1
|
Becker TJ, Enkhmandakh B, Bayarsaihan D. Single-cell RNA analysis of chromodomain-encoding genes in mesenchymal stromal cells of the mouse dental pulp. J Cell Biochem 2025; 126:e30608. [PMID: 38779967 DOI: 10.1002/jcb.30608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
The chromodomain helicase DNA-binding (CHD) and chromobox (CBX) families of proteins play crucial roles in cell fate decisions, differentiation, and cell proliferation in a broad variety of tissues and cell types. CHD proteins are ATP-dependent epigenetic enzymes actively engaged in transcriptional regulation, DNA replication, and DNA damage repair, whereas CBX proteins are transcriptional repressors mainly involved in the formation of heterochromatin. The pleiotropic effects of CHD and CBX proteins are largely dependent on their versatility to interact with other key components of the epigenetic and transcriptional machinery. Although the function and regulatory modes of CHD and CBX factors are well established in many cell types, little is known about their roles during osteogenic differentiation. A single-cell RNA-sequencing analysis of the mouse incisor dental pulp revealed distinct spatiotemporal expression patterns of CHD- and CBX-encoding genes within different clusters of mesenchymal stromal cells (MSCs) representing various stages of osteogenic differentiation. Additionally, genes encoding interaction partners of CHD and CBX proteins, such as subunits of the trithorax-COMPASS and polycomb chromatin remodeling complexes, exhibited differential co-expression behaviors within MSC subpopulations. Thus, CHD- and CBX-encoding genes show partially overlapping but distinct expression patterns in MSCs, suggesting their differential roles in osteogenic cell fate decisions.
Collapse
Affiliation(s)
- Timothy James Becker
- Department of Computer Science, Connecticut College, New London, Connecticut, USA
| | - Badam Enkhmandakh
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Dashzeveg Bayarsaihan
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, Connecticut, USA
- Institute for System Genomics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
2
|
Zhang Y, Tang R, Hu ZM, Wang XH, Gao X, Wang T, Tang MX. Key Synaptic Pathology in Autism Spectrum Disorder: Genetic Mechanisms and Recent Advances. J Integr Neurosci 2024; 23:184. [PMID: 39473158 DOI: 10.31083/j.jin2310184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 03/17/2025] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interactions and verbal communication, accompanied by symptoms of restricted and repetitive patterns of behavior or interest. Over the past 30 years, the morbidity of ASD has increased in most areas of the world. Although the pathogenesis of ASD is not fully understood, it has been associated with over 1000 genes or genomic loci, indicating the importance and complexity of the genetic mechanisms involved. This review focuses on the synaptic pathology of ASD and particularly on genetic variants involved in synaptic structure and functions. These include SHANK, NLGN, NRXN, FMR1, and MECP2 as well as other potentially novel genes such as CHD8, CHD2, and SYNGAP1 that could be core elements in ASD pathogenesis. Here, we summarize several pathological pathways supporting the hypothesis that synaptic pathology caused by genetic mutations may be the pathogenic basis for ASD.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pathology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, 611731 Chengdu, Sichuan, China
- Department of Pathology, The Affiliated Hospital, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Rui Tang
- Department of Pathology, Chengdu Anorectal Hospital, 610016 Chengdu, Sichuan, China
| | - Zhi-Min Hu
- Department of Pathology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, 611731 Chengdu, Sichuan, China
- Department of Pathology, The Affiliated Hospital, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Xi-Hao Wang
- Department of Pathology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, 611731 Chengdu, Sichuan, China
| | - Xia Gao
- Department of Pathology, The Yaan People's Hospital (Yaan Hospital of West China Hospital of Sichuan University), 625000 Yaan, Sichuan, China
| | - Tao Wang
- Department of Pathology, The Yaan People's Hospital (Yaan Hospital of West China Hospital of Sichuan University), 625000 Yaan, Sichuan, China
| | - Ming-Xi Tang
- Department of Pathology, The Affiliated Hospital, Southwest Medical University, 646000 Luzhou, Sichuan, China
- Department of Pathology, The Yaan People's Hospital (Yaan Hospital of West China Hospital of Sichuan University), 625000 Yaan, Sichuan, China
| |
Collapse
|
3
|
Shi X, Lu C, Corman A, Nikish A, Zhou Y, Platt RJ, Iossifov I, Zhang F, Pan JQ, Sanjana NE. Heterozygous deletion of the autism-associated gene CHD8 impairs synaptic function through widespread changes in gene expression and chromatin compaction. Am J Hum Genet 2023; 110:1750-1768. [PMID: 37802044 PMCID: PMC10577079 DOI: 10.1016/j.ajhg.2023.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023] Open
Abstract
Whole-exome sequencing of autism spectrum disorder (ASD) probands and unaffected family members has identified many genes harboring de novo variants suspected to play a causal role in the disorder. Of these, chromodomain helicase DNA-binding protein 8 (CHD8) is the most recurrently mutated. Despite the prevalence of CHD8 mutations, we have little insight into how CHD8 loss affects genome organization or the functional consequences of these molecular alterations in neurons. Here, we engineered two isogenic human embryonic stem cell lines with CHD8 loss-of-function mutations and characterized differences in differentiated human cortical neurons. We identified hundreds of genes with altered expression, including many involved in neural development and excitatory synaptic transmission. Field recordings and single-cell electrophysiology revealed a 3-fold decrease in firing rates and synaptic activity in CHD8+/- neurons, as well as a similar firing-rate deficit in primary cortical neurons from Chd8+/- mice. These alterations in neuron and synapse function can be reversed by CHD8 overexpression. Moreover, CHD8+/- neurons displayed a large increase in open chromatin across the genome, where the greatest change in compaction was near autism susceptibility candidate 2 (AUTS2), which encodes a transcriptional regulator implicated in ASD. Genes with changes in chromatin accessibility and expression in CHD8+/- neurons have significant overlap with genes mutated in probands for ASD, intellectual disability, and schizophrenia but not with genes mutated in healthy controls or other disease cohorts. Overall, this study characterizes key molecular alterations in genome structure and expression in CHD8+/- neurons and links these changes to impaired neuronal and synaptic function.
Collapse
Affiliation(s)
- Xi Shi
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Congyi Lu
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Alba Corman
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Alexandra Nikish
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute, Cambridge, MA, USA
| | - Yang Zhou
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Montreal Neurological Institute, Montreal, QC, Canada
| | - Randy J Platt
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Ivan Iossifov
- New York Genome Center, New York, NY, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Feng Zhang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute, Cambridge, MA, USA
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA.
| | - Neville E Sanjana
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
4
|
Davidson EA, Holingue C, Jimenez-Gomez A, Dallman JE, Moshiree B. Gastrointestinal Dysfunction in Genetically Defined Neurodevelopmental Disorders. Semin Neurol 2023; 43:645-660. [PMID: 37586397 PMCID: PMC10895389 DOI: 10.1055/s-0043-1771460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Gastrointestinal symptoms are common in most forms of neurodevelopment disorders (NDDs) such as in autism spectrum disorders (ASD). The current patient-reported outcome measures with validated questionnaires used in the general population of children without NDDS cannot be used in the autistic individuals. We explore here the multifactorial pathophysiology of ASD and the role of genetics and the environment in this disease spectrum and focus instead on possible diagnostics that could provide future objective insight into the connection of the gut-brain-microbiome in this disease entity. We provide our own data from both humans and a zebrafish model of ASD called Phelan-McDermid Syndrome. We hope that this review highlights the gaps in our current knowledge on many of these profound NDDs and that it provides a future framework upon which clinicians and researchers can build and network with other interested multidisciplinary specialties.
Collapse
Affiliation(s)
| | - Calliope Holingue
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, Maryland
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Andres Jimenez-Gomez
- Neuroscience Center, Joe DiMaggio Children’s Hospital, Hollywood, Florida
- Department of Child Neurology, Florida Atlantic University Stiles - Nicholson Brain Institute, Jupiter, Florida
| | - Julia E. Dallman
- Department of Biology, University of Miami, Coral Gables, Miami, Florida
| | - Baharak Moshiree
- Atrium Health, Wake Forest Medical University, Charlotte, North Carolina
| |
Collapse
|
5
|
Li B, Zhao H, Tu Z, Yang W, Han R, Wang L, Luo X, Pan M, Chen X, Zhang J, Xu H, Guo X, Yan S, Yin P, Zhao Z, Liu J, Luo Y, Li Y, Yang Z, Zhang B, Tan Z, Xu H, Jiang T, Jiang YH, Li S, Zhang YQ, Li XJ. CHD8 mutations increase gliogenesis to enlarge brain size in the nonhuman primate. Cell Discov 2023; 9:27. [PMID: 36878905 PMCID: PMC9988832 DOI: 10.1038/s41421-023-00525-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/27/2023] [Indexed: 03/08/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that affects social interaction and behavior. Mutations in the gene encoding chromodomain helicase DNA-binding protein 8 (CHD8) lead to autism symptoms and macrocephaly by a haploinsufficiency mechanism. However, studies of small animal models showed inconsistent findings about the mechanisms for CHD8 deficiency-mediated autism symptoms and macrocephaly. Using the nonhuman primate as a model system, we found that CRISPR/Cas9-mediated CHD8 mutations in the embryos of cynomolgus monkeys led to increased gliogenesis to cause macrocephaly in cynomolgus monkeys. Disrupting CHD8 in the fetal monkey brain prior to gliogenesis increased the number of glial cells in newborn monkeys. Moreover, knocking down CHD8 via CRISPR/Cas9 in organotypic monkey brain slices from newborn monkeys also enhanced the proliferation of glial cells. Our findings suggest that gliogenesis is critical for brain size in primates and that abnormal gliogenesis may contribute to ASD.
Collapse
Grants
- UL1 TR001863 NCATS NIH HHS
- This work was supported by Department of Science and Technology of Guangdong Province (2021ZT09Y007; 2020B121201006, 2018B030337001, X.J. Li), Guangzhou Key Research Program on Brain Science (202007030008, X.J. Li)the National Science Foundation of China to X.J. Li (81830032, 31872779).
- the Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence Fund (2019018, B. Li), the Postdoctoral Science Foundation of China (2019M653275, B. Li)
- the National Science Foundation of China to H. Zhao (32100783)
- the Fundamental Research Funds for the Central Universities (21619104, L. Wang)
- the Strategic Priority Research Program B of the Chinese Academy of Sciences (XDBS1020100 to Y.Q. Zhang), the National Key Research and Development Program (2019YFA0707100 and 2021ZD0203901 to Y.Q. Zhang),the National Science Foundation of China to Y.Q. Zhang (31830036 and 31921002).
Collapse
Affiliation(s)
- Bang Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Hui Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhuchi Tu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Weili Yang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Rui Han
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Lu Wang
- Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, Guangdong, China
| | - Xiaopeng Luo
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Mingtian Pan
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Xiusheng Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Jiawei Zhang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Huijuan Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiangyu Guo
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Sen Yan
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Peng Yin
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Zhiguang Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jianrong Liu
- Yuanxi Biotech Inc., Guangzhou, Guangdong, China
| | - Yafeng Luo
- Yuanxi Biotech Inc., Guangzhou, Guangdong, China
| | - Yuefeng Li
- Guangdong Landau Biotechnology Co. Ltd., Guangzhou, Guangdong, China
| | - Zhengyi Yang
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Baogui Zhang
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zhiqiang Tan
- Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, Guangdong, China
| | - Hao Xu
- Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, Guangdong, China
| | - Tianzi Jiang
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Shihua Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Yong Q Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Xiao-Jiang Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Wang L, Wang B, Wu C, Wang J, Sun M. Autism Spectrum Disorder: Neurodevelopmental Risk Factors, Biological Mechanism, and Precision Therapy. Int J Mol Sci 2023; 24:ijms24031819. [PMID: 36768153 PMCID: PMC9915249 DOI: 10.3390/ijms24031819] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous, behaviorally defined neurodevelopmental disorder. Over the past two decades, the prevalence of autism spectrum disorders has progressively increased, however, no clear diagnostic markers and specifically targeted medications for autism have emerged. As a result, neurobehavioral abnormalities, neurobiological alterations in ASD, and the development of novel ASD pharmacological therapy necessitate multidisciplinary collaboration. In this review, we discuss the development of multiple animal models of ASD to contribute to the disease mechanisms of ASD, as well as new studies from multiple disciplines to assess the behavioral pathology of ASD. In addition, we summarize and highlight the mechanistic advances regarding gene transcription, RNA and non-coding RNA translation, abnormal synaptic signaling pathways, epigenetic post-translational modifications, brain-gut axis, immune inflammation and neural loop abnormalities in autism to provide a theoretical basis for the next step of precision therapy. Furthermore, we review existing autism therapy tactics and limits and present challenges and opportunities for translating multidisciplinary knowledge of ASD into clinical practice.
Collapse
|
7
|
Kerschbamer E, Arnoldi M, Tripathi T, Pellegrini M, Maturi S, Erdin S, Salviato E, Di Leva F, Sebestyén E, Dassi E, Zarantonello G, Benelli M, Campos E, Basson M, Gusella J, Gustincich S, Piazza S, Demichelis F, Talkowski M, Ferrari F, Biagioli M. CHD8 suppression impacts on histone H3 lysine 36 trimethylation and alters RNA alternative splicing. Nucleic Acids Res 2022; 50:12809-12828. [PMID: 36537238 PMCID: PMC9825192 DOI: 10.1093/nar/gkac1134] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
Disruptive mutations in the chromodomain helicase DNA-binding protein 8 gene (CHD8) have been recurrently associated with autism spectrum disorders (ASDs). Here we investigated how chromatin reacts to CHD8 suppression by analyzing a panel of histone modifications in induced pluripotent stem cell-derived neural progenitors. CHD8 suppression led to significant reduction (47.82%) in histone H3K36me3 peaks at gene bodies, particularly impacting on transcriptional elongation chromatin states. H3K36me3 reduction specifically affects highly expressed, CHD8-bound genes and correlates with altered alternative splicing patterns of 462 genes implicated in 'regulation of RNA splicing' and 'mRNA catabolic process'. Mass spectrometry analysis uncovered a novel interaction between CHD8 and the splicing regulator heterogeneous nuclear ribonucleoprotein L (hnRNPL), providing the first mechanistic insights to explain the CHD8 suppression-derived splicing phenotype, partly implicating SETD2, a H3K36me3 methyltransferase. In summary, our results point toward broad molecular consequences of CHD8 suppression, entailing altered histone deposition/maintenance and RNA processing regulation as important regulatory processes in ASD.
Collapse
Affiliation(s)
- Emanuela Kerschbamer
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| | - Michele Arnoldi
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| | - Takshashila Tripathi
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| | - Miguel Pellegrini
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| | - Samuele Maturi
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| | - Serkan Erdin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Elisa Salviato
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Francesca Di Leva
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| | - Endre Sebestyén
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology, (CIBIO), University of Trento, Trento, Italy
| | - Giulia Zarantonello
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| | - Matteo Benelli
- Bioinformatics Unit, Hospital of Prato, Istituto Toscano Tumori, Prato, Italy
| | - Eric Campos
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - M Albert Basson
- Centre for Craniofacial and Regenerative Biology and MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - James F Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Silvano Piazza
- Bioinformatic facility, Department of Cellular, Computational and Integrative Biology (CIBIO) University of Trento, Italy
| | - Francesca Demichelis
- Laboratory of Computational and Functional Oncology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Francesco Ferrari
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
- CNR Institute of Molecular Genetics ‘Luigi Luca Cavalli-Sforza’, Pavia, Italy
| | - Marta Biagioli
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| |
Collapse
|
8
|
Bastos GC, Tolezano GC, Krepischi ACV. Rare CNVs and Known Genes Linked to Macrocephaly: Review of Genomic Loci and Promising Candidate Genes. Genes (Basel) 2022; 13:genes13122285. [PMID: 36553552 PMCID: PMC9778424 DOI: 10.3390/genes13122285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Macrocephaly frequently occurs in single-gene disorders affecting the PI3K-AKT-MTOR pathway; however, epigenetic mutations, mosaicism, and copy number variations (CNVs) are emerging relevant causative factors, revealing a higher genetic heterogeneity than previously expected. The aim of this study was to investigate the role of rare CNVs in patients with macrocephaly and review genomic loci and known genes. We retrieved from the DECIPHER database de novo <500 kb CNVs reported on patients with macrocephaly; in four cases, a candidate gene for macrocephaly could be pinpointed: a known microcephaly gene-TRAPPC9, and three genes based on their functional roles-RALGAPB, RBMS3, and ZDHHC14. From the literature review, 28 pathogenic CNV genomic loci and over 300 known genes linked to macrocephaly were gathered. Among the genomic regions, 17 CNV loci (~61%) exhibited mirror phenotypes, that is, deletions and duplications having opposite effects on head size. Identifying structural variants affecting head size can be a preeminent source of information about pathways underlying brain development. In this study, we reviewed these genes and recurrent CNV loci associated with macrocephaly, as well as suggested novel potential candidate genes deserving further studies to endorse their involvement with this phenotype.
Collapse
|
9
|
Lengyel A, Pinti É, Pikó H, Kristóf Á, Abonyi T, Némethi Z, Fekete G, Haltrich I. Clinical evaluation of rare copy number variations identified by chromosomal microarray in a Hungarian neurodevelopmental disorder patient cohort. Mol Cytogenet 2022; 15:47. [PMID: 36320065 PMCID: PMC9623912 DOI: 10.1186/s13039-022-00623-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders are genetically heterogeneous pediatric conditions. The first tier diagnostic method for uncovering copy number variations (CNVs), one of the most common genetic etiologies in affected individuals, is chromosomal microarray (CMA). However, this methodology is not yet a routine molecular cytogenetic test in many parts of the world, including Hungary. Here we report clinical and genetic data of the first, relatively large Hungarian cohort of patients whose genetic testing included CMA. METHODS Clinical data were retrospectively collected for 78 children who were analyzed using various CMA platforms. Phenotypes of patients with disease-causing variants were compared to patients with negative results using the chi squared/Fisher exact tests. RESULTS A total of 30 pathogenic CNVs were identified in 29 patients (37.2%). Postnatal growth delay (p = 0.05564), pectus excavatum (p = 0.07484), brain imaging abnormalities (p = 0.07848), global developmental delay (p = 0.08070) and macrocephaly (p = 0.08919) were more likely to be associated with disease-causing CNVs. CONCLUSION Our results allow phenotypic expansion of 14q11.2 microdeletions encompassing SUPT16H and CHD8 genes. Variants of unknown significance (n = 24) were found in 17 patients. We provide detailed phenotypic and genetic data of these individuals to facilitate future classification efforts, and spotlight two patients with potentially pathogenic alterations. Our results contribute to unraveling the diagnostic value of rare CNVs.
Collapse
Affiliation(s)
- Anna Lengyel
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Éva Pinti
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Henriett Pikó
- grid.11804.3c0000 0001 0942 9821Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Árvai Kristóf
- grid.11804.3c0000 0001 0942 9821Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Tünde Abonyi
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Zaránd Némethi
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - György Fekete
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Irén Haltrich
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
10
|
Wade AA, van den Ameele J, Cheetham SW, Yakob R, Brand AH, Nord AS. In vivo targeted DamID identifies CHD8 genomic targets in fetal mouse brain. iScience 2021; 24:103234. [PMID: 34746699 PMCID: PMC8551073 DOI: 10.1016/j.isci.2021.103234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 01/15/2023] Open
Abstract
Genetic studies of autism have revealed causal roles for chromatin remodeling gene mutations. Chromodomain helicase DNA binding protein 8 (CHD8) encodes a chromatin remodeler with significant de novo mutation rates in sporadic autism. However, relationships between CHD8 genomic function and autism-relevant biology remain poorly elucidated. Published studies utilizing ChIP-seq to map CHD8 protein-DNA interactions have high variability, consistent with technical challenges and limitations associated with this method. Thus, complementary approaches are needed to establish CHD8 genomic targets and regulatory functions in developing brain. We used in utero CHD8 Targeted DamID followed by sequencing (TaDa-seq) to characterize CHD8 binding in embryonic mouse cortex. CHD8 TaDa-seq reproduced interaction patterns observed from ChIP-seq and further highlighted CHD8 distal interactions associated with neuronal loci. This study establishes TaDa-seq as a useful alternative for mapping protein-DNA interactions in vivo and provides insights into the regulatory targets of CHD8 and autism-relevant pathophysiology associated with CHD8 mutations.
Collapse
Affiliation(s)
- A. Ayanna Wade
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95616, USA
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Jelle van den Ameele
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Seth W. Cheetham
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Rebecca Yakob
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Andrea H. Brand
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Alex S. Nord
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95616, USA
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
11
|
Cardoso AR, Lopes-Marques M, Oliveira M, Amorim A, Prata MJ, Azevedo L. Genetic Variability of the Functional Domains of Chromodomains Helicase DNA-Binding (CHD) Proteins. Genes (Basel) 2021; 12:genes12111827. [PMID: 34828433 PMCID: PMC8623811 DOI: 10.3390/genes12111827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
In the past few years, there has been an increasing neuroscientific interest in understanding the function of mammalian chromodomains helicase DNA-binding (CHD) proteins due to their association with severe developmental syndromes. Mammalian CHDs include nine members (CHD1 to CHD9), grouped into subfamilies according to the presence of specific functional domains, generally highly conserved in evolutionary terms. Mutations affecting these domains hold great potential to disrupt protein function, leading to meaningful pathogenic scenarios, such as embryonic defects incompatible with life. Here, we analysed the evolution of CHD proteins by performing a comparative study of the functional domains of CHD proteins between orthologous and paralogous protein sequences. Our findings show that the highest degree of inter-species conservation was observed at Group II (CHD3, CHD4, and CHD5) and that most of the pathological variations documented in humans involve amino acid residues that are conserved not only between species but also between paralogs. The parallel analysis of both orthologous and paralogous proteins, in cases where gene duplications have occurred, provided extra information showing patterns of flexibility as well as interchangeability between amino acid positions. This added complexity needs to be considered when the impact of novel mutations is assessed in terms of evolutionary conservation.
Collapse
Affiliation(s)
- Ana R. Cardoso
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.R.C.); (M.L.-M.); (M.O.); (A.A.); (M.J.P.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FCUP—Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Mónica Lopes-Marques
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.R.C.); (M.L.-M.); (M.O.); (A.A.); (M.J.P.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FCUP—Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Manuela Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.R.C.); (M.L.-M.); (M.O.); (A.A.); (M.J.P.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FCUP—Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - António Amorim
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.R.C.); (M.L.-M.); (M.O.); (A.A.); (M.J.P.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FCUP—Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria J. Prata
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.R.C.); (M.L.-M.); (M.O.); (A.A.); (M.J.P.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FCUP—Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Luísa Azevedo
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.R.C.); (M.L.-M.); (M.O.); (A.A.); (M.J.P.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FCUP—Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- Correspondence:
| |
Collapse
|
12
|
Yield of clinically reportable genetic variants in unselected cerebral palsy by whole genome sequencing. NPJ Genom Med 2021; 6:74. [PMID: 34531397 PMCID: PMC8445947 DOI: 10.1038/s41525-021-00238-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022] Open
Abstract
Cerebral palsy (CP) is the most common cause of childhood physical disability, with incidence between 1/500 and 1/700 births in the developed world. Despite increasing evidence for a major contribution of genetics to CP aetiology, genetic testing is currently not performed systematically. We assessed the diagnostic rate of genome sequencing (GS) in a clinically unselected cohort of 150 singleton CP patients, with CP confirmed at >4 years of age. Clinical grade GS was performed on the proband and variants were filtered, and classified according to American College of Medical Genetics and Genomics–Association for Molecular Pathology (ACMG-AMP) guidelines. Variants classified as pathogenic or likely pathogenic (P/LP) were further assessed for their contribution to CP. In total, 24.7% of individuals carried a P/LP variant(s) causing or increasing risk of CP, with 4.7% resolved by copy number variant analysis and 20% carrying single nucleotide or indel variants. A further 34.7% carried one or more rare, high impact variants of uncertain significance (VUS) in variation intolerant genes. Variants were identified in a heterogeneous group of genes, including genes associated with hereditary spastic paraplegia, clotting and thrombophilic disorders, small vessel disease, and other neurodevelopmental disorders. Approximately 1/2 of individuals were classified as likely to benefit from changed clinical management as a result of genetic findings. In addition, no significant association between genetic findings and clinical factors was detectable in this cohort, suggesting that systematic sequencing of CP will be required to avoid missed diagnoses.
Collapse
|
13
|
Trakadis Y, Accogli A, Qi B, Bloom D, Joober R, Levy E, Tabbane K. Next-generation gene panel testing in adolescents and adults in a medical neuropsychiatric genetics clinic. Neurogenetics 2021; 22:313-322. [PMID: 34363551 DOI: 10.1007/s10048-021-00664-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/21/2021] [Indexed: 01/04/2023]
Abstract
Intellectual disability (ID) encompasses a clinically and genetically heterogeneous group of neurodevelopmental disorders that may present with psychiatric illness in up to 40% of cases. Despite the evidence for clinical utility of genetic panels in pediatrics, there are no published studies in adolescents/adults with ID or autism spectrum disorder (ASD). This study was approved by our institutional research ethics board. We retrospectively reviewed the medical charts of all patients evaluated between January 2017 and December 2019 in our adult neuropsychiatric genetics clinic at the McGill University Health Centre (MUHC), who had undergone a comprehensive ID/ASD gene panel. Thirty-four patients aged > 16 years, affected by ID/ASD and/or other neuropsychiatric/behavioral disorders, were identified. Pathogenic or likely pathogenic variants were identified in one-third of our cohort (32%): 8 single-nucleotide variants in 8 genes (CASK, SHANK3, IQSEC2, CHD2, ZBTB20, TREX1, SON, and TUBB2A) and 3 copy number variants (17p13.3, 16p13.12p13.11, and 9p24.3p24.1). The presence of psychiatric/behavioral disorders, regardless of the co-occurrence of ID, and, at a borderline level, the presence of ID alone were associated with positive genetic findings (p = 0.024 and p = 0.054, respectively). Moreover, seizures were associated with positive genetic results (p = 0.024). One-third of individuals presenting with psychiatric illness who met our red flags for Mendelian diseases have pathogenic or likely pathogenic variants which can be identified using a comprehensive ID/ASD gene panel (~ 2500 genes) performed on an exome backbone.
Collapse
Affiliation(s)
- Y Trakadis
- Division of Medical Genetics, Department of Specialized Medicine, Montreal Children's Hospital, McGill University Health Centre (MUHC), Room A04.3140, 1001 Boul. Décarie, Montreal, QC, H4A 3J1, Canada. .,Department of Human Genetics, McGill University, Montreal, QC, Canada. .,Douglas Mental Health Institute/Hospital, Montreal, Canada. .,Department of Psychiatry, McGill University, Montreal, Canada.
| | - A Accogli
- Division of Medical Genetics, Department of Specialized Medicine, Montreal Children's Hospital, McGill University Health Centre (MUHC), Room A04.3140, 1001 Boul. Décarie, Montreal, QC, H4A 3J1, Canada
| | - B Qi
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - D Bloom
- Douglas Mental Health Institute/Hospital, Montreal, Canada.,Department of Psychiatry, McGill University, Montreal, Canada
| | - R Joober
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,Douglas Mental Health Institute/Hospital, Montreal, Canada.,Department of Psychiatry, McGill University, Montreal, Canada
| | - E Levy
- Douglas Mental Health Institute/Hospital, Montreal, Canada.,Department of Psychiatry, McGill University, Montreal, Canada
| | - K Tabbane
- Douglas Mental Health Institute/Hospital, Montreal, Canada.,Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
14
|
Weissberg O, Elliott E. The Mechanisms of CHD8 in Neurodevelopment and Autism Spectrum Disorders. Genes (Basel) 2021; 12:genes12081133. [PMID: 34440307 PMCID: PMC8393912 DOI: 10.3390/genes12081133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Chromodomain-helicase-DNA-binding protein 8 (CHD8) has been identified as one of the genes with the strongest association with autism. The CHD8 protein is a transcriptional regulator that is expressed in nearly all cell types and has been implicated in multiple cellular processes, including cell cycle, cell adhesion, neuronal development, myelination, and synaptogenesis. Considering the central role of CHD8 in the genetics of autism, a deeper understanding of the physiological functions of CHD8 is important to understand the development of the autism phenotype and potential therapeutic targets. Different CHD8 mutant mouse models were developed to determine autism-like phenotypes and to fully understand their mechanisms. Here, we review the current knowledge on CHD8, with an emphasis on mechanistic lessons gained from animal models that have been studied.
Collapse
|
15
|
D'Souza L, Channakkar AS, Muralidharan B. Chromatin remodelling complexes in cerebral cortex development and neurodevelopmental disorders. Neurochem Int 2021; 147:105055. [PMID: 33964373 PMCID: PMC7611358 DOI: 10.1016/j.neuint.2021.105055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/11/2021] [Accepted: 04/24/2021] [Indexed: 12/19/2022]
Abstract
The diverse number of neurons in the cerebral cortex are generated during development by neural stem cells lining the ventricle, and they continue maturing postnatally. Dynamic chromatin regulation in these neural stem cells is a fundamental determinant of the emerging property of the functional neural network, and the chromatin remodellers are critical determinants of this process. Chromatin remodellers participate in several steps of this process from proliferation, differentiation, migration leading to complex network formation which forms the basis of higher-order functions of cognition and behaviour. Here we review the role of these ATP-dependent chromatin remodellers in cortical development in health and disease and highlight several key mouse mutants of the subunits of the complexes which have revealed how the remodelling mechanisms control the cortical stem cell chromatin landscape for expression of stage-specific transcripts. Consistent with their role in cortical development, several putative risk variants in the subunits of the remodelling complexes have been identified as the underlying causes of several neurodevelopmental disorders. A basic understanding of the detailed molecular mechanism of their action is key to understating how mutations in the same networks lead to disease pathologies and perhaps pave the way for therapeutic development for these complex multifactorial disorders.
Collapse
Affiliation(s)
- Leora D'Souza
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Asha S Channakkar
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Bhavana Muralidharan
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India.
| |
Collapse
|
16
|
Kargapolova Y, Rehimi R, Kayserili H, Brühl J, Sofiadis K, Zirkel A, Palikyras S, Mizi A, Li Y, Yigit G, Hoischen A, Frank S, Russ N, Trautwein J, van Bon B, Gilissen C, Laugsch M, Gusmao EG, Josipovic N, Altmüller J, Nürnberg P, Längst G, Kaiser FJ, Watrin E, Brunner H, Rada-Iglesias A, Kurian L, Wollnik B, Bouazoune K, Papantonis A. Overarching control of autophagy and DNA damage response by CHD6 revealed by modeling a rare human pathology. Nat Commun 2021; 12:3014. [PMID: 34021162 PMCID: PMC8140133 DOI: 10.1038/s41467-021-23327-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
Members of the chromodomain-helicase-DNA binding (CHD) protein family are chromatin remodelers implicated in human pathologies, with CHD6 being one of its least studied members. We discovered a de novo CHD6 missense mutation in a patient clinically presenting the rare Hallermann-Streiff syndrome (HSS). We used genome editing to generate isogenic iPSC lines and model HSS in relevant cell types. By combining genomics with functional in vivo and in vitro assays, we show that CHD6 binds a cohort of autophagy and stress response genes across cell types. The HSS mutation affects CHD6 protein folding and impairs its ability to recruit co-remodelers in response to DNA damage or autophagy stimulation. This leads to accumulation of DNA damage burden and senescence-like phenotypes. We therefore uncovered a molecular mechanism explaining HSS onset via chromatin control of autophagic flux and genotoxic stress surveillance.
Collapse
Affiliation(s)
- Yulia Kargapolova
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Heart Center, University Hospital Cologne, Cologne, Germany.
| | - Rizwan Rehimi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Age-associated Disorders (CECAD), University of Cologne, Cologne, Germany
| | - Hülya Kayserili
- Medical Genetics Department, Koç University School of Medicine, Istanbul, Turkey
| | - Joanna Brühl
- Institute of Molecular Biology and Tumor Research, Philipps-University Marburg, Marburg, Germany
| | | | - Anne Zirkel
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Spiros Palikyras
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Athanasia Mizi
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Yun Li
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stefan Frank
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Bayer AG, Wuppertal, Germany
| | - Nicole Russ
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Jonathan Trautwein
- Institute of Molecular Biology and Tumor Research, Philipps-University Marburg, Marburg, Germany
| | - Bregje van Bon
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Magdalena Laugsch
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Eduardo Gade Gusmao
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Natasa Josipovic
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Gernot Längst
- Biochemistry Centre Regensburg (BRC), University of Regensburg, Regensburg, Germany
| | - Frank J Kaiser
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Erwan Watrin
- Research Institute of Genetics and Development, Faculté de Médecine, Rennes, France
| | - Han Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alvaro Rada-Iglesias
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Age-associated Disorders (CECAD), University of Cologne, Cologne, Germany
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria, Santander, Spain
| | - Leo Kurian
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany
| | - Karim Bouazoune
- Institute of Molecular Biology and Tumor Research, Philipps-University Marburg, Marburg, Germany.
| | - Argyris Papantonis
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
17
|
Hoffmann A, Spengler D. Single-Cell Transcriptomics Supports a Role of CHD8 in Autism. Int J Mol Sci 2021; 22:3261. [PMID: 33806835 PMCID: PMC8004931 DOI: 10.3390/ijms22063261] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 12/16/2022] Open
Abstract
Chromodomain helicase domain 8 (CHD8) is one of the most frequently mutated and most penetrant genes in the autism spectrum disorder (ASD). Individuals with CHD8 mutations show leading symptoms of autism, macrocephaly, and facial dysmorphisms. The molecular and cellular mechanisms underpinning the early onset and development of these symptoms are still poorly understood and prevent timely and more efficient therapies of patients. Progress in this area will require an understanding of "when, why and how cells deviate from their normal trajectories". High-throughput single-cell RNA sequencing (sc-RNAseq) directly quantifies information-bearing RNA molecules that enact each cell's biological identity. Here, we discuss recent insights from sc-RNAseq of CRISPR/Cas9-editing of Chd8/CHD8 during mouse neocorticogenesis and human cerebral organoids. Given that the deregulation of the balance between excitation and inhibition (E/I balance) in cortical and subcortical circuits is thought to represent a major etiopathogenetic mechanism in ASD, we focus on the question of whether, and to what degree, results from current sc-RNAseq studies support this hypothesis. Beyond that, we discuss the pros and cons of these approaches and further steps to be taken to harvest the full potential of these transformative techniques.
Collapse
Affiliation(s)
| | - Dietmar Spengler
- Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany;
| |
Collapse
|
18
|
Kweon H, Jung WB, Im GH, Ryoo J, Lee JH, Do H, Choi Y, Song YH, Jung H, Park H, Qiu LR, Ellegood J, Shim HJ, Yang E, Kim H, Lerch JP, Lee SH, Chung WS, Kim D, Kim SG, Kim E. Excitatory neuronal CHD8 in the regulation of neocortical development and sensory-motor behaviors. Cell Rep 2021; 34:108780. [PMID: 33626347 DOI: 10.1016/j.celrep.2021.108780] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
CHD8 (chromodomain helicase DNA-binding protein 8) is a chromatin remodeler associated with autism spectrum disorders. Homozygous Chd8 deletion in mice leads to embryonic lethality, making it difficult to assess whether CHD8 regulates brain development and whether CHD8 haploinsufficiency-related macrocephaly reflects normal CHD8 functions. Here, we report that homozygous conditional knockout of Chd8 restricted to neocortical glutamatergic neurons causes apoptosis-dependent near-complete elimination of neocortical structures. These mice, however, display normal survival and hyperactivity, anxiolytic-like behavior, and increased social interaction. They also show largely normal auditory function and moderately impaired visual and motor functions but enhanced whisker-related somatosensory function. These changes accompany thalamic hyperactivity, revealed by 15.2-Tesla fMRI, and increased intrinsic excitability and decreased inhibitory synaptic transmission in thalamic ventral posterior medial (VPM) neurons involved in somatosensation. These results suggest that excitatory neuronal CHD8 critically regulates neocortical development through anti-apoptotic mechanisms, neocortical elimination distinctly affects cognitive behaviors and sensory-motor functions in mice, and Chd8 haploinsufficiency-related macrocephaly might represent compensatory responses.
Collapse
Affiliation(s)
- Hanseul Kweon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Won Beom Jung
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea
| | - Jia Ryoo
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Joon-Hyuk Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hogyeong Do
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Yeonsoo Choi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - You-Hyang Song
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hwajin Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Haram Park
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Lily R Qiu
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON M5T 3H7, Canada; Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford OX3 9DU, UK
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON M5T 3H7, Canada; Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford OX3 9DU, UK
| | - Hyun-Ji Shim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea
| | - Esther Yang
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul 02841, Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul 02841, Korea
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON M5T 3H7, Canada; Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford OX3 9DU, UK
| | - Seung-Hee Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Korea.
| |
Collapse
|
19
|
Wyatt BH, Raymond TO, Lansdon LA, Darbro BW, Murray JC, Manak JR, Dickinson AJG. Using an aquatic model, Xenopus laevis, to uncover the role of chromodomain 1 in craniofacial disorders. Genesis 2021; 59:e23394. [PMID: 32918369 PMCID: PMC10701884 DOI: 10.1002/dvg.23394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
The chromodomain family member chromodomain 1 (CHD1) has been shown to have numerous critical molecular functions including transcriptional regulation, splicing, and DNA repair. Complete loss of function of this gene is not compatible with life. On the other hand, missense and copy number variants of CHD1 can result in intellectual disabilities and craniofacial malformations in human patients including cleft palate and Pilarowski-Bjornsson Syndrome. We have used the aquatic developmental model organism Xenopus laevis, to determine a specific role for Chd1 in such cranioafcial disorders. Protein and gene knockdown techniques in Xenopus, including antisense oligos and mosaic Crispr/Cas9-mediated mutagenesis, recapitulated the craniofacial defects observed in humans. Further analysis indicated that embryos deficient in Chd1 had defects in cranial neural crest development and jaw cartilage morphology. Additionally, flow cytometry and immunohistochemistry revealed that decreased Chd1 resulted in increased in apoptosis in the developing head. Together, these experiments demonstrate that Chd1 is critical for fundamental processes and cell survival in craniofacial development. We also presented evidence that Chd1 is regulated by retinoic acid signaling during craniofacial development. Expression levels of chd1 mRNA, specifically in the head, were increased by RAR agonist exposure and decreased upon antagonist treatment. Subphenotypic levels of an RAR antagonist and Chd1 morpholinos synergized to result in orofacial defects. Further, RAR DNA binding sequences (RAREs) were detected in chd1 regulatory regions by bioinformatic analysis. In summary, by combining human genetics and experiments in an aquatic model we now have a better understanding of the role of CHD1 in craniofacial disorders.
Collapse
Affiliation(s)
- Brent H. Wyatt
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Thomas O. Raymond
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Lisa A. Lansdon
- Department of Biology, University of Iowa, Iowa City, Iowa
- Department of Pathology and Laboratory Medicine, Children’s Mercy Hospital, Kansas City, Missouri
| | | | | | - John Robert Manak
- Department of Biology, University of Iowa, Iowa City, Iowa
- Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | | |
Collapse
|
20
|
Willsey HR, Exner CRT, Xu Y, Everitt A, Sun N, Wang B, Dea J, Schmunk G, Zaltsman Y, Teerikorpi N, Kim A, Anderson AS, Shin D, Seyler M, Nowakowski TJ, Harland RM, Willsey AJ, State MW. Parallel in vivo analysis of large-effect autism genes implicates cortical neurogenesis and estrogen in risk and resilience. Neuron 2021; 109:788-804.e8. [PMID: 33497602 DOI: 10.1016/j.neuron.2021.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/02/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022]
Abstract
Gene Ontology analyses of autism spectrum disorders (ASD) risk genes have repeatedly highlighted synaptic function and transcriptional regulation as key points of convergence. However, these analyses rely on incomplete knowledge of gene function across brain development. Here we leverage Xenopus tropicalis to study in vivo ten genes with the strongest statistical evidence for association with ASD. All genes are expressed in developing telencephalon at time points mapping to human mid-prenatal development, and mutations lead to an increase in the ratio of neural progenitor cells to maturing neurons, supporting previous in silico systems biological findings implicating cortical neurons in ASD vulnerability, but expanding the range of convergent functions to include neurogenesis. Systematic chemical screening identifies that estrogen, via Sonic hedgehog signaling, rescues this convergent phenotype in Xenopus and human models of brain development, suggesting a resilience factor that may mitigate a range of ASD genetic risks.
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cameron R T Exner
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yuxiao Xu
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Amanda Everitt
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nawei Sun
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Galina Schmunk
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yefim Zaltsman
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nia Teerikorpi
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Albert Kim
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Aoife S Anderson
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David Shin
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Meghan Seyler
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J Nowakowski
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Richard M Harland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - A Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
21
|
Hoffmann A, Spengler D. Chromatin Remodeler CHD8 in Autism and Brain Development. J Clin Med 2021; 10:366. [PMID: 33477995 PMCID: PMC7835889 DOI: 10.3390/jcm10020366] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Chromodomain Helicase DNA-binding 8 (CHD8) is a high confidence risk factor for autism spectrum disorders (ASDs) and the genetic cause of a distinct neurodevelopmental syndrome with the core symptoms of autism, macrocephaly, and facial dysmorphism. The role of CHD8 is well-characterized at the structural, biochemical, and transcriptional level. By contrast, much less is understood regarding how mutations in CHD8 underpin altered brain function and mental disease. Studies on various model organisms have been proven critical to tackle this challenge. Here, we scrutinize recent advances in this field with a focus on phenotypes in transgenic animal models and highlight key findings on neurodevelopment, neuronal connectivity, neurotransmission, synaptic and homeostatic plasticity, and habituation. Against this backdrop, we further discuss how to improve future animal studies, both in terms of technical issues and with respect to the sex-specific effects of Chd8 mutations for neuronal and higher-systems level function. We also consider outstanding questions in the field including 'humanized' mice models, therapeutic interventions, and how the use of pluripotent stem cell-derived cerebral organoids might help to address differences in neurodevelopment trajectories between model organisms and humans.
Collapse
Affiliation(s)
| | - Dietmar Spengler
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, 80804 Munich, Germany;
| |
Collapse
|
22
|
Saraiva LC, Cappi C, Simpson HB, Stein DJ, Viswanath B, van den Heuvel OA, Reddy YCJ, Miguel EC, Shavitt RG. Cutting-edge genetics in obsessive-compulsive disorder. Fac Rev 2020; 9:30. [PMID: 33659962 PMCID: PMC7886082 DOI: 10.12703/r/9-30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This article reviews recent advances in the genetics of obsessive-compulsive disorder (OCD). We cover work on the following: genome-wide association studies, whole-exome sequencing studies, copy number variation studies, gene expression, polygenic risk scores, gene–environment interaction, experimental animal systems, human cell models, imaging genetics, pharmacogenetics, and studies of endophenotypes. Findings from this work underscore the notion that the genetic architecture of OCD is highly complex and shared with other neuropsychiatric disorders. Also, the latest evidence points to the participation of gene networks involved in synaptic transmission, neurodevelopment, and the immune and inflammatory systems in this disorder. We conclude by highlighting that further study of the genetic architecture of OCD, a great part of which remains to be elucidated, could benefit the development of diagnostic and therapeutic approaches based on the biological basis of the disorder. Studies to date revealed that OCD is not a simple homogeneous entity, but rather that the underlying biological pathways are variable and heterogenous. We can expect that translation from bench to bedside, through continuous effort and collaborative work, will ultimately transform our understanding of what causes OCD and thus how best to treat it.
Collapse
Affiliation(s)
- Leonardo Cardoso Saraiva
- Department & Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Carolina Cappi
- Department & Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Helen Blair Simpson
- Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- The New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Biju Viswanath
- Molecular Genetics Laboratory, National Institute of Mental Health & Neurosciences (NIMHANS); Accelerator Program for Discovery in Brain disorders using Stem cells (ADBS) Laboratory, NIMHANS, Bangalore, India
| | - Odile A van den Heuvel
- Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - YC Janardhan Reddy
- Obsessive-Compulsive Disorder (OCD) Clinic, Department of Psychiatry, NIMHANS, Bangalore, India
| | - Euripedes C Miguel
- Department & Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Roseli G Shavitt
- Department & Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
23
|
Yasin H, Stowe R, Wong CK, Jithesh PV, Zahir FR. First Whole Transcriptome RNAseq on CHD8 Haploinsufficient Patient and Meta-Analyses Across Cellular Models Uncovers Likely Key Pathophysiological Target Genes. Cureus 2020; 12:e11571. [PMID: 33282601 PMCID: PMC7710346 DOI: 10.7759/cureus.11571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In 2019, we confirmed that the haploinsufficiency of CHD8 does indeed cause the novel syndromic neurodevelopmental disease we first discovered a dozen years before. Here, we report the first whole transcriptome RNAseq gene expression profiling for a patient with this new syndrome, as a preliminary exploration of potential pathophysiological mechanisms. We compared our patient transcriptome profile with that of all publicly available RNAseq datasets from human cellular models including neuronal progenitor cells, neurons and organoids. We compared differential gene expression profiles overall and conducted phenotype-informed data filtration based on the characteristic syndrome presentation. We found that concordance among differential gene expression profiles was poor across all datasets. Nevertheless, remarkably, we show that the patient blood differential gene expression profile most resembled that of the neuronal cell model, a finding that encourages further transcriptome profiling using patient blood samples. In addition, our custom phenotype-informed analyses yielded important, differentially expressed syndrome pathophysiology target genes. Finally, we note that genes dysregulated due to CHD8 heterozygous deletion are linked to known neurological as well as oncological pathways.
Collapse
Affiliation(s)
- Heba Yasin
- Life Science, Hamad Bin Khalifa University, Doha, QAT
| | - Robert Stowe
- Psychiatry and Neurology, University of British Columbia, Vancouver, CAN
| | - Chi Kin Wong
- Medical Genetics, University of British Columbia, Vancouver, CAN
| | | | - Farah R Zahir
- Medical Genetics, University of British Columbia, Vancouver, CAN
| |
Collapse
|
24
|
Vaisfeld A, Spartano S, Gobbi G, Vezzani A, Neri G. Chromosome 14 deletions, rings, and epilepsy genes: A riddle wrapped in a mystery inside an enigma. Epilepsia 2020; 62:25-40. [PMID: 33205446 DOI: 10.1111/epi.16754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022]
Abstract
The ring 14 syndrome is a rare condition caused by the rearrangement of one chromosome 14 into a ring-like structure. The formation of the ring requires two breakpoints and loss of material from the short and long arms of the chromosome. Like many other chromosome syndromes, it is characterized by multiple congenital anomalies and developmental delays. Typical of the condition are retinal anomalies and drug-resistant epilepsy. These latter manifestations are not found in individuals who are carriers of comparable 14q deletions without formation of a ring (linear deletions). To find an explanation for this apparent discrepancy and gain insight into the mechanisms leading to seizures, we reviewed and compared literature cases of both ring and linear deletion syndrome with respect to both their clinical manifestations and the role and function of potentially epileptogenic genes. Knowledge of the epilepsy-related genes in chromosome 14 is an important premise for the search of new and effective drugs to combat seizures. Current clinical and molecular evidence is not sufficient to explain the known discrepancies between ring and linear deletions.
Collapse
Affiliation(s)
- Alessandro Vaisfeld
- Institute of Genomic Medicine, Catholic University School of Medicine, Rome, Italy
| | - Serena Spartano
- Institute of Genomic Medicine, Catholic University School of Medicine, Rome, Italy
| | - Giuseppe Gobbi
- Residential Center for Rehabilitation Luce Sul Mare, Rimini, Italy
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Giovanni Neri
- Institute of Genomic Medicine, Catholic University School of Medicine, Rome, Italy.,J.C. Self Research Institute, Greenwood Genetic Center, Greenwood, SC, USA
| |
Collapse
|
25
|
Hulbert SW, Wang X, Gbadegesin SO, Xu Q, Xu X, Jiang YH. A Novel Chd8 Mutant Mouse Displays Altered Ultrasonic Vocalizations and Enhanced Motor Coordination. Autism Res 2020; 13:1685-1697. [PMID: 32815320 DOI: 10.1002/aur.2353] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 12/23/2022]
Abstract
Mutations in CHD8 are among the most common autism-causing genetic defects identified in human genomics studies. Therefore, many labs have attempted to model this disorder by generating mice with mutations in Chd8. Using a gene trap inserted after Exon 31, we created a novel Chd8 mutant mouse (Chd8+/E31T ) and characterized its behavior on several different assays thought to have face validity for the human condition, attempting to model both the core symptoms (repetitive behaviors and social communication impairments) and common comorbidities (motor deficits, anxiety, and intellectual disability). We found that Chd8+/E31T mice showed no difference compared to wild-type mice in amount of self-grooming, reproducing the negative finding most other studies have reported. Unlike some of the other published lines, Chd8+/E31T mice did not show deficits in the three-chamber test for social novelty preference. A few studies have examined ultrasonic vocalizations in Chd8 mutant mice, but we are the first to report an increase in call length for adult mice. Additionally, we found that in contrast to previous published lines, Chd8+/E31T mice displayed no anxiety-like behaviors or learning impairments but showed paradoxically significant improvement in motor function. The inconsistencies in behavioral phenotypes in the Chd8 mutant mice generated by different laboratories poses a challenge for modeling autism spectrum disorder and preclinical studies in mice going forward and warrants further investigation into the molecular consequences of the different mutations in Chd8 and the functional impact on behavior. LAY SUMMARY: Several different mouse models carrying mutations in the Chd8 gene have been created to study the effects of these autism-causing mutations in the laboratory. The current study characterizes a novel Chd8 mutant mouse model as well as summarizes data from previously published Chd8 mutant mice. The inconsistencies between different studies are concerning, but future research into the reasons why these inconsistencies occur may help us understand why patients with various mutations have different degrees of symptom severity. Autism Res 2020, 13: 1685-1697. © 2020 International Society for Autism Research and Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Samuel W Hulbert
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xiaoming Wang
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Simisola O Gbadegesin
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Qiong Xu
- The Children's Hospital of Fudan University, Shanghai, China
| | - Xiu Xu
- The Children's Hospital of Fudan University, Shanghai, China
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
26
|
Ostrowski PJ, Zachariou A, Loveday C, Beleza-Meireles A, Bertoli M, Dean J, Douglas AGL, Ellis I, Foster A, Graham JM, Hague J, Hilhorst-Hofstee Y, Hoffer M, Johnson D, Josifova D, Kant SG, Kini U, Lachlan K, Lam W, Lees M, Lynch S, Maitz S, McKee S, Metcalfe K, Nathanson K, Ockeloen CW, Parker MJ, Pierson TM, Rahikkala E, Sanchez-Lara PA, Spano A, Van Maldergem L, Cole T, Douzgou S, Tatton-Brown K. The CHD8 overgrowth syndrome: A detailed evaluation of an emerging overgrowth phenotype in 27 patients. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:557-564. [PMID: 31721432 DOI: 10.1002/ajmg.c.31749] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/10/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022]
Abstract
CHD8 has been reported as an autism susceptibility/intellectual disability gene but emerging evidence suggests that it additionally causes an overgrowth phenotype. This study reports 27 unrelated patients with pathogenic or likely pathogenic CHD8 variants (25 null variants, two missense variants) and a male:female ratio of 21:6 (3.5:1, p < .01). All patients presented with intellectual disability, with 85% in the mild or moderate range, and 85% had a height and/or head circumference ≥2 standard deviations above the mean, meeting our clinical criteria for overgrowth. Behavioral problems were reported in the majority of patients (78%), with over half (56%) either formally diagnosed with an autistic spectrum disorder or described as having autistic traits. Additional clinical features included neonatal hypotonia (33%), and less frequently seizures, pes planus, scoliosis, fifth finger clinodactyly, umbilical hernia, and glabellar hemangioma (≤15% each). These results suggest that, in addition to its established link with autism and intellectual disability, CHD8 causes an overgrowth phenotype, and should be considered in the differential diagnosis of patients presenting with increased height and/or head circumference in association with intellectual disability.
Collapse
Affiliation(s)
- Philip J Ostrowski
- South West Thames Regional Genetics Service, St George's University NHS Foundation Trust, London, UK
| | - Anna Zachariou
- Division of Clinical Studies, Institute of Cancer Research, London, UK
| | - Chey Loveday
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | | | - Marta Bertoli
- Northern Genetics Service, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John Dean
- North of Scotland Medical Genetic Service, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Andrew G L Douglas
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK.,Human Development and Health, Duthie Building, University of Southampton, Southampton, UK
| | - Ian Ellis
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Alison Foster
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.,West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - John M Graham
- David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, California.,Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jennifer Hague
- East of England Regional Medical Genetics Service, Addenbrooke's Hospital, Cambridge, UK
| | | | - Mariette Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Diana Johnson
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Dragana Josifova
- Clinical Genetics Department, Guy's and St. Thomas NHS Trust, London, UK
| | - Sarina G Kant
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Katherine Lachlan
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Wayne Lam
- Department of Clinical Genetics, Western General Hospital, Edinburgh, UK
| | - Melissa Lees
- Clinical Genetics Unit, Great Ormond Street Hospital, London, UK
| | - Sally Lynch
- Temple Street Children's Hospital, Dublin, Ireland
| | - Silvia Maitz
- Pediatric Genetics Unit, MBBM Foundation, S. Gerardo Hospital, Monza, Italy
| | - Shane McKee
- Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust, Belfast City Hospital, Belfast, UK
| | - Kay Metcalfe
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Katherine Nathanson
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charlotte W Ockeloen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Michael J Parker
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Tyler M Pierson
- Department of Pediatrics and Neurology, and the Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Elisa Rahikkala
- Department of Clinical Genetics, PEDEGO Research Unit and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Pedro A Sanchez-Lara
- David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, California.,Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Alice Spano
- Pediatric Genetics Unit, MBBM Foundation, S. Gerardo Hospital, Monza, Italy
| | - Lionel Van Maldergem
- Centre de Génétique Humaine, Université de Franche-Comté, Besançon, France.,Clinical Investigation Center 1431, National Institute of Health & Medical Research (INSERM), Besançon, France
| | - Trevor Cole
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Sofia Douzgou
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK.,Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Katrina Tatton-Brown
- South West Thames Regional Genetics Service, St George's University NHS Foundation Trust, London, UK.,St George's University of London, London, UK
| |
Collapse
|
27
|
Cytrynbaum C, Choufani S, Weksberg R. Epigenetic signatures in overgrowth syndromes: Translational opportunities. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:491-501. [PMID: 31828978 DOI: 10.1002/ajmg.c.31745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 12/21/2022]
Abstract
In recent years, numerous overgrowth syndromes have been found to be caused by pathogenic DNA sequence variants in "epigenes," genes that encode proteins that function in epigenetic regulation. Epigenetic marks, including DNA methylation (DNAm), histone modifications and chromatin conformation, have emerged as a vital genome-wide regulatory mechanism that modulate the transcriptome temporally and spatially to drive normal developmental and cellular processes. Evidence suggests that epigenetic marks are layered and engage in crosstalk, in that disruptions of any one component of the epigenetic machinery impact the others. This interdependence of epigenetic marks underpins the recent identification of gene-specific DNAm signatures for a variety of disorders caused by pathogenic variants in epigenes. Here, we discuss the power of DNAm signatures with respect to furthering our understanding of disease pathophysiology, enhancing the efficacy of molecular diagnostics and identifying new targets for therapeutics of overgrowth syndromes. These findings highlight the promise of the field of epigenomics to provide unprecedented insights into disease mechanisms generating a host of opportunities to advance precision medicine.
Collapse
Affiliation(s)
- Cheryl Cytrynbaum
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario
| | - Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario.,Department of Pediatrics, University of Toronto, Toronto, Ontario.,Institute of Medical Science, University of Toronto, Toronto, Ontario
| |
Collapse
|
28
|
Douzgou S, Liang HW, Metcalfe K, Somarathi S, Tischkowitz M, Mohamed W, Kini U, McKee S, Yates L, Bertoli M, Lynch SA, Holder S, Banka S. The clinical presentation caused by truncating CHD8 variants. Clin Genet 2019; 96:72-84. [PMID: 31001818 DOI: 10.1111/cge.13554] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/29/2019] [Accepted: 04/10/2019] [Indexed: 02/02/2023]
Abstract
Variants in the chromodomain helicase DNA-binding protein 8 (CHD8) have been associated with intellectual disability (ID), autism spectrum disorders (ASDs) and overgrowth and CHD8 is one of the causative genes for OGID (overgrowth and ID). We investigated 25 individuals with CHD8 protein truncating variants (PTVs), including 10 previously unreported patients and found a male to female ratio of 2.7:1 (19:7) and a pattern of common features: macrocephaly (62.5%), tall stature (47%), developmental delay and/or intellectual disability (81%), ASDs (84%), sleep difficulties (50%), gastrointestinal problems (40%), and distinct facial features. Most of the individuals in this cohort had moderate-to-severe ID, some had regression of speech (37%), seizures (27%) and hypotonia (27%) and two individuals were non-ambulant. Our study shows that haploinsufficiency of CHD8 is associated with a distinctive OGID syndrome with pronounced autistic traits and supports a sex-dependent penetrance of CHD8 PTVs in humans.
Collapse
Affiliation(s)
- Sofia Douzgou
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK.,Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Hui Wen Liang
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Kay Metcalfe
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK.,Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Suresh Somarathi
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Marc Tischkowitz
- Academic Department of Medical Genetics, Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Cambridge, UK
| | - Wafik Mohamed
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Shane McKee
- Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust, Belfast City Hospital, Belfast, UK
| | - Laura Yates
- West of Scotland Regional Genetics Service, NHS Greater Glasgow and Clyde, Institute of Medical Genetics, Yorkhill Hospital, Glasgow, UK.,KwaZulu-Natal Research and Innovation Sequencing Platform (KRISP), University of KwaZulu-Natal, Durban, South Africa
| | - Marta Bertoli
- West of Scotland Regional Genetics Service, NHS Greater Glasgow and Clyde, Institute of Medical Genetics, Yorkhill Hospital, Glasgow, UK
| | - Sally Ann Lynch
- Department of Clinical Genetics, Temple Street Children's Hospital, Dublin, Ireland
| | - Susan Holder
- North West Thames Regional Genetics Service, London, UK
| | -
- Wellcome Sanger Institute, Cambridge, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK.,Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|