, gene expression interference, immunofluorescence staining, mammosphere assay, flow cytometry analysis, luciferase reporter assay, ChIP-qPCR, coimmunoprecipitation, and immunohistochemistry were performed to explore the potential functions and mechanisms of SRGN. Results: We confirmed overexpression of SRGN in chemoresistant BC cells and in serum and tissue samples from BC patients with poor response to chemotherapy. SRGN specifically predicted poor prognosis in BC patients receiving chemotherapy. Mechanistically, SRGN promoted chemoresistance both in vitro and in vivo by cross-talking with the transcriptional coactivator YES-associated protein (YAP) to maintain stemness in BC cells. Ectopic YAP expression restored the effects of SRGN knockdown. Inversely, YAP knockdown rescued the effects of SRGN overexpression. The secreted SRGN triggered ITGA5/FAK/CREB signaling to enhance YAP transcription. Reciprocally, YAP promoted SRGN transcription in a TEAD1-dependent manner to form a feed-forward circuit. Moreover, the YAP/RUNX1 complex promoted HDAC2 transcription to induce chemoresistance and stemness in BC cells. Importantly, the SRGN levels were positively correlated with the YAP and HDAC2 levels in chemoresistant BC tissues. YAP and HDAC2 acted downstream of SRNG and correlated with poor outcomes of BC patients receiving chemotherapy. Conclusions: Our findings clarify the roles and mechanisms of SRGN in mediating chemoresistance in breast cancer and suggest its use a potential biomarker for chemotherapeutic response. We believe that novel therapeutic strategies for breast cancer can be designed by targeting the signaling mediated by the crosstalk between SRGN and YAP.
Collapse
|
34
|
Yan L, You WQ, Sheng NQ, Gong JF, Hu LD, Tan GW, Chen HQ, Wang ZG. A CREB1/miR-433 reciprocal feedback loop modulates proliferation and metastasis in colorectal cancer. Aging (Albany NY) 2019; 10:3774-3793. [PMID: 30523220 PMCID: PMC6326693 DOI: 10.18632/aging.101671] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/15/2018] [Indexed: 12/28/2022]
Abstract
Increasing evidence has indicated the prognostic value of miR-433 across a series of malignancy types. However, the underlying mechanisms involved in cancer progression haven’t been sufficiently elucidated. In the present work, we found that miR-433 was downregulated in CRC tissues and cell lines. Ectopic expression of miR-433 obviously suppressed the proliferation, invasion and metastasis activity of CRC cells in vitro and in vivo. CREB1, CCAR1 and JNK1 were highly expressed and negatively correlated with miR-433 expression in CRC. CRC patients with higher expression of CREB1, CCAR1 or JNK1 presented a worse outcome relative to those with lower expression. CREB1 transactivated the expression of miR-433, and CREB1, CCAR1 and JNK1 simultaneously served as its targets, which in turn composed a feedback loop between CREB1 and miR-433. miR-433 blocked cell cycle progression and abolished EMT. Collectively, our study demonstrated the CREB1/miR-433 reciprocal feedback loop restrained the propagation, invasion and metastasis activities of CRC cells through abrogation of cell cycle progression and constraint of EMT.
Collapse
Affiliation(s)
- Li Yan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei-Qiang You
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Neng-Quan Sheng
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jian-Feng Gong
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lan-Dian Hu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Ge-Wen Tan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hong-Qi Chen
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhi-Gang Wang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
35
|
He Y, Han B, Ding Y, Zhang H, Chang S, Zhang L, Zhao C, Yang N, Song J. Linc-GALMD1 Regulates Viral Gene Expression in the Chicken. Front Genet 2019; 10:1122. [PMID: 31798630 PMCID: PMC6868033 DOI: 10.3389/fgene.2019.01122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 10/16/2019] [Indexed: 12/17/2022] Open
Abstract
A rapidly increasing number of reports on dysregulated long intergenic non-coding RNA (lincRNA) expression across numerous types of cancers indicates that aberrant lincRNA expression may be a major contributor to tumorigenesis. Marek’s disease (MD) is a T cell lymphoma of chickens induced by Marek’s disease virus (MDV). Although we have investigated the roles of lincRNAs in bursa tissue of MDV-infected chickens in previous studies, the molecular mechanisms of lincRNA functions in T cells remain poorly understood. In the present study, Linc-GALMD1 was identified from CD4+ T cells and MSB1 cells, and its expression was significantly downregulated in MD-resistant line of birds in response to MDV challenge. Furthermore, loss-of-function experiments indicated that linc-GALMD1 significantly affected the expression of 290 genes in trans. Through integrated analysis of differentially expressed genes (DEGs) induced by MDV and linc-GALMD1, we found that IGLL1 gene expression levels had a positive correlation with the degree of MD infection and could potentially serve as an indicator for clinical diagnosis of MD. Moreover, an interaction between MDV and linc-GALMD1 was also observed. Accordingly, chicken embryonic fibroblast cells were inoculated with MDV with and without the linc-GALMD1 knockdown, and the data showed that linc-GALMD1 could repress MDV gene expression during the course of MDV infection. These findings uncovered a role of linc-GALMD1 as a viral gene regulator and suggested a function of linc-GALMD1 contributing to tumor suppression by coordinating expression of MDV genes and tumor-related genes and regulating immune responses to MDV infection.
Collapse
Affiliation(s)
- Yanghua He
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Bo Han
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States.,National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yi Ding
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Huanmin Zhang
- Avian Disease and Oncology Laboratory, Agricultural Research Service, USDA, East Lansing, MI, United States
| | - Shuang Chang
- Avian Disease and Oncology Laboratory, Agricultural Research Service, USDA, East Lansing, MI, United States.,College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Li Zhang
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chunfang Zhao
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| |
Collapse
|
36
|
Luo K, He J, Yu D, Açil Y. MiR-149-5p regulates cisplatin chemosensitivity, cell growth, and metastasis of oral squamous cell carcinoma cells by targeting TGFβ2. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3728-3739. [PMID: 31933761 PMCID: PMC6949764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a public health problem worldwide. MicroRNAs, acting as either oncogenes or tumor suppressors, have gathered much attention. The aim of this study was to characterize the role of miR-149-5p in drug resistance, cell growth, and metastasis and its underlying mechanism in oral squamous cell carcinoma. METHODS The expressions of miR-149-5p and TGFβ2 were measured by quantitative real-time polymerase chain reaction. The survival rate of cells treated with different concentrations of CDDP was checked by CCK-8. The cell proliferation and apoptosis was determined by CCK-8 and flow cytometry, respectively. Cell migration and invasion were examined using transwell assay. The interaction of miR-149-5p and TGFβ2 was predicted by online software Targetscan and confirmed by luciferase reporter assay. The protein expression of TGFβ2, p-SMAD2 and p-SMAD3 was quantified using western blot. RESULTS The expression of miR-149-5p was obviously decreased in OSCC tissues and cell lines, and its expression was lower in a cisplatin resistant cell line (CAL-27/CDDP) than that of a normal OSCC cell line (CAL-27). CCK-8 assay suggested that miR-149-5p increased drug sensitivity in CAL-27 and CAL-27/CDDP cells. miR-149-5p attenuated proliferation, migration and invasion, and promoted apoptosis of CAL-27 and CAL-27/CDDP cells. In addition, TGFβ2 was up-regulated in OSCC cells at both mRNA and protein levels. Moreover, miR-149-5p promoted cisplatin chemosensitivity and regulated cell proliferation, apoptosis, migration and invasion by targeting TGFβ2 in CAL-27 and CAL-27/CDDP cells. CONCLUSION miR-149-5p regulates cisplatin chemosensitivity, cell growth, apoptosis and metastasis by targeting TGFβ2. miR-149-5p/TGFβ2 axis has potential for therapy of OSCC.
Collapse
Affiliation(s)
- Kunliang Luo
- Department of Dentistry, Sir Run Run Shaw Hospital, Affiliated with The Zhejiang University School of MedicineHangzhou, Zhejiang, China
| | - Jun He
- Department of Dentistry, Sir Run Run Shaw Hospital, Affiliated with The Zhejiang University School of MedicineHangzhou, Zhejiang, China
| | - Dongqin Yu
- Department of Stomatology, Shaoxing Central HospitalShaoxing, Zhejiang, China
| | - Yahya Açil
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-HolsteinCampus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| |
Collapse
|
37
|
Peng L, Zhang Y, Xin H. lncRNA SNHG3 facilitates acute myeloid leukemia cell growth via the regulation of miR-758-3p/SRGN axis. J Cell Biochem 2019; 121:1023-1031. [PMID: 31452272 DOI: 10.1002/jcb.29336] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
Small nucleolar RNA host gene 3 (SNHG3) is a newly identified long non-coding RNA whose dysregulation has been reported in several cancers. However, the details about clinical significances and biological functions of SNHG3 on acute myeloid leukemia (AML) remain covered. In this study, we revealed increased SNHG3 expression in AML samples and cells and its high potential as a prognostic biomarker for AML patients. Likewise, serglycin (SRGN), which plays an important role in granule-mediated apoptosis, was previously verified to be upregulated in AML and confirmed again by the present study, and its upregulation predicted poor outcomes in AML. Furthermore, knockdown of SNHG3 or SRGN inhibited cell proliferation and induced cell apoptosis. Besides, silencing SNHG3 noticeably decreased the expression of SRGN in AML cells. Moreover, we uncovered that SNHG3 modulated SRGN expression by competitively binding with miR-758-3p. Importantly, both miR-758-3p suppression and SRGN overexpression could mitigate the inhibitory effects of SNHG3 depletion on AML cell growth. Intriguingly, the higher SRGN expression in AML samples with a higher SNHG3 level exhibited an enhanced Ki67 level but a reduced caspase 3 level. To sum up, SNHG3 elicits a growth-promoting function in AML via sponging miR-758-3p to regulate SRGN expression, providing a new therapeutic road for AML patients.
Collapse
Affiliation(s)
- Linqiang Peng
- Department of Pediatrics, Baoji People's Hospital Shaanxi Province, Baoji, Shaanxi, China
| | - Yanzhi Zhang
- Department of Pediatrics, Lanling County People's Hospital, Lanling, Shandong, China
| | - Hongli Xin
- Department of Pediatrics, Lanling County People's Hospital, Lanling, Shandong, China
| |
Collapse
|
38
|
Scuruchi M, D'Ascola A, Avenoso A, Mandraffino G G, Campo S S, Campo GM. Serglycin as part of IL-1β induced inflammation in human chondrocytes. Arch Biochem Biophys 2019; 669:80-86. [PMID: 31145901 DOI: 10.1016/j.abb.2019.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/17/2019] [Accepted: 05/26/2019] [Indexed: 02/07/2023]
Abstract
Serglycin (SRGN) is an intracellular proteoglycan produced and secreted by several cell types. The increased expression of SRGN was associated with greater aggressiveness in cancer and inflammation. In this study, we demonstrated that SRGN is increased in human chondrocytes after IL-β stimulation. Furthermore, we found that secreted SRGN was able to bind the CD44 receptor thus participating in the extension of the inflammatory response. Using SRGN knockdown cells we observed a significantly decrease in specific inflammatory markers and NF-kB activation. Similar results were observed by blocking the CD44 receptor. These data provide further evidences for a direct involvement of SRGN in the mechanisms regulating the non-infectious chondrocytes damage, and the consequent joint inflammation and cartilage destruction in arthritis.
Collapse
Affiliation(s)
- Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Italy.
| | - Angela D'Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Angela Avenoso
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Italy
| | | | - Salvatore Campo S
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Italy
| | - Giuseppe M Campo
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| |
Collapse
|
39
|
Manou D, Karamanos NK, Theocharis AD. Tumorigenic functions of serglycin: Regulatory roles in epithelial to mesenchymal transition and oncogenic signaling. Semin Cancer Biol 2019; 62:108-115. [PMID: 31279836 DOI: 10.1016/j.semcancer.2019.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/24/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
Numerous studies point out serglycin as an important regulator of tumorigenesis in a variety of malignancies. Serglycin expression correlates with the aggressive phenotype of tumor cells and serves as a poor prognostic indicator for disease progression. Although serglycin is considered as an intracellular proteoglycan, it is also secreted in the extracellular matrix by tumor cells affecting cell properties, oncogenic signaling and exosomes cargo. Serglycin directly interacts with CD44 and possibly other cell surface receptors including integrins, evoking cell adhesion and signaling. Serglycin also creates a pro-inflammatory and pro-angiogenic tumor microenvironment by regulating the secretion of proteolytic enzymes, IL-8, TGFβ2, CCL2, VEGF and HGF. Hence, serglycin activates multiple signaling cascades that drive angiogenesis, tumor cell growth, epithelial to mesenchymal transition, cancer cell stemness and metastasis. The interference with the tumorigenic functions of serglycin emerges as an attractive prospect to target malignancies.
Collapse
Affiliation(s)
- Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece.
| |
Collapse
|
40
|
Theocharis AD, Manou D, Karamanos NK. The extracellular matrix as a multitasking player in disease. FEBS J 2019; 286:2830-2869. [PMID: 30908868 DOI: 10.1111/febs.14818] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/06/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
Extracellular matrices (ECMs) are highly specialized and dynamic three-dimensional (3D) scaffolds into which cells reside in tissues. ECM is composed of a variety of fibrillar components, such as collagens, fibronectin, and elastin, and non-fibrillar molecules as proteoglycans, hyaluronan, and glycoproteins including matricellular proteins. These macromolecular components are interconnected forming complex networks that actively communicate with cells through binding to cell surface receptors and/or matrix effectors. ECMs exert diverse roles, either providing tissues with structural integrity and mechanical properties essential for tissue functions or regulating cell phenotype and functions to maintain tissue homeostasis. ECM molecular composition and structure vary among tissues, and is markedly modified during normal tissue repair as well as during the progression of various diseases. Actually, abnormal ECM remodeling occurring in pathologic circumstances drives disease progression by regulating cell-matrix interactions. The importance of matrix molecules to normal tissue functions is also highlighted by mutations in matrix genes that give rise to genetic disorders with diverse clinical phenotypes. In this review, we present critical and emerging issues related to matrix assembly in tissues and the multitasking roles for ECM in diseases such as osteoarthritis, fibrosis, cancer, and genetic diseases. The mechanisms underlying the various matrix-based diseases are also discussed. Research focused on the highly dynamic 3D ECM networks will help to discover matrix-related causative abnormalities of diseases as well as novel diagnostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| |
Collapse
|
41
|
A plasma protein derived TGFβ signature is a prognostic indicator in triple negative breast cancer. NPJ Precis Oncol 2019; 3:10. [PMID: 30963111 PMCID: PMC6445093 DOI: 10.1038/s41698-019-0082-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/04/2019] [Indexed: 12/24/2022] Open
Abstract
We investigated the potential of in-depth quantitative plasma proteome analysis to uncover proteins predictive of progression and metastasis in triple negative breast cancer (TNBC). Analysis of samples from 24 pre-menopausal and 24 post-menopausal women with newly diagnosed TNBC who subsequently developed metastasis or remained metastasis free were utilized in the proteomic discovery set, which resulted in 43 proteins associated with tumor progression. These proteins were found to form a hierarchical network with TGFβ. The signature was further confirmed and refined by integrating plasma protein data from a murine TNBC model that encompassed mice with rapid- versus slow-growing tumors. Three genes consisting of CLIC1, MAPRE1, and SERPINA3 in the refined TGFβ signature significantly stratified overall survival (log-rank p = 0.0141) in a larger validation cohort irrespective of menopausal status, tumor stage, grade, and size.
Collapse
|
42
|
Tanaka Y, Tateishi R, Koike K. Proteoglycans Are Attractive Biomarkers and Therapeutic Targets in Hepatocellular Carcinoma. Int J Mol Sci 2018; 19:3070. [PMID: 30297672 PMCID: PMC6213444 DOI: 10.3390/ijms19103070] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022] Open
Abstract
Proteoglycans, which consist of a protein core and glycosaminoglycan chains, are major components of the extracellular matrix and play physiological roles in maintaining tissue homeostasis. In the carcinogenic tissue microenvironment, proteoglycan expression changes dramatically. Altered proteoglycan expression on tumor and stromal cells affects cancer cell signaling pathways, which alters growth, migration, and angiogenesis and could facilitate tumorigenesis. This dysregulation of proteoglycans has been implicated in the pathogenesis of diseases such as hepatocellular carcinoma (HCC) and the underlying mechanism has been studied extensively. This review summarizes the current knowledge of the roles of proteoglycans in the genesis and progression of HCC. It focuses on well-investigated proteoglycans such as serglycin, syndecan-1, glypican 3, agrin, collagen XVIII/endostatin, versican, and decorin, with particular emphasis on the potential of these factors as biomarkers and therapeutic targets in HCC regarding the future perspective of precision medicine toward the "cure of HCC".
Collapse
Affiliation(s)
- Yasuo Tanaka
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Ryosuke Tateishi
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Kazuhiko Koike
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
43
|
Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV. Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chem Rev 2018; 118:9152-9232. [PMID: 30204432 DOI: 10.1021/acs.chemrev.8b00354] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini 47100, Italy
| | - Stéphanie Baud
- Université de Reims Champagne-Ardenne, Laboratoire SiRMa, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster 48149, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, CNRS, UMR 5246, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne 69622, France
| | - Ralph D. Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| |
Collapse
|
44
|
Bouris P, Manou D, Sopaki-Valalaki A, Kolokotroni A, Moustakas A, Kapoor A, Iozzo RV, Karamanos NK, Theocharis AD. Serglycin promotes breast cancer cell aggressiveness: Induction of epithelial to mesenchymal transition, proteolytic activity and IL-8 signaling. Matrix Biol 2018; 74:35-51. [PMID: 29842969 DOI: 10.1016/j.matbio.2018.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Serglycin is an intracellular proteoglycan that is expressed and constitutively secreted by numerous malignant cells, especially prominent in the highly-invasive, triple-negative MDA-MB-231 breast carcinoma cells. Notably, de novo expression of serglycin in low aggressive estrogen receptor α (ERα)-positive MCF7 breast cancer cells promotes an aggressive phenotype. In this study, we discovered that serglycin promoted epithelial to mesenchymal transition (EMT) in MCF7 cells as shown by increased expression of mesenchymal markers vimentin, fibronectin and EMT-related transcription factor Snail2. These phenotypic traits were also associated with the development of drug resistance toward various chemotherapy agents and induction of their proteolytic potential as shown by the increased expression of matrix metalloproteinases, including MMP-1, MMP-2, MMP-9, MT1-MMP and up-regulation of urokinase-type plasminogen activator. Knockdown of serglycin markedly reduced the expression of these proteolytic enzymes in MDA-MB-231 cells. In addition, serglycin expression was closely linked to a pro-inflammatory gene signature including the chemokine IL-8 in ERα-negative breast cancer cells and tumors. Notably, serglycin regulated the secretion of IL-8 in breast cancer cells independently of their ERα status and promoted their proliferation, migration and invasion by triggering IL-8/CXCR2 downstream signaling cascades including PI3K, Src and Rac activation. Thus, serglycin promotes the establishment of a pro-inflammatory milieu in breast cancer cells that evokes an invasive mesenchymal phenotype via autocrine activation of IL-8/CXCR2 signaling axis.
Collapse
Affiliation(s)
- Panagiotis Bouris
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Anastasia Sopaki-Valalaki
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Anthi Kolokotroni
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE 75123 Uppsala, Sweden
| | - Aastha Kapoor
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece.
| |
Collapse
|