1
|
Cai Y, Chen Q. Resveratrol: A Narrative Review Regarding Its Mechanisms in Mitigating Obesity-Associated Metabolic Disorders. Phytother Res 2025; 39:999-1019. [PMID: 39715730 DOI: 10.1002/ptr.8416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/25/2024]
Abstract
Resveratrol (RSV) is a naturally occurring astragalus-like polyphenolic compound with remarkable weight loss properties. However, the mechanism of RSV in treating obesity is unclear. In this narrative review, we explored electronic databases (PubMed) for research articles from 2021 to the present using the keywords "resveratrol" and "obesity". This article explores the mechanisms involved in the alleviation of obesity-related metabolic disorders by RSV. RSV affects obesity by modulating mitochondrial function, insulin signaling, and gut microbiota, regulating lipid metabolism, inhibiting oxidative stress, and regulating epigenetic regulation. Administering RSV to pregnant animals exhibits maternal and first-generation offspring benefits, and RSV administration to lactating animals has long-term benefits, which involve the epigenetic modulations by RSV. A comprehensive understanding of the epigenetic mechanisms of RSV regulation could help in developing drugs suitable for pregnancy preparation groups, pregnant women, and nursing infants.
Collapse
Affiliation(s)
- Yichen Cai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
de Sousa É, de Mendonça M, Bolin AP, de Oliveira NP, Real CC, Hu X, Huang ZP, Wang DZ, Rodrigues AC. Sex-specific regulation of miR-22 and ERα in white adipose tissue of obese dam's female offspring impairs the early postnatal development of functional beige adipocytes in mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167057. [PMID: 38331111 DOI: 10.1016/j.bbadis.2024.167057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/31/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
During inguinal adipose tissue (iWAT) ontogenesis, beige adipocytes spontaneously appear between postnatal 10 (P10) and P20 and their ablation impairs iWAT browning capacity in adulthood. Since maternal obesity has deleterious effects on offspring iWAT function, we aimed to investigate its effect in spontaneous iWAT browning in offspring. Female C57BL/6 J mice were fed a control or obesogenic diet six weeks before mating. Male and female offspring were euthanized at P10 and P20 or weaned at P21 and fed chow diet until P60. At P50, mice were treated with saline or CL316,243, a β3-adrenoceptor agonist, for ten days. Maternal obesity induced insulin resistance at P60, and CL316,243 treatment effectively restored insulin sensitivity in male but not female offspring. This discrepancy occurred due to female offspring severe browning impairment. During development, the spontaneous iWAT browning and sympathetic nerve branching at P20 were severely impaired in female obese dam's offspring but occurred normally in males. Additionally, maternal obesity increased miR-22 expression in the iWAT of male and female offspring during development. ERα, a target and regulator of miR-22, was concomitantly upregulated in the male's iWAT. Next, we evaluated miR-22 knockout (KO) offspring at P10 and P20. The miR-22 deficiency does not affect spontaneous iWAT browning in females and, surprisingly, anticipates iWAT browning in males. In conclusion, maternal obesity impairs functional iWAT development in the offspring in a sex-specific way that seems to be driven by miR-22 levels and ERα signaling. This impacts adult browning capacity and glucose homeostasis, especially in female offspring.
Collapse
Affiliation(s)
- Érica de Sousa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mariana de Mendonça
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Anaysa Paola Bolin
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Nayara Preste de Oliveira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Xiaoyun Hu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhan-Peng Huang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alice Cristina Rodrigues
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Zhao XY, Wang JQ, Neely GG, Shi YC, Wang QP. Natural compounds as obesity pharmacotherapies. Phytother Res 2024; 38:797-838. [PMID: 38083970 DOI: 10.1002/ptr.8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.
Collapse
Affiliation(s)
- Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-Qiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Thornton JM, Shah NM, Lillycrop KA, Cui W, Johnson MR, Singh N. Multigenerational diabetes mellitus. Front Endocrinol (Lausanne) 2024; 14:1245899. [PMID: 38288471 PMCID: PMC10822950 DOI: 10.3389/fendo.2023.1245899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Gestational diabetes (GDM) changes the maternal metabolic and uterine environment, thus increasing the risk of short- and long-term adverse outcomes for both mother and child. Children of mothers who have GDM during their pregnancy are more likely to develop Type 2 Diabetes (T2D), early-onset cardiovascular disease and GDM when they themselves become pregnant, perpetuating a multigenerational increased risk of metabolic disease. The negative effect of GDM is exacerbated by maternal obesity, which induces a greater derangement of fetal adipogenesis and growth. Multiple factors, including genetic, epigenetic and metabolic, which interact with lifestyle factors and the environment, are likely to contribute to the development of GDM. Genetic factors are particularly important, with 30% of women with GDM having at least one parent with T2D. Fetal epigenetic modifications occur in response to maternal GDM, and may mediate both multi- and transgenerational risk. Changes to the maternal metabolome in GDM are primarily related to fatty acid oxidation, inflammation and insulin resistance. These might be effective early biomarkers allowing the identification of women at risk of GDM prior to the development of hyperglycaemia. The impact of the intra-uterine environment on the developing fetus, "developmental programming", has a multisystem effect, but its influence on adipogenesis is particularly important as it will determine baseline insulin sensitivity, and the response to future metabolic challenges. Identifying the critical window of metabolic development and developing effective interventions are key to our ability to improve population metabolic health.
Collapse
Affiliation(s)
- Jennifer M. Thornton
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nishel M. Shah
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Karen A. Lillycrop
- Institute of Developmental Sciences, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Wei Cui
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mark R. Johnson
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Natasha Singh
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Mao X, Li Y, Zhong Y, Chen R, Wang K, Huang D, Luo X. Kruppel-like factor 14 ameliorated obesity and related metabolic disorders by promoting adipose tissue browning. Am J Physiol Endocrinol Metab 2023; 325:E744-E754. [PMID: 37938176 DOI: 10.1152/ajpendo.00226.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023]
Abstract
Obesity has been identified as a serious and debilitating disease that threatens human health, but the current treatment strategies still have some shortcomings. Exercise and dieting are difficult for many people to adhere to, and a series of surgical risks and pain brought about by volume reduction have made it difficult for the current weight loss effect to meet human expectations. In this study, we first found that mice with overexpression of the transcription factor Kruppel-like factor 14 (KLF14) in subcutaneous adipose tissue gained weight more slowly while consuming a high-fat diet than did control mice, and these mice also showed reduced insulin resistance and liver lipid deposition abnormalities. Mechanistically, the browning of white adipose tissue was promoted in adipose tissue with KLF14 overexpression; therefore, we preliminarily concluded that KLF14 can improve obesity by promoting the browning of white adipose tissue and energy consumption, thus ameliorating obesity and related metabolic disturbances. In summary, our results revealed that KLF14 may promote white adipose tissue browning, thus ameliorating high-fat diet-induced obesity and hepatic steatosis, as well as serum lipid levels and insulin resistance, thereby achieving a positive effect on metabolism.NEW & NOTEWORTHY Our study first explored the role of KLF14 in the development and progression of HFD-induced obesity in male mice. Its beneficial effect on adipose browning and metabolic disorders suggests that KLF14 may provide us a new therapeutic strategy for obesity and related metabolic complications. This health problem is of global concern and needs to be addressed.
Collapse
Affiliation(s)
- Xiaoxiang Mao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yuanxiang Li
- Department of Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yi Zhong
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ru Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Kun Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Dandan Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xi Luo
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
6
|
Fuentes-Romero R, Velázquez-Villegas LA, Vasquez-Reyes S, Pérez-Jiménez B, Domínguez Velázquez ZN, Sánchez-Tapia M, Vargas-Castillo A, Tobón-Cornejo S, López-Barradas AM, Mendoza V, Torres N, López-Casillas F, Tovar AR. Genistein-mediated thermogenesis and white-to-beige adipocyte differentiation involve transcriptional activation of cAMP response elements in the Ucp1 promoter. FASEB J 2023; 37:e23079. [PMID: 37410022 DOI: 10.1096/fj.202300139rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
Genistein is an isoflavone present in soybeans and is considered a bioactive compound due to its widely reported biological activity. We have previously shown that intraperitoneal genistein administration and diet supplementation activates the thermogenic program in rats and mice subcutaneous white adipose tissue (scWAT) under multiple environmental cues, including cold exposure and high-fat diet feeding. However, the mechanistic insights of this process were not previously unveiled. Uncoupling protein 1 (UCP1), a mitochondrial membrane polypeptide responsible for dissipating energy into heat, is considered the most relevant thermogenic marker; thus, we aimed to evaluate whether genistein regulates UCP1 transcription. Here we show that genistein administration to thermoneutral-housed mice leads to the appearance of beige adipocyte markers, including a sharp upregulation of UCP1 expression and protein abundance in scWAT. Reporter assays showed an increase in UCP1 promoter activity after genistein stimulation, and in silico analysis revealed the presence of estrogen (ERE) and cAMP (CRE) response elements as putative candidates of genistein activation. Mutation of the CRE but not the ERE reduced genistein-induced promoter activity by 51%. Additionally, in vitro and in vivo ChIP assays demonstrated the binding of CREB to the UCP1 promoter after acute genistein administration. Taken together, these data elucidate the mechanism of genistein-mediated UCP1 induction and confirm its potential applications in managing metabolic disorders.
Collapse
Affiliation(s)
- Rebeca Fuentes-Romero
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico
| | - Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Sarai Vasquez-Reyes
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Berenice Pérez-Jiménez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Zuleima N Domínguez Velázquez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Ariana Vargas-Castillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Sandra Tobón-Cornejo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Adriana M López-Barradas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Valentín Mendoza
- Department of Cellular and Developmental Biology, Institute of Cellular Physiology, UNAM, México City, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Fernando López-Casillas
- Department of Cellular and Developmental Biology, Institute of Cellular Physiology, UNAM, México City, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| |
Collapse
|