1
|
Baumann AA, Knol LI, Arlt M, Hutschenreiter T, Richter A, Widmann TJ, Franke M, Hackmann K, Winkler S, Richter D, Spier I, Aretz S, Aust D, Porrmann J, William D, Schröck E, Glimm H, Jahn A. Long-read genome and RNA sequencing resolve a pathogenic intronic germline LINE-1 insertion in APC. NPJ Genom Med 2025; 10:30. [PMID: 40180948 PMCID: PMC11968988 DOI: 10.1038/s41525-025-00485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Familial adenomatous polyposis (FAP) is caused by pathogenic germline variants in the tumor suppressor gene APC. Confirmation of diagnosis was not achieved by cancer gene panel and exome sequencing or custom array-CGH in a family with suspected FAP across five generations. Long-read genome sequencing (PacBio), short-read genome sequencing (Illumina), short-read RNA sequencing, and further validations were performed in different tissues of multiple family members. Long-read genome sequencing resolved a 6 kb full-length intronic insertion of a heterozygous LINE-1 element between exons 7 and 8 of APC that could be detected but not fully resolved by short-read genome sequencing. Targeted RNA analysis revealed aberrant splicing resulting in the formation of a pseudo-exon with a premature stop codon. The variant segregated with the phenotype in several family members allowing its evaluation as likely pathogenic. This study supports the utility of long-read DNA sequencing and complementary RNA approaches to tackle unsolved cases of hereditary disease.
Collapse
Affiliation(s)
- Alexandra A Baumann
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany
- National Center for Tumor Diseases (NCT), NCT/UCC Dresden,, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany
| | - Lisanne I Knol
- National Center for Tumor Diseases (NCT), NCT/UCC Dresden,, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Department of Translational Medical Oncology, NCT Dresden and DKFZ, Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Marie Arlt
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany
- ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany
| | - Tim Hutschenreiter
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany
- ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany
| | - Anja Richter
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany
- National Center for Tumor Diseases (NCT), NCT/UCC Dresden,, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany
| | - Thomas J Widmann
- National Center for Tumor Diseases (NCT), NCT/UCC Dresden,, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), PTS Granada, managed by Fundación Pública Andaluza Progreso y Salud (FPS), Granada, Spain
| | - Marcus Franke
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany
- ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany
| | - Karl Hackmann
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany
- ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Daniela Richter
- National Center for Tumor Diseases (NCT), NCT/UCC Dresden,, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Department of Translational Medical Oncology, NCT Dresden and DKFZ, Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Isabel Spier
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Stefan Aretz
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Daniela Aust
- Institute of Pathology, University Hospital Carl Gustav Carus at TUD Dresden University, Dresden, Germany
- Tumor- and Normal Tissue Bank of the University Cancer Center (UCC), University Hospital Carl Gustav Carus, Medical Faculty, TUD Dresden University of Technology, Dresden, Germany
| | - Joseph Porrmann
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany
- ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany
| | - Doreen William
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany
- ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany
| | - Evelin Schröck
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany
- National Center for Tumor Diseases (NCT), NCT/UCC Dresden,, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hanno Glimm
- National Center for Tumor Diseases (NCT), NCT/UCC Dresden,, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Department of Translational Medical Oncology, NCT Dresden and DKFZ, Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Personalized Oncology, NCT Dresden and University Hospital Carl Gustav Carus, Faculty of Medicine and TUD Dresden University of Technology, Dresden, Germany
- Translational Functional Cancer Genomics, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - Arne Jahn
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany.
- National Center for Tumor Diseases (NCT), NCT/UCC Dresden,, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
- ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany.
- German Cancer Consortium (DKTK), Dresden, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
2
|
Sinha S, Rabea F, Ramaswamy S, Chekroun I, El Naofal M, Jain R, Alfalasi R, Halabi N, Yaslam S, Sheikh Hassani M, Shenbagam S, Taylor A, Uddin M, Almarri MA, Du Plessis S, Alsheikh-Ali A, Abou Tayoun A. Long read sequencing enhances pathogenic and novel variation discovery in patients with rare diseases. Nat Commun 2025; 16:2500. [PMID: 40087273 PMCID: PMC11909103 DOI: 10.1038/s41467-025-57695-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 02/28/2025] [Indexed: 03/17/2025] Open
Abstract
With ongoing improvements in the detection of complex genomic and epigenomic variations, long-read sequencing (LRS) technologies could serve as a unified platform for clinical genetic testing, particularly in rare disease settings, where nearly half of patients remain undiagnosed using existing technologies. Here, we report a simplified funnel-down filtration strategy aimed at enhancing the identification of small and large deleterious variants as well as abnormal episignature disease profiles from whole-genome LRS data. This approach detected all pathogenic single nucleotide, structural, and methylation variants in a positive control set (N = 76) including an independent sample set with known methylation profiles (N = 57). When applied to patients who previously had negative short-read testing (N = 51), additional diagnoses were uncovered in 10% of cases, including a methylation profile at the spinal muscular atrophy locus utilized for diagnosing this life-threatening, yet treatable, condition. Our study illustrates the utility of LRS in clinical genetic testing and the discovery of novel disease variation.
Collapse
Affiliation(s)
- Shruti Sinha
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, UAE.
| | - Fatma Rabea
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | | | - Ikram Chekroun
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Maha El Naofal
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, UAE
| | - Ruchi Jain
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, UAE
| | - Roudha Alfalasi
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, UAE
| | - Nour Halabi
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, UAE
| | - Sawsan Yaslam
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, UAE
| | | | | | - Alan Taylor
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, UAE
| | - Mohammed Uddin
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Mohamed A Almarri
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
- Genome Center, Department of Forensic Science and Criminology, Dubai Police GHQ, Dubai, UAE
| | - Stefan Du Plessis
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Alawi Alsheikh-Ali
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Ahmad Abou Tayoun
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, UAE.
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE.
| |
Collapse
|
3
|
Li R, Chu H, Gao K, Luo H, Jiang Y. SUMMER: an integrated nanopore sequencing pipeline for variants detection and clinical annotation on the human genome. Funct Integr Genomics 2025; 25:21. [PMID: 39836277 PMCID: PMC11750885 DOI: 10.1007/s10142-025-01534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Long-read sequencing has emerged as a transformative technology in recent years, offering significant potential for the molecular diagnosis of unresolved genetic disorders. Despite its promise, the comprehensive detection and clinical annotation of genomic variants remain intricate and technically demanding. We present SUMMER, an integrated and structured workflow specifically designed to process raw Nanopore sequencing reads. SUMMER facilitates an in-depth analysis of multiple variant types, including SNV, SV, short tandem repeat and mobile element insertion. For clinical applications, SUMMER employs SvAnna to prioritize SV candidates based on phenotype relevance and utilizes Straglr to provide reference distributions of non-pathogenic unit counts for 55 known pathogenic short tandem repeats. By addressing critical challenges in variant detection and annotation, SUMMER seeks to advance the clinical utility of long-read sequencing in diagnostic genomics. SUMMER is available on the web at https://github.com/carolhuaxia/summer .
Collapse
Affiliation(s)
- Renqiuguo Li
- Children's Medical Center, Peking University First Hospital, No.5 Le Yuan Road, Daxing District, 100034, Beijing, China
| | - Hongyuan Chu
- Children's Medical Center, Peking University First Hospital, No.5 Le Yuan Road, Daxing District, 100034, Beijing, China
| | - Kai Gao
- Children's Medical Center, Peking University First Hospital, No.5 Le Yuan Road, Daxing District, 100034, Beijing, China
| | - Huaxia Luo
- Children's Medical Center, Peking University First Hospital, No.5 Le Yuan Road, Daxing District, 100034, Beijing, China.
| | - Yuwu Jiang
- Children's Medical Center, Peking University First Hospital, No.5 Le Yuan Road, Daxing District, 100034, Beijing, China.
| |
Collapse
|
4
|
Mai J, Duan J, Chen X, Liu L, Liang D, Fu T, Lu G, Chan WY, Luo X, Wen F, Liao J, Li Z, Lu X. Optical genome mapping: Unraveling complex variations and enabling precise diagnosis in dystrophinopathy. Ann Clin Transl Neurol 2025; 12:43-55. [PMID: 39575648 PMCID: PMC11752086 DOI: 10.1002/acn3.52245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 01/06/2025] Open
Abstract
OBJECTIVE Approximately 7% of individuals with dystrophinopathy remain undiagnosed at the genetic level using conventional genetic tests like multiplex ligation-dependent probe amplification (MLPA) and next-generation sequencing (NGS). We used the optical genome mapping (OGM) technology to detect and analyze uncommon mutations or structural variations (SVs) within the DMD gene, thus contributing to more precise clinical diagnoses. METHODS We herein included eight patients with dystrophinopathy (six males and two females) in whom pathogenic variants of the DMD gene could not be accurately identified using MLPA and NGS. Clinical data were collected for all patients and genetic testing was performed using OGM. RESULTS Conventional methods (MLPA and NGS) failed to detect pathogenic mutations in six out of eight individuals (four males and two females). OGM testing uncovered rare mutations in the DMD gene in four patients, including a pericentric inversion in chromosome X (one male), a complex rearrangement (one male), and two X-autosome translocations (two females). No mutations were detected in the remaining two male patients. OGM also accurately mapped balanced X-autosome translocations in female patients, defining chromosomal breakpoints. In the other two male patients in whom MLPA suggested non-contiguous exon duplications or deletions in the DMD gene, OGM characterized one case as a complex rearrangement and the other as a deletion within the DMD gene. INTERPRETATION OGM is a valuable diagnostic tool for dystrophinopathy patients with negative results from conventional genetic tests. It can effectively elucidate complex SVs and pinpoint breakpoints in X-autosomal translocations in female patients, facilitating prompt and appropriate interventions.
Collapse
Affiliation(s)
- Jiahui Mai
- Department of NeurologyShenzhen Children's Hospital of China Medical UniversityNo. 7019 Yitian Road, Futian DistrictShenzhen518038GuangdongPR China
| | - Jing Duan
- Department of NeurologyShenzhen Children's HospitalNo. 7019 Yitian Road, Futian DistrictShenzhen518038GuangdongPR China
| | - Xiaoyu Chen
- Department of NeurologyShenzhen Children's HospitalNo. 7019 Yitian Road, Futian DistrictShenzhen518038GuangdongPR China
| | - Liqin Liu
- Department of NeurologyShenzhen Children's HospitalNo. 7019 Yitian Road, Futian DistrictShenzhen518038GuangdongPR China
| | - Dachao Liang
- Shenzhen A‐Smart Medical Research Center, Room 516Shenzhen Research Institute of the Chinese University of Hong Kong10, 2nd Yuexing Road, Nanshan DistrictShenzhen518000GuangdongChina
| | - Tao Fu
- Shenzhen A‐Smart Medical Research Center, Room 516Shenzhen Research Institute of the Chinese University of Hong Kong10, 2nd Yuexing Road, Nanshan DistrictShenzhen518000GuangdongChina
| | - Gang Lu
- The Chinese University of Hong Kong‐Shandong University (CUHK‐SDU) Joint Laboratory on Reproductive GeneticsSchool of Biomedical Sciences, The Chinese University of Hong KongHong KongHong Kong
| | - Wai Yee Chan
- The Chinese University of Hong Kong‐Shandong University (CUHK‐SDU) Joint Laboratory on Reproductive GeneticsSchool of Biomedical Sciences, The Chinese University of Hong KongHong KongHong Kong
| | - Xufeng Luo
- Department of NeurologyShenzhen Children's HospitalNo. 7019 Yitian Road, Futian DistrictShenzhen518038GuangdongPR China
| | - Feiqiu Wen
- Department of NeurologyShenzhen Children's HospitalNo. 7019 Yitian Road, Futian DistrictShenzhen518038GuangdongPR China
| | - Jianxiang Liao
- Department of NeurologyShenzhen Children's HospitalNo. 7019 Yitian Road, Futian DistrictShenzhen518038GuangdongPR China
| | - Zhuo Li
- Shenzhen A‐Smart Medical Research Center, Room 516Shenzhen Research Institute of the Chinese University of Hong Kong10, 2nd Yuexing Road, Nanshan DistrictShenzhen518000GuangdongChina
| | - Xinguo Lu
- Department of NeurologyShenzhen Children's HospitalNo. 7019 Yitian Road, Futian DistrictShenzhen518038GuangdongPR China
| |
Collapse
|
5
|
Pei Y, Tanguy M, Giess A, Dixit A, Wilson LC, Gibbons RJ, Twigg SRF, Elgar G, Wilkie AOM. A Comparison of Structural Variant Calling from Short-Read and Nanopore-Based Whole-Genome Sequencing Using Optical Genome Mapping as a Benchmark. Genes (Basel) 2024; 15:925. [PMID: 39062704 PMCID: PMC11276380 DOI: 10.3390/genes15070925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The identification of structural variants (SVs) in genomic data represents an ongoing challenge because of difficulties in reliable SV calling leading to reduced sensitivity and specificity. We prepared high-quality DNA from 9 parent-child trios, who had previously undergone short-read whole-genome sequencing (Illumina platform) as part of the Genomics England 100,000 Genomes Project. We reanalysed the genomes using both Bionano optical genome mapping (OGM; 8 probands and one trio) and Nanopore long-read sequencing (Oxford Nanopore Technologies [ONT] platform; all samples). To establish a "truth" dataset, we asked whether rare proband SV calls (n = 234) made by the Bionano Access (version 1.6.1)/Solve software (version 3.6.1_11162020) could be verified by individual visualisation using the Integrative Genomics Viewer with either or both of the Illumina and ONT raw sequence. Of these, 222 calls were verified, indicating that Bionano OGM calls have high precision (positive predictive value 95%). We then asked what proportion of the 222 true Bionano SVs had been identified by SV callers in the other two datasets. In the Illumina dataset, sensitivity varied according to variant type, being high for deletions (115/134; 86%) but poor for insertions (13/58; 22%). In the ONT dataset, sensitivity was generally poor using the original Sniffles variant caller (48% overall) but improved substantially with use of Sniffles2 (36/40; 90% and 17/23; 74% for deletions and insertions, respectively). In summary, we show that the precision of OGM is very high. In addition, when applying the Sniffles2 caller, the sensitivity of SV calling using ONT long-read sequence data outperforms Illumina sequencing for most SV types.
Collapse
Affiliation(s)
- Yang Pei
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; (Y.P.); (S.R.F.T.)
| | - Melanie Tanguy
- Genomics England Limited, One Canada Square, London E14 5AB, UK
| | - Adam Giess
- Genomics England Limited, One Canada Square, London E14 5AB, UK
| | - Abhijit Dixit
- Clinical Genetics Service, Nottingham University Hospitals NHS Foundation Trust, City Hospital, Nottingham NG5 1PB, UK
| | - Louise C. Wilson
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Richard J. Gibbons
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Stephen R. F. Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; (Y.P.); (S.R.F.T.)
| | - Greg Elgar
- Genomics England Limited, One Canada Square, London E14 5AB, UK
| | - Andrew O. M. Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; (Y.P.); (S.R.F.T.)
| |
Collapse
|
6
|
Pan C, Reinert K. Leaf: an ultrafast filter for population-scale long-read SV detection. Genome Biol 2024; 25:155. [PMID: 38872200 PMCID: PMC11170821 DOI: 10.1186/s13059-024-03297-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
Advances in sequencing technology have facilitated population-scale long-read structural variant (SV) detection. Arguably, one of the main challenges in population-scale analysis is developing effective computational pipelines. Here, we present a new filter-based pipeline for population-scale long-read SV detection. It better captures SV signals at an early stage than conventional assembly-based or alignment-based pipelines. Assessments in this work suggest that the filter-based pipeline helps better resolve intra-read rearrangements. Moreover, it is also more computationally efficient than conventional pipelines and thus may facilitate population-scale long-read applications.
Collapse
Affiliation(s)
- Chenxu Pan
- Department of Mathematics and Computer Science, Freie Universität Berlin, Takustr. 9, 14195, Berlin, Germany.
| | - Knut Reinert
- Department of Mathematics and Computer Science, Freie Universität Berlin, Takustr. 9, 14195, Berlin, Germany
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| |
Collapse
|
7
|
Szakállas N, Barták BK, Valcz G, Nagy ZB, Takács I, Molnár B. Can long-read sequencing tackle the barriers, which the next-generation could not? A review. Pathol Oncol Res 2024; 30:1611676. [PMID: 38818014 PMCID: PMC11137202 DOI: 10.3389/pore.2024.1611676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
The large-scale heterogeneity of genetic diseases necessitated the deeper examination of nucleotide sequence alterations enhancing the discovery of new targeted drug attack points. The appearance of new sequencing techniques was essential to get more interpretable genomic data. In contrast to the previous short-reads, longer lengths can provide a better insight into the potential health threatening genetic abnormalities. Long-reads offer more accurate variant identification and genome assembly methods, indicating advances in nucleotide deflect-related studies. In this review, we introduce the historical background of sequencing technologies and show their benefits and limits, as well. Furthermore, we highlight the differences between short- and long-read approaches, including their unique advances and difficulties in methodologies and evaluation. Additionally, we provide a detailed description of the corresponding bioinformatics and the current applications.
Collapse
Affiliation(s)
- Nikolett Szakállas
- Department of Biological Physics, Faculty of Science, Eötvös Loránd University, Budapest, Hungary
| | - Barbara K. Barták
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Valcz
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
| | - Zsófia B. Nagy
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - István Takács
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Béla Molnár
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Su C, Chandradoss KR, Malachowski T, Boya R, Ryu HS, Brennand KJ, Phillips-Cremins JE. MASTR-seq: Multiplexed Analysis of Short Tandem Repeats with sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591790. [PMID: 38746155 PMCID: PMC11092654 DOI: 10.1101/2024.04.29.591790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
More than 60 human disorders have been linked to unstable expansion of short tandem repeat (STR) tracts. STR length and the extent of DNA methylation is linked to disease pathology and can be mosaic in a cell type-specific manner in several repeat expansion disorders. Mosaic phenomenon have been difficult to study to date due to technical bias intrinsic to repeat sequences and the need for multi-modal measurements at single-allele resolution. Nanopore long-read sequencing accurately measures STR length and DNA methylation in the same single molecule but is cost prohibitive for studies assessing a target locus across multiple experimental conditions or patient samples. Here, we describe MASTR-seq, M ultiplexed A nalysis of S hort T andem R epeats, for cost-effective, high-throughput, accurate, multi-modal measurements of DNA methylation and STR genotype at single-allele resolution. MASTR-seq couples long-read sequencing, Cas9-mediated target enrichment, and PCR-free multiplexed barcoding to achieve a >ten-fold increase in on-target read mapping for 8-12 pooled samples in a single MinION flow cell. We provide a detailed experimental protocol and computational tools and present evidence that MASTR-seq quantifies tract length and DNA methylation status for CGG and CAG STR loci in normal-length and mutation-length human cell lines. The MASTR-seq protocol takes approximately eight days for experiments and one additional day for data processing and analyses. Key points We provide a protocol for MASTR-seq: M ultiplexed A nalysis of S hort T andem R epeats using Cas9-mediated target enrichment and PCR-free, multiplexed nanopore sequencing. MASTR-seq achieves a >10-fold increase in on-target read proportion for highly repetitive, technically inaccessible regions of the genome relevant for human health and disease.MASTR-seq allows for high-throughput, efficient, accurate, and cost-effective measurement of STR length and DNA methylation in the same single allele for up to 8-12 samples in parallel in one Nanopore MinION flow cell.
Collapse
|
9
|
Olivucci G, Iovino E, Innella G, Turchetti D, Pippucci T, Magini P. Long read sequencing on its way to the routine diagnostics of genetic diseases. Front Genet 2024; 15:1374860. [PMID: 38510277 PMCID: PMC10951082 DOI: 10.3389/fgene.2024.1374860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The clinical application of technological progress in the identification of DNA alterations has always led to improvements of diagnostic yields in genetic medicine. At chromosome side, from cytogenetic techniques evaluating number and gross structural defects to genomic microarrays detecting cryptic copy number variants, and at molecular level, from Sanger method studying the nucleotide sequence of single genes to the high-throughput next-generation sequencing (NGS) technologies, resolution and sensitivity progressively increased expanding considerably the range of detectable DNA anomalies and alongside of Mendelian disorders with known genetic causes. However, particular genomic regions (i.e., repetitive and GC-rich sequences) are inefficiently analyzed by standard genetic tests, still relying on laborious, time-consuming and low-sensitive approaches (i.e., southern-blot for repeat expansion or long-PCR for genes with highly homologous pseudogenes), accounting for at least part of the patients with undiagnosed genetic disorders. Third generation sequencing, generating long reads with improved mappability, is more suitable for the detection of structural alterations and defects in hardly accessible genomic regions. Although recently implemented and not yet clinically available, long read sequencing (LRS) technologies have already shown their potential in genetic medicine research that might greatly impact on diagnostic yield and reporting times, through their translation to clinical settings. The main investigated LRS application concerns the identification of structural variants and repeat expansions, probably because techniques for their detection have not evolved as rapidly as those dedicated to single nucleotide variants (SNV) identification: gold standard analyses are karyotyping and microarrays for balanced and unbalanced chromosome rearrangements, respectively, and southern blot and repeat-primed PCR for the amplification and sizing of expanded alleles, impaired by limited resolution and sensitivity that have not been significantly improved by the advent of NGS. Nevertheless, more recently, with the increased accuracy provided by the latest product releases, LRS has been tested also for SNV detection, especially in genes with highly homologous pseudogenes and for haplotype reconstruction to assess the parental origin of alleles with de novo pathogenic variants. We provide a review of relevant recent scientific papers exploring LRS potential in the diagnosis of genetic diseases and its potential future applications in routine genetic testing.
Collapse
Affiliation(s)
- Giulia Olivucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - Emanuela Iovino
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Innella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Daniela Turchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pamela Magini
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
10
|
Tachikawa K, Shimizu T, Imai T, Ko R, Kawai Y, Omae Y, Tokunaga K, Frith MC, Yamano Y, Mitsuhashi S. Cost-Effective Cas9-Mediated Targeted Sequencing of Spinocerebellar Ataxia Repeat Expansions. J Mol Diagn 2024; 26:85-95. [PMID: 38008286 DOI: 10.1016/j.jmoldx.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Hereditary repeat diseases are caused by an abnormal expansion of short tandem repeats in the genome. Among them, spinocerebellar ataxia (SCA) is a heterogeneous disease, and currently, 16 responsible repeats are known. Genetic diagnosis is obtained by analyzing the number of repeats through separate testing of each repeat. Although simultaneous detection of candidate repeats using current massively parallel sequencing technologies has been developed to avoid complicated multiple experiments, these methods are generally expensive. This study developed a cost-effective SCA repeat panel [Flongle SCA repeat panel sequencing (FLO-SCAp)] using Cas9-mediated targeted long-read sequencing and the smallest long-read sequencing apparatus, Flongle. This panel enabled the detection of repeat copy number changes, internal repeat sequences, and DNA methylation in seven patients with different repeat expansion diseases. The median (interquartile range) values of coverage and on-target rate were 39.5 (12 to 72) and 11.6% (7.5% to 16.5%), respectively. This approach was validated by comparing repeat copy number changes measured by FLO-SCAp and short-read whole-genome sequencing. A high correlation was observed between FLO-SCAp and short-read whole-genome sequencing when the repeat length was ≤250 bp (r = 0.98; P < 0.001). Thus, FLO-SCAp represents the most cost-effective method for conducting multiplex testing of repeats and can serve as the first-line diagnostic tool for SCA.
Collapse
Affiliation(s)
- Keiji Tachikawa
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Takahiro Shimizu
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Takeshi Imai
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Riyoko Ko
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yosuke Omae
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Martin C Frith
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan; Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Yoshihisa Yamano
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan; Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Satomi Mitsuhashi
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan.
| |
Collapse
|
11
|
Mahmoud M, Huang Y, Garimella K, Audano PA, Wan W, Prasad N, Handsaker RE, Hall S, Pionzio A, Schatz MC, Talkowski ME, Eichler EE, Levy SE, Sedlazeck FJ. Utility of long-read sequencing for All of Us. Nat Commun 2024; 15:837. [PMID: 38281971 PMCID: PMC10822842 DOI: 10.1038/s41467-024-44804-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/03/2024] [Indexed: 01/30/2024] Open
Abstract
The All of Us (AoU) initiative aims to sequence the genomes of over one million Americans from diverse ethnic backgrounds to improve personalized medical care. In a recent technical pilot, we compare the performance of traditional short-read sequencing with long-read sequencing in a small cohort of samples from the HapMap project and two AoU control samples representing eight datasets. Our analysis reveals substantial differences in the ability of these technologies to accurately sequence complex medically relevant genes, particularly in terms of gene coverage and pathogenic variant identification. We also consider the advantages and challenges of using low coverage sequencing to increase sample numbers in large cohort analysis. Our results show that HiFi reads produce the most accurate results for both small and large variants. Further, we present a cloud-based pipeline to optimize SNV, indel and SV calling at scale for long-reads analysis. These results lead to widespread improvements across AoU.
Collapse
Affiliation(s)
- M Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Y Huang
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, 02141, USA
| | - K Garimella
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, 02141, USA
| | - P A Audano
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - W Wan
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, 02141, USA
| | - N Prasad
- Discovery Life Sciences, Huntsville, AL, 35806, USA
| | - R E Handsaker
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02141, USA
| | - S Hall
- Discovery Life Sciences, Huntsville, AL, 35806, USA
| | - A Pionzio
- Discovery Life Sciences, Huntsville, AL, 35806, USA
| | - M C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - M E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02141, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - E E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - S E Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - F J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Department of Computer Science, Rice University, Houston, TX, USA.
| |
Collapse
|
12
|
Strych L, Černá M, Hejnalová M, Zavoral T, Komrsková P, Tejcová J, Bitar I, Sládková E, Sýkora J, Šubrt I. Targeted long-read sequencing identified a causal structural variant in X-linked nephrogenic diabetes insipidus. BMC Med Genomics 2024; 17:29. [PMID: 38254165 PMCID: PMC10804598 DOI: 10.1186/s12920-024-01801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND X-linked nephrogenic diabetes insipidus (NDI) is a rare genetic renal disease caused by pathogenic variants in the AVPR2 gene. Single nucleotide variants and small insertions/deletions in AVPR2 are reliably detected by routine clinical sequencing. Nevertheless, structural variants involving AVPR2 are challenging to identify accurately by conventional genetic testing. Here, we report a novel deletion of AVPR2 in a Czech family identified for the first time by targeted long-read sequencing (T-LRS). METHODS A male proband with X-linked NDI underwent clinical sequencing of the AVPR2 gene that failed and thus indicated possible whole-gene deletion. Therefore, PCR mapping and subsequent targeted long-read sequencing (T-LRS) using a Pacific Biosciences sequencer were applied to search for the suspected deletion. To validate the deletion breakpoints and prove variant segregation in the family with X-linked NDI, Sanger sequencing of the deletion junction was performed. Quantitative real-time PCR was further carried out to confirm the carrier status of heterozygous females. RESULTS By T-LRS, a novel 7.5 kb deletion of AVPR2 causing X-linked NDI in the proband was precisely identified. Sanger sequencing of the deletion junction confirmed the variant breakpoints and detected the deletion in the probands´ mother, maternal aunt, and maternal cousin with X-linked NDI. The carrier status in heterozygous females was further validated by quantitative real-time PCR. CONCLUSIONS Identifying the 7.5 kb deletion gave a precise molecular diagnosis for the proband, enabled genetic counselling and genetic testing for the family, and further expanded the spectrum of structural variants causing X-linked NDI. Our results also show that T-LRS has significant potential for accurately identifying putative structural variants.
Collapse
Affiliation(s)
- Lukáš Strych
- Department of Medical Genetics, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic.
| | - Monika Černá
- Department of Medical Genetics, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic
| | - Markéta Hejnalová
- Department of Medical Genetics, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic
| | - Tomáš Zavoral
- Department of Medical Genetics, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic
| | - Pavla Komrsková
- Department of Medical Genetics, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic
| | - Jitka Tejcová
- Department of Medical Genetics, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic
| | - Ibrahim Bitar
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Microbiology, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic
| | - Eva Sládková
- Department of Pediatrics, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic
| | - Josef Sýkora
- Department of Pediatrics, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic
| | - Ivan Šubrt
- Department of Medical Genetics, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic.
| |
Collapse
|
13
|
Yeetong P, Dembélé ME, Pongpanich M, Cissé L, Srichomthong C, Maiga AB, Dembélé K, Assawapitaksakul A, Bamba S, Yalcouyé A, Diarra S, Mefoung SE, Rakwongkhachon S, Traoré O, Tongkobpetch S, Fischbeck KH, Gahl WA, Guinto CO, Shotelersuk V, Landouré G. Pentanucleotide Repeat Insertions in RAI1 Cause Benign Adult Familial Myoclonic Epilepsy Type 8. Mov Disord 2024; 39:164-172. [PMID: 37994247 PMCID: PMC10872918 DOI: 10.1002/mds.29654] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Benign adult familial myoclonic epilepsy (BAFME) is an autosomal dominant disorder characterized by cortical tremors and seizures. Six types of BAFME, all caused by pentanucleotide repeat expansions in different genes, have been reported. However, several other BAFME cases remain with no molecular diagnosis. OBJECTIVES We aim to characterize clinical features and identify the mutation causing BAFME in a large Malian family with 10 affected members. METHODS Long-read whole genome sequencing, repeat-primed polymerase chain reaction and RNA studies were performed. RESULTS We identified TTTTA repeat expansions and TTTCA repeat insertions in intron 4 of the RAI1 gene that co-segregated with disease status in this family. TTTCA repeats were absent in 200 Malian controls. In the affected individuals, we found a read with only nine TTTCA repeat units and somatic instability. The RAI1 repeat expansions cause the only BAFME type in which the disease-causing repeats are in a gene associated with a monogenic disorder in the haploinsufficiency state (ie, Smith-Magenis syndrome [SMS]). Nevertheless, none of the Malian patients exhibited symptoms related to SMS. Moreover, leukocyte RNA levels of RAI1 in six Malian BAFME patients were no different from controls. CONCLUSIONS These findings establish a new type of BAFME, BAFME8, in an African family and suggest that haploinsufficiency is unlikely to be the main pathomechanism of BAFME. © 2023 International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Patra Yeetong
- Division of Human Genetics, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Monnat Pongpanich
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Lassana Cissé
- Service de Neurologie, Centre Hospitalier Universitaire du Point G, Bamako, Mali
| | - Chalurmpon Srichomthong
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok 10330, Thailand
| | | | | | - Adjima Assawapitaksakul
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok 10330, Thailand
| | - Salia Bamba
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
| | | | - Salimata Diarra
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
- Yale University, Pediatric Genomics Discovery Program, Department of Pediatrics, New Haven, CT, United States
- Neurogenetics Branch, NINDS, NIH, Bethesda, MD, United States
| | | | - Supphakorn Rakwongkhachon
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok 10330, Thailand
| | - Oumou Traoré
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
| | - Siraprapa Tongkobpetch
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok 10330, Thailand
| | | | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Cheick O Guinto
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
- Service de Neurologie, Centre Hospitalier Universitaire du Point G, Bamako, Mali
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok 10330, Thailand
| | - Guida Landouré
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
- Service de Neurologie, Centre Hospitalier Universitaire du Point G, Bamako, Mali
| |
Collapse
|
14
|
LoTempio J, Delot E, Vilain E. Benchmarking long-read genome sequence alignment tools for human genomics applications. PeerJ 2023; 11:e16515. [PMID: 38130927 PMCID: PMC10734412 DOI: 10.7717/peerj.16515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023] Open
Abstract
Background The utility of long-read genome sequencing platforms has been shown in many fields including whole genome assembly, metagenomics, and amplicon sequencing. Less clear is the applicability of long reads to reference-guided human genomics, which is the foundation of genomic medicine. Here, we benchmark available platform-agnostic alignment tools on datasets from nanopore and single-molecule real-time platforms to understand their suitability in producing a genome representation. Results For this study, we leveraged publicly-available data from sample NA12878 generated on Oxford Nanopore and sample NA24385 on Pacific Biosciences platforms. We employed state of the art sequence alignment tools including GraphMap2, long-read aligner (LRA), Minimap2, CoNvex Gap-cost alignMents for Long Reads (NGMLR), and Winnowmap2. Minimap2 and Winnowmap2 were computationally lightweight enough for use at scale, while GraphMap2 was not. NGMLR took a long time and required many resources, but produced alignments each time. LRA was fast, but only worked on Pacific Biosciences data. Each tool widely disagreed on which reads to leave unaligned, affecting the end genome coverage and the number of discoverable breakpoints. No alignment tool independently resolved all large structural variants (1,001-100,000 base pairs) present in the Database of Genome Variants (DGV) for sample NA12878 or the truthset for NA24385. Conclusions These results suggest a combined approach is needed for LRS alignments for human genomics. Specifically, leveraging alignments from three tools will be more effective in generating a complete picture of genomic variability. It should be best practice to use an analysis pipeline that generates alignments with both Minimap2 and Winnowmap2 as they are lightweight and yield different views of the genome. Depending on the question at hand, the data available, and the time constraints, NGMLR and LRA are good options for a third tool. If computational resources and time are not a factor for a given case or experiment, NGMLR will provide another view, and another chance to resolve a case. LRA, while fast, did not work on the nanopore data for our cluster, but PacBio results were promising in that those computations completed faster than Minimap2. Due to its significant burden on computational resources and slow run time, Graphmap2 is not an ideal tool for exploration of a whole human genome generated on a long-read sequencing platform.
Collapse
Affiliation(s)
- Jonathan LoTempio
- Institute for Clinical and Translational Science, University of California, Irvine, CA, United States of America
- International Research Laboratory (IRL2006) “Epigenetics, Data, Politics (EpiDaPo)”, Centre National de la Recherche Scientifique, Washington, DC, United States of America
| | - Emmanuele Delot
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, United States of America
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, United States of America
| | - Eric Vilain
- Institute for Clinical and Translational Science, University of California, Irvine, CA, United States of America
- International Research Laboratory (IRL2006) “Epigenetics, Data, Politics (EpiDaPo)”, Centre National de la Recherche Scientifique, Washington, DC, United States of America
| |
Collapse
|
15
|
Yu SY, Xi YL, Xu FQ, Zhang J, Liu YS. Application of long read sequencing in rare diseases: The longer, the better? Eur J Med Genet 2023; 66:104871. [PMID: 38832911 DOI: 10.1016/j.ejmg.2023.104871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 06/06/2024]
Abstract
Rare diseases encompass a diverse group of genetic disorders that affect a small proportion of the population. Identifying the underlying genetic causes of these conditions presents significant challenges due to their genetic heterogeneity and complexity. Conventional short-read sequencing (SRS) techniques have been widely used in diagnosing and investigating of rare diseases, with limitations due to the nature of short-read lengths. In recent years, long read sequencing (LRS) technologies have emerged as a valuable tool in overcoming these limitations. This minireview provides a concise overview of the applications of LRS in rare disease research and diagnosis, including the identification of disease-causing tandem repeat expansions, structural variations, and comprehensive analysis of pathogenic variants with LRS.
Collapse
Affiliation(s)
- Si-Yan Yu
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu, China; The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu-Lin Xi
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Fu-Qiang Xu
- Department of Gynecology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jian Zhang
- Department of Medical Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu, China.
| | - Yan-Shan Liu
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
16
|
Liu Y, Ren Y, Feng H, Wang Y, Yan L, Qiao J, Liu P. Development of preimplantation genetic testing for monogenic diseases in China. HUM FERTIL 2023; 26:879-886. [PMID: 38059330 DOI: 10.1080/14647273.2023.2284153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
Preimplantation genetic testing for monogenic diseases (PGT-M) can effectively interrupt the transmission of genetic diseases from parents to the offspring before pregnancy. In China, there are over ten million individuals afflicted with monogenic disorders. This literature review summarizes the development of PGT-M in China for the past 24 years, covering the general steps such as the indications and contraindications, genetic and reproductive counselling, biopsy methods, detecting techniques and strategies during PGT-M application in China. The ethical considerations of PGT-M are also be emphasized, including sexual selection, transferring for mosaic embryos, the three-parent baby, and the different opinions for serious adult-onset conditions. Some key policies of the Chinese government for the application of PGT-M are also considered. Methods for regulation of this technique, as well as specific management to increase the accuracy and reliability of PGT-M, are regarded as priority issues in China. The third-generation sequencing and variants testing from RNA level, and non-invasive preimplantation genetic testing using blastocoel fluid and free DNA particles within spent blastocyst medium might be potential techniques and strategies for PGT-M in future.
Collapse
Affiliation(s)
- Yujun Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, P. R. China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, P. R. China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, P. R. China
| | - Yixin Ren
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, P. R. China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, P. R. China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, P. R. China
| | - Hao Feng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, P. R. China
| | - Yuqian Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, P. R. China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, P. R. China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, P. R. China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, P. R. China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, P. R. China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, P. R. China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, P. R. China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, P. R. China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, P. R. China
| | - Ping Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, P. R. China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, P. R. China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, P. R. China
| |
Collapse
|
17
|
Sanchis-Juan A, Megy K, Stephens J, Armirola Ricaurte C, Dewhurst E, Low K, French CE, Grozeva D, Stirrups K, Erwood M, McTague A, Penkett CJ, Shamardina O, Tuna S, Daugherty LC, Gleadall N, Duarte ST, Hedrera-Fernández A, Vogt J, Ambegaonkar G, Chitre M, Josifova D, Kurian MA, Parker A, Rankin J, Reid E, Wakeling E, Wassmer E, Woods CG, Raymond FL, Carss KJ. Genome sequencing and comprehensive rare-variant analysis of 465 families with neurodevelopmental disorders. Am J Hum Genet 2023; 110:1343-1355. [PMID: 37541188 PMCID: PMC10432178 DOI: 10.1016/j.ajhg.2023.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 08/06/2023] Open
Abstract
Despite significant progress in unraveling the genetic causes of neurodevelopmental disorders (NDDs), a substantial proportion of individuals with NDDs remain without a genetic diagnosis after microarray and/or exome sequencing. Here, we aimed to assess the power of short-read genome sequencing (GS), complemented with long-read GS, to identify causal variants in participants with NDD from the National Institute for Health and Care Research (NIHR) BioResource project. Short-read GS was conducted on 692 individuals (489 affected and 203 unaffected relatives) from 465 families. Additionally, long-read GS was performed on five affected individuals who had structural variants (SVs) in technically challenging regions, had complex SVs, or required distal variant phasing. Causal variants were identified in 36% of affected individuals (177/489), and a further 23% (112/489) had a variant of uncertain significance after multiple rounds of re-analysis. Among all reported variants, 88% (333/380) were coding nuclear SNVs or insertions and deletions (indels), and the remainder were SVs, non-coding variants, and mitochondrial variants. Furthermore, long-read GS facilitated the resolution of challenging SVs and invalidated variants of difficult interpretation from short-read GS. This study demonstrates the value of short-read GS, complemented with long-read GS, in investigating the genetic causes of NDDs. GS provides a comprehensive and unbiased method of identifying all types of variants throughout the nuclear and mitochondrial genomes in individuals with NDD.
Collapse
Affiliation(s)
- Alba Sanchis-Juan
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karyn Megy
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jonathan Stephens
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Camila Armirola Ricaurte
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Eleanor Dewhurst
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kayyi Low
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Detelina Grozeva
- Department of Medical Genetics, University of Cambridge, Cambridge, UK; Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Kathleen Stirrups
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Marie Erwood
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Amy McTague
- Molecular Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Christopher J Penkett
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Olga Shamardina
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Salih Tuna
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Louise C Daugherty
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Nicholas Gleadall
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sofia T Duarte
- Hospital Dona Estefânia, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | | | - Julie Vogt
- West Midlands Regional Genetics Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Gautam Ambegaonkar
- Child Development Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Manali Chitre
- Clinical Medical School, University of Cambridge, Cambridge, UK
| | | | - Manju A Kurian
- Molecular Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Alasdair Parker
- Clinical Medical School, University of Cambridge, Cambridge, UK; Child Development Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Julia Rankin
- Department of Clinical Genetics, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Evan Reid
- Cambridge Institute for Medical Research and Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Emma Wakeling
- North West Thames Regional Genetics Service, Harrow, UK
| | - Evangeline Wassmer
- Neurology Department, Birmingham Women and Children's Hospital, Birmingham, UK
| | - C Geoffrey Woods
- Clinical Medical School, University of Cambridge, Cambridge, UK; Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - F Lucy Raymond
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Medical Genetics, University of Cambridge, Cambridge, UK.
| | - Keren J Carss
- Department of Haematology, University of Cambridge, Cambridge, UK; NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
18
|
Chesneau B, Ivashchenko V, Habib C, Gaston V, Escudié F, Morel G, Capri Y, Vincent-Delorme C, Calvas P, Chassaing N, Plaisancié J. Evaluation of somatic and/or germline mosaicism in congenital malformation of the eye. Eur J Hum Genet 2023; 31:526-530. [PMID: 36404347 PMCID: PMC10172375 DOI: 10.1038/s41431-022-01234-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022] Open
Abstract
Microphthalmia, Anophthalmia and Coloboma (MAC) form a spectrum of congenital eye malformations responsible for severe visual impairment. Despite the exploration of hundreds of genes by High-Throughput Sequencing (HTS), most of the patients remain without genetic diagnosis. One explanation could be the not yet demonstrated involvement of somatic mosaicism (undetected by conventional analysis pipelines) in those patients. Furthermore, the proportion of parental germline mosaicism in presumed de novo variations is still unknown in ocular malformations. Thus, using dedicated bioinformatics pipeline designed to detect mosaic variants, we reanalysed the sequencing data obtained from a 119 ocular development genes panel performed on blood samples of 78 probands with sporadic MAC without genetic diagnosis. Using the same HTS strategy, we sequenced 80 asymptomatic parents of 41 probands carrying a disease-causing variant in an ocular development gene considered de novo after Sanger sequencing of both parents. Reanalysis of the previously sequencing data did not find any mosaic variant in probands without genetic diagnosis. However, HTS of parents revealed undetected SOX2 and PAX6 mosaic variants in two parents. Finally, this work, performed on two large cohorts of patients with MAC spectrum, provides for the first time an overview of the interest of looking for mosaicism in ocular development disorders. Somatic mosaicism does not appear to be frequent in MAC spectrum and might explain only few diagnoses. Thus, other approaches such as whole genome sequencing should be considered in those patients. Parental mosaicism is however not that rare (around 5%) and challenging for genetic counselling.
Collapse
Affiliation(s)
- Bertrand Chesneau
- Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU de Toulouse, Toulouse, France
| | | | - Christophe Habib
- Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Véronique Gaston
- Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Fréderic Escudié
- Département d'anatomopathologie, IUCT Oncopole, Toulouse, France
| | - Godelieve Morel
- Service de Génétique Médicale, CHU de Rennes, Rennes, France
| | - Yline Capri
- Service de Génétique Médicale, Hôpital Robert Debré, APHP, Paris, France
| | | | - Patrick Calvas
- Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU de Toulouse, Toulouse, France
| | - Nicolas Chassaing
- Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU de Toulouse, Toulouse, France
| | - Julie Plaisancié
- Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France.
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU de Toulouse, Toulouse, France.
- INSERM U1214, ToNIC, Université Toulouse III, Toulouse, France.
| |
Collapse
|
19
|
Wright SE, Todd PK. Native functions of short tandem repeats. eLife 2023; 12:e84043. [PMID: 36940239 PMCID: PMC10027321 DOI: 10.7554/elife.84043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/08/2023] [Indexed: 03/21/2023] Open
Abstract
Over a third of the human genome is comprised of repetitive sequences, including more than a million short tandem repeats (STRs). While studies of the pathologic consequences of repeat expansions that cause syndromic human diseases are extensive, the potential native functions of STRs are often ignored. Here, we summarize a growing body of research into the normal biological functions for repetitive elements across the genome, with a particular focus on the roles of STRs in regulating gene expression. We propose reconceptualizing the pathogenic consequences of repeat expansions as aberrancies in normal gene regulation. From this altered viewpoint, we predict that future work will reveal broader roles for STRs in neuronal function and as risk alleles for more common human neurological diseases.
Collapse
Affiliation(s)
- Shannon E Wright
- Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
- Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
- Department of Neuroscience, Picower InstituteCambridgeUnited States
| | - Peter K Todd
- Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
- VA Ann Arbor Healthcare SystemAnn ArborUnited States
| |
Collapse
|
20
|
Wan Mohamad Zamri WN, Mohd Yunus N, Abdul Aziz AA, Zulkipli NN, Sulong S. Perspectives on the Application of Cytogenomic Approaches in Chronic Lymphocytic Leukaemia. Diagnostics (Basel) 2023; 13:964. [PMID: 36900108 PMCID: PMC10001075 DOI: 10.3390/diagnostics13050964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is a haematological malignancy characterised by the accumulation of monoclonal mature B lymphocytes (positive for CD5+ and CD23+) in peripheral blood, bone marrow, and lymph nodes. Although CLL is reported to be rare in Asian countries compared to Western countries, the disease course is more aggressive in Asian countries than in their Western counterparts. It has been postulated that this is due to genetic variants between populations. Various cytogenomic methods, either of the traditional type (conventional cytogenetics or fluorescence in situ hybridisation (FISH)) or using more advanced technology such as DNA microarrays, next generation sequencing (NGS), or genome wide association studies (GWAS), were used to detect chromosomal aberrations in CLL. Up until now, conventional cytogenetic analysis remained the gold standard in diagnosing chromosomal abnormality in haematological malignancy including CLL, even though it is tedious and time-consuming. In concordance with technological advancement, DNA microarrays are gaining popularity among clinicians as they are faster and better able to accurately diagnose the presence of chromosomal abnormalities. However, every technology has challenges to overcome. In this review, CLL and its genetic abnormalities will be discussed, as well as the application of microarray technology as a diagnostic platform.
Collapse
Affiliation(s)
| | - Nazihah Mohd Yunus
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Ahmad Aizat Abdul Aziz
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Ninie Nadia Zulkipli
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Terengganu 21300, Malaysia
| | - Sarina Sulong
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|
21
|
Abstract
Abnormal expansion or shortening of tandem repeats can cause a variety of genetic diseases. The use of long DNA reads has facilitated the analysis of disease-causing repeats in the human genome. Long read sequencers enable us to directly analyze repeat length and sequence content by covering whole repeats; they are therefore considered suitable for the analysis of long tandem repeats. Here, we describe an expanded repeat analysis using target sequencing data produced by the Oxford Nanopore Technologies (hereafter referred to as ONT) nanopore sequencer.
Collapse
Affiliation(s)
- Satomi Mitsuhashi
- Department of Genomic Function and Diversity, Tokyo Medical and Dental University, Tokyo, Japan.
- Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan.
| | - Martin C Frith
- Artificial Intelligence Research Center, AIST, Tokyo, Japan
- Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
- Computational Bio Big-Data Open Innovation Laboratory, AIST, Tokyo, Japan
| |
Collapse
|
22
|
Fan C, Chen K, Wang Y, Ball EV, Stenson PD, Mort M, Bacolla A, Kehrer-Sawatzki H, Tainer JA, Cooper DN, Zhao H. Profiling human pathogenic repeat expansion regions by synergistic and multi-level impacts on molecular connections. Hum Genet 2023; 142:245-274. [PMID: 36344696 PMCID: PMC10290229 DOI: 10.1007/s00439-022-02500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
Whilst DNA repeat expansions cause numerous heritable human disorders, their origins and underlying pathological mechanisms are often unclear. We collated a dataset comprising 224 human repeat expansions encompassing 203 different genes, and performed a systematic analysis with respect to key topological features at the DNA, RNA and protein levels. Comparison with controls without known pathogenicity and genomic regions lacking repeats, allowed the construction of the first tool to discriminate repeat regions harboring pathogenic repeat expansions (DPREx). At the DNA level, pathogenic repeat expansions exhibited stronger signals for DNA regulatory factors (e.g. H3K4me3, transcription factor-binding sites) in exons, promoters, 5'UTRs and 5'genes but were not significantly different from controls in introns, 3'UTRs and 3'genes. Additionally, pathogenic repeat expansions were also found to be enriched in non-B DNA structures. At the RNA level, pathogenic repeat expansions were characterized by lower free energy for forming RNA secondary structure and were closer to splice sites in introns, exons, promoters and 5'genes than controls. At the protein level, pathogenic repeat expansions exhibited a preference to form coil rather than other types of secondary structure, and tended to encode surface-located protein domains. Guided by these features, DPREx ( http://biomed.nscc-gz.cn/zhaolab/geneprediction/# ) achieved an Area Under the Curve (AUC) value of 0.88 in a test on an independent dataset. Pathogenic repeat expansions are thus located such that they exert a synergistic influence on the gene expression pathway involving inter-molecular connections at the DNA, RNA and protein levels.
Collapse
Affiliation(s)
- Cong Fan
- Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 500001, People's Republic of China
| | - Ken Chen
- School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, 500001, China
| | - Yukai Wang
- School of Life Science, Sun Yat-Sen University, Guangzhou, 500001, China
| | - Edward V Ball
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Matthew Mort
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | | | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Huiying Zhao
- Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 500001, People's Republic of China.
| |
Collapse
|
23
|
Colin E, Duffourd Y, Chevarin M, Tisserant E, Verdez S, Paccaud J, Bruel AL, Tran Mau-Them F, Denommé-Pichon AS, Thevenon J, Safraou H, Besnard T, Goldenberg A, Cogné B, Isidor B, Delanne J, Sorlin A, Moutton S, Fradin M, Dubourg C, Gorce M, Bonneau D, El Chehadeh S, Debray FG, Doco-Fenzy M, Uguen K, Chatron N, Aral B, Marle N, Kuentz P, Boland A, Olaso R, Deleuze JF, Sanlaville D, Callier P, Philippe C, Thauvin-Robinet C, Faivre L, Vitobello A. Stepwise use of genomics and transcriptomics technologies increases diagnostic yield in Mendelian disorders. Front Cell Dev Biol 2023; 11:1021920. [PMID: 36926521 PMCID: PMC10011630 DOI: 10.3389/fcell.2023.1021920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
Purpose: Multi-omics offer worthwhile and increasingly accessible technologies to diagnostic laboratories seeking potential second-tier strategies to help patients with unresolved rare diseases, especially patients clinically diagnosed with a rare OMIM (Online Mendelian Inheritance in Man) disease. However, no consensus exists regarding the optimal diagnostic care pathway to adopt after negative results with standard approaches. Methods: In 15 unsolved individuals clinically diagnosed with recognizable OMIM diseases but with negative or inconclusive first-line genetic results, we explored the utility of a multi-step approach using several novel omics technologies to establish a molecular diagnosis. Inclusion criteria included a clinical autosomal recessive disease diagnosis and single heterozygous pathogenic variant in the gene of interest identified by first-line analysis (60%-9/15) or a clinical diagnosis of an X-linked recessive or autosomal dominant disease with no causative variant identified (40%-6/15). We performed a multi-step analysis involving short-read genome sequencing (srGS) and complementary approaches such as mRNA sequencing (mRNA-seq), long-read genome sequencing (lrG), or optical genome mapping (oGM) selected according to the outcome of the GS analysis. Results: SrGS alone or in combination with additional genomic and/or transcriptomic technologies allowed us to resolve 87% of individuals by identifying single nucleotide variants/indels missed by first-line targeted tests, identifying variants affecting transcription, or structural variants sometimes requiring lrGS or oGM for their characterization. Conclusion: Hypothesis-driven implementation of combined omics technologies is particularly effective in identifying molecular etiologies. In this study, we detail our experience of the implementation of genomics and transcriptomics technologies in a pilot cohort of previously investigated patients with a typical clinical diagnosis without molecular etiology.
Collapse
Affiliation(s)
- Estelle Colin
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Service de Génétique Médicale, CHU d'Angers, Angers, France
| | - Yannis Duffourd
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France
| | - Martin Chevarin
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Emilie Tisserant
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France
| | - Simon Verdez
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France
| | - Julien Paccaud
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France
| | - Ange-Line Bruel
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Frédéric Tran Mau-Them
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Anne-Sophie Denommé-Pichon
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Julien Thevenon
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France
| | - Hana Safraou
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Thomas Besnard
- Service de Génétique Médicale, Nantes Université, CHU Nantes, Nantes, France.,CNRS, INSERM, L'institut du thorax, Nantes Université, CHU Nantes, Nantes, France
| | - Alice Goldenberg
- Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, Rouen University Hospital, Rouen, France.,Normandie Univ, UNIROUEN, Inserm U1245, Rouen, France
| | - Benjamin Cogné
- Service de Génétique Médicale, Nantes Université, CHU Nantes, Nantes, France.,CNRS, INSERM, L'institut du thorax, Nantes Université, CHU Nantes, Nantes, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | - Julian Delanne
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs", Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Arthur Sorlin
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs", Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Sébastien Moutton
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs", Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Mélanie Fradin
- CHU Rennes, Service de Génétique Clinique, Centre de Référence Maladies Rares, CLAD-Ouest, Rennes, France
| | - Christèle Dubourg
- Service de Génétique Moléculaire et Génomique, CHU Rennes, Rennes, France.,Univ Rennes, CNRS, Institut de Genetique et Developpement de Rennes, UMR 6290, Rennes, France
| | - Magali Gorce
- Service de Génétique Médicale, CHU d'Angers, Angers, France
| | | | - Salima El Chehadeh
- Service de Génétique Médicale, Hôpital de Hautepierre, CHU Strasbourg, Strasbourg, France
| | | | - Martine Doco-Fenzy
- Medical School IFR53, EA3801, Université de Reims Champagne-Ardenne, Reims, France.,Service de Génétique, CHU Reims, Reims, France
| | - Kevin Uguen
- Department of Genetics and Reference Center for Developmental Disorders, Lyon University Hospital, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France.,CHU Brest, Inserm, Univ Brest, EFS, UMR 1078, GGB, Brest, France
| | - Nicolas Chatron
- Department of Genetics and Reference Center for Developmental Disorders, Lyon University Hospital, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Bernard Aral
- Laboratoire de Génétique Chromosomique et Moléculaire, Pôle Biologie, CHU de Dijon, Dijon, France
| | - Nathalie Marle
- Laboratoire de Génétique Chromosomique et Moléculaire, Pôle Biologie, CHU de Dijon, Dijon, France
| | - Paul Kuentz
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Oncobiologie Génétique Bioinformatique, PCBio, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Robert Olaso
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France.,LabEx GENMED (Medical Genomics), Dijon, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France.,LabEx GENMED (Medical Genomics), Dijon, France
| | - Damien Sanlaville
- Department of Genetics and Reference Center for Developmental Disorders, Lyon University Hospital, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Patrick Callier
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Laboratoire de Génétique Chromosomique et Moléculaire, Pôle Biologie, CHU de Dijon, Dijon, France
| | - Christophe Philippe
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Christel Thauvin-Robinet
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence Maladies Rares "Déficiences Intellectuelles de Causes Rares", Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Laurence Faivre
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs", Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Antonio Vitobello
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHUTRANSLAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| |
Collapse
|
24
|
Lee H, Min JW, Mun S, Han K. Human Retrotransposons and Effective Computational Detection Methods for Next-Generation Sequencing Data. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101583. [PMID: 36295018 PMCID: PMC9605557 DOI: 10.3390/life12101583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
Abstract
Transposable elements (TEs) are classified into two classes according to their mobilization mechanism. Compared to DNA transposons that move by the "cut and paste" mechanism, retrotransposons mobilize via the "copy and paste" method. They have been an essential research topic because some of the active elements, such as Long interspersed element 1 (LINE-1), Alu, and SVA elements, have contributed to the genetic diversity of primates beyond humans. In addition, they can cause genetic disorders by altering gene expression and generating structural variations (SVs). The development and rapid technological advances in next-generation sequencing (NGS) have led to new perspectives on detecting retrotransposon-mediated SVs, especially insertions. Moreover, various computational methods have been developed based on NGS data to precisely detect the insertions and deletions in the human genome. Therefore, this review discusses details about the recently studied and utilized NGS technologies and the effective computational approaches for discovering retrotransposons through it. The final part covers a diverse range of computational methods for detecting retrotransposon insertions with human NGS data. This review will give researchers insights into understanding the TEs and how to investigate them and find connections with research interests.
Collapse
Affiliation(s)
- Haeun Lee
- Department of Bioconvergence Engineering, Dankook University, Yongin 16890, Korea
| | - Jun Won Min
- Department of Surgery, Dankook University College of Medicine, Cheonan 31116, Korea
| | - Seyoung Mun
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea
- Correspondence: (S.M.); (K.H.)
| | - Kyudong Han
- Department of Bioconvergence Engineering, Dankook University, Yongin 16890, Korea
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea
- HuNbiome Co., Ltd., R&D Center, Seoul 08507, Korea
- Correspondence: (S.M.); (K.H.)
| |
Collapse
|
25
|
Alfano M, De Antoni L, Centofanti F, Visconti VV, Maestri S, Degli Esposti C, Massa R, D'Apice MR, Novelli G, Delledonne M, Botta A, Rossato M. Characterization of full-length CNBP expanded alleles in myotonic dystrophy type 2 patients by Cas9-mediated enrichment and nanopore sequencing. eLife 2022; 11:80229. [PMID: 36018009 PMCID: PMC9462847 DOI: 10.7554/elife.80229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Myotonic dystrophy type 2 (DM2) is caused by CCTG repeat expansions in the CNBP gene, comprising 75 to >11,000 units and featuring extensive mosaicism, making it challenging to sequence fully expanded alleles. To overcome these limitations, we used PCR-free Cas9-mediated nanopore sequencing to characterize CNBP repeat expansions at the single-nucleotide level in nine DM2 patients. The length of normal and expanded alleles can be assessed precisely using this strategy, agreeing with traditional methods, and revealing the degree of mosaicism. We also sequenced an entire ~50 kbp expansion, which has not been achieved previously for DM2 or any other repeat-expansion disorders. Our approach precisely counted the repeats and identified the repeat pattern for both short interrupted and uninterrupted alleles. Interestingly, in the expanded alleles, only two DM2 samples featured the expected pure CCTG repeat pattern, while the other seven presented also TCTG blocks at the 3′ end, which have not been reported before in DM2 patients, but confirmed hereby with orthogonal methods. The demonstrated approach simultaneously determines repeat length, structure/motif, and the extent of somatic mosaicism, promising to improve the molecular diagnosis of DM2 and achieve more accurate genotype–phenotype correlations for the better stratification of DM2 patients in clinical trials.
Collapse
Affiliation(s)
| | - Luca De Antoni
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Federica Centofanti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Simone Maestri
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Roberto Massa
- Department of Systems Medicine (Neurology), University of Rome Tor Vergata, Rome, Italy
| | | | - Giuseppe Novelli
- Laboratory of Medical Genetics, University of Rome Tor Vergata, Rome, Italy
| | | | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
26
|
Mullen M, Wen Tan WL, Rhee JW, Wu JC. Modeling Susceptibility to Cardiotoxicity in Cancer Therapy Using Human iPSC-Derived Cardiac Cells and Systems Biology. Heart Fail Clin 2022; 18:335-347. [PMID: 35718410 PMCID: PMC12001829 DOI: 10.1016/j.hfc.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of human-induced pluripotent stem cell-derived cardiac cell types has created a new paradigm in assessing drug-induced cardiotoxicity. Advances in genomics and epigenomics have also implicated several genomic loci and biological pathways that may contribute to susceptibility to cancer therapies. In this review, we first provide a brief overview of the cardiotoxicity associated with chemotherapy. We then provide a detailed summary of systems biology approaches being applied to elucidate potential molecular mechanisms involved in cardiotoxicity. Finally, we discuss combining systems biology approaches with iPSC technology to help discover molecular mechanisms associated with cardiotoxicity.
Collapse
Affiliation(s)
- McKay Mullen
- Stanford Cardiovascular Institute, Stanford University, 265 Campus Drive G1120B, Stanford, CA 94304, USA
| | - Wilson Lek Wen Tan
- Stanford Cardiovascular Institute, Stanford University, 265 Campus Drive G1120B, Stanford, CA 94304, USA
| | - June-Wha Rhee
- Department of Medicine, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010, USA.
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, 265 Campus Drive G1120B, Stanford, CA 94304, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University; Department of Radiology, Stanford University, 265 Campus Drive G1120B, Stanford, CA 94304, USA.
| |
Collapse
|
27
|
Liu Z, Zhao G, Xiao Y, Zeng S, Yuan Y, Zhou X, Fang Z, He R, Li B, Zhao Y, Pan H, Wang Y, Yu G, Peng IF, Wang D, Meng Q, Xu Q, Sun Q, Yan X, Shen L, Jiang H, Xia K, Wang J, Guo J, Liang F, Li J, Tang B. Profiling the Genome-Wide Landscape of Short Tandem Repeats by Long-Read Sequencing. Front Genet 2022; 13:810595. [PMID: 35601492 PMCID: PMC9117641 DOI: 10.3389/fgene.2022.810595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Short tandem repeats (STRs) are highly variable elements that play a pivotal role in multiple genetic diseases and the regulation of gene expression. Long-read sequencing (LRS) offers a potential solution to genome-wide STR analysis. However, characterizing STRs in human genomes using LRS on a large population scale has not been reported. Methods: We conducted the large LRS-based STR analysis in 193 unrelated samples of the Chinese population and performed genome-wide profiling of STR variation in the human genome. The repeat dynamic index (RDI) was introduced to evaluate the variability of STR. We sourced the expression data from the Genotype-Tissue Expression to explore the tissue specificity of highly variable STRs related genes across tissues. Enrichment analyses were also conducted to identify potential functional roles of the high variable STRs. Results: This study reports the large-scale analysis of human STR variation by LRS and offers a reference STR database based on the LRS dataset. We found that the disease-associated STRs (dSTRs) and STRs associated with the expression of nearby genes (eSTRs) were highly variable in the general population. Moreover, tissue-specific expression analysis showed that those highly variable STRs related genes presented the highest expression level in brain tissues, and enrichment pathways analysis found those STRs are involved in synaptic function-related pathways. Conclusion: Our study profiled the genome-wide landscape of STR using LRS and highlighted the highly variable STRs in the human genome, which provide a valuable resource for studying the role of STRs in human disease and complex traits.
Collapse
Affiliation(s)
- Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | | | - Sheng Zeng
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanchun Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenghuan Fang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Runcheng He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | - Qingtuan Meng
- Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Kun Xia
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Fan Liang
- GrandOmics Biosciences, Beijing, China
- *Correspondence: Beisha Tang, ; Jinchen Li, ; Fan Liang,
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- *Correspondence: Beisha Tang, ; Jinchen Li, ; Fan Liang,
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital of University of South China, Hengyang, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- *Correspondence: Beisha Tang, ; Jinchen Li, ; Fan Liang,
| |
Collapse
|
28
|
Rech GE, Radío S, Guirao-Rico S, Aguilera L, Horvath V, Green L, Lindstadt H, Jamilloux V, Quesneville H, González J. Population-scale long-read sequencing uncovers transposable elements associated with gene expression variation and adaptive signatures in Drosophila. Nat Commun 2022; 13:1948. [PMID: 35413957 PMCID: PMC9005704 DOI: 10.1038/s41467-022-29518-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/15/2022] [Indexed: 12/16/2022] Open
Abstract
High quality reference genomes are crucial to understanding genome function, structure and evolution. The availability of reference genomes has allowed us to start inferring the role of genetic variation in biology, disease, and biodiversity conservation. However, analyses across organisms demonstrate that a single reference genome is not enough to capture the global genetic diversity present in populations. In this work, we generate 32 high-quality reference genomes for the well-known model species D. melanogaster and focus on the identification and analysis of transposable element variation as they are the most common type of structural variant. We show that integrating the genetic variation across natural populations from five climatic regions increases the number of detected insertions by 58%. Moreover, 26% to 57% of the insertions identified using long-reads were missed by short-reads methods. We also identify hundreds of transposable elements associated with gene expression variation and new TE variants likely to contribute to adaptive evolution in this species. Our results highlight the importance of incorporating the genetic variation present in natural populations to genomic studies, which is essential if we are to understand how genomes function and evolve.
Collapse
Affiliation(s)
- Gabriel E Rech
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Santiago Radío
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Sara Guirao-Rico
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Laura Aguilera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Vivien Horvath
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Llewellyn Green
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | - Hannah Lindstadt
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain
| | | | | | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Spain.
| |
Collapse
|
29
|
Wang L, Jia M, Li Z, Liu X, Sun T, Pei J, Wei C, Lin Z, Li H. Wristwatch PCR: A Versatile and Efficient Genome Walking Strategy. Front Bioeng Biotechnol 2022; 10:792848. [PMID: 35497369 PMCID: PMC9039356 DOI: 10.3389/fbioe.2022.792848] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Genome walking is a method used to retrieve unknown flanking DNA. Here, we reported wristwatch (WW) PCR, an efficient genome walking technique mediated by WW primers (WWPs). WWPs feature 5′- and 3′-overlap and a heterologous interval. Therefore, a wristwatch-like structure can be formed between WWPs under relatively low temperatures. Each WW-PCR set is composed of three nested (primary, secondary, and tertiary) PCRs individually performed by three WWPs. The WWP is arbitrarily annealed somewhere on the genome in the one low-stringency cycle of the primary PCR, or directionally to the previous WWP site in one reduced-stringency cycle of the secondary/tertiary PCR, producing a pool of single-stranded DNAs (ssDNAs). A target ssDNA incorporates a gene-specific primer (GSP) complementary at the 3′-end and the WWP at the 5′-end and thus can be exponentially amplified in the next high-stringency cycles. Nevertheless, a non-target ssDNA cannot be amplified as it lacks a perfect binding site for any primers. The practicability of the WW-PCR was validated by successfully accessing unknown regions flanking Lactobacillus brevis CD0817 glutamate decarboxylase gene and the hygromycin gene of rice. The WW-PCR is an attractive alternative to the existing genome walking techniques.
Collapse
Affiliation(s)
- Lingqin Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Mengya Jia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhaoqin Li
- Charles W. Davidson College of Engineering, San Jose State University, San Jose, CA, United States
| | - Xiaohua Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Tianyi Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Jinfeng Pei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Cheng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhiyu Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- *Correspondence: Haixing Li,
| |
Collapse
|
30
|
Schuler BA, Nelson ET, Koziura M, Cogan JD, Hamid R, Phillips JA. Lessons learned: next-generation sequencing applied to undiagnosed genetic diseases. J Clin Invest 2022; 132:e154942. [PMID: 35362483 PMCID: PMC8970663 DOI: 10.1172/jci154942] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rare genetic disorders, when considered together, are relatively common. Despite advancements in genetics and genomics technologies as well as increased understanding of genomic function and dysfunction, many genetic diseases continue to be difficult to diagnose. The goal of this Review is to increase the familiarity of genetic testing strategies for non-genetics providers. As genetic testing is increasingly used in primary care, many subspecialty clinics, and various inpatient settings, it is important that non-genetics providers have a fundamental understanding of the strengths and weaknesses of various genetic testing strategies as well as develop an ability to interpret genetic testing results. We provide background on commonly used genetic testing approaches, give examples of phenotypes in which the various genetic testing approaches are used, describe types of genetic and genomic variations, cover challenges in variant identification, provide examples in which next-generation sequencing (NGS) failed to uncover the variant responsible for a disease, and discuss opportunities for continued improvement in the application of NGS clinically. As genetic testing becomes increasingly a part of all areas of medicine, familiarity with genetic testing approaches and result interpretation is vital to decrease the burden of undiagnosed disease.
Collapse
Affiliation(s)
- Bryce A. Schuler
- Division of Medical Genetics and Genomics and
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Erica T. Nelson
- Division of Medical Genetics and Genomics and
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mary Koziura
- Division of Medical Genetics and Genomics and
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joy D. Cogan
- Division of Medical Genetics and Genomics and
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rizwan Hamid
- Division of Medical Genetics and Genomics and
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John A. Phillips
- Division of Medical Genetics and Genomics and
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
31
|
Marwaha S, Knowles JW, Ashley EA. A guide for the diagnosis of rare and undiagnosed disease: beyond the exome. Genome Med 2022; 14:23. [PMID: 35220969 PMCID: PMC8883622 DOI: 10.1186/s13073-022-01026-w] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Rare diseases affect 30 million people in the USA and more than 300-400 million worldwide, often causing chronic illness, disability, and premature death. Traditional diagnostic techniques rely heavily on heuristic approaches, coupling clinical experience from prior rare disease presentations with the medical literature. A large number of rare disease patients remain undiagnosed for years and many even die without an accurate diagnosis. In recent years, gene panels, microarrays, and exome sequencing have helped to identify the molecular cause of such rare and undiagnosed diseases. These technologies have allowed diagnoses for a sizable proportion (25-35%) of undiagnosed patients, often with actionable findings. However, a large proportion of these patients remain undiagnosed. In this review, we focus on technologies that can be adopted if exome sequencing is unrevealing. We discuss the benefits of sequencing the whole genome and the additional benefit that may be offered by long-read technology, pan-genome reference, transcriptomics, metabolomics, proteomics, and methyl profiling. We highlight computational methods to help identify regionally distant patients with similar phenotypes or similar genetic mutations. Finally, we describe approaches to automate and accelerate genomic analysis. The strategies discussed here are intended to serve as a guide for clinicians and researchers in the next steps when encountering patients with non-diagnostic exomes.
Collapse
Affiliation(s)
- Shruti Marwaha
- Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA.
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA.
| | - Joshua W Knowles
- Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Diabetes Research Center, Cardiovascular Institute and Prevention Research Center, Stanford, CA, USA
| | - Euan A Ashley
- Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA.
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA.
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
32
|
Murdock DR, Rosenfeld JA, Lee B. What Has the Undiagnosed Diseases Network Taught Us About the Clinical Applications of Genomic Testing? Annu Rev Med 2022; 73:575-585. [PMID: 35084988 PMCID: PMC10874501 DOI: 10.1146/annurev-med-042120-014904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic testing has undergone a revolution in the last decade, particularly with the advent of next-generation sequencing and its associated reductions in costs and increases in efficiencies. The Undiagnosed Diseases Network (UDN) has been a leader in the application of such genomic testing for rare disease diagnosis. This review discusses the current state of genomic testing performed within the UDN, with a focus on the strengths and limitations of whole-exome and whole-genome sequencing in clinical diagnostics and the importance of ongoing data reanalysis. The role of emerging technologies such as RNA and long-read sequencing to further improve diagnostic rates in the UDN is also described. This review concludes with a discussion of the challenges faced in insurance coverage of comprehensive genomic testing as well as the opportunities for a larger role of testing in clinical medicine.
Collapse
Affiliation(s)
- David R Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA;
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA;
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA;
- Texas Children's Hospital, Houston, Texas 77030, USA
| |
Collapse
|
33
|
Espinosa-Espinosa J, González-Barriga A, López-Castel A, Artero R. Deciphering the Complex Molecular Pathogenesis of Myotonic Dystrophy Type 1 through Omics Studies. Int J Mol Sci 2022; 23:ijms23031441. [PMID: 35163365 PMCID: PMC8836095 DOI: 10.3390/ijms23031441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
Omics studies are crucial to improve our understanding of myotonic dystrophy type 1 (DM1), the most common muscular dystrophy in adults. Employing tissue samples and cell lines derived from patients and animal models, omics approaches have revealed the myriad alterations in gene and microRNA expression, alternative splicing, 3′ polyadenylation, CpG methylation, and proteins levels, among others, that contribute to this complex multisystem disease. In addition, omics characterization of drug candidate treatment experiments provides crucial insight into the degree of therapeutic rescue and off-target effects that can be achieved. Finally, several innovative technologies such as single-cell sequencing and artificial intelligence will have a significant impact on future DM1 research.
Collapse
Affiliation(s)
- Jorge Espinosa-Espinosa
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; (J.E.-E.); (R.A.)
- Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Anchel González-Barriga
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, 75013 Paris, France;
| | - Arturo López-Castel
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; (J.E.-E.); (R.A.)
- Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963543028
| | - Rubén Artero
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; (J.E.-E.); (R.A.)
- Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| |
Collapse
|
34
|
Neurodegenerative diseases associated with non-coding CGG tandem repeat expansions. Nat Rev Neurol 2022; 18:145-157. [PMID: 35022573 DOI: 10.1038/s41582-021-00612-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Non-coding CGG repeat expansions cause multiple neurodegenerative disorders, including fragile X-associated tremor/ataxia syndrome, neuronal intranuclear inclusion disease, oculopharyngeal myopathy with leukodystrophy, and oculopharyngodistal myopathy. The underlying genetic causes of several of these diseases have been identified only in the past 2-3 years. These expansion disorders have substantial overlapping clinical, neuroimaging and histopathological features. The shared features suggest common mechanisms that could have implications for the development of therapies for this group of diseases - similar therapeutic strategies or drugs may be effective for various neurodegenerative disorders induced by non-coding CGG expansions. In this Review, we provide an overview of clinical and pathological features of these CGG repeat expansion diseases and consider the likely pathological mechanisms, including RNA toxicity, CGG repeat-associated non-AUG-initiated translation, protein aggregation and mitochondrial impairment. We then discuss future research needed to improve the identification and diagnosis of CGG repeat expansion diseases, to improve modelling of these diseases and to understand their pathogenesis. We also consider possible therapeutic strategies. Finally, we propose that CGG repeat expansion diseases may represent manifestations of a single underlying neuromyodegenerative syndrome in which different organs are affected to different extents depending on the gene location of the repeat expansion.
Collapse
|
35
|
Maiorana A, Lepri FR, Novelli A, Dionisi-Vici C. Hypoglycaemia Metabolic Gene Panel Testing. Front Endocrinol (Lausanne) 2022; 13:826167. [PMID: 35422763 PMCID: PMC9001947 DOI: 10.3389/fendo.2022.826167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
A large number of inborn errors of metabolism present with hypoglycemia. Impairment of glucose homeostasis may arise from different biochemical pathways involving insulin secretion, fatty acid oxidation, ketone bodies formation and degradation, glycogen metabolism, fructose and galactose metabolism, branched chain aminoacids and tyrosine metabolism, mitochondrial function and glycosylation proteins mechanisms. Historically, genetic analysis consisted of highly detailed molecular testing of nominated single genes. However, more recently, the genetic heterogeneity of these conditions imposed to perform extensive molecular testing within a useful timeframe via new generation sequencing technology. Indeed, the establishment of a rapid diagnosis drives specific nutritional and medical therapies. The biochemical and clinical phenotypes are critical to guide the molecular analysis toward those clusters of genes involved in specific pathways, and address data interpretation regarding the finding of possible disease-causing variants at first reported as variants of uncertain significance in known genes or the discovery of new disease genes. Also, the trio's analysis allows genetic counseling for recurrence risk in further pregnancies. Besides, this approach is allowing to expand the phenotypic characterization of a disease when pathogenic variants give raise to unexpected clinical pictures. Multidisciplinary input and collaboration are increasingly key for addressing the analysis and interpreting the significance of the genetic results, allowing rapidly their translation from bench to bedside.
Collapse
Affiliation(s)
- Arianna Maiorana
- Division of Metabolism, Department of Pediatrics Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
- *Correspondence: Arianna Maiorana,
| | - Francesca Romana Lepri
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unity, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unity, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Department of Pediatrics Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| |
Collapse
|
36
|
Wu Z, Jiang Z, Li T, Xie C, Zhao L, Yang J, Ouyang S, Liu Y, Li T, Xie Z. Structural variants in the Chinese population and their impact on phenotypes, diseases and population adaptation. Nat Commun 2021; 12:6501. [PMID: 34764282 PMCID: PMC8586011 DOI: 10.1038/s41467-021-26856-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023] Open
Abstract
A complete characterization of genetic variation is a fundamental goal of human genome research. Long-read sequencing has improved the sensitivity of structural variant discovery. Here, we conduct the long-read sequencing-based structural variant analysis for 405 unrelated Chinese individuals, with 68 phenotypic and clinical measurements. We discover a landscape of 132,312 nonredundant structural variants, of which 45.2% are novel. The identified structural variants are of high-quality, with an estimated false discovery rate of 3.2%. The concatenated length of all the structural variants is approximately 13.2% of the human reference genome. We annotate 1,929 loss-of-function structural variants affecting the coding sequence of 1,681 genes. We discover rare deletions in HBA1/HBA2/HBB associated with anemia. Furthermore, we identify structural variants related to immunity which differentiate the northern and southern Chinese populations. Our study describes the landscape of structural variants in the Chinese population and their contribution to phenotypes and disease.
Collapse
Affiliation(s)
- Zhikun Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zehang Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Tong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chuanbo Xie
- Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| | - Jiaqi Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shuai Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Tao Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
37
|
Hurvitz N, Azmanov H, Kesler A, Ilan Y. Establishing a second-generation artificial intelligence-based system for improving diagnosis, treatment, and monitoring of patients with rare diseases. Eur J Hum Genet 2021; 29:1485-1490. [PMID: 34276056 PMCID: PMC8484657 DOI: 10.1038/s41431-021-00928-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/06/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with rare diseases are a major challenge for healthcare systems. These patients face three major obstacles: late diagnosis and misdiagnosis, lack of proper response to therapies, and absence of valid monitoring tools. We reviewed the relevant literature on first-generation artificial intelligence (AI) algorithms which were designed to improve the management of chronic diseases. The shortage of big data resources and the inability to provide patients with clinical value limit the use of these AI platforms by patients and physicians. In the present study, we reviewed the relevant literature on the obstacles encountered in the management of patients with rare diseases. Examples of currently available AI platforms are presented. The use of second-generation AI-based systems that are patient-tailored is presented. The system provides a means for early diagnosis and a method for improving the response to therapies based on clinically meaningful outcome parameters. The system may offer a patient-tailored monitoring tool that is based on parameters that are relevant to patients and caregivers and provides a clinically meaningful tool for follow-up. The system can provide an inclusive solution for patients with rare diseases and ensures adherence based on clinical responses. It has the potential advantage of not being dependent on large datasets and is a dynamic system that adapts to ongoing changes in patients' disease and response to therapy.
Collapse
Affiliation(s)
- Noa Hurvitz
- Faculty of Medicine, Department of Medicine, Hebrew University, Hadassah Medical Center, Jerusalem, Israel
| | - Henny Azmanov
- Faculty of Medicine, Department of Medicine, Hebrew University, Hadassah Medical Center, Jerusalem, Israel
| | - Asa Kesler
- Faculty of Medicine, Department of Medicine, Hebrew University, Hadassah Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Faculty of Medicine, Department of Medicine, Hebrew University, Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
38
|
Sonoda K, Ishihara H, Sakazaki H, Suzuki T, Horie M, Ohno S. Long-Read Sequence Confirmed a Large Deletion Including MYH6 and MYH7 in an Infant of Atrial Septal Defect and Atrial Arrhythmias. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003223. [PMID: 34384224 DOI: 10.1161/circgen.120.003223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Keiko Sonoda
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan (K.S., S.O.).,Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan (K.S., M.H., S.O.).,Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Japan (K.S.)
| | - Haruko Ishihara
- Department of Pediatric Cardiology, Hyogo Prefectural Amagasaki General Medical Center, Japan (H.I., H.S.)
| | - Hisanori Sakazaki
- Department of Pediatric Cardiology, Hyogo Prefectural Amagasaki General Medical Center, Japan (H.I., H.S.)
| | - Tsugutoshi Suzuki
- Department of Pediatric Electrophysiology, Osaka City General Hospital, Japan (T.S.)
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan (K.S., M.H., S.O.)
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan (K.S., S.O.).,Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan (K.S., M.H., S.O.)
| |
Collapse
|
39
|
Chiu R, Rajan-Babu IS, Friedman JM, Birol I. Straglr: discovering and genotyping tandem repeat expansions using whole genome long-read sequences. Genome Biol 2021; 22:224. [PMID: 34389037 PMCID: PMC8361843 DOI: 10.1186/s13059-021-02447-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Tandem repeat (TR) expansion is the underlying cause of over 40 neurological disorders. Long-read sequencing offers an exciting avenue over conventional technologies for detecting TR expansions. Here, we present Straglr, a robust software tool for both targeted genotyping and novel expansion detection from long-read alignments. We benchmark Straglr using various simulations, targeted genotyping data of cell lines carrying expansions of known diseases, and whole genome sequencing data with chromosome-scale assembly. Our results suggest that Straglr may be useful for investigating disease-associated TR expansions using long-read sequencing.
Collapse
Affiliation(s)
- Readman Chiu
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 4S6, Canada
| | - Indhu-Shree Rajan-Babu
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical and Molecular Genetics, King's College London, Strand, London, WC2R 2LS, UK
| | - Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 4S6, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
40
|
Miller DE, Sulovari A, Wang T, Loucks H, Hoekzema K, Munson KM, Lewis AP, Fuerte EPA, Paschal CR, Walsh T, Thies J, Bennett JT, Glass I, Dipple KM, Patterson K, Bonkowski ES, Nelson Z, Squire A, Sikes M, Beckman E, Bennett RL, Earl D, Lee W, Allikmets R, Perlman SJ, Chow P, Hing AV, Wenger TL, Adam MP, Sun A, Lam C, Chang I, Zou X, Austin SL, Huggins E, Safi A, Iyengar AK, Reddy TE, Majoros WH, Allen AS, Crawford GE, Kishnani PS, King MC, Cherry T, Chong JX, Bamshad MJ, Nickerson DA, Mefford HC, Doherty D, Eichler EE. Targeted long-read sequencing identifies missing disease-causing variation. Am J Hum Genet 2021; 108:1436-1449. [PMID: 34216551 PMCID: PMC8387463 DOI: 10.1016/j.ajhg.2021.06.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/07/2021] [Indexed: 12/28/2022] Open
Abstract
Despite widespread clinical genetic testing, many individuals with suspected genetic conditions lack a precise diagnosis, limiting their opportunity to take advantage of state-of-the-art treatments. In some cases, testing reveals difficult-to-evaluate structural differences, candidate variants that do not fully explain the phenotype, single pathogenic variants in recessive disorders, or no variants in genes of interest. Thus, there is a need for better tools to identify a precise genetic diagnosis in individuals when conventional testing approaches have been exhausted. We performed targeted long-read sequencing (T-LRS) using adaptive sampling on the Oxford Nanopore platform on 40 individuals, 10 of whom lacked a complete molecular diagnosis. We computationally targeted up to 151 Mbp of sequence per individual and searched for pathogenic substitutions, structural variants, and methylation differences using a single data source. We detected all genomic aberrations-including single-nucleotide variants, copy number changes, repeat expansions, and methylation differences-identified by prior clinical testing. In 8/8 individuals with complex structural rearrangements, T-LRS enabled more precise resolution of the mutation, leading to changes in clinical management in one case. In ten individuals with suspected Mendelian conditions lacking a precise genetic diagnosis, T-LRS identified pathogenic or likely pathogenic variants in six and variants of uncertain significance in two others. T-LRS accurately identifies pathogenic structural variants, resolves complex rearrangements, and identifies Mendelian variants not detected by other technologies. T-LRS represents an efficient and cost-effective strategy to evaluate high-priority genes and regions or complex clinical testing results.
Collapse
Affiliation(s)
- Danny E Miller
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA.
| | - Arvis Sulovari
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Tianyun Wang
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Hailey Loucks
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Alexandra P Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Edith P Almanza Fuerte
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Catherine R Paschal
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA 98105, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Tom Walsh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jenny Thies
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - James T Bennett
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA; Department of Laboratories, Seattle Children's Hospital, Seattle, WA 98105, USA; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Ian Glass
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Katrina M Dipple
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Karynne Patterson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Emily S Bonkowski
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Zoe Nelson
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Audrey Squire
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Megan Sikes
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Erika Beckman
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Robin L Bennett
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Dawn Earl
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Winston Lee
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA; Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Seth J Perlman
- Department of Neurology, Seattle Children's Hospital, University of Washington, Seattle, WA 98105, USA
| | - Penny Chow
- Department of Pediatrics, Division of Craniofacial Medicine, University of Washington, Seattle, WA 98195, USA
| | - Anne V Hing
- Department of Pediatrics, Division of Craniofacial Medicine, University of Washington, Seattle, WA 98195, USA
| | - Tara L Wenger
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Margaret P Adam
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Angela Sun
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA; Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Christina Lam
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Irene Chang
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Xue Zou
- Program in Computational Biology & Bioinformatics, Duke University, Durham, NC 27710, USA
| | - Stephanie L Austin
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27708, USA
| | - Erin Huggins
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27708, USA
| | - Alexias Safi
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27708, USA
| | - Apoorva K Iyengar
- Department of Biostatistics and Bioinformatics, Duke University; Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University; Durham, NC 27708, USA
| | - Timothy E Reddy
- Department of Biostatistics and Bioinformatics, Duke University; Durham, NC 27708, USA
| | - William H Majoros
- Department of Biostatistics and Bioinformatics, Duke University; Durham, NC 27708, USA
| | - Andrew S Allen
- Department of Biostatistics and Bioinformatics, Duke University; Durham, NC 27708, USA
| | - Gregory E Crawford
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27708, USA
| | - Priya S Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27708, USA
| | - Mary-Claire King
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Tim Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jessica X Chong
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Dan Doherty
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Department of Pediatrics, Division of Developmental Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
41
|
Savarese M, Qureshi T, Torella A, Laine P, Giugliano T, Jonson PH, Johari M, Paulin L, Piluso G, Auvinen P, Nigro V, Udd B, Hackman P. Identification and Characterization of Splicing Defects by Single-Molecule Real-Time Sequencing Technology (PacBio). J Neuromuscul Dis 2021; 7:477-481. [PMID: 32597815 DOI: 10.3233/jnd-200523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although DNA-sequencing is the most effective procedure to achieve a molecular diagnosis in genetic diseases, complementary RNA analyses are often required.Reverse-Transcription polymerase chain reaction (RT-PCR) is still a valuable option when the clinical phenotype and/or available DNA-test results address the diagnosis toward a gene of interest or when the splicing effect of a single variant needs to be assessed.We use Single-Molecule Real-Time sequencing to detect and characterize splicing defects and single nucleotide variants in well-known disease genes (DMD, NF1, TTN). After proper optimization, the procedure could be used in the diagnostic setting, simplifying the workflow of cDNA analysis.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Talha Qureshi
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Annalaura Torella
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Pia Laine
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Teresa Giugliano
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Per Harald Jonson
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Giulio Piluso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Vincenzo Nigro
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland.,Vaasa Central Hospital, Vaasa, Finland
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
42
|
Schlieben LD, Prokisch H, Yépez VA. How Machine Learning and Statistical Models Advance Molecular Diagnostics of Rare Disorders Via Analysis of RNA Sequencing Data. Front Mol Biosci 2021; 8:647277. [PMID: 34141720 PMCID: PMC8204083 DOI: 10.3389/fmolb.2021.647277] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Rare diseases, although individually rare, collectively affect approximately 350 million people worldwide. Currently, nearly 6,000 distinct rare disorders with a known molecular basis have been described, yet establishing a specific diagnosis based on the clinical phenotype is challenging. Increasing integration of whole exome sequencing into routine diagnostics of rare diseases is improving diagnostic rates. Nevertheless, about half of the patients do not receive a genetic diagnosis due to the challenges of variant detection and interpretation. During the last years, RNA sequencing is increasingly used as a complementary diagnostic tool providing functional data. Initially, arbitrary thresholds have been applied to call aberrant expression, aberrant splicing, and mono-allelic expression. With the application of RNA sequencing to search for the molecular diagnosis, the implementation of robust statistical models on normalized read counts allowed for the detection of significant outliers corrected for multiple testing. More recently, machine learning methods have been developed to improve the normalization of RNA sequencing read count data by taking confounders into account. Together the methods have increased the power and sensitivity of detection and interpretation of pathogenic variants, leading to diagnostic rates of 10-35% in rare diseases. In this review, we provide an overview of the methods used for RNA sequencing and illustrate how these can improve the diagnostic yield of rare diseases.
Collapse
Affiliation(s)
- Lea D. Schlieben
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Prokisch
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Vicente A. Yépez
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Department of Informatics, Technical University of Munich, Munich, Germany
| |
Collapse
|
43
|
Rehder C, Bean LJH, Bick D, Chao E, Chung W, Das S, O'Daniel J, Rehm H, Shashi V, Vincent LM. Next-generation sequencing for constitutional variants in the clinical laboratory, 2021 revision: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021; 23:1399-1415. [PMID: 33927380 DOI: 10.1038/s41436-021-01139-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/17/2022] Open
Abstract
Next-generation sequencing (NGS) technologies are now established in clinical laboratories as a primary testing modality in genomic medicine. These technologies have reduced the cost of large-scale sequencing by several orders of magnitude. It is now cost-effective to analyze an individual with disease-targeted gene panels, exome sequencing, or genome sequencing to assist in the diagnosis of a wide array of clinical scenarios. While clinical validation and use of NGS in many settings is established, there are continuing challenges as technologies and the associated informatics evolve. To assist clinical laboratories with the validation of NGS methods and platforms, the ongoing monitoring of NGS testing to ensure quality results, and the interpretation and reporting of variants found using these technologies, the American College of Medical Genetics and Genomics (ACMG) has developed the following technical standards.
Collapse
Affiliation(s)
| | - Lora J H Bean
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - David Bick
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Elizabeth Chao
- Division of Genetics and Genomics, Department of Pediatrics, University of California, Irvine, CA, USA
| | - Wendy Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | - Soma Das
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Julianne O'Daniel
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Heidi Rehm
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vandana Shashi
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Lisa M Vincent
- Division of Pathology & Laboratory Medicine, Children's National Health System, Washington, DC, USA.,Departments of Pathology and Pediatrics, George Washington University, Washington, DC, USA
| | | |
Collapse
|
44
|
Lopes M, Louzada S, Gama-Carvalho M, Chaves R. Genomic Tackling of Human Satellite DNA: Breaking Barriers through Time. Int J Mol Sci 2021; 22:4707. [PMID: 33946766 PMCID: PMC8125562 DOI: 10.3390/ijms22094707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
(Peri)centromeric repetitive sequences and, more specifically, satellite DNA (satDNA) sequences, constitute a major human genomic component. SatDNA sequences can vary on a large number of features, including nucleotide composition, complexity, and abundance. Several satDNA families have been identified and characterized in the human genome through time, albeit at different speeds. Human satDNA families present a high degree of sub-variability, leading to the definition of various subfamilies with different organization and clustered localization. Evolution of satDNA analysis has enabled the progressive characterization of satDNA features. Despite recent advances in the sequencing of centromeric arrays, comprehensive genomic studies to assess their variability are still required to provide accurate and proportional representation of satDNA (peri)centromeric/acrocentric short arm sequences. Approaches combining multiple techniques have been successfully applied and seem to be the path to follow for generating integrated knowledge in the promising field of human satDNA biology.
Collapse
Affiliation(s)
- Mariana Lopes
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.L.); (S.L.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Sandra Louzada
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.L.); (S.L.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Margarida Gama-Carvalho
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.L.); (S.L.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| |
Collapse
|
45
|
Mizuguchi T, Toyota T, Miyatake S, Mitsuhashi S, Doi H, Kudo Y, Kishida H, Hayashi N, Tsuburaya RS, Kinoshita M, Fukuyama T, Fukuda H, Koshimizu E, Tsuchida N, Uchiyama Y, Fujita A, Takata A, Miyake N, Kato M, Tanaka F, Adachi H, Matsumoto N. Complete sequencing of expanded SAMD12 repeats by long-read sequencing and Cas9-mediated enrichment. Brain 2021; 144:1103-1117. [PMID: 33791773 DOI: 10.1093/brain/awab021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 11/14/2022] Open
Abstract
A pentanucleotide TTTCA repeat insertion into a polymorphic TTTTA repeat element in SAMD12 causes benign adult familial myoclonic epilepsy. Although the precise determination of the entire SAMD12 repeat sequence is important for molecular diagnosis and research, obtaining this sequence remains challenging when using conventional genomic/genetic methods, and even short-read and long-read next-generation sequencing technologies have been insufficient. Incomplete information regarding expanded repeat sequences may hamper our understanding of the pathogenic roles played by varying numbers of repeat units, genotype-phenotype correlations, and mutational mechanisms. Here, we report a new approach for the precise determination of the entire expanded repeat sequence and present a workflow designed to improve the diagnostic rates in various repeat expansion diseases. We examined 34 clinically diagnosed benign adult familial myoclonic epilepsy patients, from 29 families using repeat-primed PCR, Southern blot, and long-read sequencing with Cas9-mediated enrichment. Two cases with questionable results from repeat-primed PCR and/or Southern blot were confirmed as pathogenic using long-read sequencing with Cas9-mediated enrichment, resulting in the identification of pathogenic SAMD12 repeat expansions in 76% of examined families (22/29). Importantly, long-read sequencing with Cas9-mediated enrichment was able to provide detailed information regarding the sizes, configurations, and compositions of the expanded repeats. The inserted TTTCA repeat size and the proportion of TTTCA sequences among the overall repeat sequences were highly variable, and a novel repeat configuration was identified. A genotype-phenotype correlation study suggested that the insertion of even short (TTTCA)14 repeats contributed to the development of benign adult familial myoclonic epilepsy. However, the sizes of the overall TTTTA and TTTCA repeat units are also likely to be involved in the pathology of benign adult familial myoclonic epilepsy. Seven unsolved SAMD12-negative cases were investigated using whole-genome long-read sequencing, and infrequent, disease-associated, repeat expansions were identified in two cases. The strategic workflow resolved two questionable SAMD12-positive cases and two previously SAMD12-negative cases, increasing the diagnostic yield from 69% (20/29 families) to 83% (24/29 families). This study indicates the significant utility of long-read sequencing technologies to explore the pathogenic contributions made by various repeat units in complex repeat expansions and to improve the overall diagnostic rate.
Collapse
Affiliation(s)
- Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Tomoko Toyota
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama 236-0004, Japan
| | - Satomi Mitsuhashi
- Department of Genomic Function and Diversity, Medical Research Institute Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yosuke Kudo
- Department of Neurology, Yokohama Brain and Spine Center, Yokohama 235-0012, Japan
| | - Hitaru Kishida
- Department of Neurology, Yokohama City University Medical Center, Yokohama 232-0024, Japan
| | - Noriko Hayashi
- Department of Neurology, Yamato Municipal Hospital, Yamato 242-8602, Japan
| | - Rie S Tsuburaya
- Department of Pediatric Neurology, National Hospital Organization Utano National Hospital, Kyoto 616-8255, Japan
| | - Masako Kinoshita
- Department of Neurology, National Hospital Organization Utano National Hospital, Kyoto 616-8255, Japan
| | - Tetsuhiro Fukuyama
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Hiromi Fukuda
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.,Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
46
|
Yahia A, Stevanin G. The History of Gene Hunting in Hereditary Spinocerebellar Degeneration: Lessons From the Past and Future Perspectives. Front Genet 2021; 12:638730. [PMID: 33833777 PMCID: PMC8021710 DOI: 10.3389/fgene.2021.638730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
Hereditary spinocerebellar degeneration (SCD) encompasses an expanding list of rare diseases with a broad clinical and genetic heterogeneity, complicating their diagnosis and management in daily clinical practice. Correct diagnosis is a pillar for precision medicine, a branch of medicine that promises to flourish with the progressive improvements in studying the human genome. Discovering the genes causing novel Mendelian phenotypes contributes to precision medicine by diagnosing subsets of patients with previously undiagnosed conditions, guiding the management of these patients and their families, and enabling the discovery of more causes of Mendelian diseases. This new knowledge provides insight into the biological processes involved in health and disease, including the more common complex disorders. This review discusses the evolution of the clinical and genetic approaches used to diagnose hereditary SCD and the potential of new tools for future discoveries.
Collapse
Affiliation(s)
- Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Department of Biochemistry, Faculty of Medicine, National University, Khartoum, Sudan
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Giovanni Stevanin
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
47
|
Mitsuhashi S, Nakagawa S, Sasaki-Honda M, Sakurai H, Frith MC, Mitsuhashi H. Nanopore direct RNA sequencing detects DUX4-activated repeats and isoforms in human muscle cells. Hum Mol Genet 2021; 30:552-563. [PMID: 33693705 PMCID: PMC8120133 DOI: 10.1093/hmg/ddab063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 01/27/2021] [Accepted: 02/23/2021] [Indexed: 01/11/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an inherited muscle disease caused by misexpression of the DUX4 gene in skeletal muscle. DUX4 is a transcription factor, which is normally expressed in the cleavage-stage embryo and regulates gene expression involved in early embryonic development. Recent studies revealed that DUX4 also activates the transcription of repetitive elements such as endogenous retroviruses (ERVs), mammalian apparent long terminal repeat (LTR)-retrotransposons and pericentromeric satellite repeats (Human Satellite II). DUX4-bound ERV sequences also create alternative promoters for genes or long non-coding RNAs, producing fusion transcripts. To further understand transcriptional regulation by DUX4, we performed nanopore long-read direct RNA sequencing (dRNA-seq) of human muscle cells induced by DUX4, because long reads show whole isoforms with greater confidence. We successfully detected differential expression of known DUX4-induced genes and discovered 61 differentially expressed repeat loci, which are near DUX4–ChIP peaks. We also identified 247 gene–ERV fusion transcripts, of which 216 were not reported previously. In addition, long-read dRNA-seq clearly shows that RNA splicing is a common event in DUX4-activated ERV transcripts. Long-read analysis showed non-LTR transposons including Alu elements are also transcribed from LTRs. Our findings revealed further complexity of DUX4-induced ERV transcripts. This catalogue of DUX4-activated repetitive elements may provide useful information to elucidate the pathology of FSHD. Also, our results indicate that nanopore dRNA-seq has complementary strengths to conventional short-read complementary DNA sequencing.
Collapse
Affiliation(s)
- Satomi Mitsuhashi
- Department of Genomic Function and Diversity, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.,Department of Human Genetics, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - So Nakagawa
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan.,Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Mitsuru Sasaki-Honda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Martin C Frith
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan.,Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8561, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan
| | - Hiroaki Mitsuhashi
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan.,Department of Applied Biochemistry, School of Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| |
Collapse
|
48
|
Mangin A, de Pontual L, Tsai YC, Monteil L, Nizon M, Boisseau P, Mercier S, Ziegle J, Harting J, Heiner C, Gourdon G, Tomé S. Robust Detection of Somatic Mosaicism and Repeat Interruptions by Long-Read Targeted Sequencing in Myotonic Dystrophy Type 1. Int J Mol Sci 2021; 22:2616. [PMID: 33807660 PMCID: PMC7962047 DOI: 10.3390/ijms22052616] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 02/07/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most complex and variable trinucleotide repeat disorder caused by an unstable CTG repeat expansion, reaching up to 4000 CTG in the most severe cases. The genetic and clinical variability of DM1 depend on the sex and age of the transmitting parent, but also on the CTG repeat number, presence of repeat interruptions and/or on the degree of somatic instability. Currently, it is difficult to simultaneously and accurately determine these contributing factors in DM1 patients due to the limitations of gold standard methods used in molecular diagnostics and research laboratories. Our study showed the efficiency of the latest PacBio long-read sequencing technology to sequence large CTG trinucleotides, detect multiple and single repeat interruptions and estimate the levels of somatic mosaicism in DM1 patients carrying complex CTG repeat expansions inaccessible to most methods. Using this innovative approach, we revealed the existence of de novo CCG interruptions associated with CTG stabilization/contraction across generations in a new DM1 family. We also demonstrated that our method is suitable to sequence the DM1 locus and measure somatic mosaicism in DM1 families carrying more than 1000 pure CTG repeats. Better characterization of expanded alleles in DM1 patients can significantly improve prognosis and genetic counseling, not only in DM1 but also for other tandem DNA repeat disorders.
Collapse
Affiliation(s)
- Antoine Mangin
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, F-75013 Paris, France; (A.M.); (L.d.P.); (G.G.)
- Dementia Research Institute, Cardiff University, Cardiff CF10 3AT, UK
| | - Laure de Pontual
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, F-75013 Paris, France; (A.M.); (L.d.P.); (G.G.)
| | - Yu-Chih Tsai
- Pacific Biosciences, Menlo Park, CA 94025, USA; (Y.-C.T.); (J.Z.); (J.H.); (C.H.)
| | - Laetitia Monteil
- Genetics Department of the Hospital of Toulouse, F-31059 Toulouse, France;
| | - Mathilde Nizon
- CHU de Nantes, Service de Génétique Médicale, Laboratoire de Génétique Moléculaire, F-44000 Nantes, France; (M.N.); (P.B.)
| | - Pierre Boisseau
- CHU de Nantes, Service de Génétique Médicale, Laboratoire de Génétique Moléculaire, F-44000 Nantes, France; (M.N.); (P.B.)
| | - Sandra Mercier
- CHU Nantes, Service de Génétique Médicale, Centre de Référence des Maladies Neuromusculaires AOC, F-44000 Nantes, France;
| | - Janet Ziegle
- Pacific Biosciences, Menlo Park, CA 94025, USA; (Y.-C.T.); (J.Z.); (J.H.); (C.H.)
| | - John Harting
- Pacific Biosciences, Menlo Park, CA 94025, USA; (Y.-C.T.); (J.Z.); (J.H.); (C.H.)
| | - Cheryl Heiner
- Pacific Biosciences, Menlo Park, CA 94025, USA; (Y.-C.T.); (J.Z.); (J.H.); (C.H.)
| | - Geneviève Gourdon
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, F-75013 Paris, France; (A.M.); (L.d.P.); (G.G.)
| | - Stéphanie Tomé
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, F-75013 Paris, France; (A.M.); (L.d.P.); (G.G.)
| |
Collapse
|
49
|
Rentas S, Abou Tayoun A. Utility of droplet digital PCR and NGS-based CNV clinical assays in hearing loss diagnostics: current status and future prospects. Expert Rev Mol Diagn 2021; 21:213-221. [PMID: 33554673 DOI: 10.1080/14737159.2021.1887731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Genetic variants in over 100 genes can cause non-syndromic hearing loss (NSHL). Comprehensive diagnostic testing of these genes requires detecting pathogenic sequence and copy number alterations with economical, scalable and sensitive assays. Here we discuss best practices and effective testing algorithms for hearing-loss-related genes with special emphasis on detection of copy number variants.Areas covered: We review studies that used next-generation sequencing (NGS), chromosomal microarrays, droplet digital PCR (ddPCR), and multiplex ligation-dependent probe amplification (MLPA) for the diagnosis of NSHL. We specifically focus on unique and recurrent copy number changes that affect the GJB2 and STRC genes, two of the most common causes of NSHL.Expert opinion: NGS panels and exome sequencing can detect most pathogenic sequence and copy number variants that cause NSHL; however, GJB2 and STRC currently require additional assays to capture all pathogenic copy number variants. Adoption of genome sequencing may simplify diagnostic workflows, but further investigational studies will be required to evaluate its clinical efficacy.
Collapse
Affiliation(s)
- Stefan Rentas
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ahmad Abou Tayoun
- Al Jalila Genomics Center, Al Jalila Children's Specialty Hospital, Dubai, UAE.,Department of Genetics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| |
Collapse
|
50
|
Amarasinghe SL, Ritchie ME, Gouil Q. long-read-tools.org: an interactive catalogue of analysis methods for long-read sequencing data. Gigascience 2021; 10:giab003. [PMID: 33590862 PMCID: PMC7931822 DOI: 10.1093/gigascience/giab003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/21/2020] [Accepted: 01/13/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The data produced by long-read third-generation sequencers have unique characteristics compared to short-read sequencing data, often requiring tailored analysis tools for tasks ranging from quality control to downstream processing. The rapid growth in software that addresses these challenges for different genomics applications is difficult to keep track of, which makes it hard for users to choose the most appropriate tool for their analysis goal and for developers to identify areas of need and existing solutions to benchmark against. FINDINGS We describe the implementation of long-read-tools.org, an open-source database that organizes the rapidly expanding collection of long-read data analysis tools and allows its exploration through interactive browsing and filtering. The current database release contains 478 tools across 32 categories. Most tools are developed in Python, and the most frequent analysis tasks include base calling, de novo assembly, error correction, quality checking/filtering, and isoform detection, while long-read single-cell data analysis and transcriptomics are areas with the fewest tools available. CONCLUSION Continued growth in the application of long-read sequencing in genomics research positions the long-read-tools.org database as an essential resource that allows researchers to keep abreast of both established and emerging software to help guide the selection of the most relevant tool for their analysis needs.
Collapse
Affiliation(s)
- Shanika L Amarasinghe
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Matthew E Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia
- School of Mathematics and Statistics, The University of Melbourne, 813 Swanston Street, Parkville, VIC 3010, Australia
| | - Quentin Gouil
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|