1
|
Tian M, Zhou Y, Guo Y, Xia Q, Wang Z, Zheng X, Shen J, Guo J, Duan S, Wang L. MicroRNAs in adipose tissue fibrosis: Mechanisms and therapeutic potential. Genes Dis 2025; 12:101287. [PMID: 40242037 PMCID: PMC12002615 DOI: 10.1016/j.gendis.2024.101287] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/07/2024] [Indexed: 04/18/2025] Open
Abstract
Adipose tissue fibrosis, characterized by abnormal extracellular matrix deposition within adipose tissue, signifies a crucial indicator of adipose tissue malfunction, potentially leading to organ tissue dysfunction. Various factors, including a high-fat diet, non-alcoholic fatty liver disease, and insulin resistance, coincide with adipose tissue fibrosis. MicroRNAs (miRNAs) represent a class of small non-coding RNAs with significant influence on tissue fibrosis through diverse signaling pathways. For instance, in response to a high-fat diet, miRNAs can modulate signaling pathways such as TGF-β/Smad, PI3K/AKT, and PPAR-γ to impact adipose tissue fibrosis. Furthermore, miRNAs play roles in inhibiting fibrosis in different contexts: suppressing corneal fibrosis via the TGF-β/Smad pathway, mitigating cardiac fibrosis through the VEGF signaling pathway, reducing wound fibrosis via regulation of the MAPK signaling pathway, and diminishing fibrosis post-fat transplantation via involvement in the PDGFR-β signaling pathway. Notably, the secretome released by miRNA-transfected adipose-derived stem cells facilitates targeted delivery of miRNAs to evade host immune rejection, enhancing their anti-fibrotic efficacy. Hence, this study endeavors to elucidate the role and mechanism of miRNAs in adipose tissue fibrosis and explore the mechanisms and advantages of the secretome released by miRNA-transfected adipose-derived stem cells in combating fibrotic diseases.
Collapse
Affiliation(s)
- Mei Tian
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Yang Zhou
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Yitong Guo
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Qing Xia
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Xinying Zheng
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Junping Guo
- Rainbowfish Rehabilitation and Nursing School, Hangzhou Vocational & Technical College, Hangzhou, Zhejiang 310018, China
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Lijun Wang
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
2
|
Ma CS, Han B, Meng SC, Bai M, Yi WJ, Zhang LY, Duan MY, Wang YJ, He MT. Lycium barbarum glycopeptide attenuates intracerebral hemorrhage-induced inflammation and oxidative stress via activation of the Sirt3 signaling pathway. Int Immunopharmacol 2025; 154:114518. [PMID: 40157082 DOI: 10.1016/j.intimp.2025.114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a severe neurological condition characterized by high morbidity and mortality rates, with no effective treatment currently available. Lycium barbarum glycopeptide (LbGP), derived from the further purification of Lycium barbarum polysaccharides (LBP), has demonstrated anti-inflammatory effects, suggesting its potential as a therapeutic agent for ICH. However, the role and mechanisms of LbGP in ICH remain unclear. This study aimed to investigate the effects of LbGP on ICH and its underlying mechanisms. METHODS A collagenase injection-induced mouse model of ICH was used to evaluate the therapeutic effects of LbGP. Mice were treated with varying doses of LbGP, and outcomes were assessed based on hemorrhage volume, neurological function, inflammation, and oxidative stress markers. Apoptosis was analyzed using TUNEL staining. Mechanistic studies focused on mitochondrial acetylation homeostasis and the expression of Sirt3, a mitochondrial deacetylase. Statistical analyses were performed using one-way ANOVA with Tukey's post hoc tests. RESULTS LbGP administration reduced hemorrhage volume and improved neurological function in a dose-dependent manner. It significantly decreased pro-inflammatory cytokines (IL-18, TNF-α, IL-1β) and oxidative stress markers (malondialdehyde and reactive oxygen species) while increasing superoxide dismutase activity and total antioxidant capacity. LbGP treatment also mitigated apoptosis and promoted mitochondrial acetylation homeostasis. Mechanistically, LbGP upregulated mitochondrial Sirt3 expression, and blocking Sirt3 disrupted mitochondrial acetylation homeostasis, resulting in increased inflammation and oxidative stress. CONCLUSIONS LbGP alleviates inflammation and oxidative stress in hemorrhagic brain injury by activating Sirt3 and maintaining mitochondrial acetylation homeostasis. These findings highlight the therapeutic potential of LbGP in treating ICH, providing a foundation for further clinical applications.
Collapse
Affiliation(s)
- Chang-Sheng Ma
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Department of Anesthesiology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Bo Han
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Shu-Chen Meng
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Min Bai
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Wen-Jing Yi
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Li-Ying Zhang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Meng-Yuan Duan
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Yi-Jun Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Mao-Tao He
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China.
| |
Collapse
|
3
|
Da Silva K, Kumar P, Choonara YE. The paradigm of stem cell secretome in tissue repair and regeneration: Present and future perspectives. Wound Repair Regen 2025; 33:e13251. [PMID: 39780313 PMCID: PMC11711308 DOI: 10.1111/wrr.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
As the number of patients requiring organ transplants continues to rise exponentially, there is a dire need for therapeutics, with repair and regenerative properties, to assist in alleviating this medical crisis. Over the past decade, there has been a shift from conventional stem cell treatments towards the use of the secretome, the protein and factor secretions from cells. These components may possess novel druggable targets and hold the key to profoundly altering the field of regenerative medicine. Despite the progress in this field, clinical translation of secretome-containing products is limited by several challenges including but not limited to ensuring batch-to-batch consistency, the prevention of further heterogeneity, production of sufficient secretome quantities, product registration, good manufacturing practice protocols and the pharmacokinetic/pharmacodynamic profiles of all the components. Despite this, the secretome may hold the key to unlocking the regenerative blockage scientists have encountered for years. This review critically analyses the secretome derived from different cell sources and used in several tissues for tissue regeneration. Furthermore, it provides an overview of the current delivery strategies and the future perspectives for the secretome as a potential therapeutic. The success and possible shortcomings of the secretome are evaluated.
Collapse
Affiliation(s)
- Kate Da Silva
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
4
|
Arconzo M, Piccinin E, Pasculli E, Cariello M, Loiseau N, Bertrand-Michel J, Guillou H, Matrella ML, Villani G, Moschetta A. Hepatic-specific Pgc-1α ablation drives fibrosis in a MASH model. Liver Int 2024; 44:2738-2752. [PMID: 39046166 DOI: 10.1111/liv.16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatohepatitis (MASH) is a growing cause of chronic liver disease, characterized by fat accumulation, inflammation and fibrosis, which development depends on mitochondrial dysfunction and oxidative stress. Highly expressed in the liver during fasting, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) regulates mitochondrial and oxidative metabolism. Given the relevant role of mitochondrial function in MASH, we investigated the relationship between PGC-1α and steatohepatitis. METHODS We measured the hepatic expression of Pgc-1α in both MASH patients and wild-type mice fed a western diet (WD) inducing steatosis and fibrosis. We then generated a pure C57BL6/J strain loss of function mouse model in which Pgc-1α is selectively deleted in the liver and we fed these mice with a WD supplemented with sugar water that accurately mimics human MASH. RESULTS We observed that the hepatic expression of Pgc-1α is strongly reduced in MASH, in both humans and mice. Moreover, the hepatic ablation of Pgc-1α promotes a considerable reduction of the hepatic mitochondrial respiratory capacity, setting up a bioenergetic harmful environment for liver diseases. Indeed, the lack of Pgc-1α decreases mitochondrial function and increases inflammation, fibrosis and oxidative stress in the scenario of MASH. Intriguingly, this profibrotic phenotype is not linked with obesity, insulin resistance and lipid disbalance. CONCLUSIONS In a MASH model the hepatic ablation of Pgc-1α drives fibrosis independently from lipid and glucose metabolism. These results add a novel mechanistic piece to the puzzle of the specific and crucial role of mitochondrial function in MASH development.
Collapse
Affiliation(s)
- Maria Arconzo
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| | - Elena Piccinin
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Emanuela Pasculli
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| | - Marica Cariello
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | | | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Maria L Matrella
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Gaetano Villani
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
- INBB, National Institute for Biostructures and Biosystems, Rome, Italy
| |
Collapse
|
5
|
Seo CH, Na GH, Lee D, Park JH, Hong TH, Kim OH, Lee SC, Kim KH, Choi HJ, Kim SJ. Pioneering PGC-1α-boosted secretome: a novel approach to combating liver fibrosis. Ann Surg Treat Res 2024; 106:155-168. [PMID: 38435492 PMCID: PMC10902621 DOI: 10.4174/astr.2024.106.3.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 03/05/2024] Open
Abstract
Purpose Liver fibrosis is a critical health issue with limited treatment options. This study investigates the potential of PGC-Sec, a secretome derived from peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)-overexpressing adipose-derived stem cells (ASCs), as a novel therapeutic strategy for liver fibrosis. Methods Upon achieving a cellular confluence of 70%-80%, ASCs were transfected with pcDNA-PGC-1α. PGC-Sec, obtained through concentration of conditioned media using ultrafiltration units with a 3-kDa cutoff, was assessed through in vitro assays and in vitro mouse models. Results In vitro, PGC-Sec significantly reduced LX2 human hepatic stellate cell proliferation and mitigated mitochondrial oxidative stress compared to the control-secretome. In an in vivo mouse model, PGC-Sec treatment led to notable reductions in hepatic enzyme activity, serum proinflammatory cytokine concentrations, and fibrosis-related marker expression. Histological analysis demonstrated improved liver histology and reduced fibrosis severity in PGC-Sec-treated mice. Immunohistochemical staining confirmed enhanced expression of PGC-1α, optic atrophy 1 (a mitochondrial function marker), and peroxisome proliferator-activated receptor alpha (an antifibrogenic marker) in the PGC-Sec-treated group, along with reduced collagen type 1A expression (a profibrogenic marker). Conclusion These findings highlight the therapeutic potential of PGC-Sec in combating liver fibrosis by enhancing mitochondrial biogenesis and function, and promoting antifibrotic processes. PGC-Sec holds promise as a novel treatment strategy for liver fibrosis.
Collapse
Affiliation(s)
- Chang Ho Seo
- Department of Surgery, Bucheon St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Gun Hyung Na
- Department of Surgery, Bucheon St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Dosang Lee
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
- Catholic Central Laboratory of Surgery, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Jung Hyun Park
- Catholic Central Laboratory of Surgery, College of Medicine, the Catholic University of Korea, Seoul, Korea
- Department of Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Tae Ho Hong
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
- Catholic Central Laboratory of Surgery, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Ok-Hee Kim
- Catholic Central Laboratory of Surgery, College of Medicine, the Catholic University of Korea, Seoul, Korea
- Translational Research Team, Surginex Co., Ltd., Seoul, Korea
| | - Sang Chul Lee
- Department of Surgery, Daejeon St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Kee-Hwan Kim
- Catholic Central Laboratory of Surgery, College of Medicine, the Catholic University of Korea, Seoul, Korea
- Department of Surgery, Uijeongbu St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Ho Joong Choi
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Say-June Kim
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
- Catholic Central Laboratory of Surgery, College of Medicine, the Catholic University of Korea, Seoul, Korea
- Translational Research Team, Surginex Co., Ltd., Seoul, Korea
| |
Collapse
|
6
|
Li QY, Gong T, Huang YK, Kang L, Warner CA, Xie H, Chen LM, Duan XQ. Role of noncoding RNAs in liver fibrosis. World J Gastroenterol 2023; 29:1446-1459. [PMID: 36998425 PMCID: PMC10044853 DOI: 10.3748/wjg.v29.i9.1446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/27/2022] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Liver fibrosis is a wound-healing response following chronic liver injury caused by hepatitis virus infection, obesity, or excessive alcohol. It is a dynamic and reversible process characterized by the activation of hepatic stellate cells and excess accumulation of extracellular matrix. Advanced fibrosis could lead to cirrhosis and even liver cancer, which has become a significant health burden worldwide. Many studies have revealed that noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs and circular RNAs, are involved in the pathogenesis and development of liver fibrosis by regulating signaling pathways including transforming growth factor-β pathway, phosphatidylinositol 3-kinase/protein kinase B pathway, and Wnt/β-catenin pathway. NcRNAs in serum or exosomes have been reported to tentatively applied in the diagnosis and staging of liver fibrosis and combined with elastography to improve the accuracy of diagnosis. NcRNAs mimics, ncRNAs in mesenchymal stem cell-derived exosomes, and lipid nanoparticles-encapsulated ncRNAs have become promising therapeutic approaches for the treatment of liver fibrosis. In this review, we update the latest knowledge on ncRNAs in the pathogenesis and progression of liver fibrosis, and discuss the potentials and challenges to use these ncRNAs for diagnosis, staging and treatment of liver fibrosis. All these will help us to develop a comprehensive understanding of the role of ncRNAs in liver fibrosis.
Collapse
Affiliation(s)
- Qing-Yuan Li
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Tao Gong
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Yi-Ke Huang
- Center for Transfusion-transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, China
| | - Lan Kang
- Center for Transfusion-transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, China
| | - Charlotte A Warner
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - He Xie
- Department of Clinical Laboratory, The Hospital of Xidian Group, Xi’an 710077, Shaanxi Province, China
| | - Li-Min Chen
- Center for Transfusion-transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, China
- Department of Clinical Laboratory, The Hospital of Xidian Group, Xi’an 710077, Shaanxi Province, China
| | - Xiao-Qiong Duan
- Center for Transfusion-transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, China
| |
Collapse
|
7
|
Ma Y, Jiao Z, Liu X, Zhang Q, Piao C, Xu J, Wang H. Protective effect of adipose-derived stromal cell-secretome attenuate autophagy induced by liver ischemia–reperfusion and partial hepatectomy. STEM CELL RESEARCH & THERAPY 2022; 13:427. [PMID: 35987696 PMCID: PMC9392224 DOI: 10.1186/s13287-022-03109-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/03/2022] [Indexed: 11/25/2022]
Abstract
Background The therapeutic effects of adipose-derived mesenchymal stromal cells (ADSCs) may be mainly mediated by their paracrine effects. The ADSC-secretome can ameliorate hepatic ischemia–reperfusion injury (IRI). We explored the therapeutic effect of the ADSC-secretome from the perspective of excessive hepatocyte autophagy induced by hepatic IRI. Methods We established a miniature pig model of hepatic ischemia–reperfusion (I/R) and hepatectomy using a laparoscopic technique and transplanted ADSCs and the ADSC-secretome into the liver parenchyma immediately after surgery. Liver injury and hepatocyte autophagy were evaluated by histopathological examination and assessment of relevant cytokines and other factors. Results The results showed that the ADSC-secretome alleviated the pathological changes of liver tissue and the microstructural damage of hepatocytes after IRI. Moreover, the expression levels of autophagy-related markers including Beclin-1, ATG5, ATG12, and LC3II/LC3I decreased, whereas those of p62 increased during phagophore expansion. Furthermore, the expression levels of markers related to the autophagy inhibition pathway phosphatidylinositol-3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR), including PI3K, Akt, and mTOR, increased. Conclusion The ADSC-secretome attenuates hepatic I/R and hepatectomy-induced liver damage by inhibiting autophagy, which is possibly mediated by activation of the PI3K/Akt/mTOR signaling pathway. In addition, there was no significant difference between ADSCs and the ADSC-secretome in the regulation of hepatocyte autophagy. Therefore, ADSCs may improve the excessive autophagy-induced injury of hepatocytes in hepatic I/R and hepatectomy through paracrine effect. Our findings provide new insight into the therapeutic potential of cell-free products, which could replace cell therapy in liver diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03109-2.
Collapse
|
8
|
The secretome obtained under hypoxic preconditioning from human adipose-derived stem cells exerts promoted anti-apoptotic potentials through upregulated autophagic process. Mol Biol Rep 2022; 49:8859-8870. [PMID: 35941418 DOI: 10.1007/s11033-022-07736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hypoxic preconditioning (HP) is a stem cell preconditioning modality designed to augment the therapeutic effects of mesenchymal stem cells (MSCs). Although autophagy is expected to play a role in HP, very little is known regarding the relationship between HP and autophagy. METHODS AND RESULTS The adipose-derived stem cell (ASC)-secretome obtained under normoxia (NCM) and ASC-secretome obtained under HP (HCM) were obtained by culturing ASCs for 24 h under normoxic (21% partial pressure of O2) and hypoxic (1% partial pressure of O2) conditions, respectively. Subsequently, to determine the in vivo effects of HCM, each secretome was injected into 70% partially hepatectomized mice, and liver specimens were obtained. HCM significantly reduced the apoptosis of thioacetamide-treated AML12 hepatocytes and promoted the autophagic processes of the cells (P < 0.05). Autophagy blockage by either bafilomycin A1 or ATG5 siRNA significantly abrogated the anti-apoptotic effect of HCM (P < 0.05), demonstrating that HCM exerts its anti-apoptotic effect by promoting autophagy. The effect of HCM - reduction of cell apoptosis and promotion of autophagic process - was also demonstrated in a mouse model. CONCLUSIONS HP appears to induce ASCs to release a secretome with enhanced anti-apoptotic effects by promoting the autophagic process of ASCs.
Collapse
|
9
|
Li F, Zhang J, Yi K, Wang H, Wei H, Chan HF, Tao Y, Li M. Delivery of Stem Cell Secretome for Therapeutic Applications. ACS APPLIED BIO MATERIALS 2022; 5:2009-2030. [PMID: 35285638 DOI: 10.1021/acsabm.1c01312] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intensive studies on stem cell therapy reveal that benefits of stem cells attribute to the paracrine effects. Hence, direct delivery of stem cell secretome to the injured site shows the comparative therapeutic efficacy of living cells while avoiding the potential limitations. However, conventional systemic administration of stem cell secretome often leads to rapid clearance in vivo. Therefore, a variety of different biomaterials are developed for sustained and controllable delivery of stem cell secretome to improve therapeutic efficiency. In this review, we first introduce current approaches for the preparation and characterization of stem cell secretome as well as strategies to improve their therapeutic efficacy and production. The up-to-date delivery platforms are also summarized, including nanoparticles, injectable hydrogels, microneedles, and scaffold patches. Meanwhile, we discuss the underlying therapeutic mechanism of stem cell secretome for the treatment of various diseases. In the end, future opportunities and challenges are proposed.
Collapse
Affiliation(s)
- Fenfang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hongyan Wei
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.,Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou 510630, China
| |
Collapse
|
10
|
Shang X, Yuan H, Dai L, Liu Y, He J, Chen H, Li H, Li X. Anti-Liver Fibrosis Activity and the Potential Mode of Action of Ruangan Granules: Integrated Network Pharmacology and Metabolomics. Front Pharmacol 2022; 12:754807. [PMID: 35115923 PMCID: PMC8805709 DOI: 10.3389/fphar.2021.754807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023] Open
Abstract
Ruangan granules (RGGs) have been used to treat liver fibrosis with good clinical efficacy for many years. However, the potential mechanism of action of RGGs against liver fibrosis is still unclear. In this study, we evaluated the quality and safety of this preparation and aimed to explore the anti-liver fibrosis activity and potential mode of action of RGGs using network pharmacology and metabolomics. The results showed that RGGs contained abundant ferulic acid, salvianolic acid B and paeoniflorin, and at the given contents and doses, RGGs were safe and presented anti-liver fibrosis activity. They presented anti-liver fibrosis activity by improving liver function (ALT and AST, p < 0.01) and pathology and decreasing fibrosis markers in the serum of rats caused by CCl4, including HA, LN, PC III, HYP, CoII-V, and α-SMA, and the oxidant stress and inflammatory response were also alleviated in a dose-dependent manner, especially for high-dose RGGs (p < 0.01). Further studies showed that RGGs inhibited the activation of the PI3K-Akt signaling pathway in rats induced by CCl4, regulated pyrimidine metabolism, improved oxidative stress and the inflammatory response by regulating mitochondrial morphology, and alleviated liver fibrosis. Luteolin, quercetin, morin and kaempferol were active compounds and presented the cytotoxicity toward to LX-02 cells. This study provides an overall view of the mechanism underlying the action of RGGs protecting against liver fibrosis.
Collapse
Affiliation(s)
- Xiaofei Shang
- Beijing YouAn Hospital, Capital Medical University, Beijing, China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huixin Yuan
- Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Lixia Dai
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yang Liu
- Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Jian He
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huan Chen
- Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Hongyan Li
- Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Xiuhui Li
- Beijing YouAn Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
ABU-EL-RUB EJLAL, R. KHASAWNEH RAMADA, A. ALMAHASNEH FATIMAH, M. ZEGALLAI HANA. Mesenchymal stem cells derived secretome as an innovative cell-free therapeutic approach. BIOCELL 2022; 46:907-911. [DOI: 10.32604/biocell.2022.018306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/29/2021] [Indexed: 11/15/2022]
|
12
|
Li ZJ, Wang LQ, Li YZ, Wang CY, Huang JZ, Yu NZ, Long X. Application of adipose-derived stem cells in treating fibrosis. World J Stem Cells 2021; 13:1747-1761. [PMID: 34909121 PMCID: PMC8641015 DOI: 10.4252/wjsc.v13.i11.1747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/18/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is the hyperactivation of fibroblasts that results in excessive accumulation of extracellular matrix, which is involved in numerous pathological changes and diseases. Adipose-derived stem cells (ASCs) are promising seed cells for regenerative medicine due to their bountiful source, low immunogenicity and lack of ethical issues. Their anti-fibrosis, immunomodulation, angiogenesis and other therapeutic effects have made them suitable for treating fibrosis-related diseases. Here, we review the literature on ASCs treating fibrosis, elaborate and discuss their mechanisms of action, changes in disease environment, ways to enhance therapeutic effects, as well as current preclinical and clinical studies, in order to provide a general picture of ASCs treating fibrotic diseases.
Collapse
Affiliation(s)
- Zhu-Jun Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Li-Quan Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yun-Zhu Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Chen-Yu Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jiu-Zuo Huang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Nan-Ze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
13
|
DeBari MK, Abbott RD. Adipose Tissue Fibrosis: Mechanisms, Models, and Importance. Int J Mol Sci 2020; 21:ijms21176030. [PMID: 32825788 PMCID: PMC7503256 DOI: 10.3390/ijms21176030] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Increases in adipocyte volume and tissue mass due to obesity can result in inflammation, further dysregulation in adipose tissue function, and eventually adipose tissue fibrosis. Like other fibrotic diseases, adipose tissue fibrosis is the accumulation and increased production of extracellular matrix (ECM) proteins. Adipose tissue fibrosis has been linked to decreased insulin sensitivity, poor bariatric surgery outcomes, and difficulty in weight loss. With the rising rates of obesity, it is important to create accurate models for adipose tissue fibrosis to gain mechanistic insights and develop targeted treatments. This article discusses recent research in modeling adipose tissue fibrosis using in vivo and in vitro (2D and 3D) methods with considerations for biomaterial selections. Additionally, this article outlines the importance of adipose tissue in treating other fibrotic diseases and methods used to detect and characterize adipose tissue fibrosis.
Collapse
Affiliation(s)
- Megan K. DeBari
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|