1
|
Brito CF, Fonseca RC, Rodrigues-Ribeiro L, Guimarães JSF, Vaz BF, Tofani GSS, Batista ACS, Diniz AB, Fernandes P, Nunes NAM, Pessoa RM, Oliveira ACC, Lula IS, Cardoso VN, Fernandes SOA, Poletini MO, Alvarez-Leite JI, Menezes GB, Ferreira AVM, Magalhães MTQ, Gorshkov V, Kjeldsen F, Verano-Braga T, Araujo AM, Oliveira AG. Vagus Nerve Mediated Liver-Brain-Axis Is a Major Regulator of the Metabolic Landscape in the Liver. Int J Mol Sci 2025; 26:2166. [PMID: 40076796 PMCID: PMC11901116 DOI: 10.3390/ijms26052166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
The liver serves as a major energetic reservoir for other tissues and its metabolic function is controlled by humoral and neural factors. The vagus nerve innervating the gastrointestinal tract plays an important role in regulating peripheral metabolism and energy expenditure. Although the liver receives vagus nerve fibers, the impact of this circuitry in the regulation of hepatic metabolism is still poorly understood. Herein, we used a combination of quantitative proteomics and in vivo imaging techniques to investigate the impact of the vagus nerve on liver metabolism in male mice. Liver-brain axis was impaired by vagotomy (VNX) or knocking down of the vesicular acetylcholine transporter (VAChT-KD). Mice were challenged with high carbohydrate or high-fat feeding. The vagus nerve shapes the metabolic framework of the liver, as vagotomy led to a significant alteration of the hepatic proteome landscape. Differential protein expression and pathway enrichment analyses showed that glycolytic and fatty acid biosynthesis were increased following VNX, whereas β-oxidation was decreased. These results were corroborated in VAChT-KD mice. This metabolic shift facilitated lipid accumulation in hepatocytes in mice fed with a standard commercial diet. Furthermore, VNX worsened liver steatosis following high-carbohydrate or high-fat dietary challenges. This study describes the liver-brain axis mediated by the vagus nerve as an important regulator of the hepatic metabolic landscape.
Collapse
Affiliation(s)
- Camila F. Brito
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (C.F.B.); (R.C.F.)
| | - Roberta C. Fonseca
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (C.F.B.); (R.C.F.)
| | - Lucas Rodrigues-Ribeiro
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (C.F.B.); (R.C.F.)
| | - João S. F. Guimarães
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (C.F.B.); (R.C.F.)
| | - Bruna F. Vaz
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (C.F.B.); (R.C.F.)
| | - Gabriel S. S. Tofani
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (C.F.B.); (R.C.F.)
| | - Ana C. S. Batista
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Ariane B. Diniz
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Paola Fernandes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (C.F.B.); (R.C.F.)
| | - Núbia A. M. Nunes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Rafaela M. Pessoa
- Department of Clinical and Toxicological Analysis, College of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Amanda C. C. Oliveira
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Ivana S. Lula
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Valbert N. Cardoso
- Department of Clinical and Toxicological Analysis, College of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Simone O. A. Fernandes
- Department of Clinical and Toxicological Analysis, College of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Maristela O. Poletini
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (C.F.B.); (R.C.F.)
| | - Jacqueline I. Alvarez-Leite
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Gustavo B. Menezes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Adaliene V. M. Ferreira
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Mariana T. Q. Magalhães
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Thiago Verano-Braga
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (C.F.B.); (R.C.F.)
| | - Alan M. Araujo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | - André G. Oliveira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (C.F.B.); (R.C.F.)
| |
Collapse
|
2
|
Nouraei SAR, Ayres L, Perring SJ. Baroreflex Sensitivity in Patients With Laryngopharyngeal Dysfunction-The Overwhelmed Vagus Hypothesis. JAMA Otolaryngol Head Neck Surg 2024; 150:908-917. [PMID: 39235785 PMCID: PMC11378070 DOI: 10.1001/jamaoto.2024.2270] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/10/2024] [Indexed: 09/06/2024]
Abstract
Importance The autonomic nervous system maintains internal stability by concurrently prioritizing and managing different functions. It is currently not known whether dysfunction at the aerodigestive junction could overwhelm autonomic control and impair other functions. Objective To compare baroreflex sensitivity, a prognostically significant index of the autonomic system's ability to stabilize blood pressure, between patients with predominantly esophagogastric (digestive) and patients with predominantly laryngopharyngeal (aerodigestive) symptoms. Design, Setting, and Participants A cross-sectional study, between 2018 and 2019, of adults undergoing esophagal manometry or transnasal panendoscopy was carried out in a specialist center. The analysis took place between 2023 and 2024. Main Outcomes and Measures Heart rate and blood pressure were recorded and baroreflex sensitivity and heart rate variability were derived. Esophageal physiology was assessed with high-resolution manometry. Results There were 30 and 23 patients in the digestive and aerodigestive groups, respectively. The mean (SD) age was 61 (15) years and there were 26 women and 27 men. Compared with patients in the digestive group, more patients in the aerodigestive group had voice or throat symptoms and fewer had classic reflux symptoms (odds ratio [OR], 5.65; 95% CI, 1.82-17.5; OR, 2.07; 95% CI, 1.28-3.33; and OR, 0.60; 95% CI, 0.38-0.95, respectively). Patients in the aerodigestive group had higher mean (SD) resting heart rate (93 [17] vs 75 [13] min-1; difference of means, -18 min-1; 95% CI, -26 to -10), lower resting mean (SD) arterial pressure (94 [16] vs 104 [23] mm Hg, OR, 10; 95% CI, -1 to 21), lower mean (SD) baroreflex sensitivity (3.77 [0.79] vs 9.76 [2.92] s-3mm Hg-1; OR, 6.0 s-3mmHg-1; 95% CI, 4.7-7.2), and lower mean (SD) parasympathetic-spectrum heart rate variability (0.68 [0.15] vs 1.30 [0.53]; OR, 0.62; 95% CI, 0.39-0.85). There was a correlation between reduced lower esophageal relaxation (integrated relaxation pressure) and reduced baroreflex sensitivity (r = -0.33; 95% CI, -0.58 to -0.03). Conclusions In this cross-sectional study of adults undergoing esophageal manometry or transnasal panendoscopy, patients with laryngopharyngeal symptoms had reduced baroreflex sensitivity, indicating diminished vagal control compared with patients with esophagogastric symptoms. The overwhelmed vagus hypothesis may explain these responses by considering autonomic functions as competing consumers of the finite regulatory resources of a common controller. The regulatory demands of maintaining a safe airway with concurrent laryngopharyngeal sensorimotor dysfunction, superadded to baseline demands for dual speech and aerodigestive control, could overwhelm and force the system to deprioritize less immediate functions like esophageal relaxation and the baroreflex. Measuring baroreflex sensitivity, now possible in routine clinical practice, could enable phenotyping and objective outcome assessment for laryngopharyngeal dysfunction. A neurophysiological model for considering laryngopharyngeal sensorimotor dysfunction could in turn move patient care toward a more holistic autonomic health footing.
Collapse
Affiliation(s)
- S. A. Reza Nouraei
- The Clinical Informatics Researchers Unit, Southampton University, United Kingdom
| | - Lachlan Ayres
- Department of Gastroenterology, University Hospitals of Dorset NHS Foundation Trust, Poole, United Kingdom
| | - Stephen J. Perring
- Department of Medical Physics, University Hospitals of Dorset NHS Foundation Trust, Poole, United Kingdom
| |
Collapse
|
3
|
Mac CH, Tai HM, Huang SM, Peng HH, Sharma AK, Nguyen GLT, Chang PJ, Wang JT, Chang Y, Lin YJ, Sung HW. Orally Ingested Self-Powered Stimulators for Targeted Gut-Brain Axis Electrostimulation to Treat Obesity and Metabolic Disorders. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310351. [PMID: 38591658 DOI: 10.1002/adma.202310351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Obesity is a significant health concern that often leads to metabolic dysfunction and chronic diseases. This study introduces a novel approach to combat obesity using orally ingested self-powered electrostimulators. These electrostimulators consist of piezoelectric BaTiO3 (BTO) particles conjugated with capsaicin (Cap) and aim to activate the vagus nerve. Upon ingestion by diet-induced obese (DIO) mice, the BTO@Cap particles specifically target and bind to Cap-sensitive sensory nerve endings in the gastric mucosa. In response to stomach peristalsis, these particles generate electrical signals. The signals travel via the gut-brain axis, ultimately influencing the hypothalamus. By enhancing satiety signals in the brain, this neuromodulatory intervention reduces food intake, promotes energy metabolism, and demonstrates minimal toxicity. Over a 3-week period of daily treatments, DIO mice treated with BTO@Cap particles show a significant reduction in body weight compared to control mice, while maintaining their general locomotor activity. Furthermore, this BTO@Cap particle-based treatment mitigates various metabolic alterations associated with obesity. Importantly, this noninvasive and easy-to-administer intervention holds potential for addressing other intracerebral neurological diseases.
Collapse
Affiliation(s)
- Cam-Hoa Mac
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsien-Meng Tai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, 350401, Taiwan
| | - Hsu-Hsia Peng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Amit Kumar Sharma
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Giang Le Thi Nguyen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pei-Ju Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jui-To Wang
- Neurological Institute, Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Brain Science, National Yang-Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yen Chang
- Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Yu-Jung Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsing-Wen Sung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
4
|
Ikoma Y, Sasaki D, Matsui K. Local brain environment changes associated with epileptogenesis. Brain 2023; 146:576-586. [PMID: 36423658 DOI: 10.1093/brain/awac355] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 11/27/2022] Open
Abstract
Plastic change of the neuronal system has traditionally been assumed to be governed primarily by the long-term potentiation/depression mechanisms of synaptic transmission. However, a rather simple shift in the ambient ion, transmitter and metabolite concentrations could have a pivotal role in generating plasticity upon the physiological process of learning and memory. Local brain environment and metabolic changes could also be the cause and consequences of the pathogenesis leading to epilepsy. Governing of the local brain environment is the primal function of astrocytes. The metabolic state of the entire brain is strongly linked to the activity of the lateral hypothalamus. In this study, plastic change of astrocyte reactions in the lateral hypothalamus was examined using epileptogenesis as an extreme form of plasticity. Fluorescent sensors for calcium or pH expressed in astrocytes were examined for up to one week by in vivo fibre photometry in freely moving transgenic male mice. Optical fluctuations on a timescale of seconds is difficult to assess because these signals are heavily influenced by local brain blood volume changes and pH changes. Using a newly devised method for the analysis of the optical signals, changes in Ca2+ and pH in astrocytes and changes in local brain blood volume associated with hippocampal-stimulated epileptic seizures were extracted. Following a transient alkaline shift in the astrocyte triggered by neuronal hyperactivity, a prominent acidic shift appeared in response to intensified seizure which developed with kindling. The acidic shift was unexpected as transient increase in local brain blood volume was observed in response to intensified seizures, which should lead to efficient extrusion of the acidic CO2. The acidic shift could be a result of glutamate transporter activity and/or due to the increased metabolic load of astrocytes leading to increased CO2 and lactate production. This acidic shift may trigger additional gliotransmitter release from astrocytes leading to the exacerbation of epilepsy. As all cellular enzymic reactions are influenced by Ca2+ and pH, changes in these parameters could also have an impact on the neuronal circuit activity. Thus, controlling the astrocyte pH and/or Ca2+ could be a new therapeutic target for treatment of epilepsy or prevention of undesired plasticity associated with epileptogenesis.
Collapse
Affiliation(s)
- Yoko Ikoma
- Super-network Brain Physiology Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Daichi Sasaki
- Super-network Brain Physiology Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Ko Matsui
- Super-network Brain Physiology Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan.,Super-network Brain Physiology, Graduate School of Medicine, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
5
|
Ni SJ, Yao ZY, Wei X, Heng X, Qu SY, Zhao X, Qi YY, Ge PY, Xu CP, Yang NY, Cao Y, Zhu HX, Guo R, Zhang QC. Vagus nerve stimulated by microbiota-derived hydrogen sulfide mediates the regulation of berberine on microglia in transient middle cerebral artery occlusion rats. Phytother Res 2022; 36:2964-2981. [PMID: 35583808 DOI: 10.1002/ptr.7490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 11/05/2022]
Abstract
Amelioration of neuroinflammation via modulating microglia is a promising approach for cerebral ischemia therapy. The aim of the present study was to explore gut-brain axis signals in berberine-modulating microglia polarization following cerebral ischemia. The potential pathway was determined through analyzing the activation of the vagus nerve, hydrogen sulfide (H2 S) metabolism, and cysteine persulfides of transient receptor potential vanilloid 1 (TRPV1) receptor. The cerebral microenvironment feature was explored with a metabolomics assay. The data indicated that berberine ameliorated behavioral deficiency in transient middle cerebral artery occlusion rats through modulating microglia polarization and neuroinflammation depending on microbiota. Enhanced vagus nerve activity following berberine treatment was blocked by antibiotic cocktails, capsazepine, or sodium molybdate, respectively. Berberine-induced H2 S production was responsible for vagus nerve stimulation achieved through assimilatory and dissimilatory sulfate reduction with increased synthetic enzymes. Sulfation of the TRPV1 receptor resulted in vagus nerve activation and promoted the c-fos and ChAT in the nucleus tractus solitaries with berberine. Sphingolipid metabolism is the primary metabolic characteristic with berberine in the cerebral cortex, hippocampus, and cerebral spinal fluid disrupted by antibiotics. Berberine, in conclusion, modulates microglia polarization in a microbiota-dependent manner. H2 S stimulates the vagus nerve through TRPV1 is responsible for the berberine-induced gut-brain axis signal transmission. Sphingolipid metabolism might mediate the neuroinflammation amelioration following vagus afferent fiber activation.
Collapse
Affiliation(s)
- Sai-Jia Ni
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zeng-Ying Yao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaotong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xia Heng
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu-Yue Qu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi-Yu Qi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping-Yuan Ge
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cai-Ping Xu
- Nanjing Sinolife Bio-tech Co., Ltd, Nanjing, China
| | - Nian-Yun Yang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Cao
- Institute of Literature in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua-Xu Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Guo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi-Chun Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Kozorosky EM, Lee CH, Lee JG, Nunez Martinez V, Padayachee LE, Stauss HM. Transcutaneous auricular vagus nerve stimulation augments postprandial inhibition of ghrelin. Physiol Rep 2022; 10:e15253. [PMID: 35441808 PMCID: PMC9020171 DOI: 10.14814/phy2.15253] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 05/15/2023] Open
Abstract
Vagus nerve stimulation (VNS) facilitates weight loss in animals and patients treated with VNS for depression or epilepsy. Likewise, chronic transcutaneous auricular VNS (taVNS) reduces weight gain and improves glucose tolerance in Zucker diabetic fatty rats. If these metabolic effects of taVNS observed in rats translate to humans is unknown. Therefore, the hypothesis of this study was that acute application of taVNS affects glucotropic and orexigenic hormones which could potentially facilitate weight loss and improve glucose tolerance if taVNS were applied chronically. In two single-blinded randomized cross-over protocols, blood glucose levels, plasma concentrations of insulin, C-peptide, glucagon, leptin, and ghrelin, together with heart rate variability and baroreceptor-heart rate reflex sensitivity were determined before and after taVNS (left ear, 10 Hz, 300 µs, 2.0-2.5 mA, 30 min) or sham-taVNS (electrode attached to ear with the stimulator turned off). In a first protocol, subjects (n = 16) were fasted throughout the protocol and in a second protocol, subjects (n = 10) received a high-calorie beverage (220 kCal) after the first blood sample, just before initiation of taVNS or sham-taVNS. No significant effects of taVNS on heart rate variability and baroreceptor-heart rate reflex sensitivity and only minor effects on glucotropic hormones were observed. However, in the second protocol taVNS significantly lowered postprandial plasma ghrelin levels (taVNS: -115.5 ± 28.3 pg/ml vs. sham-taVNS: -51.2 ± 30.6 pg/ml, p < 0.05). This finding provides a rationale for follow-up studies testing the hypothesis that chronic application of taVNS may reduce food intake through inhibition of ghrelin and, therefore, may indirectly improve glucose tolerance through weight loss.
Collapse
Affiliation(s)
| | - Cristina H. Lee
- Burrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| | - Jessica G. Lee
- Burrell College of Osteopathic MedicineLas CrucesNew MexicoUSA
| | | | | | | |
Collapse
|
7
|
Folick A, Cheang RT, Valdearcos M, Koliwad SK. Metabolic factors in the regulation of hypothalamic innate immune responses in obesity. Exp Mol Med 2022; 54:393-402. [PMID: 35474339 PMCID: PMC9076660 DOI: 10.1038/s12276-021-00666-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
The hypothalamus is a central regulator of body weight and energy homeostasis. There is increasing evidence that innate immune activation in the mediobasal hypothalamus (MBH) is a key element in the pathogenesis of diet-induced obesity. Microglia, the resident immune cells in the brain parenchyma, have been shown to play roles in diverse aspects of brain function, including circuit refinement and synaptic pruning. As such, microglia have also been implicated in the development and progression of neurological diseases. Microglia express receptors for and are responsive to a wide variety of nutritional, hormonal, and immunological signals that modulate their distinct functions across different brain regions. We showed that microglia within the MBH sense and respond to a high-fat diet and regulate the function of hypothalamic neurons to promote food intake and obesity. Neurons, glia, and immune cells within the MBH are positioned to sense and respond to circulating signals that regulate their capacity to coordinate aspects of systemic energy metabolism. Here, we review the current knowledge of how these peripheral signals modulate the innate immune response in the MBH and enable microglia to regulate metabolic control.
Collapse
Affiliation(s)
- Andrew Folick
- Diabetes Center and Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA
| | - Rachel T Cheang
- Diabetes Center and Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA
| | - Martin Valdearcos
- Diabetes Center and Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA.
| | - Suneil K Koliwad
- Diabetes Center and Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
8
|
Antoniak K, Hansdorfer-Korzon R, Mrugacz M, Zorena K. Adipose Tissue and Biological Factors. Possible Link between Lymphatic System Dysfunction and Obesity. Metabolites 2021; 11:metabo11090617. [PMID: 34564433 PMCID: PMC8464765 DOI: 10.3390/metabo11090617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
The World Health Organization (WHO) has recognised obesity as one of the top ten threats to human health. Obesity is not only a state of abnormally increased adipose tissue in the body, but also of an increased release of biologically active metabolites. Moreover, obesity predisposes the development of metabolic syndrome and increases the incidence of type 2 diabetes (T2DM), increases the risk of developing insulin resistance, atherosclerosis, ischemic heart disease, polycystic ovary syndrome, hypertension and cancer. The lymphatic system is a one-directional network of thin-walled capillaries and larger vessels covered by a continuous layer of endothelial cells that provides a unidirectional conduit to return filtered arterial and tissue metabolites towards the venous circulation. Recent studies have shown that obesity can markedly impair lymphatic function. Conversely, dysfunction in the lymphatic system may also be involved in the pathogenesis of obesity. This review highlights the important findings regarding obesity related to lymphatic system dysfunction, including clinical implications and experimental studies. Moreover, we present the role of biological factors in the pathophysiology of the lymphatic system and we propose the possibility of a therapy supporting the function of the lymphatic system in the course of obesity.
Collapse
Affiliation(s)
- Klaudia Antoniak
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland;
| | - Rita Hansdorfer-Korzon
- Department of Physical Therapy, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland;
| | - Małgorzata Mrugacz
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, Kilinskiego 1, 15-089 Białystok, Poland;
| | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland;
- Correspondence: ; Tel./Fax: +48-583491765
| |
Collapse
|
9
|
Ahmed U, Chang YC, Lopez MF, Wong J, Datta-Chaudhuri T, Rieth L, Al-Abed Y, Zanos S. Implant- and anesthesia-related factors affecting cardiopulmonary threshold intensities for vagus nerve stimulation. J Neural Eng 2021; 18. [PMID: 34036940 DOI: 10.1088/1741-2552/ac048a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/24/2021] [Indexed: 11/11/2022]
Abstract
Objective.Vagus nerve stimulation (VNS) is typically delivered at increasing stimulus intensity until a neurological or physiological response is observed ('threshold') for dose calibration, preclinically and therapeutically. Factors affecting VNS thresholds have not been studied systematically. In a rodent model of VNS we measured neural and physiological responses to increasing VNS intensity, determined neurological and physiological thresholds and examined the effect of implant- and anesthesia-related factors on thresholds.Approach.In acute and chronic vagus implants (45 and 20 rats, respectively) VNS was delivered under isoflurane, ketamine-xylazine, or awake conditions. Evoked compound action potentials (CAPs) were recorded and activation of different fiber types was extracted. Elicited physiological responses were registered, including changes in heart rate (HR), breathing rate (BR), and blood pressure (BP). CAP and physiological thresholds were determined.Main results. The threshold for evoking discernable CAPs (>10µV) (CAP threshold) is significantly lower than what elicits 5%-10% drop in heart rate (heart rate threshold, HRT) (25µA ± 1.8 vs. 80µA ± 5.1, respectively; mean ± SEM). Changes in BP and small changes in BR (bradypnea) occur at lowest intensities (70µA ± 8.3), followed by HR changes (80µA ± 5.1) and finally significant changes in BR (apnea) (310μA ± 32.5). HRT and electrode impedance are correlated in chronic (Pearson correlationr= 0.47;p< 0.001) but not in acute implants (r= -0.34;pNS); HRT and impedance both increase with implant age (r= 0.44;p< 0.001 andr= 0.64;p< 0.001, respectively). HRT is lowest when animals are awake (200µA ± 35.5), followed by ketamine-xylazine (640µA ± 151.5), and isoflurane (1000µA ± 139.5). The sequence of physiological responses with increasing VNS intensity is the same in anesthetized and awake animals. Pulsing frequency affects physiological responses but not CAPs.Significance. Implant age, electrode impedance, and type of anesthesia affect VNS thresholds and should be accounted for when calibrating stimulation dose.
Collapse
Affiliation(s)
- Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Yao-Chuan Chang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Maria F Lopez
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Jason Wong
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Loren Rieth
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| |
Collapse
|
10
|
Siqueira BS, Ceglarek VM, Gomes ECZ, Vettorazzi JF, Rentz T, Nenevê JZ, Volinski KZ, Moraes SS, Malta A, de Freitas Mathias PC, de Oliveira Emilio HR, Balbo SL, Grassiolli S. Vagotomy and Splenectomy Reduce Insulin Secretion and Interleukin-1β. Pancreas 2021; 50:607-616. [PMID: 33939676 DOI: 10.1097/mpa.0000000000001809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES This study aimed to evaluate the effect of vagotomy, when associated with splenectomy, on adiposity and glucose homeostasis in Wistar rats. METHODS Rats were divided into 4 groups: vagotomized (VAG), splenectomized (SPL), VAG + SPL, and SHAM. Glucose tolerance tests were performed, and physical and biochemical parameters evaluated. Glucose-induced insulin secretion and protein expression (Glut2/glucokinase) were measured in isolated pancreatic islets. Pancreases were submitted to histological and immunohistochemical analyses, and vagus nerve neural activity was recorded. RESULTS The vagotomized group presented with reduced body weight, growth, and adiposity; high food intake; reduced plasma glucose and triglyceride levels; and insulin resistance. The association of SPL with the VAG surgery attenuated, or abolished, the effects of VAG and reduced glucose-induced insulin secretion and interleukin-1β area in β cells, in addition to lowering vagal activity. CONCLUSIONS The absence of the spleen attenuated or blocked the effects of VAG on adiposity, triglycerides and glucose homeostasis, suggesting a synergistic effect of both on metabolism. The vagus nerve and spleen modulate the presence of interleukin-1β in β cells, possibly because of the reduction of glucose-induced insulin secretion, indicating a bidirectional flow between autonomous neural firing and the spleen, with repercussions for the endocrine pancreas.
Collapse
Affiliation(s)
- Bruna Schumaker Siqueira
- From the Laboratory of Endocrine Physiology and Metabolism (LAFEM), Western Paraná State University (UNIOESTE)
| | - Vanessa Marieli Ceglarek
- From the Laboratory of Endocrine Physiology and Metabolism (LAFEM), Western Paraná State University (UNIOESTE)
| | | | | | - Thiago Rentz
- Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas
| | - Juliane Zanon Nenevê
- From the Laboratory of Endocrine Physiology and Metabolism (LAFEM), Western Paraná State University (UNIOESTE)
| | - Karoline Zanella Volinski
- From the Laboratory of Endocrine Physiology and Metabolism (LAFEM), Western Paraná State University (UNIOESTE)
| | - Sandra Schmidt Moraes
- From the Laboratory of Endocrine Physiology and Metabolism (LAFEM), Western Paraná State University (UNIOESTE)
| | - Ananda Malta
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá (UEM), Maringá
| | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá (UEM), Maringá
| | | | - Sandra Lucinei Balbo
- From the Laboratory of Endocrine Physiology and Metabolism (LAFEM), Western Paraná State University (UNIOESTE)
| | - Sabrina Grassiolli
- From the Laboratory of Endocrine Physiology and Metabolism (LAFEM), Western Paraná State University (UNIOESTE)
| |
Collapse
|
11
|
Xie H, Yepuri N, Meng Q, Dhawan R, Leech CA, Chepurny OG, Holz GG, Cooney RN. Therapeutic potential of α7 nicotinic acetylcholine receptor agonists to combat obesity, diabetes, and inflammation. Rev Endocr Metab Disord 2020; 21:431-447. [PMID: 32851581 PMCID: PMC7572644 DOI: 10.1007/s11154-020-09584-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
The cholinergic anti-inflammatory reflex (CAIR) represents an important homeostatic regulatory mechanism for sensing and controlling the body's response to inflammatory stimuli. Vagovagal reflexes are an integral component of CAIR whose anti-inflammatory effects are mediated by acetylcholine (ACh) acting at α7 nicotinic acetylcholine receptors (α7nAChR) located on cells of the immune system. Recently, it is appreciated that CAIR and α7nAChR also participate in the control of metabolic homeostasis. This has led to the understanding that defective vagovagal reflex circuitry underlying CAIR might explain the coexistence of obesity, diabetes, and inflammation in the metabolic syndrome. Thus, there is renewed interest in the α7nAChR that mediates CAIR, particularly from the standpoint of therapeutics. Of special note is the recent finding that α7nAChR agonist GTS-21 acts at L-cells of the distal intestine to stimulate the release of two glucoregulatory and anorexigenic hormones: glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Furthermore, α7nAChR agonist PNU 282987 exerts trophic factor-like actions to support pancreatic β-cell survival under conditions of stress resembling diabetes. This review provides an overview of α7nAChR function as it pertains to CAIR, vagovagal reflexes, and metabolic homeostasis. We also consider the possible usefulness of α7nAChR agonists for treatment of obesity, diabetes, and inflammation.
Collapse
Affiliation(s)
- Han Xie
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Natesh Yepuri
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Qinghe Meng
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Ravi Dhawan
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Colin A Leech
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Oleg G Chepurny
- Departments of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | - George G Holz
- Departments of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | - Robert N Cooney
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA.
| |
Collapse
|
12
|
Ahmed U, Chang YC, Cracchiolo M, Lopez MF, Tomaio JN, Datta-Chaudhuri T, Zanos TP, Rieth L, Al-Abed Y, Zanos S. Anodal block permits directional vagus nerve stimulation. Sci Rep 2020; 10:9221. [PMID: 32513973 PMCID: PMC7280203 DOI: 10.1038/s41598-020-66332-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 11/10/2022] Open
Abstract
Vagus nerve stimulation (VNS) is a bioelectronic therapy for disorders of the brain and peripheral organs, and a tool to study the physiology of autonomic circuits. Selective activation of afferent or efferent vagal fibers can maximize efficacy and minimize off-target effects of VNS. Anodal block (ABL) has been used to achieve directional fiber activation in nerve stimulation. However, evidence for directional VNS with ABL has been scarce and inconsistent, and it is unknown whether ABL permits directional fiber activation with respect to functional effects of VNS. Through a series of vagotomies, we established physiological markers for afferent and efferent fiber activation by VNS: stimulus-elicited change in breathing rate (ΔBR) and heart rate (ΔHR), respectively. Bipolar VNS trains of both polarities elicited mixed ΔHR and ΔBR responses. Cathode cephalad polarity caused an afferent pattern of responses (relatively stronger ΔBR) whereas cathode caudad caused an efferent pattern (stronger ΔHR). Additionally, left VNS elicited a greater afferent and right VNS a greater efferent response. By analyzing stimulus-evoked compound nerve potentials, we confirmed that such polarity differences in functional responses to VNS can be explained by ABL of A- and B-fiber activation. We conclude that ABL is a mechanism that can be leveraged for directional VNS.
Collapse
Affiliation(s)
- Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Yao-Chuan Chang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Marina Cracchiolo
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Maria F Lopez
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Jacquelyn N Tomaio
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Theodoros P Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Loren Rieth
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
| |
Collapse
|
13
|
Pavlov VA, Chavan SS, Tracey KJ. Bioelectronic Medicine: From Preclinical Studies on the Inflammatory Reflex to New Approaches in Disease Diagnosis and Treatment. Cold Spring Harb Perspect Med 2020; 10:a034140. [PMID: 31138538 PMCID: PMC7050582 DOI: 10.1101/cshperspect.a034140] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bioelectronic medicine is an evolving field in which new insights into the regulatory role of the nervous system and new developments in bioelectronic technology result in novel approaches in disease diagnosis and treatment. Studies on the immunoregulatory function of the vagus nerve and the inflammatory reflex have a specific place in bioelectronic medicine. These studies recently led to clinical trials with bioelectronic vagus nerve stimulation in inflammatory diseases and other conditions. Here, we outline key findings from this preclinical and clinical research. We also point to other aspects and pillars of interdisciplinary research and technological developments in bioelectronic medicine.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11550
| | - Sangeeta S Chavan
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11550
| | - Kevin J Tracey
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11550
| |
Collapse
|
14
|
Vitetta L. Mind body medicine: a tangible link between the gut and the brain. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:64. [PMID: 32175357 PMCID: PMC7049048 DOI: 10.21037/atm.2019.12.80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 08/30/2023]
Affiliation(s)
- Luis Vitetta
- The University of Sydney, Faculty of Medicine and Health, Sydney School of Medicine, Sydney, Australia
- Medlab Clinical, Sydney, Australia
| |
Collapse
|
15
|
Dai F, Yin J, Chen JDZ. Effects and Mechanisms of Vagal Nerve Stimulation on Body Weight in Diet-Induced Obese Rats. Obes Surg 2020; 30:948-956. [DOI: 10.1007/s11695-019-04365-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Zanos TP. Recording and Decoding of Vagal Neural Signals Related to Changes in Physiological Parameters and Biomarkers of Disease. Cold Spring Harb Perspect Med 2019; 9:a034157. [PMID: 30670469 PMCID: PMC6886457 DOI: 10.1101/cshperspect.a034157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Our bodies have built-in neural reflexes that continuously monitor organ function and maintain physiological homeostasis. Whereas the field of bioelectronic medicine has mainly focused on the stimulation of neural circuits to treat various conditions, recent studies have started to investigate the possibility of leveraging the sensory arm of these reflexes to diagnose disease states. To accomplish this, neural signals emanating from the body's built-in biosensors and propagating through peripheral nerves must be recorded and decoded to identify the presence or levels of relevant biomarkers of disease. The process of acquiring these signals poses several technical challenges related to the neural interfaces, surgical techniques, and data-processing framework needed to record and analyze them. However, these challenges can be addressed with a rigorous experimental approach and new advances in implantable electrodes, signal processing, and machine learning methods. Outlined in this review are studies decoding vagus nerve activity as it related to inflammatory, metabolic, and cardiopulmonary biomarkers. Successfully decoding peripheral nerve activity related to disease states will not only enable the development of real-time diagnostic devices, but also help advancing truly closed-loop neuromodulation technologies.
Collapse
Affiliation(s)
- Theodoros P Zanos
- Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York 11030
| |
Collapse
|
17
|
Pharmacology of metformin - An update. Eur J Pharmacol 2019; 865:172782. [PMID: 31705902 DOI: 10.1016/j.ejphar.2019.172782] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Despite being a successful diabetes type 2 drug for more than a half-century in Europe, the mode of action of metformin is still debated. It is the purpose of this review to inform the reader about most recent findings for metformin with respect to its antidiabetic activity as well as proposed benefits beyond glucose control in humans. Clinical evidence now suggests that most of metformin benefits originate from its actions in the gut, involving hormone signaling by glucagon-like peptide 1 and peptide YY. Growth differentiation factor 15, also mainly produced in the gut, was first identified as a biomarker for metformin use but is now suggested to play a significant role in e.g. weight loss of prediabetics. The pharmacokinetics of the drug in humans as basis for pharmacodynamics, resulting in high tissue levels of the intestinal wall, including the colon, proven by biopsies, is presented. A critical survey of metformin actions on mitochondria, increasing the AMP/ATP ratio but also acting as a mild uncoupler, and of postulated new cellular targets (lysosomes) is included.
Collapse
|
18
|
Holmes GM, Blanke EN. Gastrointestinal dysfunction after spinal cord injury. Exp Neurol 2019; 320:113009. [PMID: 31299180 PMCID: PMC6716787 DOI: 10.1016/j.expneurol.2019.113009] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/13/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract of vertebrates is a heterogeneous organ system innervated to varying degrees by a local enteric neural network as well as extrinsic parasympathetic and sympathetic neural circuits located along the brainstem and spinal axis. This diverse organ system serves to regulate the secretory and propulsive reflexes integral to the digestion and absorption of nutrients. The quasi-segmental distribution of the neural circuits innervating the gastrointestinal (GI) tract produces varying degrees of dysfunction depending upon the level of spinal cord injury (SCI). At all levels of SCI, GI dysfunction frequently presents life-long challenges to individuals coping with injury. Growing attention to the profound changes that occur across the entire physiology of individuals with SCI reveals profound knowledge gaps in our understanding of the temporal dimensions and magnitude of organ-specific co-morbidities following SCI. It is essential to understand and identify these broad pathophysiological changes in order to develop appropriate evidence-based strategies for management by clinicians, caregivers and individuals living with SCI. This review summarizes the neurophysiology of the GI tract in the uninjured state and the pathophysiology associated with the systemic effects of SCI.
Collapse
Affiliation(s)
- Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United states of America.
| | - Emily N Blanke
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United states of America
| |
Collapse
|
19
|
Seicol BJ, Bejarano S, Behnke N, Guo L. Neuromodulation of metabolic functions: from pharmaceuticals to bioelectronics to biocircuits. J Biol Eng 2019; 13:67. [PMID: 31388355 PMCID: PMC6676523 DOI: 10.1186/s13036-019-0194-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022] Open
Abstract
Neuromodulation of central and peripheral neural circuitry brings together neurobiologists and neural engineers to develop advanced neural interfaces to decode and recapitulate the information encoded in the nervous system. Dysfunctional neuronal networks contribute not only to the pathophysiology of neurological diseases, but also to numerous metabolic disorders. Many regions of the central nervous system (CNS), especially within the hypothalamus, regulate metabolism. Recent evidence has linked obesity and diabetes to hyperactive or dysregulated autonomic nervous system (ANS) activity. Neural regulation of metabolic functions provides access to control pathology through neuromodulation. Metabolism is defined as cellular events that involve catabolic and/or anabolic processes, including control of systemic metabolic functions, as well as cellular signaling pathways, such as cytokine release by immune cells. Therefore, neuromodulation to control metabolic functions can be used to target metabolic diseases, such as diabetes and chronic inflammatory diseases. Better understanding of neurometabolic circuitry will allow for targeted stimulation to modulate metabolic functions. Within the broad category of metabolic functions, cellular signaling, including the production and release of cytokines and other immunological processes, is regulated by both the CNS and ANS. Neural innervations of metabolic (e.g. pancreas) and immunologic (e.g. spleen) organs have been understood for over a century, however, it is only now becoming possible to decode the neuronal information to enable exogenous controls of these systems. Future interventions taking advantage of this progress will enable scientists, engineering and medical doctors to more effectively treat metabolic diseases.
Collapse
Affiliation(s)
- Benjamin J. Seicol
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH USA
- Department of Neuroscience, The Ohio State University, Columbus, OH USA
| | | | - Nicholas Behnke
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH USA
| | - Liang Guo
- Department of Neuroscience, The Ohio State University, Columbus, OH USA
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH USA
| |
Collapse
|
20
|
Masi EB, Levy T, Tsaava T, Bouton CE, Tracey KJ, Chavan SS, Zanos TP. Identification of hypoglycemia-specific neural signals by decoding murine vagus nerve activity. Bioelectron Med 2019; 5:9. [PMID: 32232099 PMCID: PMC7098244 DOI: 10.1186/s42234-019-0025-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glucose is a crucial energy source. In humans, it is the primary sugar for high energy demanding cells in brain, muscle and peripheral neurons. Deviations of blood glucose levels from normal levels for an extended period of time is dangerous or even fatal, so regulation of blood glucose levels is a biological imperative. The vagus nerve, comprised of sensory and motor fibres, provides a major anatomical substrate for regulating metabolism. While prior studies have implicated the vagus nerve in the neurometabolic interface, its specific role in either the afferent or efferent arc of this reflex remains elusive. METHODS Here we use recently developed methods to isolate and decode specific neural signals acquired from the surface of the vagus nerve in BALB/c wild type mice to identify those that respond robustly to hypoglycemia. We also attempted to decode neural signals related to hyperglycemia. In addition to wild type mice, we analyzed the responses to acute hypo- and hyperglycemia in transient receptor potential cation channel subfamily V member 1 (TRPV1) cell depleted mice. The decoding algorithm uses neural signals as input and reconstructs blood glucose levels. RESULTS Our algorithm was able to reconstruct the blood glucose levels with high accuracy (median error 18.6 mg/dl). Hyperglycemia did not induce robust vagus nerve responses, and deletion of TRPV1 nociceptors attenuated the hypoglycemia-dependent vagus nerve signals. CONCLUSION These results provide insight to the sensory vagal signaling that encodes hypoglycemic states and suggest a method to measure blood glucose levels by decoding nerve signals. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
| | - Todd Levy
- 2Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| | - Tea Tsaava
- 2Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| | - Chad E Bouton
- 2Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| | - Kevin J Tracey
- Zucker School of Medicine at Hofstra/Northwell, Heampstead, NY USA
- 2Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| | - Sangeeta S Chavan
- Zucker School of Medicine at Hofstra/Northwell, Heampstead, NY USA
- 2Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| | - Theodoros P Zanos
- Zucker School of Medicine at Hofstra/Northwell, Heampstead, NY USA
- 2Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| |
Collapse
|
21
|
Chang EH, Chavan SS, Pavlov VA. Cholinergic Control of Inflammation, Metabolic Dysfunction, and Cognitive Impairment in Obesity-Associated Disorders: Mechanisms and Novel Therapeutic Opportunities. Front Neurosci 2019; 13:263. [PMID: 31024226 PMCID: PMC6460483 DOI: 10.3389/fnins.2019.00263] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/06/2019] [Indexed: 12/26/2022] Open
Abstract
Obesity and obesity-associated disorders have become world-wide epidemics, substantially increasing the risk of debilitating morbidity and mortality. A characteristic feature of these disorders, which include the metabolic syndrome (MetS) and type 2 diabetes, is chronic low-grade inflammation stemming from metabolic and immune dysregulation. Inflammation in the CNS (neuroinflammation) and cognitive impairment have also been associated with obesity-driven disorders. The nervous system has a documented role in the regulation of metabolic homeostasis and immune function, and recent studies have indicated the important role of vagus nerve and brain cholinergic signaling in this context. In this review, we outline relevant aspects of this regulation with a specific focus on obesity-associated conditions. We outline accumulating preclinical evidence for the therapeutic efficacy of cholinergic stimulation in alleviating obesity-associated inflammation, neuroinflammation, and metabolic derangements. Recently demonstrated beneficial effects of galantamine, a centrally acting cholinergic drug and cognitive enhancer, in patients with MetS are also summarized. These studies provide a rationale for further therapeutic developments using pharmacological and bioelectronic cholinergic modulation for clinical benefit in obesity-associated disorders.
Collapse
Affiliation(s)
- Eric H. Chang
- Center for Bioelectronic Medicine and Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Sangeeta S. Chavan
- Center for Bioelectronic Medicine and Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Valentin A. Pavlov
- Center for Bioelectronic Medicine and Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
22
|
Malbert CH, Genissel M, Divoux JL, Henry C. Chronic abdominal vagus stimulation increased brain metabolic connectivity, reduced striatal dopamine transporter and increased mid-brain serotonin transporter in obese miniature pigs. J Transl Med 2019; 17:78. [PMID: 30866954 PMCID: PMC6417219 DOI: 10.1186/s12967-019-1831-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/06/2019] [Indexed: 01/18/2023] Open
Abstract
Background/objective Changes in brain metabolism has been investigated thoroughly during unilateral cervical chronic vagal stimulation in epileptic or depressive patients. Bilateral stimulation of the abdominal vagus (aVNS) has received less attention despite the reduction in body weight and an altered feeding behavior in obese animals that could be clinically relevant in obese individuals. Our study aims to examine the changes in brain glucose metabolism (CMRglu) induced by aVNS in obese adult miniature pigs. Dopamine (DAT) and serotonin transporters (SERT) were also quantified to further understand the molecular origins of the alterations in brain metabolism. Subjects/methods Pairs of stimulating electrodes were implanted during laparoscopy on both abdominal vagal trunks in 20 obese adult’s miniature pigs. Half of the animals were permanently stimulated while the remaining were sham stimulated. Two months after the onset of stimulation, dynamic 18FDG PET and 123I-ioflupane SPECT were performed. Food intake, resting energy expenditure and fat deposition were also assessed longitudinally. Results Food intake was halved and resting energy expenditure was increased by 60% in aVNS group compared to sham. The gain in body weight was also 38% less in aVNS group compared to sham. Brain metabolic connectivity increased between numerous structures including striatum, mid-brain, amygdala and hippocampus. On the contrary, increased CMRglu were restricted to the thalamus, the periaqueducal grey and the amygdala. DAT binding potential was decreased by about one third in the striatum while SERT was about doubled in the midbrain. Conclusions Our findings demonstrated that aVNS reduced weight gain as a consequence of diminished daily food intake and increased resting energy expenditure. These changes were associated with enhanced connectivity between several brain areas. A lower striatal DAT together with a doubled mid-brain SERT were likely causative for these changes. Electronic supplementary material The online version of this article (10.1186/s12967-019-1831-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Mickael Genissel
- Pegase Unit, Dept of Animal Physiology, INRA, Saint-Gilles, France
| | | | | |
Collapse
|
23
|
Stauss HM, Stangl H, Clark KC, Kwitek AE, Lira VA. Cervical vagal nerve stimulation impairs glucose tolerance and suppresses insulin release in conscious rats. Physiol Rep 2018; 6:e13953. [PMID: 30569658 PMCID: PMC6300710 DOI: 10.14814/phy2.13953] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 01/29/2023] Open
Abstract
Previously, we reported that cervical vagal nerve stimulation (VNS) increases blood glucose levels and inhibits insulin secretion in anesthetized rats through afferent signaling. Since afferent signaling is also thought to mediate the therapeutic effects of VNS in patients with therapy-refractory epilepsy and major depression, the question arises if patients treated with VNS develop impaired glucose tolerance. Thus, we hypothesized that cervical VNS impairs glucose tolerance in conscious rats. Rats (n = 7) were instrumented with telemetric blood pressure sensors and right- or left-sided cervical vagal nerve stimulators (3 V, 5 Hz, 1 msec pulse duration, 1 h on 1 h off). Glucose tolerance tests (GTTs, 1.5 g dextrose/kg BW, i.p.) were performed after overnight fasting with the stimulators on or off (sham stimulation) in randomized order separated by 3-4 days. Overnight VNS did not alter mean levels of blood pressure or heart rate, but increased fasted blood glucose levels (140 ± 13 mg/dL vs. 109 ± 8 mg/dL, P < 0.05). The area under the blood glucose concentration curves of the GTTs was larger during VNS than sham stimulation (3499 ± 211 mg/dL*h vs. 1810 ± 234 mg/dL*h, P < 0.05). One hour into the GTTs, the serum insulin concentrations had decreased during VNS (-0.57 ± 0.25 ng/mL, P < 0.05) and increased during sham stimulation (+0.71 ± 0.15 ng/mL, P < 0.05) compared to the fasted baseline levels. These results demonstrate that chronic cervical VNS elevates fasted blood glucose levels and impairs glucose tolerance likely through inhibition of glucose-induced insulin release in conscious rats. It remains to be determined if patients treated with VNS are at greater risk of developing glucose intolerance and type 2 diabetes.
Collapse
Affiliation(s)
- Harald M. Stauss
- Department of Biomedical SciencesBurrell College of Osteopathic MedicineLas CrucesNew Mexico
- Department of Health and Human PhysiologyThe University of IowaIowa CityIowaUSA
| | - Hubert Stangl
- Laboratory of Experimental RheumatologyUniversity Hospital of RegensburgRegensburgBayernGermany
| | - Karen C. Clark
- Department of PharmacologyThe University of IowaIowa CityIowaUSA
| | - Anne E. Kwitek
- Department of PharmacologyThe University of IowaIowa CityIowaUSA
| | - Vitor A. Lira
- Department of Health and Human PhysiologyThe University of IowaIowa CityIowaUSA
| |
Collapse
|