1
|
Seraji N, Berger I. FGFR as a Predictive Marker for Targeted Therapy in Gastrointestinal Malignancies: A Systematic Review. J Gastrointest Cancer 2025; 56:96. [PMID: 40205008 PMCID: PMC11982104 DOI: 10.1007/s12029-025-01214-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Gastrointestinal (GI) cancers constitute approximately 25% of cancers worldwide. The fibroblast growth factor receptor (FGFR) family is a promising target for immunotherapy aiming to enhance survival rates. FGFR alterations are associated with GI carcinomas. Their predictive value in different malignancies remains a focus area. While FGFR inhibitors have been approved for cholangiocarcinoma (CC) therapy, uncertainties remain regarding other GI cancers. METHODS A systematic review was conducted using the following databases: CINAHL, Embase, Medline, Cochrane Library, PubMed, and Web of Science. The search terms included "FGFR" and each of the GI malignancies. A total of 18 studies were included in this review. RESULTS The efficacy of FGFR-targeted therapy is evident. Strong evidence supports the use of FGFR inhibitors in CC, gastro-oesophageal cancer (GC/OC), and hepatocellular cancer, while there is limited evidence for pancreatic cancer (PC) and colorectal cancer (CRC). Alteration forms like FGFR2 fusion or rearrangement are associated with CC, while FGFR2 amplification and FGFR2b overexpression are associated with GC/OC. The administration of multi-kinase inhibitors without prior genomic testing, makes distinct study outcomes not solely attributable to the FGFR blockade. CONCLUSION FGFRs have a predictive value for GI cancers. Certain FGFR alterations are predictable for specific GI cancers. The most established FGFR-targeted therapy is for CC. It is essential to expand the FGFR research field for PC and CRC. Consistent molecular diagnostics in clinical trials are vital to comprehend the patient population with the highest efficacy.
Collapse
Affiliation(s)
- Nika Seraji
- Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Irina Berger
- Department of Pathology, Klinikum Kassel, Kassel, Germany
| |
Collapse
|
2
|
Upadhyay P, Wu CW, Pham A, Zeki AA, Royer CM, Kodavanti UP, Takeuchi M, Bayram H, Pinkerton KE. Animal models and mechanisms of tobacco smoke-induced chronic obstructive pulmonary disease (COPD). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:275-305. [PMID: 37183431 PMCID: PMC10718174 DOI: 10.1080/10937404.2023.2208886] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, and its global health burden is increasing. COPD is characterized by emphysema, mucus hypersecretion, and persistent lung inflammation, and clinically by chronic airflow obstruction and symptoms of dyspnea, cough, and fatigue in patients. A cluster of pathologies including chronic bronchitis, emphysema, asthma, and cardiovascular disease in the form of hypertension and atherosclerosis variably coexist in COPD patients. Underlying causes for COPD include primarily tobacco use but may also be driven by exposure to air pollutants, biomass burning, and workplace related fumes and chemicals. While no single animal model might mimic all features of human COPD, a wide variety of published models have collectively helped to improve our understanding of disease processes involved in the genesis and persistence of COPD. In this review, the pathogenesis and associated risk factors of COPD are examined in different mammalian models of the disease. Each animal model included in this review is exclusively created by tobacco smoke (TS) exposure. As animal models continue to aid in defining the pathobiological mechanisms of and possible novel therapeutic interventions for COPD, the advantages and disadvantages of each animal model are discussed.
Collapse
Affiliation(s)
- Priya Upadhyay
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Ching-Wen Wu
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Alexa Pham
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Amir A. Zeki
- Department of Internal Medicine; Division of Pulmonary, Critical Care, and Sleep Medicine, Center for Comparative Respiratory Biology and Medicine, School of Medicine; University of California, Davis, School of Medicine; U.C. Davis Lung Center; Davis, CA USA
| | - Christopher M. Royer
- California National Primate Research Center, University of California, Davis, Davis, CA 95616 USA
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Minoru Takeuchi
- Department of Animal Medical Science, Kyoto Sangyo University, Kyoto, Japan
| | - Hasan Bayram
- Koc University Research Center for Translational Medicine (KUTTAM), School of Medicine, Istanbul, Turkey
| | - Kent E. Pinkerton
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
3
|
Wang X, Hou X, Zhao Y, Zhao R, Dai J, Dai H, Wang C. The early and late intervention effects of collagen-binding FGF2 on elastase-induced lung injury. Biomed Pharmacother 2023; 158:114147. [PMID: 36584430 DOI: 10.1016/j.biopha.2022.114147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) has high morbidity and mortality, with no effective treatment at present. Emphysema, a major component of COPD, is a leading cause of human death worldwide. Fibroblast growth factor 2 (FGF2) is implicated in the pathogenesis of pulmonary emphysema and may play an important role in the lung repair process after injury, but concerns remain with respect to its effectiveness. OBJECTIVE In the present work, we sought to determine how the timing (early and late intervention) of sustained-release FGF2 system administration impacted its effectiveness on a porcine pancreatic elastase (PPE)-induced lung injury mouse model. METHODS To examine the early intervention efficiency of collagen-binding FGF2 (CBD-FGF2), mice received intratracheally nebulized CBD-FGF2 with concurrent intratracheal injection of PPE. To explore the late intervention effect, CBD-FGF2 was intratracheally aerosolized after PPE administration, and lungs were collected after CBD-FGF2 treatment for subsequent analysis. RESULT In response to PPE, mice had significantly increased alveolar diameter, collagen deposition and expression of inflammatory factors and decreased lung function indices and expression of alveolar epithelium markers. Our results indicate that CBD-FGF2 administration was able to prevent and repair elastase-induced lung injury partly through the suppression of the inflammatory response and recovery of the alveolar epithelium. The early use of CBD-FGF2 for the prevention of PPE-induced emphysema showed better results than late therapeutic administration against established emphysema. CONCLUSION These data provide insight regarding the prospective role of a drug-based option (CBD-FGF2) for preventing and curing emphysema.
Collapse
Affiliation(s)
- Xin Wang
- Beijing University of Chinese Medicine, Beijing 100029, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing 100029, China
| | - Xianglin Hou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruiming Zhao
- Beijing University of Chinese Medicine, Beijing 100029, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing 100029, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing 100029, China; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China.
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing 100029, China; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China.
| |
Collapse
|
4
|
Xu H, Pan G, Wang J. Repairing Mechanisms for Distal Airway Injuries and Related Targeted Therapeutics for Chronic Lung Diseases. Cell Transplant 2023; 32:9636897231196489. [PMID: 37698245 PMCID: PMC10498699 DOI: 10.1177/09636897231196489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), involve progressive and irreversible destruction and pathogenic remodeling of airways and have become the leading health care burden worldwide. Pulmonary tissue has extensive capacities to launch injury-responsive repairing programs (IRRPs) to replace the damaged or dead cells upon acute lung injuries. However, the IRRPs are frequently compromised in chronic lung diseases. In this review, we aim to provide an overview of somatic stem cell subpopulations within distal airway epithelium and the underlying mechanisms mediating their self-renewal and trans-differentiation under both physiological and pathological circumstances. We also compared the differences between humans and mice on distal airway structure and stem cell composition. At last, we reviewed the current status and future directions for the development of targeted therapeutics on defective distal airway regeneration and repairment in chronic lung diseases.
Collapse
Affiliation(s)
- Huahua Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Guihong Pan
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jun Wang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
6
|
Zhu Z, Li J, Si J, Ma B, Shi H, Lv J, Cao W, Guo Y, Millwood IY, Walters RG, Lin K, Yang L, Chen Y, Du H, Yu B, Hasegawa K, Camargo CA, Moffatt MF, Cookson WOC, Chen J, Chen Z, Li L, Yu C, Liang L. A large-scale genome-wide association analysis of lung function in the Chinese population identifies novel loci and highlights shared genetic aetiology with obesity. Eur Respir J 2021; 58:2100199. [PMID: 33766948 PMCID: PMC8513692 DOI: 10.1183/13993003.00199-2021] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/02/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Lung function is a heritable complex phenotype with obesity being one of its important risk factors. However, knowledge of their shared genetic basis is limited. Most genome-wide association studies (GWASs) for lung function have been based on European populations, limiting the generalisability across populations. Large-scale lung function GWASs in other populations are lacking. METHODS We included 100 285 subjects from the China Kadoorie Biobank (CKB). To identify novel loci for lung function, single-trait GWAS analyses were performed on forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC in the CKB. We then performed genome-wide cross-trait analysis between lung function and obesity traits (body mass index (BMI), BMI-adjusted waist-to-hip ratio and BMI-adjusted waist circumference) to investigate the shared genetic effects in the CKB. Finally, polygenic risk scores (PRSs) of lung function were developed in the CKB and their interaction with BMI's association on lung function were examined. We also conducted cross-trait analysis in parallel with the CKB using up to 457 756 subjects from the UK Biobank (UKB) for replication and investigation of ancestry-specific effects. RESULTS We identified nine genome-wide significant novel loci for FEV1, six for FVC and three for FEV1/FVC in the CKB. FEV1 and FVC showed significant negative genetic correlation with obesity traits in both the CKB and UKB. Genetic loci shared between lung function and obesity traits highlighted important biological pathways, including cell proliferation, embryo, skeletal and tissue development, and regulation of gene expression. Mendelian randomisation analysis suggested significant negative causal effects of BMI on FEV1 and on FVC in both the CKB and UKB. Lung function PRSs significantly modified the effect of change in BMI on change in lung function during an average follow-up of 8 years. CONCLUSION This large-scale GWAS of lung function identified novel loci and shared genetic aetiology between lung function and obesity. Change in BMI might affect change in lung function differently according to a subject's polygenic background. These findings may open new avenues for the development of molecular-targeted therapies for obesity and lung function improvement.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Program in Genetic Epidemiology and Statistical Genetics, Dept of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Dept of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- These four authors contributed equally to this article
| | - Jiachen Li
- Dept of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- These four authors contributed equally to this article
| | - Jiahui Si
- Program in Genetic Epidemiology and Statistical Genetics, Dept of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Dept of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- These four authors contributed equally to this article
| | - Baoshan Ma
- College of Information Science and Technology, Dalian Maritime University, Dalian, China
- These four authors contributed equally to this article
| | - Huwenbo Shi
- Program in Genetic Epidemiology and Statistical Genetics, Dept of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jun Lv
- Dept of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China
- Peking University Institute of Environmental Medicine, Beijing, China
| | - Weihua Cao
- Dept of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yu Guo
- Chinese Academy of Medical Sciences, Beijing, China
| | - Iona Y Millwood
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Dept of Population Health, University of Oxford, Oxford, UK
| | - Robin G Walters
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Dept of Population Health, University of Oxford, Oxford, UK
| | - Kuang Lin
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Dept of Population Health, University of Oxford, Oxford, UK
| | - Ling Yang
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Dept of Population Health, University of Oxford, Oxford, UK
| | - Yiping Chen
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Dept of Population Health, University of Oxford, Oxford, UK
| | - Huaidong Du
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Dept of Population Health, University of Oxford, Oxford, UK
| | - Bo Yu
- NCDs Prevention and Control Dept, Nangang CDC, Harbin, China
| | - Kohei Hasegawa
- Dept of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Camargo
- Program in Genetic Epidemiology and Statistical Genetics, Dept of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Dept of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Miriam F Moffatt
- Section of Genomic Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - William O C Cookson
- Section of Genomic Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Junshi Chen
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Dept of Population Health, University of Oxford, Oxford, UK
| | - Liming Li
- Dept of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Canqing Yu
- Dept of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- These two authors contributed equally to this article as lead authors and supervised the work
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Dept of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Dept of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- These two authors contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
7
|
Yang L, Zhou F, Zheng D, Wang D, Li X, Zhao C, Huang X. FGF/FGFR signaling: From lung development to respiratory diseases. Cytokine Growth Factor Rev 2021; 62:94-104. [PMID: 34593304 DOI: 10.1016/j.cytogfr.2021.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023]
Abstract
The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling system regulates a variety of biological processes, including embryogenesis, angiogenesis, wound repair, tissue homeostasis, and cancer. It exerts these regulatory functions by controlling proliferation, differentiation, migration, survival, and metabolism of target cells. The morphological structure of the lung is a complex tree-like network for effective oxygen exchange, and the airway terminates in the middle and distal ends of many alveoli. FGF/FGFR signaling plays an important role in the pathophysiology of lung development and pathogenesis of various human respiratory diseases. Here, we mainly review recent advances in FGF/FGFR signaling during human lung development and respiratory diseases, including lung cancer, acute lung injury (ALI), pulmonary arterial hypertension (PAH), chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Lehe Yang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Feng Zhou
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Dandan Zheng
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Dandan Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China.
| | - Chengguang Zhao
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China.
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
8
|
Jaleel Z, Blasberg E, Troiano C, Montanaro P, Mazzilli S, Gertje HP, Crossland NA, Platt M, Spiegel J. Association of vaping with decreased vascular endothelial growth factor expression and decreased microvessel density in cutaneous wound healing tissue in rats. Wound Repair Regen 2021; 29:1024-1034. [PMID: 34129265 DOI: 10.1111/wrr.12945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 04/13/2021] [Accepted: 05/15/2021] [Indexed: 12/24/2022]
Abstract
Vaping is suggested to be a risk factor for poor wound healing akin to smoking. However, the molecular and histologic mechanisms underlying this postulation remain unknown. Our study sought to compare molecular and histologic changes in cutaneous flap and non-flap tissue between vaping, smoking and control cohorts. Animal study of 15 male Sprague-Dawley rats was randomized to three cohorts: negative control (n = 5), e-cigarette (n = 5) and cigarette (n = 5) and exposed to their respective treatments with serum cotinine monitoring. After 30 days, random pattern flaps were raised and healed for 2 weeks after which skin punch biopsies of flap and non-flap tissues were collected for quantitative-reverse transcription-polymerase chain reaction of three selected wound healing genes (transforming growth factor β [TGF-β], vascular endothelial growth factor [VEGF], matrix metalloproteinase-1 [MMP-1]); then, immunohistochemistry for CD68 expression, α-smooth muscle actin looking at microvessel density (MVD) and in situ hybridization to localize VEGF production were undertaken. In flap tissue, vaping (mean[SEM]) (0.61[0.07]) and smoking (0.70[0.04]) were associated with decreased fold change of VEGF expression compared with controls (0.91[0.03]) (p < 0.05, p < 0.05, respectively). In non-flap tissue, only vaping was associated with decreased VEGF expression (mean[SEM]) (0.81[0.07]), compared with controls (1.17[0.10]) (p < 0.05) with expression primarily localized to basal keratinocytes and dermal capillaries. Immunohistochemistry showed decreased MVD in smoking (0.27[0.06]) and vaping (0.26[0.04]) flap tissue compared to matched controls (0.65[0.14]) (p < 0.05, p < 0.05, respectively) and decreased areas of fibrosis compared with controls on gross histology. Vaping and smoking were similarly associated with decreased VEGF expression, MVD and fibrotic changes in flap tissue. The results suggest attenuated angiogenesis via decreased VEGF expression as a mechanism for poor wound healing in vaping-exposed rats.
Collapse
Affiliation(s)
- Zaroug Jaleel
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Elizabeth Blasberg
- Department of Otolaryngology/Head and Neck Surgery, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Chelsea Troiano
- Department of Otolaryngology/Head and Neck Surgery, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Paige Montanaro
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Sarah Mazzilli
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Hans Peter Gertje
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Nicholas A Crossland
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Michael Platt
- Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Otolaryngology/Head and Neck Surgery, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jeffrey Spiegel
- Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Otolaryngology/Head and Neck Surgery, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Wu X, Verschut V, Woest ME, Ng-Blichfeldt JP, Matias A, Villetti G, Accetta A, Facchinetti F, Gosens R, Kistemaker LEM. Rho-Kinase 1/2 Inhibition Prevents Transforming Growth Factor-β-Induced Effects on Pulmonary Remodeling and Repair. Front Pharmacol 2021; 11:609509. [PMID: 33551810 PMCID: PMC7855981 DOI: 10.3389/fphar.2020.609509] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Transforming growth factor (TGF)-β-induced myofibroblast transformation and alterations in mesenchymal-epithelial interactions contribute to chronic lung diseases such as chronic obstructive pulmonary disease (COPD), asthma and pulmonary fibrosis. Rho-associated coiled-coil-forming protein kinase (ROCK) consists as two isoforms, ROCK1 and ROCK2, and both are playing critical roles in many cellular responses to injury. In this study, we aimed to elucidate the differential role of ROCK isoforms on TGF-β signaling in lung fibrosis and repair. For this purpose, we tested the effect of a non-selective ROCK 1 and 2 inhibitor (compound 31) and a selective ROCK2 inhibitor (compound A11) in inhibiting TGF-β-induced remodeling in lung fibroblasts and slices; and dysfunctional epithelial-progenitor interactions in lung organoids. Here, we demonstrated that the inhibition of ROCK1/2 with compound 31 represses TGF-β-driven actin remodeling as well as extracellular matrix deposition in lung fibroblasts and PCLS, whereas selective ROCK2 inhibition with compound A11 did not. Furthermore, the TGF-β induced inhibition of organoid formation was functionally restored in a concentration-dependent manner by both dual ROCK 1 and 2 inhibition and selective ROCK2 inhibition. We conclude that dual pharmacological inhibition of ROCK 1 and 2 counteracts TGF-β induced effects on remodeling and alveolar epithelial progenitor function, suggesting this to be a promising therapeutic approach for respiratory diseases associated with fibrosis and defective lung repair.
Collapse
Affiliation(s)
- Xinhui Wu
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | - Manon E. Woest
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- AQUILO BV, Groningen, Netherlands
| | - John-Poul Ng-Blichfeldt
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ana Matias
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gino Villetti
- Corporate Pre-Clinical R and D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Alessandro Accetta
- Corporate Pre-Clinical R and D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | | | - Reinoud Gosens
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Loes E. M. Kistemaker
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- AQUILO BV, Groningen, Netherlands
| |
Collapse
|
10
|
Tan Y, Qiao Y, Chen Z, Liu J, Guo Y, Tran T, Tan KS, Wang DY, Yan Y. FGF2, an Immunomodulatory Factor in Asthma and Chronic Obstructive Pulmonary Disease (COPD). Front Cell Dev Biol 2020; 8:223. [PMID: 32300593 PMCID: PMC7142218 DOI: 10.3389/fcell.2020.00223] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
The fibroblast growth factor 2 (FGF2) is a potent mitogenic factor belonging to the FGF family. It plays a role in airway remodeling associated with chronic inflammatory airway diseases, including asthma and chronic obstructive pulmonary disease (COPD). Recently, research interest has been raised in the immunomodulatory function of FGF2 in asthma and COPD, through its involvement in not only the regulation of inflammatory cells but also its participation as a mediator between immune cells and airway structural cells. Herein, this review provides the current knowledge on the biology of FGF2, its expression pattern in asthma and COPD patients, and its role as an immunomodulatory factor. The potential that FGF2 is involved in regulating inflammation indicates that FGF2 could be a therapeutic target for chronic inflammatory diseases.
Collapse
Affiliation(s)
- Yuanyang Tan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | | | - Zhuanggui Chen
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Liu
- Department of Respiratory Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yanrong Guo
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, University Health System, National University of Singapore, Singapore, Singapore
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, University Health System, National University of Singapore, Singapore, Singapore
| | - Yan Yan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
11
|
Wu X, van Dijk EM, Ng-Blichfeldt JP, Bos IST, Ciminieri C, Königshoff M, Kistemaker LEM, Gosens R. Mesenchymal WNT-5A/5B Signaling Represses Lung Alveolar Epithelial Progenitors. Cells 2019; 8:cells8101147. [PMID: 31557955 PMCID: PMC6829372 DOI: 10.3390/cells8101147] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 01/23/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) represents a worldwide concern with high morbidity and mortality, and is believed to be associated with accelerated ageing of the lung. Alveolar abnormalities leading to emphysema are a key characteristic of COPD. Pulmonary alveolar epithelial type 2 cells (AT2) produce surfactant and function as progenitors for type 1 cells. Increasing evidence shows elevated WNT-5A/B expression in ageing and in COPD that may contribute to the disease process. However, supportive roles for WNT-5A/B in lung regeneration were also reported in different studies. Thus, we explored the role of WNT-5A/B on alveolar epithelial progenitors (AEPs) in more detail. We established a Precision-Cut-Lung Slices (PCLS) model and a lung organoid model by co-culturing epithelial cells (EpCAM+/CD45-/CD31-) with fibroblasts in matrigel in vitro to study the impact of WNT-5A and WNT-5B. Our results show that WNT-5A and WNT-5B repress the growth of epithelial progenitors with WNT-5B preferentially restraining the growth and differentiation of alveolar epithelial progenitors. We provide evidence that both WNT-5A and WNT-5B negatively regulate the canonical WNT signaling pathway in alveolar epithelium. Taken together, these findings reveal the functional impact of WNT-5A/5B signaling on alveolar epithelial progenitors in the lung, which may contribute to defective alveolar repair in COPD.
Collapse
Affiliation(s)
- Xinhui Wu
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | - Eline M van Dijk
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | - John-Poul Ng-Blichfeldt
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | - I Sophie T Bos
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | - Chiara Ciminieri
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, CO 80045 Aurora, USA.
| | - Melanie Königshoff
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, CO 80045 Aurora, USA.
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
- Aquilo BV, 9713 AV Groningen, The Netherlands.
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
12
|
Lai PY, Jing X, Michalkiewicz T, Entringer B, Ke X, Majnik A, Kriegel AJ, Liu P, Lane RH, Konduri GG. Adverse early-life environment impairs postnatal lung development in mice. Physiol Genomics 2019; 51:462-470. [PMID: 31373541 DOI: 10.1152/physiolgenomics.00016.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Fetal growth restriction (FGR) is a major risk factor for bronchopulmonary dysplasia (BPD). Maternal stress and poor diet are linked to FGR. Effect of perinatal stress on lung development remains unknown. OBJECTIVE Using a murine model of adverse early life environment (AELE), we hypothesized that maternal exposure to perinatal environmental stress and high-fat diet (Western diet) lead to impaired lung development in the offspring. METHODS Female mice were placed on either control diet or Western diet before conception. Those exposed to Western diet were also exposed to perinatal environmental stress, the combination referred to as AELE. Pups were either euthanized at postnatal day 21 (P21) or weaned to control diet and environment until adulthood (8-14 wk old). Lungs were harvested for histology, gene expression by quantitative RT-PCR, microRNA profiling, and immunoblotting. RESULTS AELE increased the mean linear intercept and decreased the radial alveolar count and secondary septation in P21 and adult mice. Capillary count was also decreased in P21 and adult mice. AELE lungs had decreased vascular endothelial growth factor A (VEGFA), VEGF receptor 2, endothelial nitric oxide synthase, and hypoxia inducible factor-1α protein levels and increased expression of genes that regulate DNA methylation and upregulation of microRNAs that target genes involved in lung development at P21. CONCLUSION AELE leads to impaired lung alveolar and vascular growth, which persists into adult age despite normalizing the diet and environment at P21. AELE also alters the expression of genes involved in lung remodeling.
Collapse
Affiliation(s)
- Pui Y Lai
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| | - Xigang Jing
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| | - Teresa Michalkiewicz
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| | - Brianna Entringer
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| | - Xingrao Ke
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| | - Amber Majnik
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| | - Alison J Kriegel
- Department of Physiology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Pengyuan Liu
- Department of Physiology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Robert H Lane
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| | - Girija G Konduri
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| |
Collapse
|
13
|
Growth factor delivery: Defining the next generation platforms for tissue engineering. J Control Release 2019; 306:40-58. [DOI: 10.1016/j.jconrel.2019.05.028] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022]
|