1
|
Qu J, Kumar A, Liu YM, Odubanjo OV, Noubissi FK, Hu Y, Hu H. Ultraperformance Liquid Chromatography Tandem Mass Spectrometry Assay of DNA Cytosine Methylation Excretion from Biological Systems. ACS OMEGA 2025; 10:13370-13376. [PMID: 40224404 PMCID: PMC11983177 DOI: 10.1021/acsomega.4c11277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 04/15/2025]
Abstract
Measuring DNA cytosine methylation excretion presents challenges because methylated cytosine species are released in various forms including free molecules and those bound in DNA fragments. Herein, we report a novel UPLC-MS/MS method that allows the quantification of both free and DNA fragment-bound forms of methylated cytosine species excreted, providing total amounts for each. Cell culture medium and genomic DNA isolated from cells are analyzed to quantify methylated cytosine species. In genomic DNA isolated from MDA-MB-231 breast cancer cells, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are detected at 5.1% and 0.07% of total cytosine residues, respectively. In the cell culture medium, only 5hmC is detected at a low level (ca. 7 nM). However, in two normal cell lines (i.e., primary mouse lung epithelial cells and HEK293 kidney cells) 5mC, 5-methylcytidine, and 2'-oxymethylcytidine (but no 5hmC) are found present in cell culture medium at concentrations ranging from 10 to 320 nM. Further, it is observed for the first time that treating MDA-MB-231 cells with carboplatin significantly increases the 5hmC level in the culture medium, indicating a carboplatin-boosted DNA cytosine methylation excretion from cancer cells.
Collapse
Affiliation(s)
- Jing Qu
- Jackson
State University, Department of Chemistry,
Physics and Atmospheric Science, Jackson, Mississippi 39217, United States
| | - Avinash Kumar
- Jackson
State University, Department of Chemistry,
Physics and Atmospheric Science, Jackson, Mississippi 39217, United States
| | - Yi-Ming Liu
- Jackson
State University, Department of Chemistry,
Physics and Atmospheric Science, Jackson, Mississippi 39217, United States
| | - Oluwatoyin V. Odubanjo
- Department
of Biology, Jackson State University, Jackson, Mississippi 39217, United States
| | - Felicite K. Noubissi
- Department
of Biology, Jackson State University, Jackson, Mississippi 39217, United States
| | - Yixin Hu
- Department
of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical
Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Hankun Hu
- Department
of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical
Sciences, Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
2
|
Chauhan PS, Alahi I, Sinha S, Ledet EM, Mueller R, Linford J, Shiang AL, Webster J, Greiner L, Yang B, Ni G, Dang HX, Saha D, Babbra RK, Feng W, Harris PK, Qaium F, Duose DY, Alexander SE, Sherry AD, Jaeger EB, Miller PJ, Caputo SA, Orme JJ, Lucien F, Park SS, Tang C, Pachynski RK, Sartor O, Maher CA, Chaudhuri AA. Genomic and Epigenomic Analysis of Plasma Cell-Free DNA Identifies Stemness Features Associated with Worse Survival in Lethal Prostate Cancer. Clin Cancer Res 2025; 31:151-163. [PMID: 39177583 PMCID: PMC11743868 DOI: 10.1158/1078-0432.ccr-24-1658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE Metastatic castration-resistant prostate cancer (mCRPC) resistant to androgen receptor signaling inhibitors (ARSI) is often lethal. Liquid biopsy biomarkers for this deadly form of disease remain under investigation, and underpinning mechanisms remain ill-understood. EXPERIMENTAL DESIGN We applied targeted cell-free DNA (cfDNA) sequencing to 126 patients with mCRPC from three academic cancer centers and separately performed genome-wide cfDNA methylation sequencing on 43 plasma samples collected prior to the initiation of first-line ARSI treatment. To analyze the genome-wide sequencing data, we performed nucleosome positioning and differential methylated region analysis. We additionally analyzed single-cell and bulk RNA sequencing data from 14 and 80 patients with mCRPC, respectively, to develop and validate a stem-like signature, which we inferred from cfDNA. RESULTS Targeted cfDNA sequencing detected AR/enhancer alterations prior to first-line ARSIs that correlated with significantly worse progression-free survival (P = 0.01; HR = 2.12) and overall survival (P = 0.02; HR = 2.48). Plasma methylome analysis revealed that AR/enhancer lethal mCRPC patients have significantly higher promoter-level hypomethylation than AR/enhancer wild-type mCRPC patients (P < 0.0001). Moreover, gene ontology and CytoTRACE analysis of nucleosomally more accessible transcription factors in cfDNA revealed enrichment for stemness-associated transcription factors in patients with lethal mCRPC. The resulting stemness signature was then validated in a completely held-out cohort of 80 patients with mCRPC profiled by tumor RNA sequencing. CONCLUSIONS We analyzed a total of 220 patients with mCRPC, validated the importance of cell-free AR/enhancer alterations as a prognostic biomarker in lethal mCRPC, and showed that the underlying mechanism for lethality involves reprogramming developmental states toward increased stemness. See related commentary by Nawfal et al., p. 7.
Collapse
Affiliation(s)
- Pradeep S. Chauhan
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States of America
| | - Irfan Alahi
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States of America
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Savar Sinha
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Elisa M. Ledet
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Ryan Mueller
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jessica Linford
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States of America
| | | | - Jace Webster
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lilli Greiner
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Breanna Yang
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gabris Ni
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ha X. Dang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- McDonnell Genome Institute, Washington University in St. Louis, Missouri, United States of America
| | - Debanjan Saha
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ramandeep K. Babbra
- Wilmot Institute Cancer Center, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Wenjia Feng
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Peter K. Harris
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Faridi Qaium
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States of America
| | - Dzifa Y. Duose
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Sanchez E. Alexander
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Alexander D. Sherry
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Ellen B. Jaeger
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Patrick J. Miller
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Sydney A. Caputo
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Jacob J. Orme
- Division of Oncology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota, United States of America
| | - Fabrice Lucien
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota, United States of America
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Urology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sean S. Park
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States of America
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota, United States of America
| | - Chad Tang
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Russell K. Pachynski
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Siteman Cancer Center, Washington University in St. Louis, Missouri, United States of America
| | - Oliver Sartor
- Division of Oncology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Urology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Christopher A. Maher
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- McDonnell Genome Institute, Washington University in St. Louis, Missouri, United States of America
- Siteman Cancer Center, Washington University in St. Louis, Missouri, United States of America
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Aadel A. Chaudhuri
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States of America
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota, United States of America
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
3
|
Mishra J, Chakraborty S, Nandi P, Manna S, Baral T, Niharika, Roy A, Mishra P, Patra SK. Epigenetic regulation of androgen dependent and independent prostate cancer. Adv Cancer Res 2024; 161:223-320. [PMID: 39032951 DOI: 10.1016/bs.acr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is one of the most common malignancies among men worldwide. Besides genetic alterations, epigenetic modulations including DNA methylation, histone modifications and miRNA mediated alteration of gene expression are the key driving forces for the prostate tumor development and cancer progression. Aberrant expression and/or the activity of the epigenetic modifiers/enzymes, results in aberrant expression of genes involved in DNA repair, cell cycle regulation, cell adhesion, apoptosis, autophagy, tumor suppression and hormone response and thereby disease progression. Altered epigenome is associated with prostate cancer recurrence, progression, aggressiveness and transition from androgen-dependent to androgen-independent phenotype. These epigenetic modifications are reversible and various compounds/drugs targeting the epigenetic enzymes have been developed that are effective in cancer treatment. This chapter focuses on the epigenetic alterations in prostate cancer initiation and progression, listing different epigenetic biomarkers for diagnosis and prognosis of the disease and their potential as therapeutic targets. This chapter also summarizes different epigenetic drugs approved for prostate cancer therapy and the drugs available for clinical trials.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
4
|
Terrazzan A, Vanini R, Ancona P, Bianchi N, Taccioli C, Aguiari G. State-of-the-art in transposable element modulation affected by drugs in malignant prostatic cancer cells. J Cell Biochem 2024; 125:e30557. [PMID: 38501160 DOI: 10.1002/jcb.30557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Over recent years, the investigation of transposable elements (TEs) has granted researchers a deeper comprehension of their characteristics and functions, particularly regarding their significance in the mechanisms contributing to cancer development. This manuscript focuses on prostate carcinoma cell lines and offers a comprehensive review intended to scrutinize the associations and interactions between TEs and genes, as well as their response to treatment using various chemical drugs, emphasizing their involvement in cancer progression. We assembled a compendium of articles retrieved from the PubMed database to construct networks demonstrating correlations with genes and pharmaceuticals. In doing so, we linked the transposition of certain TE types to the expression of specific transcripts directly implicated in carcinogenesis. Additionally, we underline that treatment employing different drugs revealed unique patterns of TE reactivation. Our hypothesis gathers the current understanding and guides research toward evidence-based investigations, emphasizing the association between antiviral drugs, chemotherapy, and the reduced expression of TEs in patients affected by prostate cancer.
Collapse
Affiliation(s)
- Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Laboratory for Advanced Therapy Technologies (LTTA), University of Ferrara, Ferrara, Italy
| | - Riccardo Vanini
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Pietro Ancona
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Cristian Taccioli
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Padua, Italy
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Łuczkowska K, Kulig P, Baumert B, Machaliński B. Vitamin D and K Supplementation Is Associated with Changes in the Methylation Profile of U266-Multiple Myeloma Cells, Influencing the Proliferative Potential and Resistance to Bortezomib. Nutrients 2023; 16:142. [PMID: 38201971 PMCID: PMC10780809 DOI: 10.3390/nu16010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that, despite recent advances in therapy, continues to pose a major challenge to hematologists. Currently, different classes of drugs are applied to treat MM, among others, proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies. Most of them participate in an interplay with the immune system, hijacking its effector functions and redirecting them to anti-MM activity. Therefore, adjuvant therapies boosting the immune system may be potentially beneficial in MM therapy. Vitamin D (VD) and vitamin K (VK) have multiple so called "non-classical" actions. They exhibit various anti-inflammatory and anti-cancer properties. In this paper, we investigated the influence of VD and VK on epigenetic alterations associated with the proliferative potential of MM cells and the development of BTZ resistance. Our results showed that the development of BTZ resistance is associated with a global decrease in DNA methylation. On the contrary, both control MM cells and BTZ-resistant MM cells exposed to VD alone and to the combination of VD and VK exhibit a global increase in methylation. In conclusion, VD and VK in vitro have the potential to induce epigenetic changes that reduce the proliferative potential of plasma cells and may at least partially prevent the development of resistance to BTZ. However, further ex vivo and in vivo studies are needed to confirm the results and introduce new supplementation recommendations as part of adjuvant therapy.
Collapse
Affiliation(s)
- Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (B.M.)
| | - Piotr Kulig
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (B.M.)
| | - Bartłomiej Baumert
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (B.M.)
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| |
Collapse
|
6
|
Imamura J, Ganguly S, Muskara A, Liao RS, Nguyen JK, Weight C, Wee CE, Gupta S, Mian OY. Lineage plasticity and treatment resistance in prostate cancer: the intersection of genetics, epigenetics, and evolution. Front Endocrinol (Lausanne) 2023; 14:1191311. [PMID: 37455903 PMCID: PMC10349394 DOI: 10.3389/fendo.2023.1191311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Androgen deprivation therapy is a cornerstone of treatment for advanced prostate cancer, and the development of castrate-resistant prostate cancer (CRPC) is the primary cause of prostate cancer-related mortality. While CRPC typically develops through a gain in androgen receptor (AR) signaling, a subset of CRPC will lose reliance on the AR. This process involves genetic, epigenetic, and hormonal changes that promote cellular plasticity, leading to AR-indifferent disease, with neuroendocrine prostate cancer (NEPC) being the quintessential example. NEPC is enriched following treatment with second-generation anti-androgens and exhibits resistance to endocrine therapy. Loss of RB1, TP53, and PTEN expression and MYCN and AURKA amplification appear to be key drivers for NEPC differentiation. Epigenetic modifications also play an important role in the transition to a neuroendocrine phenotype. DNA methylation of specific gene promoters can regulate lineage commitment and differentiation. Histone methylation can suppress AR expression and promote neuroendocrine-specific gene expression. Emerging data suggest that EZH2 is a key regulator of this epigenetic rewiring. Several mechanisms drive AR-dependent castration resistance, notably AR splice variant expression, expression of the adrenal-permissive 3βHSD1 allele, and glucocorticoid receptor expression. Aberrant epigenetic regulation also promotes radioresistance by altering the expression of DNA repair- and cell cycle-related genes. Novel therapies are currently being developed to target these diverse genetic, epigenetic, and hormonal mechanisms promoting lineage plasticity-driven NEPC.
Collapse
Affiliation(s)
- Jarrell Imamura
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Shinjini Ganguly
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Andrew Muskara
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Ross S. Liao
- Glickman Urologic Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jane K. Nguyen
- Glickman Urologic Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Christopher Weight
- Glickman Urologic Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Christopher E. Wee
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Shilpa Gupta
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Omar Y. Mian
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
7
|
Chu DT, Ngo AD, Wu CC. Epigenetics in cancer development, diagnosis and therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:73-92. [PMID: 37225325 DOI: 10.1016/bs.pmbts.2023.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Cancer is a dangerous disease and one of the leading causes of death in the world. In 2020, there were nearly 10 million cancer deaths and approximately 20 million new cases. New cases and deaths from cancer are expected to increase further in the coming years. To have a deeper insight into the mechanism of carcinogenesis, epigenetics studies have been published and received much attention from scientists, doctors, and patients. Among alterations in epigenetics, DNA methylation and histone modification are studied by many scientists. They have been reported to be a major contributor in tumor formation and are involved in metastasis. From the understanding of DNA methylation and histone modification, effective, accurate and cost-effective methods for diagnosis and screening of cancer patients have been introduced. Furthermore, therapeutic approaches and drugs targeting altered epigenetics have also been clinically studied and have shown positive results in combating tumor progression. Several cancer drugs that rely on DNA methylation inactivation or histone modification have been approved by the FDA for the treatment of cancer patients. In summary, epigenetics changes such as DNA methylation or histone modification are take part in tumor growth, and they also have great prospect to study diagnostic and therapeutic methods of this dangerous disease.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| | - Anh-Dao Ngo
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
8
|
Lin R, Qian Y, Zhang J, Xia D, Guo D, Hong L, Qing B, Xu M, Huang Y, Lin W, Chen G, Liu S. Genome-wide DNA methylation profiling of gastric cardia cancer. J Gastroenterol Hepatol 2023; 38:290-300. [PMID: 36342849 DOI: 10.1111/jgh.16054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND AIM Aberrant DNA methylation has been found in various cancer types including gastric cancer, yet the genome-wide DNA methylation profile of gastric cardia cancer (GCC) remains unclear. Therefore, we aimed to profile the DNA methylation pattern of GCC and identify promising diagnostic epigenetic biomarkers. METHODS We investigated the genome-wide DNA methylation pattern in eight pairs of GCC and adjacent normal tissues using Illumina 850K microarrays. Subsequently, bisulfite-pyrosequencing and quantitative real-time PCR were performed on eight pairs of GCC-adjacent normal tissues for validation. Finally, we performed immunohistochemistry to examine ADHFE1 expression on 126 pairs of GCC-adjacent normal samples. RESULTS DNA methylome analysis showed global hypomethylation and local hypermethylation of promoter cytosine-phosphate-guanine (CpG) islands (CGIs) in GCC tissues compared with gastric cardia normal mucosa (P < 2.2 × 10-16 ). Differential methylation analysis identified a total of 91 723 differentially-methylated probes (DMPs), and the candidate gene with the largest average DNA methylation difference mapped to ADHFE1 (mean Δβ = 0.53). Subsequently, three DMPs in the ADHFE1 promoter were validated by pyrosequencing. Notably, the mean methylation level of the three candidate DMPs (ADHFE1_cg08090772, ADHFE1_cg19283840, and ADHFE1_cg20295442) was negatively associated with ADHFE1 mRNA expression level (Spearman rho = -0.64, P = 0.01). Moreover, both mRNA (P = 0.0213) and protein (P < 0.0001) expression of ADHFE1 were significantly decreased in GCCs compared with the adjacent normal tissues. CONCLUSIONS Our results reveal DNA methylation aberrations in GCC and that ADHFE1 gene DNA methylation contributes to the risk of GCC, thus providing novel mechanistic insights into gastric cardia cancer carcinogenesis.
Collapse
Affiliation(s)
- Runhua Lin
- Department of Pathology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yanli Qian
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Jinhai Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Di Xia
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Dongming Guo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Liangli Hong
- Department of Pathology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Bojuan Qing
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Muming Xu
- Department of Abdominal Surgery, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yiteng Huang
- Health Care Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Wenting Lin
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Guangcan Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shuhui Liu
- Department of Pathology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| |
Collapse
|
9
|
Xu C, Zhao S, Cai L. Epigenetic (De)regulation in Prostate Cancer. Cancer Treat Res 2023; 190:321-360. [PMID: 38113006 PMCID: PMC11421856 DOI: 10.1007/978-3-031-45654-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Prostate cancer (PCa) is a heterogeneous disease exhibiting both genetic and epigenetic deregulations. Epigenetic alterations are defined as changes not based on DNA sequence, which include those of DNA methylation, histone modification, and chromatin remodeling. Androgen receptor (AR) is the main driver for PCa and androgen deprivation therapy (ADT) remains a backbone treatment for patients with PCa; however, ADT resistance almost inevitably occurs and advanced diseases develop termed castration-resistant PCa (CRPC), due to both genetic and epigenetic changes. Due to the reversible nature of epigenetic modifications, inhibitors targeting epigenetic factors have become promising anti-cancer agents. In this chapter, we focus on recent studies about the dysregulation of epigenetic regulators crucially involved in the initiation, development, and progression of PCa and discuss the potential use of inhibitors targeting epigenetic modifiers for treatment of advanced PCa.
Collapse
Affiliation(s)
- Chenxi Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shuai Zhao
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ling Cai
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
10
|
The cell-free DNA methylome captures distinctions between localized and metastatic prostate tumors. Nat Commun 2022; 13:6467. [PMID: 36309516 PMCID: PMC9617856 DOI: 10.1038/s41467-022-34012-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/07/2022] [Indexed: 12/25/2022] Open
Abstract
Metastatic prostate cancer remains a major clinical challenge and metastatic lesions are highly heterogeneous and difficult to biopsy. Liquid biopsy provides opportunities to gain insights into the underlying biology. Here, using the highly sensitive enrichment-based sequencing technology, we provide analysis of 60 and 175 plasma DNA methylomes from patients with localized and metastatic prostate cancer, respectively. We show that the cell-free DNA methylome can capture variations beyond the tumor. A global hypermethylation in metastatic samples is observed, coupled with hypomethylation in the pericentromeric regions. Hypermethylation at the promoter of a glucocorticoid receptor gene NR3C1 is associated with a decreased immune signature. The cell-free DNA methylome is reflective of clinical outcomes and can distinguish different disease types with 0.989 prediction accuracy. Finally, we show the ability of predicting copy number alterations from the data, providing opportunities for joint genetic and epigenetic analysis on limited biological samples.
Collapse
|
11
|
Sher G, Salman NA, Khan AQ, Prabhu KS, Raza A, Kulinski M, Dermime S, Haris M, Junejo K, Uddin S. Epigenetic and breast cancer therapy: Promising diagnostic and therapeutic applications. Semin Cancer Biol 2022; 83:152-165. [PMID: 32858230 DOI: 10.1016/j.semcancer.2020.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022]
Abstract
The global burden of breast cancer (BC) is increasing significantly. This trend is caused by several factors such as late diagnosis, limited treatment options for certain BC subtypes, drug resistance which all lead to poor clinical outcomes. Recent research has reported the role of epigenetic alterations in the mechanism of BC pathogenesis and its hallmarks include drug resistance and stemness features. The understanding of these modifications and their significance in the management of BC carcinogenesis is challenging and requires further attention. Nevertheless, it promises to provide novel insight needed for utilizing these alterations as potential diagnostic, prognostic markers, predict treatment efficacy, as well as therapeutic agents. This highlights the importance of continuing research development to further advance the existing knowledge on epigenetics and BC carcinogenesis to overcome the current challenges. Hence, this review aims to shed light and discuss the current state of epigenetics research in the diagnosis and management of BC.
Collapse
Affiliation(s)
- Gulab Sher
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Nadia Aziz Salman
- Kingston University London, School of Life Science, Pharmacy and Chemistry, SEC Faculty, Kingston, upon Thames, London, KT1 2EE, UK
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Mohammad Haris
- Functional and Molecular Imaging Laboratory, Sidra Medicine, P.O. Box 26999, Qatar; Laboratory Animal Research Center, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Kulsoom Junejo
- General Surgery Department, Hamad General Hospital, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar.
| |
Collapse
|
12
|
New approaches to targeting epigenetic regulation in prostate cancer. Curr Opin Urol 2022; 32:472-480. [DOI: 10.1097/mou.0000000000001027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Integrative multi-omic analysis identifies genetically influenced DNA methylation biomarkers for breast and prostate cancers. Commun Biol 2022; 5:594. [PMID: 35710732 PMCID: PMC9203749 DOI: 10.1038/s42003-022-03540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Aberrant DNA methylation has emerged as a hallmark in several cancers and contributes to risk, oncogenesis, progression, and prognosis. In this study, we performed imputation-based and conventional methylome-wide association analyses for breast cancer (BrCa) and prostate cancer (PrCa). The imputation-based approach identified DNA methylation at cytosine-phosphate-guanine sites (CpGs) associated with BrCa and PrCa risk utilising genome-wide association summary statistics (NBrCa = 228,951, NPrCa = 140,254) and prebuilt methylation prediction models, while the conventional approach identified CpG associations utilising TCGA and GEO experimental methylation data (NBrCa = 621, NPrCa = 241). Enrichment analysis of the association results implicated 77 and 81 genetically influenced CpGs for BrCa and PrCa, respectively. Furthermore, analysis of differential gene expression around these CpGs suggests a genome-epigenome-transcriptome mechanistic relationship. Conditional analyses identified multiple independent secondary SNP associations (Pcond < 0.05) around 28 BrCa and 22 PrCa CpGs. Cross-cancer analysis identified eight common CpGs, including a strong therapeutic target in SREBF1 (17p11.2)—a key player in lipid metabolism. These findings highlight the utility of integrative analysis of multi-omic cancer data to identify robust biomarkers and understand their regulatory effects on cancer risk. Methylome-wide association studies identify genetically-influenced CpGs associated with breast and prostate cancer risk and (epi)genome-transcriptome mechanistic relationships, with lipid metabolism genes implicated as potential therapeutic targets.
Collapse
|
14
|
Dufresne S, Guéritat J, Wong CP, Isanejad A, Ho E, Serna E, Gomez-Cabrera MC, Rebillard A. Exercise training as a modulator of epigenetic events in prostate tumors. Prostate Cancer Prostatic Dis 2022; 25:119-122. [PMID: 34007020 DOI: 10.1038/s41391-021-00380-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/18/2021] [Accepted: 04/28/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Exercise is increasingly recognized as an effective strategy to improve cancer prevention and prognosis. Several biological mechanisms mediating these benefits have been proposed, but the role of epigenetics remains largely unknown. Since epigenetics is highly susceptible to lifestyle factors, we hypothesized that exercise could affect the epigenome landscape in cancer tissues. METHODS Rats implanted with AT1 prostate tumors were randomized to either control or exercise training. microRNA expression, DNA methylation and histone acetylation were analyzed in the tumor tissue. RESULTS MiR-27a-5p appeared to be differently expressed between sedentary and trained rats. Furthermore, exercise increased global DNA methylation and decreased DNA methyltransferases mRNA expression in the tumor tissue. Histone acetylation however remained unaltered. CONCLUSION Overall, exercise might reverse some of the cancer-related epigenetic alterations in the prostate tumor tissue.
Collapse
Affiliation(s)
| | | | - Carmen P Wong
- School of Biological & Population Health Sciences, College of Public Health & Human Sciences, 211 Milam Hall, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR, USA
| | | | - Emily Ho
- School of Biological & Population Health Sciences, College of Public Health & Human Sciences, 211 Milam Hall, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR, USA
- Moore Family Center for Whole Grain Foods, Nutrition & Preventive Health, Oregon State University, Corvallis, OR, USA
| | - Eva Serna
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES, INCLIVA, Valencia, Spain
| | - Marie-Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES, INCLIVA, Valencia, Spain
| | | |
Collapse
|
15
|
Pardo JC, Ruiz de Porras V, Gil J, Font A, Puig-Domingo M, Jordà M. Lipid Metabolism and Epigenetics Crosstalk in Prostate Cancer. Nutrients 2022; 14:851. [PMID: 35215499 PMCID: PMC8874497 DOI: 10.3390/nu14040851] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignant neoplasm in men in the Western world. Localized low-risk PCa has an excellent prognosis thanks to effective local treatments; however, despite the incorporation of new therapeutic strategies, metastatic PCa remains incurable mainly due to disease heterogeneity and the development of resistance to therapy. The mechanisms underlying PCa progression and therapy resistance are multiple and include metabolic reprogramming, especially in relation to lipid metabolism, as well as epigenetic remodelling, both of which enable cancer cells to adapt to dynamic changes in the tumour. Interestingly, metabolism and epigenetics are interconnected. Metabolism can regulate epigenetics through the direct influence of metabolites on epigenetic processes, while epigenetics can control metabolism by directly or indirectly regulating the expression of metabolic genes. Moreover, epidemiological studies suggest an association between a high-fat diet, which can alter the availability of metabolites, and PCa progression. Here, we review the alterations of lipid metabolism and epigenetics in PCa, before focusing on the mechanisms that connect them. We also discuss the influence of diet in this scenario. This information may help to identify prognostic and predictive biomarkers as well as targetable vulnerabilities.
Collapse
Affiliation(s)
- Juan C. Pardo
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (A.F.)
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Vicenç Ruiz de Porras
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
| | - Joan Gil
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
- Department of Endocrinology and Medicine, CIBERER U747, ISCIII, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Albert Font
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (A.F.)
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Manel Puig-Domingo
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
- Department of Endocrinology and Nutrition, University Germans Trias i Pujol Hospital, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
- Department of Medicine, Autonomous University of Barcelona (UAB), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
| | - Mireia Jordà
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
| |
Collapse
|
16
|
Head and Neck Cancers Are Not Alike When Tarred with the Same Brush: An Epigenetic Perspective from the Cancerization Field to Prognosis. Cancers (Basel) 2021; 13:cancers13225630. [PMID: 34830785 PMCID: PMC8616074 DOI: 10.3390/cancers13225630] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Squamous cell carcinomas affect different head and neck subsites and, although these tumors arise from the same epithelial lining and share risk factors, they differ in terms of clinical behavior and molecular carcinogenesis mechanisms. Differences between HPV-negative and HPV-positive tumors are those most frequently explored, but further data suggest that the molecular heterogeneity observed among head and neck subsites may go beyond HPV infection. In this review, we explore how alterations of DNA methylation and microRNA expression contribute to head and neck squamous cell carcinoma (HNSCC) development and progression. The association of these epigenetic alterations with risk factor exposure, early carcinogenesis steps, transformation risk, and prognosis are described. Finally, we discuss the potential application of the use of epigenetic biomarkers in HNSCC. Abstract Head and neck squamous cell carcinomas (HNSCC) are among the ten most frequent types of cancer worldwide and, despite all efforts, are still diagnosed at late stages and show poor overall survival. Furthermore, HNSCC patients often experience relapses and the development of second primary tumors, as a consequence of the field cancerization process. Therefore, a better comprehension of the molecular mechanisms involved in HNSCC development and progression may enable diagnosis anticipation and provide valuable tools for prediction of prognosis and response to therapy. However, the different biological behavior of these tumors depending on the affected anatomical site and risk factor exposure, as well as the high genetic heterogeneity observed in HNSCC are major obstacles in this pursue. In this context, epigenetic alterations have been shown to be common in HNSCC, to discriminate the tumor anatomical subsites, to be responsive to risk factor exposure, and show promising results in biomarker development. Based on this, this review brings together the current knowledge on alterations of DNA methylation and microRNA expression in HNSCC natural history, focusing on how they contribute to each step of the process and on their applicability as biomarkers of exposure, HNSCC development, progression, and response to therapy.
Collapse
|
17
|
Camuzi D, Buexm LA, Lourenço SDQC, Esposti DD, Cuenin C, Lopes MDSA, Manara F, Talukdar FR, Herceg Z, Ribeiro Pinto LF, Soares-Lima SC. HPV Infection Leaves a DNA Methylation Signature in Oropharyngeal Cancer Affecting Both Coding Genes and Transposable Elements. Cancers (Basel) 2021; 13:3621. [PMID: 34298834 PMCID: PMC8306428 DOI: 10.3390/cancers13143621] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 12/30/2022] Open
Abstract
HPV oncoproteins can modulate DNMT1 expression and activity, and previous studies have reported both gene-specific and global DNA methylation alterations according to HPV status in head and neck cancer. However, validation of these findings and a more detailed analysis of the transposable elements (TEs) are still missing. Here we performed pyrosequencing to evaluate a 5-CpG methylation signature and Line1 methylation in an oropharyngeal squamous cell carcinoma (OPSCC) cohort. We further evaluated the methylation levels of the TEs, their correlation with gene expression and their impact on overall survival (OS) using the TCGA cohort. In our dataset, the 5-CpG signature distinguished HPV-positive and HPV-negative OPSCC with 66.67% sensitivity and 84.33% specificity. Line1 methylation levels were higher in HPV-positive cases. In the TCGA cohort, Line1, Alu and long terminal repeats (LTRs) showed hypermethylation in a frequency of 60.5%, 58.9% and 92.3%, respectively. ZNF541 and CCNL1 higher expression was observed in HPV-positive OPSCC, correlated with lower methylation levels of promoter-associated Alu and LTR, respectively, and independently associated with better OS. Based on our findings, we may conclude that a 5-CpG methylation signature can discriminate OPSCC according to HPV status with high accuracy and TEs are differentially methylated and may regulate gene expression in HPV-positive OPSCC.
Collapse
Affiliation(s)
- Diego Camuzi
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rio de Janeiro CEP 20231-050, Brazil; (D.C.); (L.A.B.); (M.d.S.A.L.); (L.F.R.P.)
| | - Luisa Aguirre Buexm
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rio de Janeiro CEP 20231-050, Brazil; (D.C.); (L.A.B.); (M.d.S.A.L.); (L.F.R.P.)
| | - Simone de Queiroz Chaves Lourenço
- Department of Pathology, Dental School, Fluminense Federal University, Rua Mario Santos Braga, 30, Centro, Niterói CEP 24040-110, Brazil;
| | - Davide Degli Esposti
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (D.D.E.); (C.C.); (F.M.); (F.R.T.); (Z.H.)
| | - Cyrille Cuenin
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (D.D.E.); (C.C.); (F.M.); (F.R.T.); (Z.H.)
| | - Monique de Souza Almeida Lopes
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rio de Janeiro CEP 20231-050, Brazil; (D.C.); (L.A.B.); (M.d.S.A.L.); (L.F.R.P.)
| | - Francesca Manara
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (D.D.E.); (C.C.); (F.M.); (F.R.T.); (Z.H.)
| | - Fazlur Rahman Talukdar
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (D.D.E.); (C.C.); (F.M.); (F.R.T.); (Z.H.)
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (D.D.E.); (C.C.); (F.M.); (F.R.T.); (Z.H.)
| | - Luis Felipe Ribeiro Pinto
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rio de Janeiro CEP 20231-050, Brazil; (D.C.); (L.A.B.); (M.d.S.A.L.); (L.F.R.P.)
| | - Sheila Coelho Soares-Lima
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rio de Janeiro CEP 20231-050, Brazil; (D.C.); (L.A.B.); (M.d.S.A.L.); (L.F.R.P.)
| |
Collapse
|
18
|
Macedo-Silva C, Benedetti R, Ciardiello F, Cappabianca S, Jerónimo C, Altucci L. Epigenetic mechanisms underlying prostate cancer radioresistance. Clin Epigenetics 2021; 13:125. [PMID: 34103085 PMCID: PMC8186094 DOI: 10.1186/s13148-021-01111-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy (RT) is one of the mainstay treatments for prostate cancer (PCa), a highly prevalent neoplasm among males worldwide. About 30% of newly diagnosed PCa patients receive RT with a curative intent. However, biochemical relapse occurs in 20–40% of advanced PCa treated with RT either alone or in combination with adjuvant-hormonal therapy. Epigenetic alterations, frequently associated with molecular variations in PCa, contribute to the acquisition of a radioresistant phenotype. Increased DNA damage repair and cell cycle deregulation decreases radio-response in PCa patients. Moreover, the interplay between epigenome and cell growth pathways is extensively described in published literature. Importantly, as the clinical pattern of PCa ranges from an indolent tumor to an aggressive disease, discovering specific targetable epigenetic molecules able to overcome and predict PCa radioresistance is urgently needed. Currently, histone-deacetylase and DNA-methyltransferase inhibitors are the most studied classes of chromatin-modifying drugs (so-called ‘epidrugs’) within cancer radiosensitization context. Nonetheless, the lack of reliable validation trials is a foremost drawback. This review summarizes the major epigenetically induced changes in radioresistant-like PCa cells and describes recently reported targeted epigenetic therapies in pre-clinical and clinical settings. ![]()
Collapse
Affiliation(s)
- Catarina Macedo-Silva
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy.,Cancer Biology and Epigenetics Group, Research Center at Portuguese Oncology Institute of Porto, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center at Portuguese Oncology Institute of Porto, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy.
| |
Collapse
|
19
|
Distinct DNA methylation patterns associated with treatment resistance in metastatic castration resistant prostate cancer. Sci Rep 2021; 11:6630. [PMID: 33758253 PMCID: PMC7988053 DOI: 10.1038/s41598-021-85812-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/02/2021] [Indexed: 01/31/2023] Open
Abstract
Androgens are a major driver of prostate cancer (PCa) and continue to be a critical treatment target for advanced disease, which includes castration therapy and antiandrogens. However, resistance to these therapies leading to metastatic castration-resistant prostate cancer (mCRPC), and the emergence of treatment-induced neuroendocrine disease (tNEPC) remains an ongoing challenge. Instability of the DNA methylome is well established as a major hallmark of PCa development and progression. Therefore, investigating the dynamics of the methylation changes going from the castration sensitive to the tNEPC state would provide insights into novel mechanisms of resistance. Using an established xenograft model of CRPC, genome-wide methylation analysis was performed on cell lines representing various stages of PCa progression. We confirmed extensive methylation changes with the development of CRPC and tNEPC using this model. This included key genes and pathways associated with cellular differentiation and neurodevelopment. Combined analysis of methylation and gene expression changes further highlighted genes that could potentially serve as therapeutic targets. Furthermore, tNEPC-related methylation signals from this model were detectable in circulating cell free DNA (cfDNA) from mCRPC patients undergoing androgen-targeting therapies and were associated with a faster time to clinical progression. These potential biomarkers could help with identifying patients with aggressive disease.
Collapse
|
20
|
Pandareesh MD, Kameshwar VH, Byrappa K. Prostate Carcinogenesis: Insights in Relation to Epigenetics and Inflammation. Endocr Metab Immune Disord Drug Targets 2021; 21:253-267. [PMID: 32682386 DOI: 10.2174/1871530320666200719020709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer is a multifactorial disease that mainly occurs due to the accumulation of somatic, genetic, and epigenetic changes, resulting in the inactivation of tumor-suppressor genes and activation of oncogenes. Mutations in genes, specifically those that control cell growth and division or the repair of damaged DNA, make the cells grow and divide uncontrollably to form a tumor. The risk of developing prostate cancer depends upon the gene that has undergone the mutation. Identifying such genetic risk factors for prostate cancer poses a challenge for the researchers. Besides genetic mutations, many epigenetic alterations, including DNA methylation, histone modifications (methylation, acetylation, ubiquitylation, sumoylation, and phosphorylation) nucleosomal remodeling, and chromosomal looping, have significantly contributed to the onset of prostate cancer as well as the prognosis, diagnosis, and treatment of prostate cancer. Chronic inflammation also plays a major role in the onset and progression of human cancer, via modifications in the tumor microenvironment by initiating epithelialmesenchymal transition and remodeling the extracellular matrix. In this article, the authors present a brief history of the mechanisms and potential links between the genetic aberrations, epigenetic changes, inflammation, and inflammasomes that are known to contribute to the prognosis of prostate cancer. Furthermore, the authors examine and discuss the clinical potential of prostate carcinogenesis in relation to epigenetics and inflammation for its diagnosis and treatment..
Collapse
Affiliation(s)
- Mirazkar D Pandareesh
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| | - Vivek H Kameshwar
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| | - Kullaiah Byrappa
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| |
Collapse
|
21
|
Rusetska N, Kober P, Król SK, Boresowicz J, Maksymowicz M, Kunicki J, Bonicki W, Bujko M. Invasive and Noninvasive Nonfunctioning Gonadotroph Pituitary Tumors Differ in DNA Methylation Level of LINE-1 Repetitive Elements. J Clin Med 2021; 10:560. [PMID: 33546126 PMCID: PMC7913198 DOI: 10.3390/jcm10040560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Epigenetic dysregulation plays a role in pituitary tumor pathogenesis. Some differences in DNA methylation were observed between invasive and noninvasive nonfunctioning gonadotroph tumors. This study sought to determine the role of DNA methylation changes in repetitive LINE-1 elements in nonfunctioning gonadotroph pituitary tumors. METHODS We investigated LINE-1 methylation levels in 80 tumors and normal pituitary glands with bisulfite-pyrosequencing. Expression of two LINE-1 open reading frames (L1-ORF1 and L1-ORF2) was analyzed with qRT-PCR in tumor samples and mouse gonadotroph pituitary cells treated with DNA methyltransferase inhibitor. Immunohistochemical staining against L1-ORF1p was also performed in normal pituitary glands and tumors. RESULTS Hypomethylation of LINE-1 was observed in pituitary tumors. Tumors characterized by invasive growth revealed lower LINE-1 methylation level than noninvasive ones. LINE-1 methylation correlated with overall DNA methylation assessed with HM450K arrays and negatively correlated with L1-ORF1 and L1-ORF2 expression. Treatment of αT3-1 gonadotroph cells with 5-Azacytidine clearly increased the level of L1-ORF1 and L1-ORF2 mRNA; however, its effect on LβT2 cells was less pronounced. Immunoreactivity against L1-ORF1p was higher in tumors than normal tissue. No difference in L1-ORF1p expression was observed in invasive and noninvasive tumors. CONCLUSION Hypomethylation of LINE-1 is related to invasive growth and influences transcriptional activity of transposable elements.
Collapse
Affiliation(s)
- Natalia Rusetska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (N.R.); (P.K.); (S.K.K.); (J.B.)
| | - Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (N.R.); (P.K.); (S.K.K.); (J.B.)
| | - Sylwia Katarzyna Król
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (N.R.); (P.K.); (S.K.K.); (J.B.)
| | - Joanna Boresowicz
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (N.R.); (P.K.); (S.K.K.); (J.B.)
| | - Maria Maksymowicz
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Jacek Kunicki
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (W.B.)
| | - Wiesław Bonicki
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (W.B.)
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (N.R.); (P.K.); (S.K.K.); (J.B.)
| |
Collapse
|
22
|
Leng X, Liu M, Tao D, Yang B, Zhang Y, He T, Xie S, Wang Z, Liu Y, Yang Y. Epigenetic modification-dependent androgen receptor occupancy facilitates the ectopic TSPY1 expression in prostate cancer cells. Cancer Sci 2020; 112:691-702. [PMID: 33185915 PMCID: PMC7894013 DOI: 10.1111/cas.14731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/27/2020] [Accepted: 11/07/2020] [Indexed: 02/06/2023] Open
Abstract
Testis‐specific protein Y‐encoded 1 (TSPY1), a Y chromosome‐linked oncogene, is frequently activated in prostate cancers (PCa) and its expression is correlated with the poor prognosis of PCa. However, the cause of the ectopic transcription of TSPY1 in PCa remains unclear. Here, we observed that the methylation status in the CpG islands (CGI) of the TSPY1 promoter was negatively correlated with its expression level in different human samples. The acetyl‐histone H4 and trimethylated histone H3‐lysine 4, two post–translational modifications of histones occupying the TSPY1 promoter, facilitated the TSPY1 expression in PCa cells. In addition, we found that androgen accelerated the TSPY1 transcription on the condition of hypomethylated of TSPY1‐CGI and promoted PCa cell proliferation. Moreover, the binding of androgen receptor (AR) to the TSPY1 promoter, enhancing TSPY1 transcription, was detected in PCa cells. Taken together, our findings identified the regulation of DNA methylation, acting as a primary mechanism, on TSPY1 expression in PCa, and revealed that TSPY1 is an androgen‐AR axis‐regulated oncogene, suggesting a novel and potential target for PCa therapy.
Collapse
Affiliation(s)
- Xiangyou Leng
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Mohan Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Dachang Tao
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Bo Yang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yangwei Zhang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Tianrong He
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Shengyu Xie
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Zhaokun Wang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yunqiang Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
TET1 promotes growth of T-cell acute lymphoblastic leukemia and can be antagonized via PARP inhibition. Leukemia 2020; 35:389-403. [PMID: 32409690 DOI: 10.1038/s41375-020-0864-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 12/15/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer characterized by skewed epigenetic patterns, raising the possibility of therapeutically targeting epigenetic factors in this disease. Here we report that among different cancer types, epigenetic factor TET1 is highly expressed in T-ALL and is crucial for human T-ALL cell growth in vivo. Knockout of TET1 in mice and knockdown in human T cell did not perturb normal T-cell proliferation, indicating that TET1 expression is dispensable for normal T-cell growth. The promotion of leukemic growth by TET1 was dependent on its catalytic property to maintain global 5-hydroxymethylcytosine (5hmC) marks, thereby regulate cell cycle, DNA repair genes, and T-ALL associated oncogenes. Furthermore, overexpression of the Tet1-catalytic domain was sufficient to augment global 5hmC levels and leukemic growth of T-ALL cells in vivo. We demonstrate that PARP enzymes, which are highly expressed in T-ALL patients, participate in establishing H3K4me3 marks at the TET1 promoter and that PARP1 interacts with the TET1 protein. Importantly, the growth related role of TET1 in T-ALL could be antagonized by the clinically approved PARP inhibitor Olaparib, which abrogated TET1 expression, induced loss of 5hmC marks, and antagonized leukemic growth of T-ALL cells, opening a therapeutic avenue for this disease.
Collapse
|
24
|
Lai GR, Lee YF, Yan SJ, Ting HJ. Active vitamin D induces gene-specific hypomethylation in prostate cancer cells developing vitamin D resistance. Am J Physiol Cell Physiol 2020; 318:C836-C847. [PMID: 32159363 DOI: 10.1152/ajpcell.00522.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is a leading cause of cancer death in men. Despite the antiproliferative effects of 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] on PCa, accumulating evidence indicates that 1,25(OH)2D3 promotes cancer progression by increasing genome plasticity. Our investigation of epigenetic changes associated with vitamin D insensitivity found that 1,25(OH)2D3 treatment reduced the expression levels and activities of DNA methyltransferases 1 and 3B (DNMT1 and DNMT3B, respectively). In silico analysis and reporter assay confirmed that 1,25(OH)2D3 downregulated transcriptional activation of the DNMT3B promoter and upregulated microRNAs targeting the 3'-untranslated regions of DNMT3B. We then profiled DNA methylation in the vitamin D-resistant PC-3 cells and a resistant PCa cell model generated by long-term 1,25(OH)2D3 exposure. Several candidate genes were found to be hypomethylated and overexpressed in vitamin D-resistant PCa cells compared with vitamin D-sensitive cells. Most of the identified genes were associated with mammalian target of rapamycin (mTOR) signaling activation, which is known to promote cancer progression. Among them, we found that inhibition of ribosomal protein S6 kinase A1 (RPS6KA1) promoted vitamin D sensitivity in PC-3 cells. Furthermore, The Cancer Genome Atlas (TCGA) prostate cancer data set demonstrated that midline 1 (MID1) expression is positively correlated with tumor stage. Overall, our study reveals an inhibitory mechanism of 1,25(OH)2D3 on DNMT3B, which may contribute to vitamin D resistance in PCa.
Collapse
Affiliation(s)
- Guan-Rong Lai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Yi-Fen Lee
- Department of Urology, Pathology, and Wilmot Cancer Cancer, University of Rochester, Rochester, New York
| | - Shian-Jang Yan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Huei-Ju Ting
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan, Republic of China
| |
Collapse
|
25
|
Interplay between BRCA1 and GADD45A and Its Potential for Nucleotide Excision Repair in Breast Cancer Pathogenesis. Int J Mol Sci 2020; 21:ijms21030870. [PMID: 32013256 PMCID: PMC7037490 DOI: 10.3390/ijms21030870] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
A fraction of breast cancer cases are associated with mutations in the BRCA1 (BRCA1 DNA repair associated, breast cancer type 1 susceptibility protein) gene, whose mutated product may disrupt the repair of DNA double-strand breaks as BRCA1 is directly involved in the homologous recombination repair of such DNA damage. However, BRCA1 can stimulate nucleotide excision repair (NER), the most versatile system of DNA repair processing a broad spectrum of substrates and playing an important role in the maintenance of genome stability. NER removes carcinogenic adducts of diol-epoxy derivatives of benzo[α]pyrene that may play a role in breast cancer pathogenesis as their accumulation is observed in breast cancer patients. NER deficiency was postulated to be intrinsic in stage I of sporadic breast cancer. BRCA1 also interacts with GADD45A (growth arrest and DNA damage-inducible protein GADD45 alpha) that may target NER machinery to actively demethylate genome sites in order to change the expression of genes that may be important in breast cancer. Therefore, the interaction between BRCA1 and GADD45 may play a role in breast cancer pathogenesis through the stimulation of NER, increasing the genomic stability, removing carcinogenic adducts, and the local active demethylation of genes important for cancer transformation.
Collapse
|
26
|
Nie J, Xiao P, Wang X, Yang X, Xu H, Lu K, Lu S, Liang X. Melatonin prevents deterioration in quality by preserving epigenetic modifications of porcine oocytes after prolonged culture. Aging (Albany NY) 2019; 10:3897-3909. [PMID: 30530915 PMCID: PMC6326688 DOI: 10.18632/aging.101680] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022]
Abstract
Prolonged culture of metaphase II oocytes is an in vitro aging process that compromises oocyte quality. We tested whether melatonin preserves epigenetic modifications in oocytes after prolonged culture. The porcine oocytes were maturated in vitro for 44 h, and then metaphase II oocytes were continuously cultured in medium supplemented with or without melatonin for 24 h. We found that the parthenogenetic blastocyst formation rate of prolonged-culture oocytes was lower than in fresh oocytes. We further observed that methylation at H3K4me2 and H3K27me2 of oocytes enhanced after prolonged culture. However, 5mc fluorescence intensity was lower in prolonged-culture oocytes than in fresh oocytes. Moreover, the promoter of the imprinted gene NNAT exhibited a higher level of DNA methylation in prolonged-culture oocytes than in fresh oocytes, which was associated with a reduced expression level and glucose uptake capability. Conversely, melatonin improved blastocyst formation rate and preserved histone and DNA methylation modifications, as well as NNAT function in the oocytes after prolonged culture. Notably, DNA methyltransferase inhibitor 5-aza significantly attenuated the protective role of melatonin on genomic DNA methylation. In summary, our results revealed that epigenetic modifications are disrupted in oocytes after prolonged culture, but the changes are reversed by melatonin.
Collapse
Affiliation(s)
- Junyu Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, PR China.,College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Peng Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, PR China.,College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Xuefang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, PR China.,College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, PR China.,College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Huiyan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, PR China.,College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Kehuan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, PR China.,College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Shengsheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, PR China.,College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, PR China.,College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, PR China
| |
Collapse
|
27
|
Miranda Furtado CL, Dos Santos Luciano MC, Silva Santos RD, Furtado GP, Moraes MO, Pessoa C. Epidrugs: targeting epigenetic marks in cancer treatment. Epigenetics 2019; 14:1164-1176. [PMID: 31282279 PMCID: PMC6791710 DOI: 10.1080/15592294.2019.1640546] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
Growing evidence suggests that aberrant epigenetic regulation of gene function is strongly related to the genesis of cancer. Unlike genetic mutations, the ability to reprogram the epigenetic landscape in the cancer epigenome is one of the most promising target therapies in both treatment and reversibility of drug resistance. Epigenetic alterations in cancer development and progression may be the basis for the individual variation in drug response. Thus, this review focuses on the emerging area of pharmaco(epi)genomics, specifically highlighting epigenetic reprogramming during tumorigenesis and how epigenetic markers are targeted as a therapy (epidrugs) and the clinical implications of this for cancer treatment.
Collapse
Affiliation(s)
| | | | - Renan Da Silva Santos
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
| | | | - Manoel Odorico Moraes
- Department of Surgery, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
28
|
Klawitter J, Klawitter J, Pennington A, Kirkpatrick B, Roda G, Kotecha NC, Thurman JM, Christians U. Cyclophilin D knockout protects the mouse kidney against cyclosporin A-induced oxidative stress. Am J Physiol Renal Physiol 2019; 317:F683-F694. [PMID: 31188033 DOI: 10.1152/ajprenal.00417.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial dysfunction and oxidative stress have been implicated in cyclosporin A (CsA)-induced nephrotoxicity. CsA interacts with cyclophilin D (CypD), an essential component of the mitochondrial permeability transition pore and regulator of cell death processes. Controversial reports have suggested that CypD deletion may or may not protect cells against oxidative stress-induced cell death. In the present study, we treated wild-type (WT) mice and mice lacking CypD [peptidylprolyl isomerase F knockout (Ppif-/-) mice] with CsA to test the role and contribution of CypD to the widely described CsA-induced renal toxicity and oxidative stress. Our results showed an increase in the levels of several known uremic toxins as well as the oxidative stress markers PGF2α and 8-isoprostane in CsA-treated WT animals but not in Ppif-/- animals. Similarly, a decline in S-adenosylmethionine and the resulting methylation potential indicative of DNA hypomethylation were observed only in CsA-treated WT mice. This confirms previous reports of the protective effects of CypD deletion on the mouse kidney mediated through a stronger resistance of these animals to oxidative stress and DNA methylation damage. However, a negative effect of CsA on the glycolysis and overall energy metabolism in Ppif-/- mice also indicated that additional, CypD-parallel pathways are involved in the toxic effects of CsA on the kidney. In summary, CsA-mediated induction of oxidative stress is associated with CypD, with CypD deletion providing a protective effect, whereas the reduction of energy production observed upon CsA exposure did not depend on the animals' CypD status.
Collapse
Affiliation(s)
- Jelena Klawitter
- Clinical Research and Development, Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
- Division of Nephrology and Hypertension, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Jost Klawitter
- Clinical Research and Development, Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
| | - Alexander Pennington
- Clinical Research and Development, Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
| | - Bruce Kirkpatrick
- Clinical Research and Development, Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
| | - Galen Roda
- Clinical Research and Development, Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
| | - Nidhi C Kotecha
- Clinical Research and Development, Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
| | - Joshua M Thurman
- Division of Nephrology and Hypertension, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Uwe Christians
- Clinical Research and Development, Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
29
|
Zelic R, Fiano V, Ebot EM, Coseo Markt S, Grasso C, Trevisan M, De Marco L, Delsedime L, Zugna D, Mucci LA, Richiardi L. Single-nucleotide polymorphisms in DNMT3B gene and DNMT3B mRNA expression in association with prostate cancer mortality. Prostate Cancer Prostatic Dis 2019; 22:284-291. [PMID: 30341411 DOI: 10.1038/s41391-018-0102-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/04/2018] [Accepted: 09/08/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Germline variants in DNA methyltransferase 3B (DNMT3B) may influence DNMT3B enzymatic activity, which, in turn, may affect cancer aggressiveness by altering DNA methylation. METHODS The study involves two Italian cohorts (NTAT cohort, n = 157, and 1980s biopsy cohort, n = 182) and two U.S. cohorts (Health Professionals Follow-Up Study, n = 214, and Physicians' Health Study, n = 298) of prostate cancer (PCa) patients, and a case-control study of lethal (n = 113) vs indolent (n = 290) PCa with DNMT3B mRNA expression data nested in the U.S. cohorts. We evaluated the association between: three selected DNMT3B variants and global DNA methylation using linear regression in the NTAT cohort, the three DNMT3B variants and PCa mortality using Cox proportional hazards regression in all cohorts, and DNMT3B expression and lethal PCa using logistic regression, with replication in publicly available databases (TCGA, n = 492 and MSKCC, n = 140). RESULTS The TT genotype of rs1569686 was associated with LINE-1 hypomethylation in tumor tissue (β = -2.71, 95% CI: -5.41, -0.05). There was no evidence of association between DNMT3B variants and PCa mortality. DNMT3B expression was consistently associated with lethal PCa in the two U.S. cohorts (3rd vs 1st tertile, combined cohorts: OR = 2.04, 95% CI: 1.13, 3.76); the association was replicated in TCGA and MSKCC data (3rd vs 1st tertile, TCGA: HR = 3.00, 95% CI: 1.78, 5.06; MSKCC: HR = 2.22, 95% CI: 1.01, 4.86). CONCLUSIONS Although there was no consistent evidence of an association between DNMT3B variants and PCa mortality, the TT genotype of rs1569686 was associated with LINE-1 hypomethylation in tumor tissue and DNMT3B mRNA expression was associated with an increased risk of lethal PCa.
Collapse
Affiliation(s)
- Renata Zelic
- Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| | - Valentina Fiano
- Cancer Epidemiology Unit-CERMS, Department of Medical Sciences, University of Turin, and CPO-Piemonte, Turin, Italy
| | - Ericka M Ebot
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| | - Sarah Coseo Markt
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| | - Chiara Grasso
- Cancer Epidemiology Unit-CERMS, Department of Medical Sciences, University of Turin, and CPO-Piemonte, Turin, Italy
| | - Morena Trevisan
- Cancer Epidemiology Unit-CERMS, Department of Medical Sciences, University of Turin, and CPO-Piemonte, Turin, Italy
| | - Laura De Marco
- Cancer Epidemiology Unit-CERMS, Department of Medical Sciences, University of Turin, and CPO-Piemonte, Turin, Italy
| | - Luisa Delsedime
- Division of Pathology, A.O.U. Città della Salute e della Scienza Hospital, Turin, Italy
| | - Daniela Zugna
- Cancer Epidemiology Unit-CERMS, Department of Medical Sciences, University of Turin, and CPO-Piemonte, Turin, Italy
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit-CERMS, Department of Medical Sciences, University of Turin, and CPO-Piemonte, Turin, Italy
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
30
|
Natesan R, Aras S, Effron SS, Asangani IA. Epigenetic Regulation of Chromatin in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:379-407. [PMID: 31900918 DOI: 10.1007/978-3-030-32656-2_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epigenetics refers to mitotically/meiotically heritable mechanisms that regulate gene transcription without a need for changes in the DNA code. Covalent modifications of DNA, in the form of methylation, and histone post-translational modifications, in the form of acetylation and methylation, constitute the epigenetic code of a cell. Both DNA and histone modifications are highly dynamic and often work in unison to define the epigenetic state of a cell. Most epigenetic mechanisms regulate gene transcription by affecting localized/genome-wide transitions between heterochromatin and euchromatin states, thereby altering the accessibility of the transcriptional machinery and in turn, reduce/increase transcriptional output. Altered chromatin structure is associated with cancer progression, and epigenetic plasticity primarily governs the resistance of cancer cells to therapeutic agents. In this chapter, we specifically focus on regulators of histone methylation and acetylation, the two well-studied chromatin post-translational modifications, in the context of prostate cancer.
Collapse
Affiliation(s)
- Ramakrishnan Natesan
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shweta Aras
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel Sander Effron
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Irfan A Asangani
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Fu Y, Wang W, Li X, Liu Y, Niu Y, Zhang B, Nie J, Pan B, Wang R, Yang J. LncRNA H19 interacts with S-adenosylhomocysteine hydrolase to regulate LINE-1 Methylation in human lung-derived cells exposed to Benzo[a]pyrene. CHEMOSPHERE 2018; 207:84-90. [PMID: 29772428 DOI: 10.1016/j.chemosphere.2018.05.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Benzo [a]pyrene (BaP) have been demonstrated to induce lung cancer risk in humans and many different animal models, with aberrant gene methylation as one of the epigenetic errors; however, the molecular mechanisms remain unclear. Here, we used three types of human lung-derived cells with BaP exposure as a model and attempted to investigate the long non-coding RNA (lncRNA) H19/S-adenosylhomocysteine hydrolase (SAHH) pathway that regulates gene methylation in vitro exposure to BaP. Results showed that compared to the controls, BaP-treated cells H19 expressions were increased in a dose- and time-dependent manner, whereas SAHH protein expressions were decreased. Indeed, H19 binds to and attenuates SAHH expressions and activity, and this interaction will be enhanced by BaP. However, suppression of H19 exaggerates SAHH protein expression and activity exposed to BaP. Although BaP-treated cells H19 single knockdown expectedly increased long interspersed nuclear elements-1 (LINE-1) methylation and inhibited benzo [a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) -DNA adducts formation with altering SAHH protein expressions and activity, the double knockdown restored methylation to the control level and exacerbated BPDE-DNA adducts formation. Overall, our results uncover a H19/SAHH circuit involving gene-methylation alterations by carcinogen BaP.
Collapse
Affiliation(s)
- Ye Fu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Wubin Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Xuejing Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Yanli Liu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Yingying Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Bin Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Baolong Pan
- General Hospital of Taiyuan Iron & Steel (Group) Co., Ltd, Taiyuan 030008, China
| | - Ruisheng Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jin Yang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
32
|
Mitsui Y, Chang I, Kato T, Hashimoto Y, Yamamura S, Fukuhara S, Wong DK, Shiina M, Imai-Sumida M, Majid S, Saini S, Shiina H, Nakajima K, Deng G, Dahiya R, Tanaka Y. Functional role and tobacco smoking effects on methylation of CYP1A1 gene in prostate cancer. Oncotarget 2018; 7:49107-49121. [PMID: 27203547 PMCID: PMC5226494 DOI: 10.18632/oncotarget.9470] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/04/2016] [Indexed: 01/03/2023] Open
Abstract
Cytochrome P450 (CYP) 1A1 is a phase I enzyme that can activate various compounds into reactive forms and thus, may contribute to carcinogenesis. In this study, we investigated the expression, methylation status, and functional role of CYP1A1 on prostate cancer cells. Increased expression of CYP1A1 was observed in all cancer lines (PC-3, LNCaP, and DU145) compared to BPH-1 (P < 0.05); and was enhanced further by 5-aza-2′-deoxycytidine treatment (P < 0.01). Methylation-specific PCR (MSP) and sequencing of bisulfite-modified DNA of the xenobiotic response element (XRE) enhancer site XRE-1383 indicated promoter methylation as a regulator of CYP1A1 expression. In tissue, microarrays showed higher immunostaining of CYP1A1 in prostate cancer than normal and benign prostatic hyperplasia (BPH; P < 0.001), and methylation analyses in clinical specimens revealed significantly lower methylation levels in cancer compared to BPH at all enhancer sites analyzed (XRE-1383, XRE-983, XRE-895; P < 0.01). Interestingly, smoking affected the XRE-1383 site where the methylation level was much lower in cancer tissues from smokers than non-smokers (P < 0.05). CYP1A1 levels are thus increased in prostate cancer and to determine the functional effect of CYP1A1 on cells, we depleted the gene in LNCaP and DU145 by siRNA. We observe that CYP1A1 knockdown decreased cell proliferation (P < 0.05) and increased apoptosis (P < 0.01) in both cell lines. We analyzed genes affected by CYP1A1 silencing and found that apoptosis-related BCL2 was significantly down-regulated. This study supports an oncogenic role for CYP1A1 in prostate cancer via promoter hypomethylation that is influenced by tobacco smoking, indicating CYP1A1 to be a promising target for prostate cancer treatment.
Collapse
Affiliation(s)
- Yozo Mitsui
- Department of Surgery/Urology, Veterans Affairs Health Care System, San Francisco, California 94121, USA.,Department of Urology, University of California, San Francisco, California 94121, USA.,Department of Urology, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | - Inik Chang
- Department of Oral Biology, Yonsei University College of Density, Seoul, 120-752, South Korea
| | - Taku Kato
- Department of Surgery/Urology, Veterans Affairs Health Care System, San Francisco, California 94121, USA.,Department of Urology, University of California, San Francisco, California 94121, USA
| | - Yutaka Hashimoto
- Department of Surgery/Urology, Veterans Affairs Health Care System, San Francisco, California 94121, USA.,Department of Urology, University of California, San Francisco, California 94121, USA
| | - Soichiro Yamamura
- Department of Surgery/Urology, Veterans Affairs Health Care System, San Francisco, California 94121, USA.,Department of Urology, University of California, San Francisco, California 94121, USA
| | - Shinichiro Fukuhara
- Department of Urology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Darryn K Wong
- Department of Surgery/Urology, Veterans Affairs Health Care System, San Francisco, California 94121, USA
| | - Marisa Shiina
- Department of Surgery/Urology, Veterans Affairs Health Care System, San Francisco, California 94121, USA
| | - Mitsuho Imai-Sumida
- Department of Surgery/Urology, Veterans Affairs Health Care System, San Francisco, California 94121, USA.,Department of Urology, University of California, San Francisco, California 94121, USA
| | - Shahana Majid
- Department of Surgery/Urology, Veterans Affairs Health Care System, San Francisco, California 94121, USA.,Department of Urology, University of California, San Francisco, California 94121, USA
| | - Sharanjot Saini
- Department of Surgery/Urology, Veterans Affairs Health Care System, San Francisco, California 94121, USA.,Department of Urology, University of California, San Francisco, California 94121, USA
| | - Hiroaki Shiina
- Department of Urology, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | - Koichi Nakajima
- Department of Urology, Toho University Faculty of Medicine, Tokyo, 143-8540, Japan
| | - Guoren Deng
- Department of Surgery/Urology, Veterans Affairs Health Care System, San Francisco, California 94121, USA.,Department of Urology, University of California, San Francisco, California 94121, USA
| | - Rajvir Dahiya
- Department of Surgery/Urology, Veterans Affairs Health Care System, San Francisco, California 94121, USA.,Department of Urology, University of California, San Francisco, California 94121, USA
| | - Yuichiro Tanaka
- Department of Surgery/Urology, Veterans Affairs Health Care System, San Francisco, California 94121, USA.,Department of Urology, University of California, San Francisco, California 94121, USA
| |
Collapse
|
33
|
Pathological lesions and global DNA methylation in rat prostate under streptozotocin-induced diabetes and melatonin supplementation. Cell Biol Int 2018; 42:470-487. [DOI: 10.1002/cbin.10920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/17/2017] [Indexed: 12/14/2022]
|
34
|
Urinary 1-hydroxypyrene and smoking are determinants of LINE-1 and AhRR promoter methylation in coke oven workers. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 826:33-40. [PMID: 29412867 DOI: 10.1016/j.mrgentox.2018.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 12/28/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022]
Abstract
Coke oven emissions (COE) containing polycyclic aromatic hydrocarbons (PAHs) are predominant toxic constituents of particulate air pollution that have been linked to increased risk of lung cancer. Aberrant DNA methylation is one of the best known epigenetic changes in human cancers and healthy subjects exposed to carcinogens. The purpose of this study is to explore the factors influencing the methylation of long interspersed nuclear element-1 (LINE-1) and aryl-hydrocarbon receptor repressor (AhRR) in coke oven workers. The study population is composed by coke oven workers (348) and water treatment workers (131). And their urinary PAH metabolites were analyzed by high performance liquid chromatography; DNA methylation were measured by pyrosequencing. The urinary PAHs metabolites were significantly elevated in coke oven workers (P < 0.01). The results from multivariate logistic regression analysis showed that a high level of urinary 1-hydroxypyrene was associated with a significantly increased risk of hypomethylation of LINE-1 (OR: 1.80; 95% CI: 1.25, 2.60), and heavy smoking was associated with a significantly increased risk of hypomethylation of AhRR (OR: 1.44; 95% CI: 1.04, 2.00). Our findings demonstrate that urinary 1-hydroxypyrene may be a useful biomarker for evaluating the role of PAHs exposure on hypomethylation of LINE-1 among coke oven workers and that smoking may be an important factor affecting hypomethylation of AhRR.
Collapse
|
35
|
Grelus A, Nica DV, Miklos I, Belengeanu V, Ioiart I, Popescu C. Clinical Significance of Measuring Global Hydroxymethylation of White Blood Cell DNA in Prostate Cancer: Comparison to PSA in a Pilot Exploratory Study. Int J Mol Sci 2017; 18:ijms18112465. [PMID: 29156615 PMCID: PMC5713431 DOI: 10.3390/ijms18112465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
This is the first study investigating the clinical relevance of 5-hydroxymethylcytosine (5hmC) in genomic DNA from white blood cells (WBC) in the context of prostate cancer (PCa) and other prostate pathologies. Using an enzyme-linked immunosorbent assay, we identified significantly different distributions of patients with low and elevated 5hmC content in WBC DNA across controls and patients with prostate cancer (PCa), atypical small acinar proliferation (ASAP), and benign prostatic hyperplasia (BPH). The measured values were within the normal range for most PCa patients, while the latter category was predominant for ASAP. We observed a wider heterogeneity in 5hmC content in all of the prostate pathologies analyzed when compared to the healthy age-matched controls. When compared to blood levels of prostate-specific antigen (PSA), this 5hmC-based biomarker had a lower performance in PCa detection than the use of a PSA cut-off of 2.5 nanograms per milliliter (ng/mL). Above this threshold, however, it delineated almost three quarters of PCa patients from controls and patients with other prostate pathologies. Overall, genome-wide 5hmC content of WBC DNA appears to be applicable for detecting non-cancerous prostate diseases, rather than PCa. Our results also suggest a potential clinical usefulness of complementing PSA as a PCa marker by the addition of a set of hydroxymethylation markers in the blood, but further studies are necessary to confirm these findings.
Collapse
Affiliation(s)
- Alin Grelus
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Str. Liviu Rebreanu 86, 310045 Arad, Romania.
- Arad County Emergency Clinical Hospital, Str. Andreny Karoly nr. 2-4, 310037 Arad, Romania.
| | - Dragos V Nica
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Str. Liviu Rebreanu 86, 310045 Arad, Romania.
| | - Imola Miklos
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Str. Liviu Rebreanu 86, 310045 Arad, Romania.
- Arad County Emergency Clinical Hospital, Str. Andreny Karoly nr. 2-4, 310037 Arad, Romania.
| | - Valerica Belengeanu
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Str. Liviu Rebreanu 86, 310045 Arad, Romania.
| | - Ioan Ioiart
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Str. Liviu Rebreanu 86, 310045 Arad, Romania.
- Arad County Emergency Clinical Hospital, Str. Andreny Karoly nr. 2-4, 310037 Arad, Romania.
| | - Cristina Popescu
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Str. Liviu Rebreanu 86, 310045 Arad, Romania.
- Faculty of Pharmacy, "Vasile Goldis" Western University of Arad, Str. Liviu Rebreanu 86, 310045 Arad, Romania.
| |
Collapse
|
36
|
Mutations in TET2 and DNMT3A genes are associated with changes in global and gene-specific methylation in acute myeloid leukemia. Tumour Biol 2017; 39:1010428317732181. [DOI: 10.1177/1010428317732181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
37
|
Han Y, Xu J, Kim J, Wu X, Gu J. Methylation of subtelomeric repeat D4Z4 in peripheral blood leukocytes is associated with biochemical recurrence in localized prostate cancer patients. Carcinogenesis 2017; 38:821-826. [PMID: 28854562 DOI: 10.1093/carcin/bgx064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/28/2017] [Indexed: 01/06/2023] Open
Abstract
Global DNA methylation may affect chromosome structure and genomic stability and is involved in carcinogenesis. In this study, we aimed to investigate whether methylation of pericentromeric repeat NBL2 and subtelomeric repeat D4Z4 in peripheral blood was associated with the aggressiveness of prostate cancer (PCa). We measured the methylation status of different CpG sites of NBL2 and D4Z4 in 795 PCa patients and compared their methylation levels among patients with different Gleason Score at diagnosis. We then analyzed the association of the NBL2 and D4Z4 methylation with the risk of biochemical recurrence (BCR) in patients receiving radical prostatectomy or radiotherapy using a multivariate Cox proportional hazards model. In addition, we used the Kaplan-Meier survival function and log-rank tests to assess BCR-free survival associated with D4Z4 methylation. There was no significant difference in methylation level of NBL2 and D4Z4 between clinically defined aggressive and non-aggressive PCa at diagnosis. However, the methylation of D4Z4 was associated with BCR, while the methylation of NBL2 was not. In tertile analysis, patients in the highest tertile of D4Z4 methylation had an increased risk of BCR (HR = 2.17, 95% CI 1.36-3.48) compared to patients in the lower tertiles after adjustment of age, body mass index, smoking status, pack year, D'Amico risk groups and treatments. Among the four CpG sites in this region, the association was mostly attributable to the methylation of the second CpG site of D4Z4. These data suggest that higher methylation in D4Z4 was associated with worse prognosis of localized PCa patients.
Collapse
Affiliation(s)
- Yuyan Han
- Department of Epidemiology and Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Junfeng Xu
- Department of Epidemiology and Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jeri Kim
- Department of Epidemiology and Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xifeng Wu
- Department of Epidemiology and Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jian Gu
- To whom correspondence should be addressed. Tel: +713 7928016; Fax: +713 7922145;
| |
Collapse
|
38
|
Han Y, Xu J, Kim J, Wu X, Gu J. LINE-1 methylation in peripheral blood leukocytes and clinical characteristics and prognosis of prostate cancer patients. Oncotarget 2017; 8:94020-94027. [PMID: 29212206 PMCID: PMC5706852 DOI: 10.18632/oncotarget.21511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/18/2017] [Indexed: 11/25/2022] Open
Abstract
Global DNA methylation of long interspersed nucleotide elements (LINE-1) in leukocytes has been suggested to be a risk factor for a few cancers. There has been no report of LINE-1 methylation in leukocytes as a risk factor for aggressive prostate cancer at diagnosis and prognosis after treatments. In this study, we measured the leukocyte DNA methylation of LINE-1 in 795 PCa patients and compared the methylation levels across different clinical subgroups. We then determined the association of LINE-1 methylation in leukocytes with clinicopathological variables at diagnosis using logistic regression analysis and biochemical recurrence in patients receiving active treatments (prostatectomy and radiotherapy) using Cox proportional hazard model after adjusting for age, BMI, smoking status, pack year, D’Amico risk groups, and treatments. Overall, the DNA methylation of LINE-1 was not associated with the risk of being diagnosed with high-risk prostate cancer or the risk of biochemical recurrence upon active treatments. Future studies are warranted to investigate other types of repetitive element methylation and longitudinal changes of global methylation in relation to prostate cancer risk and prognosis.
Collapse
Affiliation(s)
- Yuyan Han
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Junfeng Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jeri Kim
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
39
|
Li BT, Yu C, Xu Y, Liu SB, Fan HY, Pan WW. TET1 inhibits cell proliferation by inducing RASSF5 expression. Oncotarget 2017; 8:86395-86409. [PMID: 29156803 PMCID: PMC5689693 DOI: 10.18632/oncotarget.21189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/23/2017] [Indexed: 02/01/2023] Open
Abstract
Tet methylcytosine dioxygenases (TETs) catalyze the oxidative reactions of 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). However, TET1 roles in ovarian cancer cell growth are unknown. Here, we show that ectopic expression of TET1 increased 5hmC levels, and inhibited proliferation and colony formation in ovarian cancer cell lines. Furthermore, in vitro and in vivo functional studies demonstrated that TET1 overexpression is necessary for the suppression of ovarian cancer growth, whereas depletion of TET1 expression had the opposite effect. Furthermore, the results of RNA-seq and qRT-PCR analyses identified a tumor suppressor, Ras association domain family member 5 (RASSF5), as the key downstream target of TET1. TET1 promotes RASSF5 expression by demethylating a CpG site within RASSF5 promoter. Up-regulated RASSF5 expression leads to the suppression of ovarian cancer cells growth. Additionally, we demonstrated that inhibition of CUL4-DDB1 ubiquitin ligase complex decrease 5hmC levels in ovarian cancer cells. These results provide new insights into the understanding of how ovarian cancers develop and grow, and identify TET1 as a key player in this process.
Collapse
Affiliation(s)
- Bo-Tai Li
- Life Sciences Institute, Zhejiang University, Hangzhou 301158, China
| | - Chao Yu
- Life Sciences Institute, Zhejiang University, Hangzhou 301158, China
| | - Ying Xu
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Sheng-Bing Liu
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou 301158, China
| | - Wei-Wei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
40
|
Stefanovski D, Tang G, Wawrowsky K, Boston RC, Lambrecht N, Tajbakhsh J. Prostate cancer diagnosis using epigenetic biomarkers, 3D high-content imaging and probabilistic cell-by-cell classifiers. Oncotarget 2017; 8:57278-57301. [PMID: 28915670 PMCID: PMC5593641 DOI: 10.18632/oncotarget.18985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 06/02/2017] [Indexed: 11/29/2022] Open
Abstract
Background Prostate cancer (PCa) management can benefit from novel concepts/biomarkers for reducing the current 20-30% chance of false-negative diagnosis with standard histopathology of biopsied tissue. Method We explored the potential of selected epigenetic markers in combination with validated histopathological markers, 3D high-content imaging, cell-by-cell analysis, and probabilistic classification in generating novel detailed maps of biomarker heterogeneity in patient tissues, and PCa diagnosis. We used consecutive biopsies/radical prostatectomies from five patients for building a database of ∼140,000 analyzed cells across all tissue compartments and for model development; and from five patients and the two well-characterized HPrEpiC primary and LNCaP cancer cell types for model validation. Results Principal component analysis presented highest covariability for the four biomarkers 4′,6-diamidino-2-phenylindole, 5-methylcytosine, 5-hydroxymethylcytosine, and alpha-methylacyl-CoA racemase in the epithelial tissue compartment. The panel also showed best performance in discriminating between normal and cancer-like cells in prostate tissues with a sensitivity and specificity of 85%, correctly classified 87% of HPrEpiC as healthy and 99% of LNCaP cells as cancer-like, identified a majority of aberrant cells within histopathologically benign tissues at baseline diagnosis of patients that were later diagnosed with adenocarcinoma. Using k-nearest neighbor classifier with cells from an initial patient biopsy, the biomarkers were able to predict cancer stage and grade of prostatic tissue that occurred at later prostatectomy with 79% accuracy. Conclusion Our approach showed favorable diagnostic values to identify the portion and pathological category of aberrant cells in a small subset of sampled tissue cells, correlating with the degree of malignancy beyond baseline.
Collapse
Affiliation(s)
- Darko Stefanovski
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George Tang
- Translational Cytomics Group, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kolja Wawrowsky
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Raymond C Boston
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nils Lambrecht
- Pathology and Laboratory Medicine Service, Veterans Affairs Medical Center, Long Beach, CA, USA.,Department of Pathology and Laboratory Medicine, University of California Irvine, Orange, CA, USA
| | - Jian Tajbakhsh
- Translational Cytomics Group, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
41
|
Baumgart SJ, Haendler B. Exploiting Epigenetic Alterations in Prostate Cancer. Int J Mol Sci 2017; 18:ijms18051017. [PMID: 28486411 PMCID: PMC5454930 DOI: 10.3390/ijms18051017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer affects an increasing number of men worldwide and is a leading cause of cancer-associated deaths. Beside genetic mutations, many epigenetic alterations including DNA and histone modifications have been identified in clinical prostate tumor samples. They have been linked to aberrant activity of enzymes and reader proteins involved in these epigenetic processes, leading to the search for dedicated inhibitory compounds. In the wake of encouraging anti-tumor efficacy results in preclinical models, epigenetic modulators addressing different targets are now being tested in prostate cancer patients. In addition, the assessment of microRNAs as stratification biomarkers, and early clinical trials evaluating suppressor microRNAs as potential prostate cancer treatment are being discussed.
Collapse
Affiliation(s)
- Simon J Baumgart
- Drug Discovery, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| | - Bernard Haendler
- Drug Discovery, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|
42
|
Epigenetic events in male common urogenital organs cancer. JOURNAL OF CANCER RESEARCH AND PRACTICE 2016. [DOI: 10.1016/j.jcrpr.2016.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
43
|
Fiano V, Zugna D, Grasso C, Trevisan M, Delsedime L, Molinaro L, Gillio-Tos A, Merletti F, Richiardi L. LINE-1 methylation status in prostate cancer and non-neoplastic tissue adjacent to tumor in association with mortality. Epigenetics 2016; 12:11-18. [PMID: 27892790 DOI: 10.1080/15592294.2016.1261786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aberrant DNA methylation seems to be associated with prostate cancer behavior. We investigated LINE-1 methylation in prostate cancer and non-neoplastic tissue adjacent to tumor (NTAT) in association with mortality from prostate cancer. We selected 157 prostate cancer patients with available NTAT from 2 cohorts of patients diagnosed between 1982-1988 and 1993-1996, followed up until 2010. An association between LINE-1 hypomethylation and prostate cancer mortality in tumor was suggested [hazard ratio per 5% decrease in LINE-1 methylation levels: 1.40, 95% confidence interval (CI): 0.95-2.01]. After stratification of the patients for Gleason score, the association was present only for those with a Gleason score of at least 8. Among these, low (<75%) vs. high (>80%) LINE-1 methylation was associated with a hazard ratio of 4.68 (95% CI: 1.03-21.34). LINE-1 methylation in the NTAT was not associated with prostate cancer mortality. Our results are consistent with the hypothesis that tumor tissue global hypomethylation may be a late event in prostate cancerogenesis and is associated with tumor progression.
Collapse
Affiliation(s)
- Valentina Fiano
- a Cancer Epidemiology Unit-CERMS , Department of Medical Sciences , University of Turin and CPO-Piemonte , Turin , Italy
| | - Daniela Zugna
- a Cancer Epidemiology Unit-CERMS , Department of Medical Sciences , University of Turin and CPO-Piemonte , Turin , Italy
| | - Chiara Grasso
- a Cancer Epidemiology Unit-CERMS , Department of Medical Sciences , University of Turin and CPO-Piemonte , Turin , Italy
| | - Morena Trevisan
- a Cancer Epidemiology Unit-CERMS , Department of Medical Sciences , University of Turin and CPO-Piemonte , Turin , Italy
| | - Luisa Delsedime
- b Division of Pathology, A.O. Città della Salute e della Scienza Hospital , Turin , Italy
| | - Luca Molinaro
- b Division of Pathology, A.O. Città della Salute e della Scienza Hospital , Turin , Italy
| | - Anna Gillio-Tos
- a Cancer Epidemiology Unit-CERMS , Department of Medical Sciences , University of Turin and CPO-Piemonte , Turin , Italy
| | - Franco Merletti
- a Cancer Epidemiology Unit-CERMS , Department of Medical Sciences , University of Turin and CPO-Piemonte , Turin , Italy
| | - Lorenzo Richiardi
- a Cancer Epidemiology Unit-CERMS , Department of Medical Sciences , University of Turin and CPO-Piemonte , Turin , Italy
| |
Collapse
|
44
|
Kgatle MM, Kalla AA, Islam MM, Sathekge M, Moorad R. Prostate Cancer: Epigenetic Alterations, Risk Factors, and Therapy. Prostate Cancer 2016; 2016:5653862. [PMID: 27891254 PMCID: PMC5116340 DOI: 10.1155/2016/5653862] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the most prevalent urological cancer that affects aging men in South Africa, and mechanisms underlying prostate tumorigenesis remain elusive. Research advancements in the field of PCa and epigenetics have allowed for the identification of specific alterations that occur beyond genetics but are still critically important in the pathogenesis of tumorigenesis. Anomalous epigenetic changes associated with PCa include histone modifications, DNA methylation, and noncoding miRNA. These mechanisms regulate and silence hundreds of target genes including some which are key components of cellular signalling pathways that, when perturbed, promote tumorigenesis. Elucidation of mechanisms underlying epigenetic alterations and the manner in which these mechanisms interact in regulating gene transcription in PCa are an unmet necessity that may lead to novel chemotherapeutic approaches. This will, therefore, aid in developing combination therapies that will target multiple epigenetic pathways, which can be used in conjunction with the current conventional PCa treatment.
Collapse
Affiliation(s)
- Mankgopo M. Kgatle
- Division of Hepatology and Liver Research, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Observatory, Western Cape 7925, South Africa
| | - Asgar A. Kalla
- Division of Rheumatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Observatory, Western Cape 7925, South Africa
| | - Muhammed M. Islam
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Western Cape 7925, South Africa
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Private Bag X169, Pretoria, Gauteng 0001, South Africa
| | - Razia Moorad
- Department of Surgery, Faculty of Health Science, University of Cape Town and Groote Schuur Hospital, Observatory, Western Cape 7925, South Africa
| |
Collapse
|
45
|
Functional variants of the 5-methyltetrahydrofolate-homocysteine methyltransferase gene significantly increase susceptibility to prostate cancer: Results from an ethnic Han Chinese population. Sci Rep 2016; 6:36264. [PMID: 27808252 PMCID: PMC5093691 DOI: 10.1038/srep36264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/12/2016] [Indexed: 02/06/2023] Open
Abstract
Aberrant DNA methylation has been implicated in prostate carcinogenesis. The one-carbon metabolism pathway and related metabolites determine cellular DNA methylation and thus is thought to play a pivotal role in PCa occurrence. This study aimed to investigate the contribution of genetic variants in one-carbon metabolism genes to prostate cancer (PCa) risk and the underlying biological mechanisms. In this hospital-based case-control study of 1817 PCa cases and 2026 cancer-free controls, we genotyped six polymorphisms in three one-carbon metabolism genes and assessed their association with the risk of PCa. We found two noncoding MTR variants, rs28372871 T > G and rs1131450 G > A, were independently associated with a significantly increased risk of PCa. The rs28372871 GG genotype (adjusted OR = 1.40, P = 0.004) and rs1131450 AA genotype (adjusted OR = 1.64, P = 0.007) exhibited 1.40-fold and 1.64-fold higher risk of PCa, respectively, compared with their respective homozygous wild-type genotypes. Further functional analyses revealed these two variants contribute to reducing MTR expression, elevating homocysteine and SAH levels, reducing methionine and SAM levels, increasing SAH/SAM ratio, and promoting the invasion of PCa cells in vitro. Collectively, our data suggest regulatory variants of the MTR gene significantly increase the PCa risk via decreasing methylation potential. These findings provide a novel molecular mechanism for the prostate carcinogenesis.
Collapse
|
46
|
Choi B, Han TS, Min J, Hur K, Lee SM, Lee HJ, Kim YJ, Yang HK. MAL and TMEM220 are novel DNA methylation markers in human gastric cancer. Biomarkers 2016; 22:35-44. [DOI: 10.1080/1354750x.2016.1201542] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Ammerpohl O, Scheufele S, Siebert R. Analysen epigenetischer Marker aus Liquid Biopsies: Informationen von jenseits des Genoms. MED GENET-BERLIN 2016. [DOI: 10.1007/s11825-016-0093-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Zusammenfassung
Die Analyse epigenetischer Marker aus Liquid Biopsies erlaubt Einblicke in physiologische und pathologische Prozesse im Körper einer Person, die über die reine Sequenzinformation hinausgehen. Insbesondere das DNA-Methylierungsmuster sowie die Expressionsmuster von mRNA und ncRNA sind aus Liquid Biopsies erfassbar. Damit werden ganze Gruppen neuer potenzieller Biomarker einer nicht invasiven und ökonomischen Diagnostik zugänglich. Darüber hinaus und im Gegensatz zur reinen DNA-Sequenzanalyse von Liquid Biopsies erlaubt die hohe Gewebespezifität epigenetischer Marker auch die Bestimmung der Herkunft der analysierten Nukleinsäuren z. B. in Bezug auf ein betroffenes Organ. Angesichts der fallenden Kosten für Sequenzierungen und des technologischen Fortschritts, der die Nachweisgrenzen immer weiter zu immer sensitiveren Anwendungen verschiebt, könnten epigenetische Untersuchungen aus Liquid Biopsies den Trend zu einer Individualisierung in der Medizin weiter forcieren.
Collapse
Affiliation(s)
- Ole Ammerpohl
- Aff1 grid.9764.c 0000000121539986 Institut für Humangenetik Christian‑Albrechts‑Universität zu Kiel Schwanenweg 24 24105 Kiel Deutschland
- Aff2 grid.412468.d 0000000406462097 Universitätsklinikum Schleswig-Holstein Campus Kiel Kiel Deutschland
- Aff3 grid.452624.3 Airway Research Center North (ARCN) German Center for Lung Research (DZL) Gießen Deutschland
| | - Swetlana Scheufele
- Aff1 grid.9764.c 0000000121539986 Institut für Humangenetik Christian‑Albrechts‑Universität zu Kiel Schwanenweg 24 24105 Kiel Deutschland
- Aff2 grid.412468.d 0000000406462097 Universitätsklinikum Schleswig-Holstein Campus Kiel Kiel Deutschland
- Aff3 grid.452624.3 Airway Research Center North (ARCN) German Center for Lung Research (DZL) Gießen Deutschland
| | - Reiner Siebert
- Aff3 grid.452624.3 Airway Research Center North (ARCN) German Center for Lung Research (DZL) Gießen Deutschland
- Aff4 grid.6582.9 0000000419369748 Institut für Humangenetik Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| |
Collapse
|
48
|
Gurioli G, Salvi S, Martignano F, Foca F, Gunelli R, Costantini M, Cicchetti G, De Giorgi U, Sbarba PD, Calistri D, Casadio V. Methylation pattern analysis in prostate cancer tissue: identification of biomarkers using an MS-MLPA approach. J Transl Med 2016; 14:249. [PMID: 27576364 PMCID: PMC5006561 DOI: 10.1186/s12967-016-1014-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/16/2016] [Indexed: 12/21/2022] Open
Abstract
Background Epigenetic silencing mediated by CpG island methylation is a common feature of many cancers. Characterizing aberrant DNA methylation changes associated with prostate carcinogenesis could potentially identify a tumour-specific methylation pattern, facilitating the early diagnosis of prostate cancer. The objective of the study was to assess the methylation status of 40 tumour suppressor genes in prostate cancer and healthy prostatic tissues. Methods We used methylation specific-multiplex ligation probe amplification (MS-MLPA) assay in two independent case series (training and validation set). The training set comprised samples of prostate cancer tissue (n = 40), healthy prostatic tissue adjacent to the tumor (n = 26), and healthy non prostatic tissue (n = 23), for a total of 89 DNA samples; the validation set was composed of 40 prostate cancer tissue samples and their adjacent healthy prostatic tissue, for a total of 80 DNA samples. Methylation specific-polymerase chain reaction (MSP) was used to confirm the results obtained in the validation set. Results We identified five highly methylated genes in prostate cancer: GSTP1, RARB, RASSF1, SCGB3A1, CCND2 (P < 0.0001), with an area under the ROC curve varying between 0.89 (95 % CI 0.82–0.97) and 0.95 (95 % CI 0.90–1.00). Diagnostic accuracy ranged from 80 % (95 % CI 70–88) to 90 % (95 % CI 81–96). Moreover, a concordance rate ranging from 83 % (95 % CI 72–90) to 89 % (95 % CI 80–95) was observed between MS-MLPA and MSP. Conclusions Our preliminary results highlighted that hypermethylation of GSTP1, RARB, RASSF1, SCGB3A1 and CCND2 was highly tumour-specific in prostate cancer tissue. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-1014-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giorgia Gurioli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Samanta Salvi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Filippo Martignano
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Flavia Foca
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Roberta Gunelli
- Department of Urology, Morgagni Pierantoni Hospital, Forlì, Italy
| | | | | | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Persio Dello Sbarba
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, University of Florence, Florence, Italy
| | - Daniele Calistri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Valentina Casadio
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy.
| |
Collapse
|
49
|
García-Tobilla P, Solórzano SR, Salido-Guadarrama I, González-Covarrubias V, Morales-Montor G, Díaz-Otañez CE, Rodríguez-Dorantes M. SFRP1 repression in prostate cancer is triggered by two different epigenetic mechanisms. Gene 2016; 593:292-301. [PMID: 27570179 DOI: 10.1016/j.gene.2016.08.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/03/2016] [Accepted: 08/18/2016] [Indexed: 12/21/2022]
Abstract
Worldwide, prostate cancer (PCa) is the second cause of death from malignant tumors among men. Establishment of aberrant epigenetic modifications, such as histone post-translational modifications (PTMs) and DNA methylation (DNAme) produce alterations of gene expression that are common in PCa. Genes of the SFRP family are tumor suppressor genes that are frequently silenced by DNA hypermethylation in many cancer types. The SFRP family is composed of 5 members (SFRP1-5) that modulate the WNT pathway, which is aberrantly activated in PCa. The expression of SFRP genes in PCa and their regulation by DNAme has been controversial. Our objective was to determine the gene expression pattern of the SFRP family in prostatic cell lines and fresh frozen tissues from normal prostates (NP), benign prostatic hyperplasia (BPH) and prostate cancer (PCa), by qRT-PCR, and their DNAme status by MSP and bisulfite sequencing. In prostatic cancer cell lines, the 5 SFRPs showed significantly decreased expression levels compared to a control normal prostatic cell line (p<0.0001). In agreement, SFRP1 and SFRP5 genes showed decreased expression levels in CaP fresh frozen tissues compared to NP (p<0.01), while a similar trend was observed for SFRP2. Conversely, increased levels of SFRP4 expression were found in PCa compared to BPH (p<0.01). Moreover, SFRP2, SFRP3, and SFRP5 showed DNA hypermethylation in PCa cell lines. Interestingly, we observed DNA hypermethylation at the promoter of SFRP1 in the PC3 cell line, but not in LNCaP. However, in the LNCaP cell line we found an aberrant gain of the repressive histone posttranslational modification Histone H3 lysine 27 trimethylation (H3K27me3). In conclusion, decreased expression by DNA hypermethylation of SFRP5 is a common feature of PCa, while decreased expression of SFRP1 can be due to DNA hypermethylation, but sometimes an aberrant gain of the histone mark H3K27me3 is observed instead.
Collapse
Affiliation(s)
- Pilar García-Tobilla
- Oncogenomics Laboratory, The National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Susana R Solórzano
- Oncogenomics Laboratory, The National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Iván Salido-Guadarrama
- Oncogenomics Laboratory, The National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | | | | | | | | |
Collapse
|
50
|
Chen D, Wen X, Song YS, Rhee YY, Lee TH, Cho NY, Han SW, Kim TY, Kang GH. Associations and prognostic implications of Eastern Cooperative Oncology Group performance status and tumoral LINE-1 methylation status in stage III colon cancer patients. Clin Epigenetics 2016; 8:36. [PMID: 27051466 PMCID: PMC4820986 DOI: 10.1186/s13148-016-0203-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/31/2016] [Indexed: 12/16/2022] Open
Abstract
Background Low methylation status of LINE-1 in tumors is associated with poor survival in patients with colon cancer. Eastern Cooperative Oncology Group performance status (ECOG-PS) is a method to assess the functional status of a patient. We retrospectively evaluated the relationship between ECOG-PS and LINE-1 methylation in colorectal cancers (CRCs) and their prognostic impact in CRC or colon cancer patients receiving adjuvant 5-fluorouracil/leucovorin/oxaliplatin (FOLFOX). Results LINE-1 methylation and microsatellite instability were analyzed in stage III or high-risk stage II CRCs (n = 336). LINE-1 methylation levels were correlated with clinicopathological features, including PS and recurrence-free survival (RFS). The association between the tumoral LINE-1 methylation level and PS was observed (OR = 2.56, P < 0.001). Differences in LINE-1 methylation levels in cancer tissue between the PS 0 and 1 groups were significant in patients older than 60 years (P = 0.001), the overweight body mass index group (P = 0.005), and the stage III disease group (P = 0.008). Prognostic significances of LINE-1 methylation status or combined PS and LINE-1 methylation statuses were identified in stage III colon cancers, not in stage III and high-risk stage II CRCs. Low LINE-1 methylation status was closely associated with a shorter RFS time. The difference between PS(0)/LINE-1(high) and PS(≥1)/LINE-1(low) was significant, which suggests that colon cancer patients with concurrent PS(≥1)/LINE-1 (low) have a higher recurrence rate. Conclusions PS was associated with LINE-1 methylation in CRC tissue. LINE-1 methylation was associated with RFS in stage III colon cancer patients who were treated with adjuvant FOLFOX chemotherapy. Combined PS and LINE-1 methylation status might serve as a useful predictor of cancer recurrence. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0203-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Duo Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xianyu Wen
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Young Seok Song
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ye-Young Rhee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Hun Lee
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Nam Yun Cho
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Sae-Won Han
- Division of Oncology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Tae-You Kim
- Division of Oncology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|