1
|
Dyńka D, Rodzeń Ł, Rodzeń M, Pacholak-Klimas A, Ede G, Sethi S, Łojko D, Bartoń K, Berry K, Deptuła A, Grzywacz Ż, Martin P, Unwin J, Unwin D. Ketogenic Diets for Body Weight Loss: A Comparison with Other Diets. Nutrients 2025; 17:965. [PMID: 40289934 PMCID: PMC11945412 DOI: 10.3390/nu17060965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 04/30/2025] Open
Abstract
With the prevalence of obesity and overweight increasing at an alarming rate, more and more researchers are focused on identifying effective weight loss strategies. The ketogenic diet (KD), used as a treatment in epilepsy management for over 100 years, is additionally gaining popularity as a weight loss method. Although its efficacy in weight loss is well documented, the areas where it may be beneficial to other dietary approaches need to be carefully examined. The objective of this paper is to identify the potential benefits of the KD over alternative dietary weight loss strategies based on a comprehensive literature review. It has been shown that the KD may be more bioenergetically efficient than other dietary strategies, inter alia owing to its effect on curtailing hunger, improving satiety and decreasing appetite (influence on hunger and satiety hormones and the sensation of hunger), inducing faster initial weight loss (associated with lower glycogen levels and reduced water retention), and controlling glycaemia and insulinemia (directly attributable to the low-carbohydrate nature of KD and indirectly to the other areas described). These effects are accompanied by improved insulin sensitivity, reduced inflammation (through ketone bodies and avoidance of pro-inflammatory sugars), reduced need for pharmacological obesity control (the diet's mechanisms are similar to those of medication but without the side effects), and positive impacts on psychological factors and food addiction. Based on the authors' review of the latest research, it is reasonable to conclude that, due to these many additional health benefits, the KD may be advantageous to other diet-based weight loss strategies. This important hypothesis deserves further exploration, which could be achieved by including outcome measures other than weight loss in future clinical trials, especially when comparing different diets of equal caloric value.
Collapse
Affiliation(s)
- Damian Dyńka
- Institute of Health Sciences, Faculty of Medical and Health Sciences, University of Siedlce, 08-110 Siedlce, Poland
| | | | | | | | - Georgia Ede
- Independent Researcher, 197 Lions Mouth Road, Amesbury, MA 01913, USA
| | - Shebani Sethi
- Metabolic Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Dorota Łojko
- Department of Psychiatry, Poznan University of Medical Science, 60-572 Poznan, Poland
| | | | - Ken Berry
- Independent Researcher, Holladay, TN 38341, USA
| | - Adam Deptuła
- Faculty of Production Engineering and Logistics, Opole University of Technology, 76 Prószkowska St., 45-758 Opole, Poland
| | - Żaneta Grzywacz
- Faculty of Production Engineering and Logistics, Opole University of Technology, 76 Prószkowska St., 45-758 Opole, Poland
| | - Peter Martin
- Funmed Clinics, Vastra Hamngatan 13A, 41117 Gothenburg, Sweden
| | - Jen Unwin
- The Collaborative Health Community Foundation, Oxford OX2 9HZ, UK
| | - David Unwin
- Faculty of Health Social Care and Medicine, Edge Hill University, Ormskirk L39 4QP, UK
| |
Collapse
|
2
|
Handa T, Onoue T, Maeda R, Mizutani K, Suzuki K, Kobayashi T, Miyata T, Sugiyama M, Hagiwara D, Iwama S, Suga H, Banno R, Arima H. Guidance on Energy Intake Based on Resting Energy Expenditure and Physical Activity: Effective for Reducing Body Weight in Patients with Obesity. Nutrients 2025; 17:202. [PMID: 39861334 PMCID: PMC11767982 DOI: 10.3390/nu17020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVE In treating obesity, energy intake control is essential to avoid exceeding energy expenditure. However, excessive restriction of energy intake often leads to resting energy expenditure (REE) reduction, increasing hunger and making weight loss difficult. This study aimed to investigate whether providing nutritional guidance that considers energy expenditure based on the regular evaluation of REE and physical activity could effectively reduce body weight (BW) in patients with obesity. METHODS A single-arm, prospective interventional study was conducted on 20 patients with obesity (body mass index ≥ 25 kg/m2) at the Nagoya University Hospital for 24 weeks. REE and physical activity were regularly assessed, and the recommended energy intake was adjusted based on the values. The primary outcome was the change in BW, and the secondary outcomes included changes in REE and hunger ratings, which were assessed using a visual analog scale. RESULTS Eighteen participants completed the study, demonstrating a significant reduction in BW after 24 weeks (-5.34 ± 6.76%, p < 0.0001). No significant changes were observed in REE or hunger ratings. No adverse events were reported throughout the study period. CONCLUSIONS Guidance on energy intake based on REE and physical activity was effective for reducing BW in patients with obesity without decreasing REE or increasing hunger. This approach may reduce the burden on patients with obesity while losing BW.
Collapse
Affiliation(s)
- Tomoko Handa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Ryutaro Maeda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Keigo Mizutani
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Koji Suzuki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Ryoichi Banno
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
3
|
Emini M, Bhargava R, Aldhwayan M, Chhina N, Rodriguez Flores M, Aldubaikhi G, Al Lababidi M, Al-Najim W, Miras AD, Ruban A, Glaysher MA, Prechtl CG, Byrne JP, Teare JP, Goldstone AP. Satiety Hormone LEAP2 After Low-Calorie Diet With/Without Endobarrier Insertion in Obesity and Type 2 Diabetes Mellitus. J Endocr Soc 2024; 9:bvae214. [PMID: 39659543 PMCID: PMC11631353 DOI: 10.1210/jendso/bvae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Indexed: 12/12/2024] Open
Abstract
Context The liver/foregut satiety hormone liver-expressed antimicrobial peptide 2 (LEAP2) is an inverse agonist at the acyl ghrelin receptor (GHSR), increasing after food intake and decreasing after bariatric surgery and short-term nonsurgical weight loss, but effects of long-term dietary weight loss are unknown. Objective The objective of this study was to examine and compare the effects of these interventions on fasting and postprandial plasma LEAP2 and investigate potential metabolic mediators of changes in plasma LEAP2. Methods Plasma LEAP2 was measured in a previously published 2-year trial comparing standard medical management (SMM) (including 600-kcal/day deficit) with duodenal-jejunal bypass liner (DJBL, Endobarrier) insertion (explanted after 1 year) in adults with obesity and inadequately controlled type 2 diabetes mellitus. Results In the SMM group (n = 25-37), weight decreased by 4.3%, 8.1%, 7.8%, and 6.4% at 2, 26, 50, and 104 weeks and fasting plasma LEAP2 decreased from baseline mean ± SD 15.3 ± 0.9 ng/mL by 1.7, 3.8, 2.1, and 2.0 ng/mL, respectively. Absolute/decreases in fasting plasma LEAP2 positively correlated with absolute/decreases in body mass index, glycated hemoglobin A1c, fasting plasma glucose, serum insulin, homeostatic model assessment for insulin resistance, and serum triglycerides. Despite greater weight loss in the DJBL group (n = 23-30) at 26 to 50 weeks (10.4%-11.4%), the decrease in fasting plasma LEAP2 was delayed and attenuated (vs SMM), which may contribute to greater weight loss by attenuating GHSR signaling. Plasma LEAP2 did not increase with weight regain from 50 to 104 weeks after DJBL explant, suggesting a new set point with weight loss maintenance. Increases in plasma LEAP2 after a 600-kcal meal (10.8%-16.1% at 1-2 hours) were unaffected by weight loss, improved glucose metabolism, or DJBL insertion (n = 9-25), suggesting liver rather than duodenum/jejunum may be the primary source of postprandial LEAP2 secretion. Conclusion These findings add to our understanding of the regulation and potential physiological role of plasma LEAP2.
Collapse
Affiliation(s)
- Mimoza Emini
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Raghav Bhargava
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Madhawi Aldhwayan
- College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Navpreet Chhina
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Marcela Rodriguez Flores
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Ghadah Aldubaikhi
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Moaz Al Lababidi
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Werd Al-Najim
- Department of Metabolism, Diabetes and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Alexander D Miras
- Department of Metabolism, Diabetes and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Aruchuna Ruban
- Department of Surgery and Cancer, Imperial College London, St. Mary‘s Hospital, London W2 1NY, UK
| | - Michael A Glaysher
- Division of Surgery, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Christina G Prechtl
- Clinical Trials Unit, Department of Public Health, Imperial College London, London W12 7TA, UK
| | - James P Byrne
- Division of Surgery, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Julian P Teare
- Department of Surgery and Cancer, Imperial College London, St. Mary‘s Hospital, London W2 1NY, UK
| | - Anthony P Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| |
Collapse
|
4
|
Lopez Torres SY, Aukan MI, Gower BA, Martins C. Adaptive thermogenesis, at the level of resting energy expenditure, after diet alone or diet plus bariatric surgery. Obesity (Silver Spring) 2024; 32:1169-1178. [PMID: 38664956 PMCID: PMC11132925 DOI: 10.1002/oby.24031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE The objective of this study was to compare the magnitude of adaptive thermogenesis (AT), at the level of resting energy expenditure (REE), after a very low-energy diet alone or combined with Roux-en-Y gastric bypass or sleeve gastrectomy, as well as to investigate the association between AT and changes in appetite. METHODS A total of 44 participants with severe obesity underwent 10 weeks of a very low-energy diet alone or combined with Roux-en-Y gastric bypass or sleeve gastrectomy. Body weight and composition, REE, subjective appetite feelings, and plasma concentrations of gastrointestinal hormones were measured at baseline and week 11. AT, at the level of REE, was defined as a significantly lower measured versus predicted (using a regression model with baseline data) REE. RESULTS Participants lost 18.4 ± 3.9 kg of body weight and experienced AT, at the level of REE (-121 ± 188 kcal/day; p < 0.001), with no differences among groups. The larger the AT, at the level of REE, the greater the reduction in fasting ghrelin concentrations and the smaller the reduction in feelings of hunger and desire to eat in the postprandial state. CONCLUSIONS Weight-loss modality does not seem to modulate the magnitude of AT, at the level of REE. The greater the AT, at the level of REE, the greater the drive to eat following weight loss.
Collapse
Affiliation(s)
- Silvia Y Lopez Torres
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Marthe I Aukan
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Barbara A Gower
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Catia Martins
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
5
|
Nymo S, Lundanes J, Eriksen K, Aukan M, Rehfeld JF, Holst JJ, Johnsen G, Græslie H, Kulseng B, Sandvik J, Martins C. Suboptimal Weight Loss 13 Years After Roux-en-Y Gastric Bypass Is Associated with Blunted Appetite Response. Obes Surg 2024; 34:592-601. [PMID: 38159146 PMCID: PMC10811108 DOI: 10.1007/s11695-023-07028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Bariatric surgery remains the most efficient treatment to achieve a sustained weight loss. However, a large proportion of patients experience suboptimal weight loss (SWL). The exact mechanisms involved remain to be fully elucidated, but the homeostatic appetite control system seems to be involved. The aim of this study was, therefore, to compare the plasma concentration of gastrointestinal hormones, and appetite ratings, between those experiencing SWL and optimal weight loss (OWL) after Roux-en-Y gastric bypass (RYGB). MATERIALS AND METHODS Fifty participants from the Bariatric Surgery Observation Study (BAROBS) experiencing either SWL or OWL (< or ≥ 50% of excess weight loss (EWL), respectively) > 13 years post-RYGB were compared to 25 non-surgical controls. Plasma concentrations of acylated ghrelin (AG), total glucagon-like peptide-1 (GLP-1), total peptide YY (PYY), cholecystokinin (CCK), and subjective ratings of hunger, fullness, desire to eat (DTE), and prospective food consumption (PFC) were assessed in the fasting and postprandial (area under the curve (AUC)) states. RESULTS Those experiencing OWL presented with higher basal AG and GLP-1 iAUC, and lower AG iAUC compared with SWL and controls. Additionally, both bariatric groups presented with higher PYY and CCK iAUC compared to controls. PFC tAUC was also lower in OWL compared to the SWL group. Total weight loss was positively correlated with GLP-1 tAUC and negatively correlated with fasting and tAUC DTE and PFC tAUC. CONCLUSIONS SWL > 13 years post-RYGB is associated with lower basal ghrelin, as well as a weaker satiety response to a meal. Future studies should investigate the causality of these associations.
Collapse
Affiliation(s)
- Siren Nymo
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Forsyningssenteret, Prinsesse Kristinas gate 5, 7030, Trondheim, Norway.
- Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway.
- Nord-Trøndelag Hospital Trust, Clinic of Surgery, Namsos Hospital, Namsos, Norway.
| | - Julianne Lundanes
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Forsyningssenteret, Prinsesse Kristinas gate 5, 7030, Trondheim, Norway
- Nord-Trøndelag Hospital Trust, Clinic of Surgery, Namsos Hospital, Namsos, Norway
| | - Kevin Eriksen
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Forsyningssenteret, Prinsesse Kristinas gate 5, 7030, Trondheim, Norway
| | - Marthe Aukan
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Forsyningssenteret, Prinsesse Kristinas gate 5, 7030, Trondheim, Norway
- Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
| | - Jens Frederik Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Gjermund Johnsen
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Forsyningssenteret, Prinsesse Kristinas gate 5, 7030, Trondheim, Norway
| | - Hallvard Græslie
- Nord-Trøndelag Hospital Trust, Clinic of Surgery, Namsos Hospital, Namsos, Norway
| | - Bård Kulseng
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Forsyningssenteret, Prinsesse Kristinas gate 5, 7030, Trondheim, Norway
- Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
| | - Jorunn Sandvik
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Forsyningssenteret, Prinsesse Kristinas gate 5, 7030, Trondheim, Norway
- Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
- Møre and Romsdal Hospital Trust, Clinic of Surgery, Ålesund Hospital, Ålesund, Norway
| | - Catia Martins
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Forsyningssenteret, Prinsesse Kristinas gate 5, 7030, Trondheim, Norway
- Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
- Department of Nutrition Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| |
Collapse
|
6
|
Martins C, Roekenes JA, Rehfeld JF, Hunter GR, Gower BA. Metabolic adaptation is associated with a greater increase in appetite following weight loss: a longitudinal study. Am J Clin Nutr 2023; 118:1192-1201. [PMID: 37863431 DOI: 10.1016/j.ajcnut.2023.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Weight loss is associated with a disproportionate reduction in energy expenditure, along with increases in hunger feelings and ghrelin concentrations. These changes are presumed to be homeostatic mechanisms to counteract the energy deficit. The possibility that these 2 components of the energy balance equation are mechanistically linked has never been examined. OBJECTIVE This study aimed to determine if the disproportionate reduction in resting metabolic rate (RMR) seen with weight loss is associated with changes in the plasma concentration of gastrointestinal hormones involved in appetite regulation and subjective appetite ratings. METHODS This was a longitudinal study with repeated measurements. Fifty-six individuals with obesity (body mass index [BMI]: 34.5±0.5 kg/m2; age: 47±1 y; 26 males) underwent an 8 wk low-energy diet, followed by 4 wk of refeeding and weight stabilization. The RMR, respiratory quotient (RQ), body composition, plasma concentrations of ghrelin, glucagon-like peptide 1, peptide YY, cholecystokinin, insulin, and appetite ratings in the fasting and postprandial states were measured at baseline, Wk9 and 13. Metabolic adaptation was defined as significantly lower when measured versus the predicted RMR (pRMR) (from own regression model using baseline data). RESULTS A 14.2±0.6 kg weight loss was seen at Wk9 and maintained at Wk13. RQ was significantly reduced at Wk9 (0.82±0.06 vs. 0.76±0.05, P< 0.001) but returned to baseline at Wk13. Metabolic adaptation was seen at Wk9, but not Wk13 (-341±58, P <0.001 and -75±72 kJ/d, P = 0.305, respectively). The larger the difference between measured and predicted RMR at both timepoints, the greater the increase in hunger, desire to eat, and composite appetite score (fasting and postprandial at Wk9, postprandial only at Wk13), even after adjusting for weight loss and RQ. CONCLUSION A larger metabolic adaptation during weight loss is accompanied by a greater drive to eat. This might help explain the interindividual differences in weight loss outcomes to dietary interventions.
Collapse
Affiliation(s)
- Catia Martins
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway; Department of Nutrition Sciences, University of Alabama at Birmingham, United States.
| | - Jessica A Roekenes
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Gary R Hunter
- Department of Nutrition Sciences, University of Alabama at Birmingham, United States
| | - Barbara A Gower
- Department of Nutrition Sciences, University of Alabama at Birmingham, United States
| |
Collapse
|
7
|
Kruschitz R, Fahrnberger M, Felsenreich DM, Ress C, Andersen B, Aydinkoc-Tuzcu K, Ciardi C, Huber SL, Kiefer FW. [Prevention and management of postinterventional weight regain]. Wien Klin Wochenschr 2023; 135:743-750. [PMID: 37821697 PMCID: PMC10567866 DOI: 10.1007/s00508-023-02273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 10/13/2023]
Abstract
Decreasing levels of patient motivation or compliance are far from being the only causes of postinterventional weight regain after lifestyle, psychological, pharmacological and surgical interventions. Weight regain originates from a complex and individually varying set of central and peripheral mechanisms, with the overall purpose of increasing food intake by both stimulating hunger and reducing satiety (mediated by gastrointestinal hormones) and decreasing the body's energy demands (via metabolic adaption). These mechanisms counteract any attempts to reduce or maintain body weight in today's increasingly prevalent adipogenic environments. The knowledge about the biological mechanisms of body weight regulation should be taken into consideration when planning treatment programs for long-term weight reduction, including follow-up treatment for the prevention and individualized treatment of postinterventional weight regain. Therapeutic measures as well as the frequency of medical follow-ups should be based on the extent of weight regain.
Collapse
Affiliation(s)
- Renate Kruschitz
- Abteilung für Innere Medizin, Krankenhaus der Elisabethinen, Klagenfurt, Österreich
| | | | - Daniel Moritz Felsenreich
- Klinische Abteilung für Viszeralchirurgie, Universitätsklinik für Allgemeinchirurgie, Medizinische Universität Wien, Wien, Österreich
| | - Claudia Ress
- Universitätsklinik für Innere Medizin I, Medizinische Universität Innsbruck, Innsbruck, Österreich
| | | | - Kadriye Aydinkoc-Tuzcu
- 5. Medizinische Abteilung für Endokrinologie, Rheumatologie und Akutgeriatrie, Klinik Ottakring, Wien, Österreich
| | - Christian Ciardi
- Abteilung für Innere Medizin, Krankenhaus St. Vinzenz, Zams, Österreich
| | - Simone Leonore Huber
- 1. Medizinische Abteilung mit Diabetologie, Endokrinologie und Nephrologie, Karl Landsteiner Institut für Adipositas und Stoffwechselerkrankungen, Klinik Landstraße, Wien, Österreich
| | - Florian W Kiefer
- Klinische Abteilung für Endokrinologie und Stoffwechsel, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich.
| |
Collapse
|
8
|
Lim JJ, Liu Y, Lu LW, Sequeira IR, Poppitt SD. No Evidence That Circulating GLP-1 or PYY Are Associated with Increased Satiety during Low Energy Diet-Induced Weight Loss: Modelling Biomarkers of Appetite. Nutrients 2023; 15:nu15102399. [PMID: 37242282 DOI: 10.3390/nu15102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Bariatric surgery and pharmacology treatments increase circulating glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), in turn promoting satiety and body weight (BW) loss. However, the utility of GLP-1 and PYY in predicting appetite response during dietary interventions remains unsubstantiated. This study investigated whether the decrease in hunger observed following low energy diet (LED)-induced weight loss was associated with increased circulating 'satiety peptides', and/or associated changes in glucose, glucoregulatory peptides or amino acids (AAs). In total, 121 women with obesity underwent an 8-week LED intervention, of which 32 completed an appetite assessment via a preload challenge at both Week 0 and Week 8, and are reported here. Visual analogue scales (VAS) were administered to assess appetite-related responses, and blood samples were collected over 210 min post-preload. The area under the curve (AUC0-210), incremental AUC (iAUC0-210), and change from Week 0 to Week 8 (∆) were calculated. Multiple linear regression was used to test the association between VAS-appetite responses and blood biomarkers. Mean (±SEM) BW loss was 8.4 ± 0.5 kg (-8%). Unexpectedly, the decrease in ∆AUC0-210 hunger was best associated with decreased ∆AUC0-210 GLP-1, GIP, and valine (p < 0.05, all), and increased ∆AUC0-210 glycine and proline (p < 0.05, both). The majority of associations remained significant after adjusting for BW and fat-free mass loss. There was no evidence that changes in circulating GLP-1 or PYY were predictive of changes in appetite-related responses. The modelling suggested that other putative blood biomarkers of appetite, such as AAs, should be further investigated in future larger longitudinal dietary studies.
Collapse
Affiliation(s)
- Jia Jiet Lim
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- Riddet Institute, Palmerston North 4442, New Zealand
| | - Yutong Liu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- Department of Medicine, University of Auckland, Auckland 1010, New Zealand
| | - Louise W Lu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
| | - Ivana R Sequeira
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- Riddet Institute, Palmerston North 4442, New Zealand
- Department of Medicine, University of Auckland, Auckland 1010, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
| |
Collapse
|
9
|
Martins C, S N, Sr C, Jf R, Hunter GR, Gower BA. Association between fat-free mass loss, changes in appetite and weight regain in individuals with obesity. J Nutr 2023; 153:1330-1337. [PMID: 36963504 DOI: 10.1016/j.tjnut.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND The role of fat-free mass loss (FFML) in modulating weight regain, in individuals with obesity, as well as the potential mechanisms involved, remain inconsistent. AIMS To determine if % FFML following weight loss (WL) is a predictor of weight regain, and to investigate the association between %FFML and changes in appetite markers. METHODS Seventy individuals with obesity (BMI: 36±4kg/m2; age: 44±9 years; 29 males) underwent 8 weeks of a very low-energy diet (550-660 kcal/day), followed by 4 weeks of gradual refeeding and weight stabilization, and a 9-month maintenance program (eucaloric diet). Body weight and body composition (fat mass (FM) and FFM) (primary outcomes), as well as ß-hydroxybutyrate (ßHB) plasma concentration (a marker of ketosis) in fasting and appetite-related hormones (ghrelin, glucagon-like peptide 1, peptide YY, and cholecystokinin) and subjective appetite feelings, in fasting and every 30 minutes after a fixed breakfast for 2.5h (secondary outcomes), were measured at baseline, week 9 and 1 year (and week 13 in 35 subjects (25 males)). The association between FFML, weight regain and changes in appetite was assessed by linear regression. RESULTS WL at week 9 was 17.5±4.3kg and %FFML 20.4±10.6%. Weight regain at 1 year was 1.7±8.2kg (8.8±45.0%). After adjusting for WL and FM at baseline, %FFML at week 9 was not a significant predictor of weight regain. Similar results were seen at week 13. The greater the %FFML at week 9, but not 13, the smaller the reduction, or greater the increase in basal ghrelin concentration (ß:-3.2; 95% CI: -5.0, -1.1; P=0.003), even after adjusting for WL and ß-hydroxybutyrate. CONCLUSION %FFML was not a significant predictor of weight regain at 1-year in individuals with obesity. However, a greater %FFML was accompanied by a greater increase in ghrelin secretion under ketogenic conditions, suggesting a link between FFM and appetite regulation. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov identifier NCT01834859.
Collapse
Affiliation(s)
- Catia Martins
- Department of Nutrition Sciences, University of Alabama at Birmingham (UAB), USA; Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway.
| | - Nymo S
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Nord-Trøndelag Hospital Trust, Clinic of Surgery, Namsos Hospital, Norway
| | - Coutinho Sr
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Public Health Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo (UiO), Norway
| | - Rehfeld Jf
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Gary R Hunter
- Department of Nutrition Sciences, University of Alabama at Birmingham (UAB), USA
| | - B A Gower
- Department of Nutrition Sciences, University of Alabama at Birmingham (UAB), USA
| |
Collapse
|
10
|
Aukan MI, Skårvold S, Brandsaeter IØ, Rehfeld JF, Holst JJ, Nymo S, Coutinho S, Martins C. Gastrointestinal hormones and appetite ratings after weight loss induced by diet or bariatric surgery. Obesity (Silver Spring) 2023; 31:399-411. [PMID: 36536482 PMCID: PMC10108040 DOI: 10.1002/oby.23655] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The aim of this study was to compare changes in gastrointestinal hormones and appetite ratings after a similar weight loss induced by a very low-energy diet alone or in combination with sleeve gastrectomy (SG) or Roux-en-Y gastric bypass (RYGB). METHODS Patients with severe obesity scheduled for SG (n = 15) and RYGB (n = 14) and 15 controls (very low-energy diet alone) were recruited. Body weight/composition, plasma concentrations of ß-hydroxybutyric acid, acylated ghrelin, total glucagon-like peptide-1, total peptide YY, cholecystokinin, and ratings of hunger, fullness, desire to eat, and prospective food consumption were measured pre- and postprandially, before and after 10 weeks of intervention. RESULTS Changes in body weight/composition and level of ketosis were similar across groups. In SG and RYGB, basal and postprandial acylated ghrelin declined, and postprandial glucagon-like peptide-1 increased, both significantly more compared with controls. Postprandial peptide YY increased in all groups. Overall, postprandial hunger decreased, and postprandial fullness increased. But ratings of desire to eat and prospective food consumption were more favorable after both surgeries compared with controls. CONCLUSIONS Weight loss with SG and RYGB leads to more favorable changes in gastrointestinal hormones compared with diet alone, although ratings of appetite were reduced across all groups.
Collapse
Affiliation(s)
- Marthe Isaksen Aukan
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre of Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
| | - Silje Skårvold
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ingrid Øfsti Brandsaeter
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jens Frederik Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- The NovoNordisk Center for Basic Metabolic Research and Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Siren Nymo
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre of Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
- Nord-Trøndelag Hospital Trust, Clinic of Surgery, Namsos Hospital, Namsos, Norway
| | - Silvia Coutinho
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Public Health Nutrition at the Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Catia Martins
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre of Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
11
|
Sommersten CH, Gjerde ES, Laupsa-Borge J, Andersen AI, Lawrence-Archer L, McCann A, Hansson P, Raza GS, Herzig KH, Lied GA, Martins C, Mellgren G, Dierkes J, Dankel SN. Relationship between Ketones, Ghrelin, and, Appetite on Isocaloric Diets with Varying Carbohydrate Quality and Amount: Results from a Randomized Controlled Trial in People with Obesity (CARBFUNC). J Nutr 2023; 153:459-469. [PMID: 36894239 PMCID: PMC10127526 DOI: 10.1016/j.tjnut.2022.12.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Low-carbohydrate high-fat (LCHF) diets may suppress the increase in appetite otherwise seen after diet-induced fat loss. However, studies of diets without severe energy restriction are lacking, and the effects of carbohydrate quality relative to quantity have not been directly compared. OBJECTIVES To evaluated short- (3 mo) and long-term (12 mo) changes in fasting plasma concentrations of total ghrelin, β-hydroxybutyrate (βHB), and subjective feelings of appetite on 3 isocaloric eating patterns within a moderate caloric range (2000-2500 kcal/d) and with varying carbohydrate quality or quantity. METHODS We performed a randomized controlled trial of 193 adults with obesity, comparing eating patterns based on "acellular" carbohydrate sources (e.g., flour-based whole-grain products; comparator arm), "cellular" carbohydrate sources (minimally processed foods with intact cellular structures), or LCHF principles. Outcomes were compared by an intention-to-treat analysis using constrained linear mixed modeling. This trial was registered at clinicaltrials.gov as NCT03401970. RESULTS Of the 193 adults, 118 (61%) and 57 (30%) completed 3 and 12 mo of follow-up. Throughout the intervention, intakes of protein and energy were similar with all 3 eating patterns, with comparable reductions in body weight (5%-7%) and visceral fat volume (12%-17%) after 12 mo. After 3 mo, ghrelin increased significantly with the acellular (mean: 46 pg/mL; 95% CI: 11, 81) and cellular (mean: 54 pg/mL; 95% CI: 21, 88) diets but not with the LCHF diet (mean: 11 pg/mL; 95% CI: -16, 38). Although βHB increased significantly more with the LCHF diet than with the acellular diet after 3 m (mean: 0.16 mmol/L; 95% CI: 0.09, 0.24), this did not correspond to a significant group difference in ghrelin (unless the 2 high-carbohydrate groups were combined [mean: -39.6 pg/mL; 95% CI: -76, -3.3]). No significant between-group differences were seen in feelings of hunger. CONCLUSIONS Modestly energy-restricted isocaloric diets differing in carbohydrate cellularity and amount showed no significant differences in fasting total ghrelin or subjective hunger feelings. An increase in ketones with the LCHF diet to 0.3-0.4 mmol/L was insufficient to substantially curb increases in fasting ghrelin during fat loss.
Collapse
Affiliation(s)
- Cathrine Horn Sommersten
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway; Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Eirin Semb Gjerde
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway; Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Johnny Laupsa-Borge
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Amanda Io Andersen
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Laurence Lawrence-Archer
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | | | - Patrik Hansson
- Department of Clinical Medicine, Faculty of Health Sciences, the Arctic University of Norway, Tromsø, Norway
| | - Ghulam S Raza
- Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Karl Heinz Herzig
- Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Gülen Arslan Lied
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Catia Martins
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Sciences and Technology, Trondheim, Norway; Centre for Obesity and Innovation, Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway; Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Jutta Dierkes
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Simon N Dankel
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway; Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
12
|
Exploratory analysis of eating- and physical activity-related outcomes from a randomized controlled trial for weight loss maintenance with exercise and liraglutide single or combination treatment. Nat Commun 2022; 13:4770. [PMID: 35970829 PMCID: PMC9378667 DOI: 10.1038/s41467-022-32307-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Weight regain after weight loss remains a major challenge in obesity treatment and may involve alteration of eating and sedentary behavior after weight loss. In this randomized, controlled, double-blind trial, adults with obesity were randomized, in a 1:1:1:1 ratio stratified by sex and age group (<40 years and ≥40 years), to one-year weight loss maintenance with exercise, the GLP-1 receptor agonist liraglutide, or the combination, as compared with placebo, after low-calorie diet-induced weight loss. Primary outcome was change in body weight, which has been published. Here, we investigated the effects of weight loss maintenance with exercise, liraglutide, or the combination on weight loss-induced changes in the pre-specified explorative outcomes, eating and sedentary behavior in 130 participants who completed the trial according to the study protocol (exercise (n = 26), liraglutide (n = 36), combination (n = 29), and placebo (n = 39)). One year after weight loss, the placebo group had decreased postprandial appetite suppression score by 14%, and increased sedentary time by 31 min/day and regained weight. Liraglutide prevented the decrease in postprandial appetite suppression score compared with placebo (0% vs. -14%; P = 0.023) and maintained weight loss. Exercise after weight loss did not increase appetite or sedentary behavior compared with placebo, despite increased exercise energy expenditure and maintained weight loss. The combination of exercise and liraglutide increased cognitive restraint score (13% vs. -9%; P = 0.042), reflecting a conscious restriction of food intake, and decreased sedentary time by 41 min/day (-10 vs. 31 min/day; 95%CI, -82.3 to -0.2; P = 0.049) compared with placebo, which may have facilitated the additional weight loss. Targeting both eating and sedentary behavior could be the most effective for preventing weight regain.Trial registration: EudraCT number, 2015-005585-32; clinicaltrials.gov number, NCT04122716.
Collapse
|
13
|
Lowe M, Singh S, Apple DE, Mayer L, Rosenbaum M, Espel-Huynh H, Thomas JG, Neff KM, Zhang F. Traditional versus developmental measures of weight suppression: Exploring their relationships with bulimic psychopathology. EUROPEAN EATING DISORDERS REVIEW 2022; 30:412-425. [PMID: 35474260 DOI: 10.1002/erv.2903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Weight suppression (WS) is related to a wide variety of eating disorder characteristics. However, individuals with eating disorders usually reach their highest premorbid weight while still developing physically. Therefore, a more sensitive index of individual differences in highest premorbid weight may be one that compares highest premorbid z-BMI to current z-BMI (called developmental weight suppression [DWS] here). METHOD In this exploratory study, we compared the relationships between traditional weight suppression (TWS) and DWS and a variety of measures related to bulimic psychopathology in 91 females (M age, 25.2; 60.5% White), with clinical or sub-clinical bulimia nervosa. RESULTS TWS and DWS were correlated (r = 0.40, p < 0.001). TWS was only significantly related to a measure of physical activity whereas DWS was related to 14 outcomes. DWS showed consistent positive relations with behavioural outcomes (e.g., binge eating) but consistent negative relations with cognitive/affective outcomes (e.g., weight concerns). CONCLUSIONS Findings indicated much more consistent relationships between the novel DWS measure and bulimic characteristics than with the TWS measure. DWS showed both positive and negative relations with bulimic symptoms, though these findings require replication to confirm their validity. Consistent evidence indicated that the two WS measures served as mutual suppressor variables.
Collapse
Affiliation(s)
- Michael Lowe
- Department of Psychological and Clinical Science, Drexel University, Philadelphia, Pennsylvania, USA
| | - Simar Singh
- Department of Psychological and Clinical Science, Drexel University, Philadelphia, Pennsylvania, USA
| | - Danielle E Apple
- Department of Psychological and Clinical Science, Drexel University, Philadelphia, Pennsylvania, USA
| | | | - Michael Rosenbaum
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Hallie Espel-Huynh
- Weight Control and Diabetes Research Center, Brown University, Providence, Rhodes Island, USA
| | - J Graham Thomas
- Weight Control and Diabetes Research Center, Brown University, Providence, Rhodes Island, USA
| | - Kirstie M Neff
- Department of Psychology, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Fengqing Zhang
- Department of Psychological and Clinical Science, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Differences in gastrointestinal hormones and appetite ratings among obesity classes. Appetite 2022; 171:105940. [DOI: 10.1016/j.appet.2022.105940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 01/03/2023]
|
15
|
Martins C. Do we really know what drives relapse in obesity management? Eur J Intern Med 2022; 95:113-114. [PMID: 34284909 DOI: 10.1016/j.ejim.2021.06.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 11/22/2022]
Affiliation(s)
- Catia Martins
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olavs University Hospital, Trondheim, Norway.
| |
Collapse
|
16
|
Busetto L, Bettini S, Makaronidis J, Roberts CA, Halford JCG, Batterham RL. Mechanisms of weight regain. Eur J Intern Med 2021; 93:3-7. [PMID: 33461826 DOI: 10.1016/j.ejim.2021.01.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/20/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022]
Abstract
Weight regain following weight loss is frequent problem that people with obesity face. This weight recidivism is often attributed to the lack of compliance with appropriate food habits and exercise. On the contrary, it is known that body weight and fat mass are regulated by numerous physiological mechanisms, far beyond voluntary food intake and physical exercise. Thus, the aim of this paper is to review the main peripheral and central mechanisms involved in weight regain. Gut hormone secretion profiles impact upon predisposition to weight regain according to an individual variability, although it is recognised a usual pattern of compensatory changes: a reduction in anorectic hormones secretion and an increase in orexigenic hormone. These changes lead to both increased appetite and reward value of food leading to increased energye intake. In addition, resting energy expenditure after weight loss is lower than expected according to body composition changes. This gap between observed and predicted energy expenditure following weight loss is named metabolic adaptation, which has been suggested to explain partly weight regain. This complicated scenario, beyond patient motivation, makes weight regain a challenge in long-term management interventions in patients with obesity.
Collapse
Affiliation(s)
- Luca Busetto
- Department of Medicine, University of Padova, Padova, Italy
| | - Silvia Bettini
- Department of Medicine, University of Padova, Padova, Italy.
| | - Janine Makaronidis
- Centre for Obesity Research, Division of Medicine, Rayne Building, University College London (UCL), London, United Kingdom; Bariatric Centre for Weight Managemetn and Metabolic Surgery, University College London Hospital (UCLH), London, United Kingdom; National Institute of Health Research, UCLH Biomedical Research Centre, London, United Kingdom
| | - Carl A Roberts
- Department of Psychology, University of Liverpool, United Kingdom
| | - Jason C G Halford
- Department of Psychology, University of Liverpool, United Kingdom; School of Psychology, University of Leeds, United Kingdom
| | - Rachel L Batterham
- Centre for Obesity Research, Division of Medicine, Rayne Building, University College London (UCL), London, United Kingdom; Bariatric Centre for Weight Managemetn and Metabolic Surgery, University College London Hospital (UCLH), London, United Kingdom; National Institute of Health Research, UCLH Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
17
|
Grannell A, le Roux CW, McGillicuddy D. "You Are Always at War With Yourself" The Perceptions and Beliefs of People With Obesity Regarding Obesity as a Disease. QUALITATIVE HEALTH RESEARCH 2021; 31:2470-2485. [PMID: 34581642 PMCID: PMC11951387 DOI: 10.1177/10497323211040767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Obesity as a disease remains poorly understood by key stakeholders. Here, in people living with severe obesity, perceptions and beliefs relating to obesity as a disease and obesity causality were examined. Semi-structured interviews were conducted in a tertiary care obesity clinic. 23 people with obesity (10 males, 13 females) volunteered. An overall agreement that obesity is a disease was present. Perceptions related to why obesity is and is not a disease were diverse: Lack of control and addiction, biological determinism, and personal responsibility. For weight loss maintenance, the perceptions and beliefs were heterogeneous with biological factors not considered a determinant of success. Instead, exercise, support, and willpower were described as associated with success. Barriers related to remaining in a weight-reduced state included the following: Emotional eating, sustainability of diet, occupational impact, and defeatism due to misaligned expectation and outcome. In conclusion, people living with obesity tend to agree obesity is a disease yet an incomplete understanding of the disease is present.
Collapse
|
18
|
Näätänen M, Kolehmainen M, Laaksonen DE, Herzig KH, Poutanen K, Karhunen L. Post-weight loss changes in fasting appetite- and energy balance-related hormone concentrations and the effect of the macronutrient content of a weight maintenance diet: a randomised controlled trial. Eur J Nutr 2021; 60:2603-2616. [PMID: 33263788 PMCID: PMC8275499 DOI: 10.1007/s00394-020-02438-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE We investigated the effects of the macronutrient composition of diets with differing satiety values on fasting appetite-related hormone concentrations after weight loss and examined whether the hormone secretion adapted to changes in body fat mass (FM) and fat-free mass (FFM) during the weight maintenance period (WM). METHODS Eighty-two men and women with obesity underwent a 7-week very-low-energy diet (VLED) and were then randomised to a higher-satiety food (HSF) group or a lower-satiety food (LSF) group during 24-weeks of the WM. The groups consumed isoenergetic foods with different satiety ratings and macronutrient compositions. RESULTS During the WM, the HSF group consumed more protein and dietary fibre and less fat than the LSF group, but the groups showed similar changes in body weight and fasting appetite-related hormones. In the whole study sample, VLED induced 12 kg (p < 0.001) weight loss. At the end of the WM, weight regain was 1.3 kg (p = 0.004), ghrelin concentration increased, whereas leptin, insulin, and glucose concentrations decreased compared to pre-VLED levels (p < 0.001 for all). Peptide YY did not differ from pre-VLED levels. Changes in ghrelin levels were inversely associated with changes in FFM during weeks 0-12 of the WM (p = 0.002), while changes in leptin and insulin levels were positively associated with changes in FM during weeks 0-12 (p = 0.015 and p = 0.038, respectively) and weeks 12-24 (p < 0.001 and p = 0.022) of the WM. CONCLUSIONS The macronutrient composition of an isoenergetic WM diet did not affect fasting appetite-related hormone concentrations. Leptin and insulin adjusted to the reduced FM, whereas ghrelin reflected FFM during the first months of the WM. TRIAL REGISTRATION isrctn.com, ID 67529475.
Collapse
Affiliation(s)
- Mari Näätänen
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Marjukka Kolehmainen
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - David E Laaksonen
- Department of Physiology, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Internal Medicine, Institute of Clinical Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Karl-Heinz Herzig
- Institute of Biomedicine, Medical Research Center (MRC), University of Oulu, University Hospital, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | - Kaisa Poutanen
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Leila Karhunen
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The popularity of ketogenic diets in the treatment of obesity has increased dramatically over the last years, namely due to their potential appetite suppressant effect. The purpose of this review was to examine the latest evidence regarding the impact of ketogenic diets on appetite. RECENT FINDINGS The majority of the studies published over the last 2 years adds to previous evidence and shows that ketogenic diets suppress the increase in the secretion of the hunger hormone ghrelin and in feelings of hunger, otherwise see when weight loss is induced by non-ketogenic diets. Research done using exogenous ketones point out in the same direction. Even though the exact mechanisms by which ketogenic diets suppress appetite remain to be fully determined, studies show that the more ketotic participants are (measured as β-hydroxybutyrate plasma concentration), the smaller is the increase in ghrelin and hunger and the larger is the increase in the release of satiety peptides. Further evidence for a direct effect of ketones on appetite comes from studies using exogenous ketones. SUMMARY The appetite suppressant effect of ketogenic diets may be an important asset for improving adherence to energy restricted diets and weight loss outcomes.
Collapse
Affiliation(s)
- Jessica Roekenes
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Catia Martins
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
| |
Collapse
|
20
|
Zhu R, Fogelholm M, Larsen TM, Poppitt SD, Silvestre MP, Vestentoft PS, Jalo E, Navas-Carretero S, Huttunen-Lenz M, Taylor MA, Stratton G, Swindell N, Kaartinen NE, Lam T, Handjieva-Darlenska T, Handjiev S, Schlicht W, Martinez JA, Seimon RV, Sainsbury A, Macdonald IA, Westerterp-Plantenga MS, Brand-Miller J, Raben A. A High-Protein, Low Glycemic Index Diet Suppresses Hunger but Not Weight Regain After Weight Loss: Results From a Large, 3-Years Randomized Trial (PREVIEW). Front Nutr 2021; 8:685648. [PMID: 34141717 PMCID: PMC8203925 DOI: 10.3389/fnut.2021.685648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Previous studies have shown an increase in hunger during weight-loss maintenance (WLM) after diet-induced weight loss. Whether a combination of a higher protein, lower glycemic index (GI) diet and physical activity (PA) can counteract this change remains unclear. Aim: To compare the long-term effects of two diets [high protein (HP)-low GI vs. moderate protein (MP)-moderate GI] and two PA programs [high intensity (HI) vs. moderate intensity (MI)] on subjective appetite sensations during WLM after ≥8% weight loss (WL). Methods: Data derived from the 3-years PREVIEW randomized intervention study. An 8-weeks WL phase using a low-energy diet was followed by a 148-weeks randomized WLM phase. For the WLM phase, participants were assigned to one of the four groups: HP-MI, HP-HI, MP-MI, and MP-HI. Available data from 2,223 participants with overweight or obesity (68% women; BMI ≥ 25 kg/m2). Appetite sensations including satiety, hunger, desire to eat, and desire to eat something sweet during the two phases (at 0, 8 weeks and 26, 52, 104, and 156 weeks) were assessed based on the recall of feelings during the previous week using visual analogue scales. Differences in changes in appetite sensations from baseline between the groups were determined using linear mixed models with repeated measures. Results: There was no significant diet × PA interaction. From 52 weeks onwards, decreases in hunger were significantly greater in HP-low GI than MP-moderate GI (P time × diet = 0.018, P dietgroup = 0.021). Although there was no difference in weight regain between the diet groups (P time × diet = 0.630), hunger and satiety ratings correlated with changes in body weight at most timepoints. There were no significant differences in appetite sensations between the two PA groups. Decreases in hunger ratings were greater at 52 and 104 weeks in HP-HI vs. MP-HI, and greater at 104 and 156 weeks in HP-HI vs. MP-MI. Conclusions: This is the first long-term, large-scale randomized intervention to report that a HP-low GI diet was superior in preventing an increase in hunger, but not weight regain, during 3-years WLM compared with a MP-moderate GI diet. Similarly, HP-HI outperformed MP-HI in suppressing hunger. The role of exercise intensity requires further investigation. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT01777893.
Collapse
Affiliation(s)
- Ruixin Zhu
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Fogelholm
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Thomas M Larsen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Marta P Silvestre
- Human Nutrition Unit, School of Biological Sciences, Department of Medicine, University of Auckland, Auckland, New Zealand.,Center for Health Technology Services Research, NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Pia S Vestentoft
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Elli Jalo
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Santiago Navas-Carretero
- Department of Nutrition, University of Navarra, Pamplona, Spain.,CIBERobn, Instituto de Salud Carlos III, Madrid, Spain.,Precision Nutrition Program, IMDEA Food, Campus de Excelencia Internacional, Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Maija Huttunen-Lenz
- Institute for Nursing Science, University of Education Schwäbisch Gmünd, Schwäbisch Gmünd, Germany
| | - Moira A Taylor
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, Nottingham, United Kingdom.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Gareth Stratton
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, Swansea University, Swansea, United Kingdom
| | - Nils Swindell
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, Swansea University, Swansea, United Kingdom
| | - Niina E Kaartinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Tony Lam
- NetUnion sarl, Lausanne, Switzerland
| | | | - Svetoslav Handjiev
- Department of Pharmacology and Toxicology, Medical University of Sofia, Sofia, Bulgaria
| | - Wolfgang Schlicht
- Exercise and Health Sciences, University of Stuttgart, Stuttgart, Germany
| | - J Alfredo Martinez
- Department of Nutrition, University of Navarra, Pamplona, Spain.,CIBERobn, Instituto de Salud Carlos III, Madrid, Spain.,Precision Nutrition Program, IMDEA Food, Campus de Excelencia Internacional, Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Radhika V Seimon
- The Boden Collaboration for Obesity, Nutrition, Exercise, and Eating Disorders, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Amanda Sainsbury
- School of Human Sciences (Exercise and Sports Science), Faculty of Science, The University of Western Australia, Crawley, WA, Australia
| | - Ian A Macdonald
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, MRC/ARUK Centre for Musculoskeletal Ageing Research, ARUK Centre for Sport, Exercise and Osteoarthritis, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Margriet S Westerterp-Plantenga
- Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Jennie Brand-Miller
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
21
|
Buso MEC, Seimon RV, McClintock S, Muirhead R, Atkinson FS, Brodie S, Dodds J, Zibellini J, Das A, Wild-Taylor AL, Burk J, Fogelholm M, Raben A, Brand-Miller JC, Sainsbury A. Can a Higher Protein/Low Glycemic Index vs. a Conventional Diet Attenuate Changes in Appetite and Gut Hormones Following Weight Loss? A 3-Year PREVIEW Sub-study. Front Nutr 2021; 8:640538. [PMID: 33829034 PMCID: PMC8019730 DOI: 10.3389/fnut.2021.640538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/12/2021] [Indexed: 01/06/2023] Open
Abstract
Background: Previous research showed that weight-reducing diets increase appetite sensations and/or circulating ghrelin concentrations for up to 36 months, with transient or enduring perturbations in circulating concentrations of the satiety hormone peptide YY. Objective: This study assessed whether a diet that is higher in protein and low in glycemic index (GI) may attenuate these changes. Methods: 136 adults with pre-diabetes and a body mass index of ≥25 kg/m2 underwent a 2-month weight-reducing total meal replacement diet. Participants who lost ≥8% body weight were randomized to one of two 34-month weight-maintenance diets: a higher-protein and moderate-carbohydrate (CHO) diet with low GI, or a moderate-protein and higher-CHO diet with moderate GI. Both arms involved recommendations to increase physical activity. Fasting plasma concentrations of total ghrelin and total peptide YY, and appetite sensations, were measured at 0 months (pre-weight loss), at 2 months (immediately post-weight loss), and at 6, 12, 24, and 36 months. Results: There was a decrease in plasma peptide YY concentrations and an increase in ghrelin after the 2-month weight-reducing diet, and these values approached pre-weight-loss values by 6 and 24 months, respectively (P = 0.32 and P = 0.08, respectively, vs. 0 months). However, there were no differences between the two weight-maintenance diets. Subjective appetite sensations were not affected by the weight-reducing diet nor the weight-maintenance diets. While participants regained an average of ~50% of the weight they had lost by 36 months, the changes in ghrelin and peptide YY during the weight-reducing phase did not correlate with weight regain. Conclusion: A higher-protein, low-GI diet for weight maintenance does not attenuate changes in ghrelin or peptide YY compared with a moderate-protein, moderate-GI diet. Clinical Trial Registry:ClinicalTrials.gov registry ID NCT01777893 (PREVIEW) and ID NCT02030249 (Sub-study).
Collapse
Affiliation(s)
- Marion E C Buso
- Division of Human Nutrition and Health, Wageningen University, Wageningen, Netherlands.,The Boden Collaboration for Obesity, Nutrition, Exercise, and Eating Disorders, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Radhika V Seimon
- The Boden Collaboration for Obesity, Nutrition, Exercise, and Eating Disorders, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Sally McClintock
- The Boden Collaboration for Obesity, Nutrition, Exercise, and Eating Disorders, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Roslyn Muirhead
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Fiona S Atkinson
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Shannon Brodie
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Jarron Dodds
- The Boden Collaboration for Obesity, Nutrition, Exercise, and Eating Disorders, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Jessica Zibellini
- The Boden Collaboration for Obesity, Nutrition, Exercise, and Eating Disorders, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Arpita Das
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Anthony L Wild-Taylor
- The Boden Collaboration for Obesity, Nutrition, Exercise, and Eating Disorders, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Jessica Burk
- The Boden Collaboration for Obesity, Nutrition, Exercise, and Eating Disorders, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Mikael Fogelholm
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Center Copenhagen, Copenhagen, Denmark
| | - Jennie C Brand-Miller
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Amanda Sainsbury
- School of Human Sciences, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
22
|
Thom G, McIntosh A, Messow CM, Leslie WS, Barnes AC, Brosnahan N, McCombie L, Malkova D, Al-Mrabeh A, Zhyzhneuskaya S, Welsh P, Sattar N, Taylor R, Lean MEJ. Weight loss-induced increase in fasting ghrelin concentration is a predictor of weight regain: Evidence from the Diabetes Remission Clinical Trial (DiRECT). Diabetes Obes Metab 2021; 23:711-719. [PMID: 33289256 DOI: 10.1111/dom.14274] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 01/08/2023]
Abstract
AIM To investigate whether appetite-related hormones were predictors of weight regain in the Diabetes Remission Clinical Trial (DiRECT). MATERIALS AND METHODS DiRECT is a cluster-randomized clinical trial, designed to assess the effect of weight loss on type 2 diabetes remission. For this post hoc analysis, data were available for 253 (147 interventions, 106 controls) individuals with type 2 diabetes (age 53.6 ± 7.5 years, body mass index 34.7 ± 4.4 kg/m2 , 59% men). Intervention participants received a 24-month weight management programme, and controls remained on usual diabetes care. Fasting plasma concentrations of leptin, ghrelin, glucagon-like peptide-1 and peptide YY were measured at baseline, 12 months and 24 months in all participants, and at 5 months in a subset of participants in the intervention (n = 56) and control groups (n = 22). Potential predictors were examined using multivariable linear regression models. RESULTS The intervention group lost 14.3 ± 6.0% body weight at 5 months but regained weight over time, with weight losses of 10.0 ± 7.5% at 12 months and 7.6 ± 6.3% at 24 months. Weight loss in controls was 1.1 ± 3.7% and 2.1 ± 5.0% at 12 and 24 months, respectively. Body weight increased by 2.3% (95% confidence interval [CI] 0.4, 4.1; P = 0.019) between 12 and 24 months for every 1-ng/mL increase in ghrelin between baseline and 12 months, and weight regain between 12 and 24 months was increased by 1.1% (95% CI 0.2, 2.0; P = 0.023) body weight for every 1-ng/mL increase in ghrelin at 12 months. CONCLUSION The rise in ghrelin (but not any other measured hormone) during diet-induced weight loss was a predictor of weight regain during follow-up, and concentrations remained elevated over time, suggesting a small but significant compensatory drive to regain weight. Attenuating the effects of ghrelin may improve weight-loss maintenance.
Collapse
Affiliation(s)
- George Thom
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Alasdair McIntosh
- Robertson Centre for Biostatistics, Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Claudia-Martina Messow
- Robertson Centre for Biostatistics, Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Wilma S Leslie
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Alison C Barnes
- Human Nutrition Research Centre, Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK
| | - Naomi Brosnahan
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Louise McCombie
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Dalia Malkova
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Ahmad Al-Mrabeh
- Newcastle Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Sviatlana Zhyzhneuskaya
- Newcastle Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Paul Welsh
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Roy Taylor
- Newcastle Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Michael E J Lean
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| |
Collapse
|
23
|
Stubbs RJ, Turicchi J. From famine to therapeutic weight loss: Hunger, psychological responses, and energy balance-related behaviors. Obes Rev 2021; 22 Suppl 2:e13191. [PMID: 33527688 DOI: 10.1111/obr.13191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022]
Abstract
Understanding physiological and behavioral responses to energy imbalances is important for the management of overweight/obesity and undernutrition. Changes in body composition and physiological functions associated with energy imbalances provide the structural and functional context in which to consider psychological and behavioral responses. Compensatory changes in physiology and behavior are more pronounced in response to negative than positive energy balances. The physiological and psychological impact of weight loss (WL) occur on a continuum determined by (i) the degree of energy deficit (ED), (ii) its duration, (iii) body composition at the onset of the energy deficit, and (iv) the psychosocial environment in which it occurs. Therapeutic WL and famine/semistarvation both involve prolonged EDs, which are sometimes similar in magnitude. The key differences are that (i) the body mass index (BMI) of most famine victims is lower at the onset of the ED, (ii) therapeutic WL is intentional and (iii) famines are typically longer in duration (partly due to the voluntary nature of therapeutic WL and disengagement with WL interventions). The changes in psychological outcomes, motivation to eat, and energy intake in therapeutic WL are often modest (bearing in mind the nature of the measures used) and can be difficult to detect but are quantitatively significant over time. As WL progresses, these changes become more marked. It appears that extensive WL beyond 10%-20% in lean individuals has profound effects on body composition and physiological function. At this level of WL, there is a marked erosion of psychological functioning, which appears to run in parallel to WL. Psychological resources dwindle and become increasingly focused on alleviating escalating hunger and food seeking behavior. Functional changes in fat-free mass, characterized by catabolism of skeletal muscle and organs may be involved in the drive to eat associated with semistarvation. Higher levels of body fat mass may act as a buffer to protect fat-free mass, functional integrity and limit compensatory changes in energy balance behaviors. The increase in appetite that accompanies therapeutic WL appears to be very different to the intense and all-consuming drive to eat that occurs during prolonged semistarvation. The mechanisms may also differ but are not well understood, and longitudinal comparisons of the relationship between body structure, function, and behavior in response to differing EDs in those with higher and lower BMIs are currently lacking.
Collapse
Affiliation(s)
- R James Stubbs
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Jake Turicchi
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| |
Collapse
|
24
|
Nymo S, Kleppe MM, Coutinho SR, Rehfeld JF, Kulseng B, Martins C. Association between habitual sleep duration/quality and appetite markers in individuals with obesity. Physiol Behav 2021; 232:113345. [PMID: 33524425 DOI: 10.1016/j.physbeh.2021.113345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/27/2020] [Accepted: 01/27/2021] [Indexed: 01/30/2023]
Abstract
STUDY OBJECTIVES To assess if habitual sleep duration/quality was associated with appetite in individuals with obesity, and if the association was modulated by sex. METHODS Sleep duration/quality was measured with Pittsburgh Sleep Quality Index score in 95 healthy adults with obesity (BMI: 36.6 ± 4.2 kg/m2). Subjective feelings of appetite were assessed using visual analogue scales, and plasma concentrations of active ghrelin, total peptide YY, active glucagon-like peptide 1, cholecystokinin (CCK) and insulin were measured in fasting and every 30 min up to 2.5 h after a meal. RESULTS No significant associations were found between sleep duration, or overall quality, and appetite in all participants. However, a worse sleep efficiency was associated with lower postprandial CCK, a shorter habitual sleep was associated with lower postprandial desire to eat and a lower daytime dysfunction was associated with higher prospective food consumption in fasting (P<0.05, for all). In males, a shorter habitual sleep duration and a worse subjective sleep quality were associated with increased basal and postprandial active ghrelin (P<0.05, P<0.01, P<0.01 and P<0.05, respectively). Also, a shorter habitual sleep was associated with lower basal and postprandial insulin (P<0.05 for both) and a worse overall sleep quality with lower postprandial insulin (P<0.05). In females, a worse overall sleep quality was associated with lower postprandial active ghrelin (P<0.05), and short habitual sleep with higher postprandial insulin (P<0.05). CONCLUSION A worse habitual sleep efficiency is associated with blunted postprandial CCK secretion in individuals with obesity. The association between habitual sleep duration/quality and insulin and active ghrelin seems to be modulated by sex, but more studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Siren Nymo
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Nord-Trøndelag Hospital Trust, Clinic of Surgery, Namsos Hospital, Norway.
| | - Malin M Kleppe
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Silvia R Coutinho
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bård Kulseng
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
| | - Catia Martins
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
| |
Collapse
|
25
|
Martins C, Roekenes J, Salamati S, Gower BA, Hunter GR. Reply to E Ravussin and L Redman. Am J Clin Nutr 2020; 112:1655-1656. [PMID: 33301007 DOI: 10.1093/ajcn/nqaa309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Catia Martins
- From the Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway (CM, JR); Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St Olav University Hospital, Trondheim, Norway (CM, SS); and Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica Roekenes
- From the Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway (CM, JR); Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St Olav University Hospital, Trondheim, Norway (CM, SS); and Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Saideh Salamati
- From the Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway (CM, JR); Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St Olav University Hospital, Trondheim, Norway (CM, SS); and Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Barbara A Gower
- From the Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway (CM, JR); Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St Olav University Hospital, Trondheim, Norway (CM, SS); and Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gary R Hunter
- From the Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway (CM, JR); Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St Olav University Hospital, Trondheim, Norway (CM, SS); and Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
26
|
Martins C, Nymo S, Truby H, Rehfeld JF, Hunter GR, Gower BA. Association Between Ketosis and Changes in Appetite Markers with Weight Loss Following a Very Low-Energy Diet. Obesity (Silver Spring) 2020; 28:2331-2338. [PMID: 33230962 DOI: 10.1002/oby.23011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The purpose of this study was to examine whether the degree of ketosis, measured as plasma β-hydroxybutyrate (βHB) in fasting, was associated with changes in appetite feelings and plasma concentration of appetite-related hormones after weight loss. METHODS A total of 87 individuals with obesity (BMI: 36.5 ± 4.0 kg/m2 ; age: 42.4 ± 9.7 years; 39 males) underwent 8 weeks of a very low-energy diet. Body weight/composition, plasma concentration of βHB, and appetite-related hormones (active ghrelin, active glucagon-like peptide 1 [GLP-1], total peptide YY, cholecystokinin [CCK], and insulin) and subjective appetite feelings were measured at baseline and week 9. RESULTS Participants lost 17.7 ± 4.1 kg and were ketotic (βHB: 1.24 ± 0.82 mmol/L in fasting) at week 9. A negative association was found between βHB in fasting at week 9 and changes in basal (r = -0.315, P = 0.003) and postprandial ghrelin concentration (r = -0.286, P = 0.008), and a positive association was found with the change in postprandial GLP-1 (r = 0.244, P = 0.025) and CCK (r = 0.228, P = 0.035). No association was seen between βHB in fasting and changes in peptide YY or subjective feelings of appetite. CONCLUSIONS βHB plasma concentration in fasting is associated with lower concentrations of the hunger hormone ghrelin and increased concentrations of the satiety hormones GLP-1 and CCK. Future studies should explore the molecular mechanisms by which βHB modulates the secretion of gut hormones.
Collapse
Affiliation(s)
- Catia Martins
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre for Obesity and Innovation, Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Siren Nymo
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Surgery, Nord-Trøndelag Hospital Trust, Namsos Hospital, Namsos, Norway
| | - Helen Truby
- School of Exercise Science and Nutrition, University of Queensland, Brisbane, Queensland, Australia
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Gary R Hunter
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Barbara A Gower
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
27
|
Krishnan S, Adams SH, Witbracht MG, Woodhouse LR, Piccolo BD, Thomas AP, Souza EC, Horn WF, Gertz ER, Van Loan MD, Keim NL. Weight Loss, but Not Dairy Composition of Diet, Moderately Affects Satiety and Postprandial Gut Hormone Patterns in Adults. J Nutr 2020; 151:245-254. [PMID: 33245130 PMCID: PMC8096231 DOI: 10.1093/jn/nxaa327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/28/2020] [Accepted: 10/05/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Inclusion of dairy in diet patterns has been shown to have mixed effects on weight loss. A prevailing hypothesis is that dairy improves weight loss by influencing endocrine systems associated with satiety and food intake regulation. OBJECTIVES The objective of the current study was to evaluate the effect of weight loss with or without adequate dietary dairy on subjective and objective appetitive measures. METHODS Men and women who were habitual low dairy consumers (n = 65, 20-50 y) participated in a 12-wk randomized controlled feeding weight loss trial. During the 12-wk intervention, a low-dairy (<1 serving dairy/d) was compared with an adequate-dairy (3-4 servings dairy/d) diet, both with a 500-kcal deficit/d. Test days, before and at the end of the intervention, began with 2 fasting blood draws and visual analog scale (VAS) measures, followed by a standard breakfast (25% of prescribed restricted calories), 5 postbreakfast blood draws and VASs, a standard lunch (40% of restricted energy amount), and 12 postlunch blood draws and VASs. Blood samples were used for satiety hormone measurements. On a separate day when matching standard meals were consumed, an ad libitum buffet meal was provided as dinner, at a self-selected time. Meal duration and intermeal interval were recorded. RESULTS Weight loss (-6.1 kg), irrespective of dairy, resulted in reduced fasting insulin (-20%) and leptin (-25%), and increased fasting acylated ghrelin (+25%) and VAS desire to eat (+18%) (P < 0.05). There were no effects of dairy on objective or subjective satiety measures. Weight loss marginally reduced the intermeal interval (289 min compared with 276 min, P = 0.059) between lunch and the ad libitum buffet. CONCLUSIONS These results do not support the hypothesis that inclusion of dairy in long-term dietary patterns influences appetite during weight loss. Weight loss per se has a modest impact on select systems that regulate hunger and satiety.This trial was registered at clinicaltrials.gov as NCT00858312.
Collapse
Affiliation(s)
- Sridevi Krishnan
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Sean H Adams
- Present address for SHA: Department of Surgery and Center for Alimentary and Metabolic Science, UC Davis School of Medicine, Sacramento, CA
| | - Megan G Witbracht
- Present address for MGW: Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA
| | - Leslie R Woodhouse
- Western Human Nutrition Research Center, USDA Agricultural Research Service, Davis, CA, USA
| | - Brian D Piccolo
- Present address for BDP: Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Anthony P Thomas
- Present address for APT: Jarrow Formulas, Los Angeles, CA. Present address for ECS: Medical Center, University of California Davis, Davis, CA
| | - Elaine C Souza
- Western Human Nutrition Research Center, USDA Agricultural Research Service, Davis, CA, USA
| | - William F Horn
- Western Human Nutrition Research Center, USDA Agricultural Research Service, Davis, CA, USA
| | - Erik R Gertz
- Western Human Nutrition Research Center, USDA Agricultural Research Service, Davis, CA, USA
| | - Marta D Van Loan
- Department of Nutrition, University of California, Davis, Davis, CA, USA,Western Human Nutrition Research Center, USDA Agricultural Research Service, Davis, CA, USA
| | | |
Collapse
|
28
|
Martins C, Dutton GR, Hunter GR, Gower BA. Revisiting the Compensatory Theory as an explanatory model for relapse in obesity management. Am J Clin Nutr 2020; 112:1170-1179. [PMID: 32936896 PMCID: PMC7657332 DOI: 10.1093/ajcn/nqaa243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022] Open
Abstract
Weight regain remains the main challenge in obesity management, and its etiology remains elusive. The aim of the present review was to revise the available evidence regarding the "Compensatory Theory," which is an explanatory model of relapse in obesity treatment, and to propose alternative mechanisms that can contribute to weight regain. It has been proposed, and generally accepted as true, that when a person loses weight the body fights back, with physiological adaptations on both sides of the energy balance equation that try to bring body weight back to its original state: this is the Compensatory Theory. This theory proposes that the increased orexigenic drive to eat and the reduced energy expenditure that follow weight loss are the main drivers of relapse. However, evidence showing a link between these physiological adaptations to weight loss and weight regain is lacking. Here, we propose that the physiological adaptations to weight loss, both at the level of the homeostatic appetite control system and energy expenditure, are in fact a normalization to a lower body weight and not drivers of weight regain. In light of this we explore other potential mechanisms, both physiological and behavioral, that can contribute to the high incidence of relapse in obesity management. More research is needed to clearly ascertain whether the changes in energy expenditure and homeostatic appetite markers seen in reduced-obese individuals are a compensatory mechanism that drives relapse or a normalization towards a lower body weight, and to explore alternative hypotheses that explain relapse in obesity management.
Collapse
Affiliation(s)
| | - Gareth R Dutton
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Gary R Hunter
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Barbara A Gower
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
29
|
Koliaki C, Liatis S, Dalamaga M, Kokkinos A. The Implication of Gut Hormones in the Regulation of Energy Homeostasis and Their Role in the Pathophysiology of Obesity. Curr Obes Rep 2020; 9:255-271. [PMID: 32647952 DOI: 10.1007/s13679-020-00396-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This review provides an update on the role of gut hormones and their interactions in the regulation of energy homeostasis, describes gut hormone adaptations in obesity and in response to weight loss, and summarizes the current evidence on the role of gut hormone-based therapies for obesity treatment. RECENT FINDINGS Gut hormones play a key role in regulating eating behaviour, energy and glucose homeostasis. Dysregulated gut hormone responses have been proposed to be pathogenetically involved in the development and perpetuation of obesity. Summarizing the major gut hormone changes in obesity, obese individuals are characterized by blunted postprandial ghrelin suppression, loss of premeal ghrelin peaks, impaired diurnal ghrelin variability and reduced fasting and postprandial levels of anorexigenic peptides. Adaptive alterations of gut hormone levels are implicated in weight regain, thus complicating hypocaloric dietary interventions, and can further explain the profound weight loss and metabolic improvement following bariatric surgery. A plethora of compounds mimicking gut hormone changes after bariatric surgery are currently under investigation, introducing a new era in the pharmacotherapy of obesity. The current trend is to combine different gut hormone receptor agonists and target multiple systems simultaneously, in order to replicate as closely as possible the gut hormone milieu after bariatric surgery and circumvent the counter-regulatory adaptive changes associated with dietary energy restriction. An increasing number of preclinical and early-phase clinical trials reveal the additive benefits obtained with dual or triple gut peptide receptor agonists in reducing body weight and improving glycaemia. Gut hormones act as potent regulators of energy and glucose homeostasis. Therapeutic strategies targeting their levels or receptors emerge as a promising approach to treat patients with obesity and hyperglycaemia.
Collapse
Affiliation(s)
- Chrysi Koliaki
- First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National Kapodistrian University of Athens, 17 Agiou Thoma Street, 11527, Athens, Greece.
| | - Stavros Liatis
- First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National Kapodistrian University of Athens, 17 Agiou Thoma Street, 11527, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National Kapodistrian University of Athens, 17 Agiou Thoma Street, 11527, Athens, Greece
| |
Collapse
|
30
|
Developing evidence-based behavioural strategies to overcome physiological resistance to weight loss in the general population. Proc Nutr Soc 2020; 78:576-589. [PMID: 31670628 DOI: 10.1017/s0029665119001083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Physiological and behavioural systems are tolerant of excess energy intake and responsive to energy deficits. Weight loss (WL) changes body structure, physiological function and energy balance (EB) behaviours, which resist further WL and promote subsequent weight regain. Measuring and understanding the response of EB systems to energy deficits is important for developing evidence-based behaviour change interventions for longer-term weight management. Currently, behaviour change approaches for longer-term WL show modest effect sizes. Self-regulation of EB behaviours (e.g. goal setting, action plans, self-monitoring, relapse prevention plans) and aspects of motivation are important for WL maintenance. Stress management, emotion regulation and food hedonics may also be important for relapse prevention, but the evidence is less concrete. Although much is known about the effects of WL on physiological and psychological function, little is known about the way these dynamic changes affect human EB behaviours. Key areas of future importance include (i) improved methods for detailed tracking of energy expenditure, balance and by subtraction intake, using digital technologies, (ii) how WL impacts body structure, function and subsequent EB behaviours, (iii) how behaviour change approaches can overcome physiological resistance to WL and (iv) who is likely to maintain WL or relapse. Modelling physiological and psychological moderators and mediators of EB-related behaviours is central to understanding and improving longer-term weight and health outcomes in the general population.
Collapse
|
31
|
DeBenedictis JN, Nymo S, Ollestad KH, Boyesen GA, Rehfeld JF, Holst JJ, Truby H, Kulseng B, Martins C. Changes in the Homeostatic Appetite System After Weight Loss Reflect a Normalization Toward a Lower Body Weight. J Clin Endocrinol Metab 2020; 105:5821263. [PMID: 32301981 PMCID: PMC7250208 DOI: 10.1210/clinem/dgaa202] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/14/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To compare appetite markers in reduced-obese individuals with a nonobese control group. METHODS A total of 34 adults with obesity who lost 17% body weight at week 13 and maintained this weight loss (WL) at 1 year were compared with 33 nonobese controls matched for body composition. Basal and postprandial subjective appetite ratings and appetite-related hormone concentrations (ghrelin, total peptide YY, peptide YY3-36, total and active glucagon-like peptide 1, and cholecystokinin) were measured in all participants and repeated at week 13 and 1 year in the weight-reduced group. RESULTS WL led to a reduction in prospective food consumption and an increase in feelings of hunger, fullness, and ghrelin secretion (basal and postprandial), but these new ratings were no different from those seen in controls. Postprandial concentrations of active glucagon-like peptide 1, total peptide YY, and cholecystokinin were lower in individuals with obesity at all time points compared with controls. CONCLUSION The increased drive to eat (both subjective feelings of hunger and ghrelin concentrations) seen in reduced-obese individuals, both after acute and sustained WL, reflects a normalization toward a lower body weight. Overall, WL does not have a sustained negative impact on satiety peptide secretion, despite a blunted secretion in individuals with obesity compared with nonobese controls.
Collapse
Affiliation(s)
- Julia Nicole DeBenedictis
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Siren Nymo
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Nord-Trøndelag Hospital Trust, Clinic of Surgery, Namsos Hospital, Norway
| | - Karoline Haagensli Ollestad
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Guro Akersveen Boyesen
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jens Frederik Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation, Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helen Truby
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Bard Kulseng
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
| | - Catia Martins
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
- Correspondence and Reprint Requests: Catia Martins, Department of Clinical and Molecular Medicine, NTNU, Forsyningssenteret, Prinsesse Kristinas gate 5, 7030 Trondheim, Norway. E-mail:
| |
Collapse
|
32
|
Tuero C, Valenti V, Rotellar F, Landecho MF, Cienfuegos JA, Frühbeck G. Revisiting the Ghrelin Changes Following Bariatric and Metabolic Surgery. Obes Surg 2020; 30:2763-2780. [PMID: 32323063 DOI: 10.1007/s11695-020-04601-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since the description of ghrelin in 1999, several studies have dug into the effects of this hormone and its relationship with bariatric surgery. While some aspects are still unresolved, a clear connection between ghrelin and the changes after metabolic surgery have been established. Besides weight loss, a significant amelioration in obesity-related comorbidities following surgery has also been reported. These changes in patients occur in the early postoperative period, before the weight loss appears, so that amelioration may be mainly due to hormonal changes. The purpose of this review is to go through the current body of knowledge of ghrelin's physiology, as well as to update and clarify the changes that take place in ghrelin concentrations following bariatric/metabolic surgery together with their potential consolidation to outcomes.
Collapse
Affiliation(s)
- Carlota Tuero
- Obesity Area, Clínica Universidad de Navarra, Avenida Pio XII 36, 31008, Pamplona, Navarra, Spain.
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain.
| | - Victor Valenti
- Obesity Area, Clínica Universidad de Navarra, Avenida Pio XII 36, 31008, Pamplona, Navarra, Spain
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
- CIBEROBN, Instituto de Salud Carlos III, Pamplona, Navarra, Spain
- Obesity and Adipobiology Group, IdiSNA, Pamplona, Spain
| | - Fernando Rotellar
- Obesity Area, Clínica Universidad de Navarra, Avenida Pio XII 36, 31008, Pamplona, Navarra, Spain
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
- CIBEROBN, Instituto de Salud Carlos III, Pamplona, Navarra, Spain
- Obesity and Adipobiology Group, IdiSNA, Pamplona, Spain
| | - Manuel F Landecho
- Obesity Area, Clínica Universidad de Navarra, Avenida Pio XII 36, 31008, Pamplona, Navarra, Spain
- Department of Internal Medicine, General Health Check-up unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier A Cienfuegos
- Obesity Area, Clínica Universidad de Navarra, Avenida Pio XII 36, 31008, Pamplona, Navarra, Spain
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
- CIBEROBN, Instituto de Salud Carlos III, Pamplona, Navarra, Spain
- Obesity and Adipobiology Group, IdiSNA, Pamplona, Spain
| | - Gema Frühbeck
- Obesity Area, Clínica Universidad de Navarra, Avenida Pio XII 36, 31008, Pamplona, Navarra, Spain.
- CIBEROBN, Instituto de Salud Carlos III, Pamplona, Navarra, Spain.
- Obesity and Adipobiology Group, IdiSNA, Pamplona, Spain.
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
33
|
A review of the short- and long-term impact of weight loss on appetite in youth: what do we know and where to from here? Proc Nutr Soc 2020; 79:357-366. [PMID: 32517831 DOI: 10.1017/s0029665120007028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review seeks to synthesise our knowledge about changes in hunger and satiety that occur during diet-induced weight loss and during weight loss maintenance, with a particular focus on youth with obesity. Mechanisms of appetite responses to weight loss rely heavily on the adult literature. Physiological mechanisms that control appetite and satiety via the gut-brain axis have been elucidated but we have an incomplete picture of changes in gut hormones and peptides in youth with obesity. In adolescents, the role of the brain in long-term sensing of body composition and modifying appetite and satiety changes is easily over-ridden by hedonic influences for the reward of highly palatable sweet foods and encourages over-consumption. Accordingly, reward cues and hyper-responsiveness to palatable foods lead to a pattern of food choices. Different reward systems are necessary that are substantial enough to reward the continued individual effort required to sustain new behaviours, that need to be adopted to support a reduced body weight. Periods of growth and development during childhood provide windows of opportunity for interventions to influence body weight trajectory but long-term studies are lacking. More emphasis needs to be placed on anticipatory guidance on how to manage powerful hedonic influences of food choice, essential to cope with living in our obesogenic environment and managing hunger which comes with the stronger desire to eat after weight has been lost.
Collapse
|
34
|
Abstract
Currently the world is facing an incredibly costly epidemic of obesity. Almost two-thirds of UK adults are either overweight or obese with estimated financial costs to the UK economy alone of £27 billion per year. While fundamentally obesity is a disorder of energy balance, several decades of research has demonstrated that maintaining energy balance is much more complex than the 'energy in equals energy out' equation that was once touted. The purpose of the 2018 Nutrition Society Summer Conference, 'Getting energy balance right' was to provide insight into the numerous factors influencing energy balance, considering varying needs across the lifespan, while highlighting advances and gaps in knowledge. Papers presented in this issue illustrate the wide range of factors involved in maintaining energy balance, including: epigenetics, the gut microbiome, physical activity and dietary factors including sugar. Given the complexity of energy balance, systems approaches were highlighted as useful for both understanding metabolism and pathophysiology, and for understanding how public health interventions to treat and prevent obesity should be implemented. The meeting concluded that numerous stakeholders, from individuals, to schools, industry and government, have roles to play in fostering a positive food environment that facilitates the maintenance of energy balance throughout the lifespan.
Collapse
|
35
|
Churuangsuk C, Lean MEJ, Combet E. Low and reduced carbohydrate diets: challenges and opportunities for type 2 diabetes management and prevention. Proc Nutr Soc 2020; 79:1-16. [PMID: 32131904 DOI: 10.1017/s0029665120000105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Low-carbohydrate diets (LCD) have been promoted for weight control and type 2 diabetes (T2D) management, based on an emerging body of evidence, including meta-analyses with an indication of publication bias. Proposed definitions vary between 50 and 130 g/d, or <10 and <40 % of energy from carbohydrate, with no consensus on LCD compositional criteria. LCD are usually followed with limited consideration for other macronutrients in the overall diet composition, introducing variance in the constituent foods and in metabolic responses. For weight management, extensive evidence supports LCD as a valid weight loss treatment, up to 1-2 years. Solely lowering carbohydrate intake does not, in the medium/long term, reduce HbA1c for T2D prevention or treatment, as many mechanisms interplay. Under controlled feeding conditions, LCD are not physiologically or clinically superior to diets with higher carbohydrates for weight-loss, fat loss, energy expenditure or glycaemic outcomes; indeed, all metabolic improvements require weight loss. Long-term evidence also links the LCD pattern to increased CVD risks and mortality. LCD can lead to micronutrient deficiencies and increased LDL-cholesterol, depending on food selection to replace carbohydrates. Evidence is limited but promising regarding food choices/sources to replace high-carbohydrate foods that may alleviate the negative effects of LCD, demanding further insight into the dietary practice of medium to long term LCD followers. Long-term, high-quality studies of LCD with different food sources (animal and/or plant origins) are needed, aiming for clinical endpoints (T2D incidence and remission, cardiovascular events, mortality). Ensuring micronutrient adequacy by food selection or supplementation should be considered for people who wish to pursue long-term LCD.
Collapse
Affiliation(s)
- Chaitong Churuangsuk
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, 10-16 Alexandra Parade, GlasgowG31 2ER, UK
- Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Michael E J Lean
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, 10-16 Alexandra Parade, GlasgowG31 2ER, UK
| | - Emilie Combet
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, 10-16 Alexandra Parade, GlasgowG31 2ER, UK
| |
Collapse
|
36
|
Deemer SE, Plaisance EP, Martins C. Impact of ketosis on appetite regulation-a review. Nutr Res 2020; 77:1-11. [PMID: 32193016 DOI: 10.1016/j.nutres.2020.02.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/30/2020] [Accepted: 02/18/2020] [Indexed: 02/01/2023]
Abstract
To reduce the health burden of obesity, it is important to identify safe and practical treatments that are effective for weight loss while concurrently preventing weight regain. Diet-induced weight loss is usually followed by a concomitant increase in ghrelin secretion and feelings of hunger, which may compromise weight loss goals and increase the risk of weight regain. The aim of this review is to describe the status of knowledge regarding the impact of ketosis, induced by diet or exogenous ketones (ketone esters), on appetite and the potential mechanisms involved. Ketogenic diets (KDs) have been shown to prevent an increase in ghrelin secretion, otherwise seen with weight loss, as well as to reduce hunger and/or prevent hunger. However, the exact threshold of ketosis needed to induce appetite suppression, as well as the exact mechanisms that mediate such an effect, has yet to be elucidated. Use of exogenous ketones may provide an alternative to KDs, which have poor long-term adherence due to their restrictive nature. Ketone esters have been shown to have concentration-dependent effects on food intake and body weight in rodent models, with effects becoming apparent when 30% of total dietary energy comes from ketone esters (threshold effect). In humans, acute consumption of a ketone ester drink reduced feelings of hunger and increased satiety compared to a dextrose drink. With the emerging widespread acceptance of KDs and exogenous ketones in mainstream media and the diet culture, it is important to fully understand their role on appetite control and weight management and the potential mechanisms mediating this role.
Collapse
Affiliation(s)
- Sarah E Deemer
- Department of Nutrition Sciences and Nutrition Obesity Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Eric P Plaisance
- Department of Human Studies, Exercise Physiology, Nutrition Obesity Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Catia Martins
- Department of Nutrition Sciences and Nutrition Obesity Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Obesity Research Group, Department of Clinical Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St Olav University Hospital, Trondheim, Norway.
| |
Collapse
|
37
|
Thom G, Dombrowski SU, Brosnahan N, Algindan YY, Rosario Lopez-Gonzalez M, Roditi G, Lean MEJ, Malkova D. The role of appetite-related hormones, adaptive thermogenesis, perceived hunger and stress in long-term weight-loss maintenance: a mixed-methods study. Eur J Clin Nutr 2020; 74:622-632. [PMID: 32020057 DOI: 10.1038/s41430-020-0568-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND/OBJECTIVES Weight-loss maintenance is challenging, and few succeed in the long term. This study aimed to explain how appetite-related hormones, adaptive thermogenesis, perceived hunger and stress influence weight-loss maintenance. SUBJECTS/METHODS Fifteen adult women (age, 46.3 ± 9.5 years; BMI, 39.4 ± 4.3 kg/m2) participated in a 24-month intervention, which included 3-5 months total diet replacement (825-853 kcal/d). Body weight and composition (Magnetic Resonance Imaging), resting metabolic rate (indirect calorimetry), and fasting plasma concentration of leptin, ghrelin, glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and growth differentiation factor 15 (GDF-15) were measured at baseline and after weight loss, around 6 months. Perceptions relating to weight-loss maintenance were explored using qualitative interviews. RESULTS Mean (SD) changes in body weight (-13.8 ± 6.3 kg) and total adipose tissue (-11.5 ± 4.9 kg) were significant (P < 0.001). Weight loss was associated with a significant reduction in resting metabolic rate (-291 ± 226 kcal/day, P < 0.001) and adaptive thermogenesis (-150 ± 162 kcal/day, P = 0.003), reduction in leptin (P < 0.001) and GLP-1 (P = 0.015), an increase in ghrelin (P < 0.001), and no changes in PYY and GDF-15. Weight regain between 6 and 24 months (6.1 ± 6.3 kg, P < 0.05) was negatively correlated with GLP-1 at baseline (r = −0.7, P = 0.003) and after weight loss (r = -0.7, P = 0.005). Participants did not report increased hunger after weight loss, and stress-related/emotional eating was perceived as the main reason for regain. CONCLUSIONS Weight regain is more likely with lower fasting GLP-1 at baseline and following weight loss, but psychological aspects of eating behaviour appear as important in attenuating weight-loss maintenance.
Collapse
Affiliation(s)
- George Thom
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | | | - Naomi Brosnahan
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Yasmin Y Algindan
- Department of Clinical Nutrition, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Giles Roditi
- Department of Radiology, Glasgow Royal Infirmary, Glasgow, UK
| | - Michael E J Lean
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Dalia Malkova
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK.
| |
Collapse
|
38
|
Makaronidis JM, Batterham RL. The role of gut hormones in the pathogenesis and management of obesity. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Grannell A, De Vito G, Murphy JC, le Roux CW. The influence of skeletal muscle on appetite regulation. Expert Rev Endocrinol Metab 2019; 14:267-282. [PMID: 31106601 DOI: 10.1080/17446651.2019.1618185] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/09/2019] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Fat-free mass, of which skeletal muscle is amajor component, correlates positively with energy intake at energy balance. This is due to the effects of metabolically active tissue on energy expenditure which in itself appears to signal to the brain adrive to eat to ensure cellular energy homeostasis. The mechanisms responsible for this drive to eat are unknown but are likely to be related to energy utilization. Here muscle imparts an indirect influence on hunger. The drive to eat is also enhanced after muscle loss secondary to intentional weight loss. The evidence suggests loss of both fat mass and skeletal muscle mass directly influences the trajectory and magnitude of weight regain highlighting their potential role in long-termappetite control. The mechanisms responsible for the potential direct drive to eat stemming from muscle loss are unknown. AREAS COVERED The literature pertaining to muscle and appetite at energy balance and after weight loss was examined. Aliterature search was conducted to identify studies related to appetite, muscle, exercise, and weight loss. EXPERT OPINION Understanding the mechanisms which link energy expenditure and muscle loss to hunger has the potential to positively impact both the prevention and the treatment of obesity.
Collapse
Affiliation(s)
- Andrew Grannell
- a Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences , University College Dublin , Dublin , Ireland
- b MedFit Proactive Healthcare, Blackrock , Dublin , Ireland
| | - Giuseppe De Vito
- c School of Public Health, Physiotherapy and Sports Science , University College Dublin , Dublin , Ireland
| | - John C Murphy
- b MedFit Proactive Healthcare, Blackrock , Dublin , Ireland
| | - Carel W le Roux
- a Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences , University College Dublin , Dublin , Ireland
| |
Collapse
|
40
|
Turicchi J, O'Driscoll R, Finlayson G, Beaulieu K, Deighton K, Stubbs RJ. Associations between the rate, amount, and composition of weight loss as predictors of spontaneous weight regain in adults achieving clinically significant weight loss: A systematic review and meta-regression. Obes Rev 2019; 20:935-946. [PMID: 30925026 DOI: 10.1111/obr.12849] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023]
Abstract
Weight regain following weight loss is common although little is known regarding the associations between amount, rate, and composition of weight loss and weight regain. Forty-three studies (52 groups; n = 2379) with longitudinal body composition measurements were identified in which weight loss (≥5%) and subsequent weight regain (≥2%) occurred. Data were synthesized for changes in weight and body composition. Meta-regression models were used to investigate associations between amount, rate, and composition of weight loss and weight regain. Individuals lost 10.9% of their body weight over 13 weeks composed of 19.6% fat-free mass, followed by a regain of 5.4% body weight over 44 weeks composed of 21.6% fat-free mass. Associations between the amount (P < 0.001) and rate (P = 0.049) of weight loss and their interaction (P = 0.042) with weight regain were observed. Fat-free mass (P = 0.017) and fat mass (P < 0.001) loss both predicted weight regain although the effect of fat-free mass was attenuated following adjustment. The amount (P < 0.001), but not the rate of weight loss (P = 0.150), was associated with fat-free mass loss. The amount and rate of weight loss were significant and interacting factors associated with weight regain. Loss of fat-free mass and fat mass explained greater variance in weight regain than weight loss alone.
Collapse
Affiliation(s)
- Jake Turicchi
- Appetite Control and Energy Balance Group, School of Psychology, University of Leeds, Leeds, UK
| | - Ruairi O'Driscoll
- Appetite Control and Energy Balance Group, School of Psychology, University of Leeds, Leeds, UK
| | - Graham Finlayson
- Appetite Control and Energy Balance Group, School of Psychology, University of Leeds, Leeds, UK
| | - Kristine Beaulieu
- Appetite Control and Energy Balance Group, School of Psychology, University of Leeds, Leeds, UK
| | - Kevin Deighton
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK
| | - R James Stubbs
- Appetite Control and Energy Balance Group, School of Psychology, University of Leeds, Leeds, UK
| |
Collapse
|
41
|
Nymo S, Coutinho SR, Rehfeld JF, Truby H, Kulseng B, Martins C. Physiological Predictors of Weight Regain at 1-Year Follow-Up in Weight-Reduced Adults with Obesity. Obesity (Silver Spring) 2019; 27:925-931. [PMID: 31004405 PMCID: PMC6593985 DOI: 10.1002/oby.22476] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/25/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE This study aimed to assess whether changes in resting metabolic rate (RMR), exercise-induced energy expenditure (EIEE), and appetite following weight loss (WL) are associated with weight regain at 1 year. METHODS Thirty-six adults with obesity underwent 8 weeks of a very-low-energy diet, followed by 4 weeks of refeeding and a 1-year maintenance program. RMR, EIEE, appetite ratings, and active ghrelin, peptide YY, glucagon-like peptide-1, cholecystokinin, and insulin concentrations were measured at baseline, week 13, and 1 year. RESULTS A 17% WL (-20 ± 5 kg [mean ± SD]; range: -11.7 to -32.2 kg; P < 0.001) was achieved at week 13. After 1 year, weight regain was 2.5 ± 9.0 kg (not significant), ranging from -18.2 to 22.5 kg. Both fat mass and fat-free mass were reduced at week 13 (-17.9 ± 4.8 and -2.9 ± 2.7 kg, respectively; P < 0.001), while only loss of fat mass was sustained at 1 year. WL was associated with reduced RMR, EIEE, and fasting/postprandial insulin (all P < 0.001), as well as increased fasting hunger (P < 0.01) and fasting/postprandial active ghrelin (P < 0.001). There were no significant correlations between changes in RMR, EIEE, or appetite with WL and weight regain at 1 year. CONCLUSIONS No clear evidence emerged that changes in RMR, EIEE, or appetite following WL can predict weight regain at 1 year, but larger studies are needed to confirm these results.
Collapse
Affiliation(s)
- Siren Nymo
- Obesity Research Group, Department of Cancer Research and Molecular Medicine, Faculty of MedicineNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Clinic of SurgeryNord‐Trøndelag Hospital Trust, Namsos HospitalNamsosNorway
| | - Silvia R. Coutinho
- Obesity Research Group, Department of Cancer Research and Molecular Medicine, Faculty of MedicineNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Jens F. Rehfeld
- Department of Clinical Biochemistry, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Helen Truby
- Department of Nutrition, Dietetics & FoodMonash UniversityMelbourneVictoriaAustralia
| | - Bård Kulseng
- Obesity Research Group, Department of Cancer Research and Molecular Medicine, Faculty of MedicineNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Centre for Obesity and Innovation (ObeCe), Clinic of SurgerySt. Olav University HospitalTrondheimNorway
| | - Catia Martins
- Obesity Research Group, Department of Cancer Research and Molecular Medicine, Faculty of MedicineNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Centre for Obesity and Innovation (ObeCe), Clinic of SurgerySt. Olav University HospitalTrondheimNorway
| |
Collapse
|
42
|
Lyngstad A, Nymo S, Coutinho SR, Rehfeld JF, Truby H, Kulseng B, Martins C. Investigating the effect of sex and ketosis on weight-loss-induced changes in appetite. Am J Clin Nutr 2019; 109:1511-1518. [PMID: 31070711 PMCID: PMC6537934 DOI: 10.1093/ajcn/nqz002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/02/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Diet-induced weight loss (WL) is usually accompanied by increased appetite, a response that seems to be absent when ketogenic diets are used. It remains unknown if sex modulates the appetite suppressant effect of ketosis. OBJECTIVE The aim of this study was to examine if sex modulates the impact of WL-induced changes in appetite and if ketosis alters these responses. METHODS Ninety-five individuals (55 females) with obesity (BMI [kg/m 2]: 37 ± 4) underwent 8 wk of a very-low-energy diet, followed by 4 wk of refeeding and weight stabilization. Body composition, plasma concentration of β-hydroxybutyrate (β-HB) and appetite-related hormones (active ghrelin, active glucagon-like peptide 1 [GLP-1], total peptide YY [PYY], cholecystokinin and insulin), and subjective feelings of appetite were measured at baseline, week 9 in ketosis, and week 13 out of ketosis. RESULTS The mean WL at week 9 was 17% for males and 15% for females, which was maintained at week 13. Weight, fat, and fat-free mass loss were greater in males (P < 0.001 for all) and the increase in β-HB at week 9 higher in females (1.174 ± 0.096 compared with 0.783 ± 0.112 mmol/L, P = 0.029). Basal and postprandial GLP-1 and postprandial PYY (all P < 0.05) were significantly different for males and females. There were no significant sex × time interactions for any other appetite-related hormones or subjective feelings of appetite. At week 9, basal GLP-1 was decreased only in males (P < 0.001), whereas postprandial GLP-1 was increased only in females (P < 0.001). No significant changes in postprandial PYY were observed over time for either sex. CONCLUSIONS Ketosis appears to have a greater beneficial impact on GLP-1 in females. However, sex does not seem to modulate the changes in the secretion of other appetite-related hormones, or subjective feelings of appetite, seen with WL, regardless of the ketotic state. This trial was registered at clinicaltrials.gov as NCT01834859.
Collapse
Affiliation(s)
- Anna Lyngstad
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology Trondheim, Norway,Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
| | - Siren Nymo
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology Trondheim, Norway,Nord-Trøndelag Hospital Trust, Clinic of Surgery, Namsos Hospital, Norway,Address correspondence to SN (e-mail: )
| | - Silvia R Coutinho
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology Trondheim, Norway
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Helen Truby
- Department of Nutrition, Dietetics & Food, Monash University, Melbourne, Australia
| | - Bård Kulseng
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology Trondheim, Norway,Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
| | - Catia Martins
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology Trondheim, Norway,Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
| |
Collapse
|
43
|
Metabolic adaptations during negative energy balance and their potential impact on appetite and food intake. Proc Nutr Soc 2019; 78:279-289. [DOI: 10.1017/s0029665118002811] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review examines the metabolic adaptations that occur in response to negative energy balance and their potential putative or functional impact on appetite and food intake. Sustained negative energy balance will result in weight loss, with body composition changes similar for different dietary interventions if total energy and protein intake are equated. During periods of underfeeding, compensatory metabolic and behavioural responses occur that attenuate the prescribed energy deficit. While losses of metabolically active tissue during energy deficit result in reduced energy expenditure, an additional down-regulation in expenditure has been noted that cannot be explained by changes in body tissue (e.g. adaptive thermogenesis). Sustained negative energy balance is also associated with an increase in orexigenic drive and changes in appetite-related peptides during weight loss that may act as cues for increased hunger and food intake. It has also been suggested that losses of fat-free mass (FFM) could also act as an orexigenic signal during weight loss, but more data are needed to support these findings and the signalling pathways linking FFM and energy intake remain unclear. Taken together, these metabolic and behavioural responses to weight loss point to a highly complex and dynamic energy balance system in which perturbations to individual components can cause co-ordinated and inter-related compensatory responses elsewhere. The strength of these compensatory responses is individually subtle, and early identification of this variability may help identify individuals that respond well or poorly to an intervention.
Collapse
|
44
|
Sainsbury A, Wood RE, Seimon RV, Hills AP, King NA, Gibson AA, Byrne NM. Rationale for novel intermittent dieting strategies to attenuate adaptive responses to energy restriction. Obes Rev 2018; 19 Suppl 1:47-60. [PMID: 30511512 DOI: 10.1111/obr.12787] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/16/2022]
Abstract
Eating patterns involving intermittent energy restriction (IER) include 'intermittent fasting' where energy intake is severely restricted for several 'fasting' days per week, with 'refeeding' days (involving greater energy intake than during fasting days) at other times. Intermittent fasting does not improve weight loss compared to continuous energy restriction (CER), where energy intake is restricted every day. We hypothesize that weight loss from IER could be improved if refeeding phases involved restoration of energy balance (i.e. not ongoing energy restriction, as during intermittent fasting). There is some evidence in adults with overweight or obesity showing that maintenance of a lower weight may attenuate (completely or partially) some of the adaptive responses to energy restriction that oppose ongoing weight loss. Other studies show some adaptive responses persist unabated for years after weight loss. Only five randomized controlled trials in adults with overweight or obesity have compared CER with IER interventions that achieved energy balance (or absence of energy restriction) during refeeding phases. Two reported greater weight loss than CER, whereas three reported similar weight loss between interventions. While inconclusive, it is possible that achieving energy balance (i.e. avoiding energy restriction or energy excess) during refeeding phases may be important in realizing the potential of IER.
Collapse
Affiliation(s)
- A Sainsbury
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, NSW, Australia
| | - R E Wood
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - R V Seimon
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, NSW, Australia
| | - A P Hills
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - N A King
- School of Exercise and Nutrition Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - A A Gibson
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, NSW, Australia
| | - N M Byrne
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| |
Collapse
|